Variants associated with adolescent idiopathic scoliosis perturb an estrogen-sensitive *Pax1-Col11a1-Mmp3* signaling axis

Carol A. Wise^{1,15,19,20}, Hao Yu¹, Anas M. Khanshour¹, Aki Ushiki^{2,3}, Nao Otomo^{4,5}, Yoshinao Koike^{4,5}, Elisabet Einarsdottir⁶, Yanhui Fan⁷, Lilian Antunes⁸, Yared H. Kidane¹, Reuel Cornelia¹, Rory Sheng^{2,3}, Yichi Zhang^{2,3,9}, Jimin Pei¹⁰, Nick V. Grishin¹⁰, Bret M. Evers^{11,12}, Jason Pui Yin Cheung¹³, John A. Herring^{14,15}, Chikashi Terao⁵, You-Qiang Song⁷, Christina A. Gurnett⁸, Paul Gerdhem^{16,17,18}, Shiro Ikegawa⁴, Jonathan J. Rios^{1,15,19,20}, and Nadav Ahituv^{2,3}

¹Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA

²Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA

³Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA ⁴Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP

⁵Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP

⁶Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE

⁷School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN ⁸Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA

⁹School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN

¹⁰Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA

¹¹Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA ¹²Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA

¹³Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, CN

¹⁴Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA

¹⁵Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA

¹⁶Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE

¹⁷Department of Surgical Sciences, Uppsala University and

¹⁸Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE

¹⁹Eugene McDermott Center for Human Growth and Development, University of Texas

Southwestern Medical Center, Dallas, TX, USA

²⁰Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity that exhibits

striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease

compared to boys. Despite its medical significance, insights into the pathogenesis of AIS are just emerging. By genome-wide association and functional studies we previously defined a female-specific risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the mechanism of AIS. In a discovery and follow-up meta-analysis association study of nonsynonymous variants within extracellular matrix (ECM) genes (total N=103,757 individuals), we identified significant associations with a variant in COL11A1 (rs3753841; p.(Pro1335Leu); P=7.07e⁻¹¹, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice $(Pax 1^{-/-})$, which were viable and displayed a kinked tail phenotype. By RT-PCR in tails of E12.5 Pax 1⁻ ⁻ mice we found reduced expression of AIS-associated genes including *Coll1a1*. Immunofluorescence microscopy in postnatal spines detected overlapping staining of Pax1 and Coll1a1 at the cartilaginous endplate-osseous junction encompassing the vertebral growth plate, with reduced expression of *Coll1a1* in $Pax1^{-}$ spines compared to wildtype. To study the role of *Coll1a1* in growth plate cells (GPCs), primary rib cartilage from Coll1a1^{fl/fl} mice was cultured in the presence or absence of Creexpressing adenovirus. By RT-PCR in these cells we observed significant upregulation (P<.05) of Mmp3, encoding the matrix metalloproteinase 3 "stromolysin" enzyme that is known to be regulated by *Coll1a1* in solid tumors. Conversely, endogenous *Mmp3* expression was significantly downregulated after lentiviral overexpression of the human COL11A1^{WT}, but not COL11A1^{P1335L}, in Cre-expressing Col11a1^{fl/fl} SV40-immortalized GPCs. These results support negative regulation of *Mmp3* expression by *Coll1a1* that is abrogated by the AIS-associated COL11A1^{P1335L} variant in GPCs. Col11a1 is regulated by estrogen receptor beta (ESR2) in ovarian cells. siRNA-mediated Esr2 knockdown in mouse GPCs significantly increased Coll1a1 expression, and significantly decreased Mmp3 expression, as did tamoxifen treatment of these cells. These studies support a new model wherein genetic variation and estrogen signaling increase

susceptibility to spinal deformity during adolescent growth via a *Pax1-Col11a1-Mmp3* signaling axis.