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Abstract—Given that poor air quality has obvious negative health impacts, predicting air pollution concentration is crucial and
beneficial for public health. Motivated by recent advancements in deep-learning time series prediction, this study proposes a
domain-specific Bayesian deep-learning model for long-term air pollution forecast in China and the United Kingdom, Our proposed
model carries three novelties: First, we integrate a domain-specific knowledge taking into account the strong statistical relationship
between PM, 5 and PM1 as a regularization term; Second, we include an attention layer capable of capturing the influential historical
feature, the recursive temporal correlation of air quality data, in our pollution prediction; Third, results generated from different
multi-step forecast strategies have been combined based on corresponding uncertainty measures to improve our models performance.
Using Beijing and London as our case studies, our results have shown that the Bayesian deep-learning model outperforms the
baseline models. In particular, the incorporation of domain-specific knowledge into the Bayesian deep-learning model reduces
prediction errors whilst the integration of Bayesian techniques allows the fusing of different forecast strategies to improve prediction
accuracy. Feature selection can be performed and additional influential domain-specific features can be added in future to further
improve our deep-learning models prediction accuracy and interpretability.

Index Terms—air pollution forecast, Bayesian deep-learning, prediction uncertainty, domain-specific knowledge, prediction fusion

1 INTRODUCTION

APID socio-economic development and urbanization
have resulted in serious air pollution across many
large cities in the world. Since poor air quality has clear
negative impacts on physical and mental health [1], [2],
accurately monitoring and predicting the concentration of
air pollutants have become increasingly important to ensure
that citizens can receive real-time health alerts and advice,
and that government can make timely decisions such as
tightening control of certain air pollutants on par with
World Health Organization standards [3]. Among all air
pollutants, particulate matters (PM), including PM,5 (PM
with a diameter of less than 2.5 micrometers) and PMyg
(PM with a diameter of less than 10 micrometers), have
strongest negative impacts on public health [4]. PM,5 and
PM;y may originate from similar emission sources; high
statistical correlation between these two pollutants is often
observed in empirical studies [5], [6]. Due to the similarities
and differences in socio-economic structures and air pollu-
tion characteristics, we have selected Beijing, China, and
London, the UK as our case study. We aim to predict the
hourly PM, 5 and PM; concentration of the next 48 hours.
Urban air pollution forecast remains a challenge. Tradi-
tionally, physical models are used to simulate the air pollu-
tant diffusion process based on the theories in atmospheric
science [7]. Utilizing urban big data, recent advances in data-
driven models [8], [9], especially deep-learning models [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], have
made it possible to accurately predict air pollution levels
based on the statistical patterns derived from historical
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data. However, data-driven approaches may suffer from
the problems of limited and missing/noisy urban data. To
tackle these challenges, prediction uncertainty, which takes
into account the model and input uncertainty, will greatly
enhance prediction reliability and interpretability of our
model. Moreover, domain knowledge can be incorporated
to further improve the prediction accuracy through an in-
direct supervision during the model training process. How-
ever, existing data-driven models for air pollution forecast
often fail to give uncertainty estimation of the forecasts and
to utilize domain knowledge. Therefore, this work presents
a domain-specific Bayesian deep-learning approach to air
pollution forecast. Our work addresses the aforementioned
challenges in using urban big data technologies for air
pollution forecast by providing uncertainty measures and
integrating domain knowledge. The main contributions of
our work are as follows:

o The first deep-learning model developed for air pollu-
tion forecast, taking into account of uncertainty mea-
sures.

o The first Bayesian deep-learning model that has incor-
porated a domain-specific knowledge into the model
training procedure. The statistical relationship be-
tween pollutants is used to regularize our air pollution
forecast.

o We put forward two multi-step air pollution forecast
strategies, namely, one-time prediction and recursive
prediction strategy, and provide fused results based
on their uncertainty measures.

e Our Bayesian deep-learning model and domain-
specific Bayesian deep-learning model both outper-
form the state-of-the-art deep-learning model and
some existing statistical models in air pollution fore-



cast for both Beijing and London.

In relation to this work, we published a workshop paper,
which aims to estimate the levels of air pollution without
policy regulations using a Bayesian LSTM model [3]. We
also archived a manuscript that focuses on the fine-grained
air pollution forecast in the next hour by utilizing a CNN
model [22]. However, our work is significantly different
from these two pieces of work in the following ways. First,
our current model focuses on providing long-term hourly
air pollution forecast for individual monitoring stations
in the next 48 hours, using Beijing, China and London,
the UK as our case study. A prediction uncertainty mea-
sure is calculated for each predicted air pollution value.
Second, the strong statistical relationship between PM; ;5
and PM;y, a domain-specific knowledge of air-pollution
modelling, has been incorporated to improve the models
performance. Third, we investigate different air pollution
forecast strategies and fuse the predicted values based on
their corresponding uncertainty measures.

The rest of the paper is organized as follows. In Section 2,
we review related works on air quality modelling and deep-
learning methods. In Section 3, we discuss our collected
data and the proposed Bayesian deep-learning framework
in details. Experimental results are presented in Section 4
and are discussed in Section 5. Our work is concluded in
Section 6.

2 RELATED WORK
2.1 Urban Air Quality Modelling

Existing urban air quality models can be generally cate-
gorized into two approaches, namely, physical modelling
(theory-driven) and machine learning (data-driven) [23].
On the one hand, physical models have been developed
to simulate the air pollutant diffusion process and pro-
vide prediction at different scales including the city and
street level. Typical models include ADMS, WRF-Chem,
and CMAQ, which are based on atmospheric dispersion
modelling, weather forecast modelling coupled with chem-
istry, and chemical transport modelling with weather data,
respectively [7], [24]. However, these methods are often
constrained by high computational cost, complex chemical
processes modelling, and uncertainties in emission invento-
ries [25], [26]. On the other hand, air pollution modelling
can be based on analyzing historical data to establish the
statistical patterns of air pollution and its relationship with
other urban proxy variables such as meteorology and traffic,
using linear models like Autoregressive Integrated Moving
Average (ARIMA), or machine learning models such as Sup-
port Vector Regression (SVR) and Artificial Neural Network
(ANN) which are capable of non-linear modelling in high
dimensional space [7]. Recent advances in data-driven mod-
els have shown promising results in air pollution estimation
and forecast based on urban big data [8], [9], [13], [17]. In
particular, deep-learning methods such as Recurrent Neural
Network (RNN) model and its variant Long Short-Term
Memory (LSTM) and Gate Recurrent Unit (GRU) models
have achieved state-of-the-art performance in many time
series prediction tasks, and have been applied in air pol-
lution forecast in some recent works such as [10], [11], [12],
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[14], [15], [19], [21]. Moreover, the spatial structures of mon-
itoring station data are taken into account by convolutional
neural network [16] or graph convolutional neural network
[20], and the importance of various urban dynamics in
predicting air quality are differentiated by neural attention
network [18], [27]. More recently, state-of-the-art models for
long-term air pollution forecast have utilized deep model
fusion and ensemble strategies to account for the spatio-
temporal characteristics of air pollution and weather data
[13], [28]. However, long-term air pollution forecast remains
a challenge since air pollution and other proxy data are often
limited and missing/noisy. As such, appropriate tackling of
missing/noisy data and accounting of the uncertainty of air
quality modelling and urban big data, and the incorporation
of domain-specific knowledge, can improve performance
of more long-term (two-day) station-based air pollution
forecast for Beijing and London.

2.2 Bayesian Deep-learning and Domain Knowledge-
Based Deep-learning

Deep neural networks are able to approximate arbitrary
functions from a large amount of data points, but are
often criticized due to their “black box” challenge, given
the limited interpretability and high uncertainty. Bayesian
deep-learning combines probabilistic modelling with deep-
learning, thus reducing model overfitting due to data spar-
sity and noise, while providing uncertainty quantification
for the prediction [29]. Several approaches have been in-
vestigated for Bayesian deep-learning. On the one hand,
stochastic processes can be adopted to model the distri-
butions over functions, and in particular Gaussian pro-
cesses (GPs) are shown to be equivalent to infinitely wide
neural networks [30], [31]. This connection has motivated
researchers to further combine Bayesian methods and neu-
ral networks more effectively by governing the mapping
functions between network layers via GPs [32], equipping
GPs with deep kernels [33], [34], or modelling the empirical
distributions of functions through neural processes [35]. On
the other hand, Bayesian methods are incorporated into
deep neural networks by investigating the distributions
over network weights. However, applying Bayesian infer-
ence in deep neural networks tends to be computationally
intractable as the number of parameters is largely huge
and complex non-linear relationships often exist. A number
of methods are proposed to address these issues by using
approximation techniques to estimate the posterior distri-
bution of the network weight parameters [36]. For example,
stochastic dropouts are used to generate random samples
from the prediction distribution [37], [38]. This method does
not require any changes in the existing network structure
except for the additional dropout layers, but fails to model
the network parameters as random variables directly. Al-
ternatively, variational inference method is integrated into
normal back-propagation in neural networks, in order to
learn the posterior distribution on the weights of a neural
network after observing the data, based on methods such as
variational auto-encoder [39], expectation propagation [40],
stochastic back-propagation [41], and Bayes by Backprop
[42], [43].

Moreover, though deep-learning techniques have the
potential to discover domain-specific knowledge from a



large number of examples without prior information [44],
domain-specific guidance can still be useful for enhancing
the performance and interpretability of deep-learning mod-
els [45], [46], across a number of tasks such as machine trans-
lation [47], object recognition [48], and health risk prediction
[49]. In general, to integrate domain-specific knowledge
into the deep-learning framework, two approaches can be
adopted. The first approach performs knowledge fusion by
combing domain-specific features with the outputs of deep-
learning models, in order to provide enhanced prediction
[48]. Under such case, domain-specific knowledge is not
involved during the model training process. The second
approach incorporates domain-specific knowledge into the
training procedure indirectly. From a Bayesian point of view,
it can be encoded into the network weight parameters by
properly specifying the prior distribution [50] or imposing
constraints on the posterior distribution [51]. However, in
many cases, establishing domain-specific priors or posteri-
ors of the network weights could be a difficult task. Hence, it
is more straightforward to regularize the predictions. More
specifically, domain-specific knowledge can be utilized as
an additional regularization term in the loss function to
ensure that the predicted values are consistent with prior
information, e.g., on the basis of a set of first-order logic
rules [52] or physical laws described by partial differential
equations [53].

3 THE PROPOSED APPROACH

In this study, we aim to predict the hourly air pollution
concentration of each of the monitoring stations in Beijing,
China and London, the UK, respectively, in the next 48
hours. There are 35 air quality monitoring stations and 18
weather stations in Beijing, and 24 air quality monitoring
stations and 26 weather stations in London. The target air
pollutants to be predicted include PM; 5 and PMj.

The proposed approach consists of four components,
as shown in Figure 1, namely, data collection, data pre-
processing, model training, and model prediction.

3.1 Data Collection

We collected hourly air quality and meteorology data from 1
January 2017 to 31 May 2018, including station-level air pol-
lution concentrations, station-level weather observations,
and grid-level 48-hour weather forecasts at 10km x 10km
resolution. All data was obtained from KDD Cup of Fresh
Air website [54], except for the station-level meteorology
data in London which was collected from the Met Office,
the UK [55]. A summary of the data is shown in Table 1.

3.2 Data Pre-processing

Wind speed is decomposed into South-North and West-
East components, based on wind direction. Each input is
a vector representing the historical data at an air pol-
lution monitoring station, including PM,5 concentration,
PM;o concentration, and weather conditions. To reflect the
temporal trends of air pollution, the hour, the day of the
week, and the month have been included as an input
vector. Moreover, to reflect station-fixed effects, station ID
is included in the input vector. The corresponding output
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is a vector representing the PM,5 and PM;o values in the
next 48 hours. To improve data quality, missing values in
the air quality and weather time-series are imputed. Two
imputation methods have been adopted to fill in the missing
values. The first method utilizes the values of the adjacent
observations to perform a spatio-temporal nearest neighbor
imputation. First, for each station, forward linear temporal
interpolation of the observed hourly values is used to fill
in the missing hourly values less or equal to M hours in
time series. Second, for each hour, the spatial interpolation
(inverse distance weighting) of the observed values of N
nearest stations is used. For the remaining missing values,
the mean values of the same hour of the closest day where
data is available are used. The second method exploits the
inherent relationships of air pollutants and weather data. A
multivariate iterative imputer is constructed, such that the
missing values of each feature can be estimated based on the
values of all other features [56]. After imputation has been
conducted, the best imputation method is selected to fill in
the missing values across our Beijing and London datasets.
Finally, the meteorological conditions of air quality monitor-
ing stations in Beijing and London, including temperature,
pressure, humidity, wind speed (South-North), and wind
speed (West- East), are derived as the inverse-distance-
weighted values of three nearest weather observations.

3.3 Model Training

The pre-processed data is fed into the Bayesian deep-
learning model for training. A Bayesian deep-learning
model with network structure f and parameters 6 is de-
noted as fy. Historical data at hour ¢ consists of the fea-
tures z; including air quality and other covariates, while
forecast data at hour ¢ consists of the weather features z;
only. The model input consists of the observations over
the past L hours (including current hour t): Xy 141, =
{zi—r+1, - ,x}, the weather forecasts over the next H
hours: Zyy1.4+1 = {zt+1, -, Zzt+m }, and the correspond-
ing actual observations: Yiy1.e+1 = {yt+1, -, yern}, i€,
air pollution concentrations in the next // hours. Embedding
layers are used to map the categorical features, including the
time trends and station IDs, to vectors of continuous values
[13]. The Bayesian model fy aims to find the optimal poste-
rior distribution of the network weight parameters 6, given
the observed pairs (X¢—r11:¢, Zt+1:t+m) and Yiii.4m. In
this study, we focus on Bayesian RNN, which is capable of
modelling time series data [43]. In the model, each weight
parameter is a random variable with a prior, and the weight
at each time step has the same distribution (see the Bayesian
RNNss in Figure 1 for an illustration). By assigning a distri-
bution instead of a fixed value to the parameters, the model
reduces overfitting, addresses better the noisy and missing
input data, and provides an uncertainty account for each
output. More specifically, as Y; 1.1+ is a vector consisting
of predictions in multiple steps, two commonly used multi-
step forecast strategies are adopted [57], namely, one-time
prediction and recursive prediction. One-time prediction
aims to make multiple predictions in one single step. It
consists of two parts, with each part processing different
input data (see Figure 2a). One part focuses on the historical
data including air quality and weather conditions, while
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Fig. 1. Overall framework of our proposed domain-specific Bayesian deep-learning network

TABLE 1
Dataset summary

Study Period: 31 January 2017 — 31 May 2018

Urban dynamic Quantity (Beijing) | Quantity (London) | Granularity | Items

Air quality 35 stations 24 stations 1 hour PM; 5, PMyg

Meteorology 18 stations 26 stations 1 hour temperature, pressure, humidity, wind speed,
wind direction

48-hour weather forecasts | 651 grids 861 grids 1 hour temperature, pressure, humidity, wind speed,
wind direction

the other part utilizes the weather forecast data. The final
hidden state of the first part (k") and the second part
(hf*) are concatenated as H;, and a dense layer is used to
make final predictions Y;1.14 5. Conceptually, the network
structure for one-time prediction is shown as follows:

hbist — Bayesian-RNN (x;, A" ),
it = Bayesian-RNN (2, s, hf*t ),
H, = Concatenate(hlst, pfst),
Yit1:4+n = Bayesian-LINEAR(H;)

The second one, recurisve prediction, aims to make predic-
tions recursively. It uses current single-step prediction as the
input for the next single-step prediction. It consists of two
parts, namely, an encoder and a decoder (see Figure 2b).
The encoder encodes historical information including air
quality data and weather data into a final hidden state h$™.
The decoder recursively predicts air quality in the next step
based on current step information and the context (C'), while
utilizing weather forecast data at each step. The context is
provided by an attention layer in the decoder, such that the
decoder can capture the most influential parts of any input

information that determines the air pollution forecast [27].
Finally, predictions of the 48 individual steps are combined
for the final prediction Y3 1.+ . Conceptually, the network
structure for recursive prediction is shown as follows:

h$"¢ = Bayesian-RNN-Encoder(z:, h{™; ),

dec __ zenc __ penc
hi = hi"e, C = h{™,

hie, = Bayesian-RNN-Decoder(ys, z¢+1, hic, C),

Yi+1 = Bayesian-LINEAR(h{< ),
Yii1.4+m = Concatenate(y;41,- -+ , Y+ 1)

Since RNNs with simple recurrent units often suffer from
gradients vanishing or exploding problems, more sophisti-
cated recurrent units, including LSTM and GRU are pro-
posed. LSTM and GRU have comparable performance [58],
but GRU has fewer parameters and takes less time to train.
For air quality time-series forecast, GRU performs better
than LSTM [59]. Therefore, in this study, we use GRU as
the recurrent unit in the proposed RNN models. To apply
Bayesian inference for deep-learning, the statistical infer-
ence problem can be further transformed to an optimiza-
tion problem. More specifically, given the training data set
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Fig. 2. Proposed Bayesian deep-learning network structures: (a) for one-time prediction strategy; (b) for recursive prediction strategy

D = {(Xt—r41:t, Ze+1:4+H), Yit1:4+1 }, the true posterior
distribution p(6|D) is approximated by a variational distri-
bution ¢(f|¢), and the distance between the true posterior
distribution and the variational distribution is minimized
to find the optimal posterior distribution. This distance is
often measured by Kullback-Leibler (KL) divergence, and it
can be further approximated as follows [42]:

L(D, ¢) = = Eq(o)4)[log p(D]0)] + KL[q(0]0)[[p(0)]
KL cost

Log likelihood cost

This cost function can be taken as a trade-off to balance
the simplicity of the prior p(#) and the complexity of the
data D [31]. Furthermore, the log likelihood log p(D|#) of
the forecast model with a Gaussian noise assumption can
be formulated based on Mean Squared Error (MSE) [60] as
follows:

log p(Yis1a4m|fo(Xo—r—1:4 Zit1:44+H)) X

1 t+H 1
HZ 2<2Hyz yz||2_10gc
t+1

where g; is the predicted value given 6 and ¢ is the noise
parameter Hence, MSE loss is denoted as: MSE(f) =
H Zf+tli1 lly; — i||. In this work, since we aim to predict
both PM,5 and PM;, pollution concentrations, the MSE
loss of these two target variables are calculated. Moreover,
to integrate domain-specific knowledge with regards to
the strong statistical relationship between PM;5 and PM;j
pollution [61], we also include a regularization term into the
total loss, based on Pearson correlation coefficient between
PM2_5 and PMlol

~PM, —PM;5\(~PMyg _ —PM
R(e) — 27, 1(yz 2 yz 25)(yz 1 yz 10)
H (~PM _PM ~PMjg _ -PM
\/Zi:l(yi Y-y 2'5)2\/22‘:1(% =g t)?
where 7} "** and 7; " are the sample mean values. Finally,

the total loss can be obtained as a weighted sum:

L(0) = MMSEpp, (6) + AiMSEpp,, (8) + A3 R(6)

where A, A2 € (0,1) and A3 < 0 are hyper-parameters
that represent the weights of different objectives. In order
to ensure that the average total MSE is consistent, we set the
sum of A\; and A; to 1. A3 is a negative value as we expect
a higher correlation with PM,5 or PM; will generate a
lower total loss. Although these hyper-parameters are given
fixed weights during training, we can fine-tune them based
on the validation set, with more sophisticated extensions,
such as, a "hyper-parameter free” approach that learns the
relative weights based on data uncertainty [60] or a more
efficient approach that identifies the most important hyper-
parameters and their interactions [62]. During the model
training, the loss function can calibrate the predicted air
pollution forecasts based on the ground truth data, while
also imposing penalties on the learning procedure when the
results of any predicted PM,5 and PM;, values contradict
the domain-specific knowledge that the values of these two
pollutants are strongly correlated. To train our proposed
models, we follow the work done by [43], and use a mixture
Gaussian distribution as the prior and a diagonal Gaussian
distribution as the variational posterior. Bayes by Backprop
is adopted to update the weight parameters of the network
while minimizing the loss and KL complexity (see Algo-
rithm 1).

3.4 Model Prediction

After model training, we can perform air pollution forecast
based on the fitted network model fg. One of the signifi-
cant advantages of using Bayesian techniques is the ability
of providing uncertainty estimation. Prediction uncertainty
gives the level of confidence on the forecast values and im-
proves the interpretability of the results. The distribution of
the forecasts Y}, ., iy for anew input (X ; 1., Z 1. 1)
can be calculated by marginalizing out the posterior distri-



Algorithm 1 Model Training via Bayes by Backprop

Require: training data D, network structure f, batch size
B, and learning rate o

1: repeat
2:  Sample a mini-batch of size B from the training data
D

3. Sample e ~ N (0, 1)

4:  Set network parameters 6 = 1 + o€, where p and o
are the mean and standard deviation, respectively

5:  Compute the gradients of domain-specific knowledge
regularized loss with respect to 6 using normal back-
propagation: gGL

6:  Compute the gradients of F'(, o, 9) log N(p,0?)—
log p(6) with respect to ,u, a,0: gﬂ N

7. Update pp = p — 757" 95+,

F

. — 95 e+9h e+al
8: Update 0 = 0 — a™—F%F—=

9: until stopping criteria is met
10: return fitted network model fy

bution of 6:

P(}/ti1:t+H |Xt*7L+1:t7 Zt*+1:t+H)
— [ 0% s mlfol X711 Zives (61D 0
= Ep(elD) [p(}/tj-l:t-&-H|f9(X:—L+1:t7 Zt*+1:t+H))]

This can be seen as averaging forecasts from an infinite
number of models. In practice, the variance of the forecast
distribution is often used to quantify the prediction uncer-
tainty, and it can be further decomposed into two terms
using the law of total variance [63], [64], namely, model
uncertainty and data uncertainty. Model uncertainty refers
to the uncertainty introduced by the model parameters 6.
Similar to the ideas proposed in [37], [38] that use Monte
Carlo dropout as an approximation to model uncertainty,
we use the sample variance of the values predicted by
the network model f with different weight parameters
{61,02,--- ,0r} as a measure of model uncertainty. The
weight parameters 6; is randomly drawn from the posterior
distribution. This is repeated for T times. Then, given a new
input, the model uncertainty is calculated as follows:

T

1 X *
T Z(fé)q:( t—L+1:t> Zf,+1:t+H)

1 ij_,l
- f Zfai(
=1

Data uncertainty refers to the irreducible noise inherent in
the data, which could be estimated by the residual sum
of squares on the independent validation dataset [64], as-
suming that the irreducible noise in the air quality data is
homogeneous. Given a validation set of size V, the data
uncertainty is calculated as follows:

Model Uncertainty =

:—L+1:t7 Z;+1:t+H))2

Data Uncertainty =
14

1
v Z( t+1t+H

v=1

t L+1:t» Z;)+1:t+H))2

Zfe

6

In summary, given a new input, Algorithm 2 shows how
the proposed models make predictions with uncertainty
measures.

Algorithm 2 Prediction with Uncertainty Measure

Require: input X ;. ., and Z7 ,,, y, fitted network
model fp with parameters 0 = {N(p;, JJQ)}ij}V, sample
size T, and an independent validation set of size V'

cfori=1toi=1T do
forj=1toj =W do

Sample w; ~ N (u;,07%)
end for 4
Let 0; = {’w]};z‘l/v
end for
: Compute final prediction Y}, ;.;,

NS T @ Ny

T
1 # *
T Z Jo, (Xt—L+1:t7 Zt+1:t+H)

=1

8: Compute model uncertainty 7;:

1 T
=1

9: Compute data uncertainty 7,:

Zfe

10: Compute prediction uncertainty 7: 71 + 12
11: return Y}' ., gy andn

* * *
t—L+1:t> Zt+1:t+H) - }/;:—i-l:t—i-H

\%

1
v Z( t+1:t+H

v=1

;LL+1:t? Z;)+1:t+H))2

Furthermore, predictions generated from different fore-
cast strategies could exhibit different characteristics [57]. In
general, recursive prediction could capture temporal depen-
dencies among prediction steps, but may suffer from error
accumulations; and one-time prediction tends to perform
better at the later prediction steps as error propagation
is less significant, but may perform worse at the initial
steps. To combine the potential strengths of the two multi-
step forecast strategies, a hybrid Bayesian RNN model is
therefore proposed to fuse the results derived from these
two strategies by utilizing the uncertainty measures. In par-
ticular, prediction uncertainties are calculated for each hour
and each pollutant, and the predicted values are weighted
according to their uncertainty measures, in order to generate
the fused outputs:

YHybrld

MP
t+1:t+H — )

Y
MP , RP RP
+ @ =p™ 0 ) o Y iy n
where o denotes element-wise product, and p is the weight-
ing function. We adopt two weighting strategies. The first
one aims to provide an uncertainty-averaged output:
MP

MP _RPy __ n
P ) = e R

= p(n

The second one aims to select the predicted values with the
lowest uncertainties:

P, ) = 4 1 £ <
0, otherwise



3.5 Baseline Selection

To compare the relative performance of our proposed mod-
els with the existing approaches to air pollution forecast,
we include both the state-of-the-art deep-learning mod-
els and the time-series models (see Section ?? below). To
evaluate the relative performance of Bayesian method and
domain-specific knowledge regularization to deep-learning,
our baseline deep-learning models adopt the same network
structure and parameters as the proposed Bayesian deep-
learning models. Given that Lasso regression model, which
accounts for the feature selection and regularization during
model fitting, has achieved a better performance in air pol-
lution forecast when compared to other regression models
such as ARIMA [13], we include it as one of our baseline
models. State-of-the-art methods for air pollution forecast
have taken into account of the spatial and temporal dimen-
sions by means of fusion techniques [13], [28], . In this study,
our proposed models have focused more on the temporal
dimensions of air pollution forecast, in particular, how one-
time and recursive time-series forecast strategies vary in
the long-term (2-day) forecast performance. In addition, we
directly compare the performance reported in [28] since the
same datasets are used. The baseline and proposed models
are defined as follows.

Our proposed Bayesian deep-learning models:

o BayesAir (OP): Two Bayesian RNN models with GRU
unit are used to predict the air pollution values in the
next 48 hours in one shot, based on the concatenated
hidden states from the two Bayesian RNNSs. The two
Bayesian RNNs take the historical air quality data and
the weather forecast data as the inputs, respectively.

o BayesAir (RP): One sequence to sequence (seq2seq)
Bayesian RNN model with GRU unit and an attention
layer, utilizing weather forecast data as the inputs for
the Bayesian seq2seq decoder.

o DBayesAir (OP): BayesAir (OP) model with a reg-
ularization term in the loss function, based on the
domain-specific knowledge about the strong statistical
relationship between PM, 5 and PM;, pollution.

o DBayesAir (RP): BayesAir (RP) model with a reg-
ularization term in the loss function, based on the
domain-specific knowledge about the strong statistical
relationship between PM; 5 and PM;, pollution.

State-of-the-art baseline models:

o LassoAir (OP): 48 Lasso regression models are used
to predict the pollutant values in the next 48 hours,
respectively, taking the historical air quality data and
the weather forecast data as the inputs.

o LassoAir (RP): One Lasso regression model is used
to predict the air pollutant values in the next hour,
taking the air quality data in the previous hour and the
weather forecast data in the next hour as the inputs.
This is repeated for the next 48 hours.

o TradAir (OP): Two RNN models with GRU unit [58]
are used to predict the air pollution values in the
next 48 hours in one shot, based on the concatenated
hidden states from the two RNNs. The two RNNs take
the historical air quality data and the weather forecast
data as the inputs, respectively.
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o TradAir (RP): One seq2seq RNN model with GRU unit
and an attention layer, utilizing weather forecast data
as the inputs for the seq2seq decoder [27].

3.6 Experimental Settings

We use five random 80/20 splits of data dated from January
2017 to April 2018 as the training data and the validation
data. We select “last month data” from May 2018 as the
independent testing data (i.e., the testing data was not used
during training and validation). We use data of the past
72 hours, that are combined with the weather forecast of
the next 48 hours, to predict air pollution concentrations
of the next 48 hours. To measure the relative error rate
and compare model performance between the two cities,
Symmetric Mean Absolute Percentage Error (SMAPE) is
used as the metric for model evaluation.

1< |A — F
SMAPE = — Yy ——
Z (Ay+ Fy)/2

"=

where F} is the forecast value, A; is the actual value, and
n is the number of samples. For each hour, we averaged
the SMAPE of each pollutant at each station. The model
training and evaluation procedures are listed as follows.
First, for each of the prediction strategies, traditional statisti-
cal models (LassoAir) and traditional deep-learning models
(TradAir) are selected as baselines. For all deep-learning
models (TradAir, BayesAir, and DBayesAir), the same set-
tings are used, including the learning rate (0.001), the batch
size (64), the number of recurrent layers (3), and the number
of hidden units (256). For Bayesian deep-learning models,
the network weight priors are selected according to the
settings in [43]. In order to obtain a reasonable prediction
distribution from the Bayesian deep-learning models, we set
the number of simulations to 100 [38]. Then, we fine-tune the
models to select the best hyper-parameters, and choose the
models with the lowest SMAPE of the validation set as our
final models. Early stop will be adopted if the SMAPE on the
validation set started increasing. More specifically, the set-
ting of hyper-parameters is listed as follows. For the tradi-
tional and the Bayesian deep learning models (TradAir and
BayesAir), two hyper-parameters are fine-tuned, namely, A\;
and Ag, with the aim to account for the relative weights of
the prediction errors in the loss function for PM, 5 and PM;y.
Three pairs of A1, Az are tested, including, (0.4, 0.6), (0.5, 0.5),
and (0.6, 0.4). For the Bayesian deep learning model with
domain-specific knowledge regularization (DBayesAir), in
addition to A1 and Ao, A3 is used to account for the relative
weights of the domain-specific constraint term. When fine-
tuning the domain-specific Bayesian deep learning model,
in order to capture the impact of A3, we set A\; and Az to the
best A\; and Ay obtained from the corresponding Bayesian
deep learning model. A3 is set as -0.01, -0.1, or -1.0. Finally,
we evaluate the models on the test set. This is repeated on
the five data splits, and the mean and the standard deviation
of our model performance are reported.

4 RESULTS

The SMAPEs of different prediction strategies are shown in
Table 2 and Table 3. The SMAPESs of different fusion strate-
gies are shown in Table 4. Improvements in deep-learning



TABLE 2

SMAPE (%) of models using different prediction strategies (Beijing, China)

Prediction strategy One-time prediction Recursive prediction
Model / Period 1-24h 25-48h Overall 1-24h 25-48h Overall
LassoAir 574 (12) | 60.6(1.1) | 59.0(1.1) | 54.2(1.0) | 559 (1.0) | 55.1(1.0)
TradAir 50.9 (1.4) | 53.4 (0.6) | 52.1(1.0) | 47.1(1.6) | 55.7 (3.5) | 51.4 (2.6)
BayesAir 50.4 (0.5) | 53.0(0.2) | 51.7(0.4) | 46.2(0.6) | 54.0 (1.2) | 50.1(0.9)
DBayesAir 50.1 (0.6) | 52.9 (0.3) | 51.5(0.4) | 45.8(0.7) | 53.2(0.6) | 49.5(0.6)
Notes

1. For each column, lowest error is in boldface.

2. For each column, standard deviation is shown in parentheses.

TABLE 3
SMAPE (%) of models using different prediction strategies (London, the UK)

Prediction strategy One-time prediction Recursive prediction
Model / Period 1-24h 25-48h Overall 1-24h 25-48h Overall
LassoAir 35.0 (0.4) | 44.0 (07) | 39.5 (0.6) | 42.0(0.3) | 42.8 (0.3) | 42.4 (0.3)
TradAir 40.4 (3.6) | 41.0 (3.7) | 40.7 (3.6) | 40.6 (2.4) | 43.0(3.0) | 41.8(2.7)
BayesAir 38.0 (1.3) | 38.7 (1.9) | 384 (1.6) | 35.4(0.8) | 43.1 (1.5) | 39.2 (1.2)
DBayesAir 37.5(1.6) | 38.6 (1.0) | 38.1(1.3) | 33.6 (0.7) | 39.7 (1.3) | 36.6 (1.0)
Notes
1. For each column, lowest error is in boldface.
2. For each column, standard deviation is shown in parentheses.
e —— LassoAir (OP) o —— TradAir (OP) o2 —— BayesAir (OP) e —— DBayesAir (OP)
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Fig. 3. 48-h SMAPE trends for models with one-time prediction (OP) and recursive prediction (RP) strategies: (a) for Beijing; (b) for London

performance using the Bayesian method and the domain-
specific knowledge are shown in Table 5. The following
paragraphs will compare our proposed models with the
state-of-the-art baseline models and [28]. Implications of the
results will be highlighted in Section 5.

First, for prediction errors across the first day and the
second day, we find that the Bayesian models can outper-
form their traditional counterparts across most of the time
periods, using either one-time prediction strategy or recur-
sive prediction strategy. Compared to the baseline deep-
learning models, incorporating the Bayesian method can
reduce the prediction errors by a maximum of 2.5% and
6.2% for Beijing and London, respectively (see Table 5). More

importantly, results have shown that incorporating domain-
specific knowledge into the training of Bayesian mod-
els can further improve the models’ performance. Among
all models listed in Table 2 and Table 5, domain-specific
Bayesian deep-learning models can achieve the lowest over-
all SMAPEs on average. As compared to Bayesian models,
adding domain-specific knowledge can further reduce the
prediction errors by a maximum of 1.2% and 6.2% for Beijing
and London, respectively (see Table 5).

Second, for all models shown in Table 2 and Table 3,
the prediction errors of individual hours can be found in
Figure 3. Results indicate that recursive prediction strategy
significantly outperforms one-time prediction strategy for



TABLE 4

SMAPE (%) of models using different fusion strategies

City Beijing, China London, the UK

Model (Fusion Strategy) / Period 1-24h 25-48h Overall 1-24h 25-48h Overall
LassoAir (Average-based prediction fusion) 50.9 (0.5) | 53.2(0.4) | 52.0(0.5) | 35.3(0.2) | 40.6 (0.3) | 37.9(0.3)
TradAir (Average-based prediction fusion) 474 (1.1) | 52.8(0.7) | 50.1 (0.9) | 39.0 2.4) | 40.8 (2.7) | 39.9 (2.6)
BayesAir (Average-uncertainty-based prediction fusion) 48.7 (0.5) | 53.1(0.5) | 509 (0.5) | 354 (1.1) | 40.0(1.7) | 37.7(1.4)
BayesAir (Lowest-uncertainty-based prediction fusion) 46.1(0.7) | 53.1(0.6) | 49.6 (0.7) | 349 (1.0) | 40.5(1.4) | 37.7(1.2)
DBayesAir (Average-uncertainty-based prediction fusion) | 48.4 (0.3) | 52.8(0.3) | 50.6 (0.3) | 34.5(0.8) | 38.6 (0.8) | 36.6 (0.8)
DBayesAir (Lowest-uncertainty-based prediction fusion) 45.6 (0.6) | 52.7 (0.5) | 49.2(0.6) | 33.5(0.7) | 38.7(0.7) | 36.1(0.7)
Notes

1. For each column, lowest error is in boldface.

2. For each column, standard deviation is shown in parentheses.

TABLE 5

Relative improvement of overall SMAPE (%) with the Bayesian method and the domain-specific knowledge

City Beijing, China London, the UK

Model / Prediction Strategy | OP RP Fusion (0) 34 RP Fusion

TradAir 52.1 51.4 50.1 40.7 41.8 39.9

BayesAir 51.7 (0.8%) | 50.1 (2.5%) | 49.6 (1.0%) | 38.4 (5.7%) | 39.2 (6.2%) | 37.7 (5.5%)
DBayesAir 51.5 (1.2%) | 49.5 (3.7%) | 49.2 (1.8%) | 38.1 (6.4%) | 36.6 (12.4%) | 36.1(9.5%)

Notes

1. Average overall SMAPEs in Table 2, 3, and 4 are used. Fusion strategy is the lowest-uncertainty-based prediction fusion.
2. For each column, lowest error is in boldface.

3. For each column, relative improvement compared to the baseline (TradAir) is shown in parentheses.

Hyper-parameters: (A1, A2)
so] ™= (04,06) mm (0505 mm (06 04) 80

Hyper-parameter: A;
= 0.01 = 01 - 10

SMAPE (%)
SMAPE (%)

0
TradAir (OP) ~ TradAir (RP) ~ BayesAir (OP) BayesAir (RP) DBayesAir (OP) DBayesAir (RP)
|

[a] Mode!

Hyper-parameters: (A, A)
= (0.4,06) wmm (0.5,05) wmm (0.6,0.4)

Model

Hyper-parameter: A5
. 0.01 = 01 - 10

SMAPE (%)
SMAPE (%)

0
TradAir (OP)  TradAir (RP) ~ BayesAir (OP) BayesAir (RP) DBayesAir (OP) DBayesAir (RP)

Model

[b]

Fig. 4. The influence of different hyper-parameters on the validation set:
(a) for Beijing; (b) for London

initial-hours prediction (from the 1st hour to the 12th hour),
and one-time prediction strategy generally performs better
for later-hours prediction (from the 24th hour to the 48th
hour). This trend is more significant in the case of London
than that of Beijing.

Moreover, we compare the hybrid models where predic-

tions are fused by different prediction strategies (see Table
4). For the Bayesian hybrid models, we report the results de-
rived from the two fusing strategies listed in Section 3.3. For
the traditional hybrid models, prediction results are simply
averaged since no weighting measures could be adopted.
Results show that hybrid models can generally achieve
lower SMAPEs compared to the corresponding single mod-
els without prediction fusion. Also, domain-specific knowl-
edge regularization can improve the performance of hybrid
Bayesian deep-learning models. Among all hybrid models,
domain-specific Bayesian deep-learning models can achieve
the lowest overall SMAPEs. The lowest overall SMAPEs of
hybrid models are 49.2% and 36.1% for Beijing and London,
respectively. The corresponding error reductions compared
to the traditional hybrid deep-learning baseline models are
1.8% and 9.5% for Beijing and London, respectively.

Further, we compare our proposed methods with state-
of-the-art models in [28] since the same datasets have been
used. As shown in Table 1 in [28], for Beijing and London,
the average overall SMAPE during the testing period is
39.2% and 43.2%, respectively for the 1-48-hr forecast and
the 24-48-hr forecast. As shown in Table 4, the best perfor-
mance for the 1-48-hr forecast is 49.2% and 36.1% for Beijing
and London, respectively, whilst the best performance for
the 24-48-hr forecast is 52.7% and 38.6% for Beijing and
London, respectively.

Finally, we compare the influence of different hyper-
parameters during the model training. The mean and the
standard deviation of the model performance (based on the
validation set) across different hyper-parameters are shown
in Figure 4. On average, for the same hyper-parameters,
the proposed models that adopt the recursive prediction



strategy tend to have lower error rates (consistent with the
results from the test set). Regarding the relative weights
of PM,5 and PM;y (i.e., A; and A2), no consistent patterns
can be found, suggesting that the characteristics of PMy 5
and PM; pollution concentrations could be different across
different training/validation splits. In terms of the domain-
specific knowledge constraint (i.e., A3), a low or moderate
A3 (0.01 or 0.1) can better improve the performance of the
proposed models most of time. However, for a one-time
prediction strategy based on the Beijing data, a high A3 (1.0)
can lead to a better performance, suggesting that the effect
of such regularization could be dependent on data quality
and prediction strategy.

5 DISCUSSION

We have proposed a domain-specific Bayesian deep-
learning model for long-term (2-day) air pollution forecast,
using Beijing and London as the case studies. Although
Bayesian deep-learning has the potential to process limited
and noisy data [36], such model has not been tailored
to long-term air pollution forecast. The novelties of our
proposed Bayesian deep-learning approach include the fol-
lowing: First, we integrate a domain-specific knowledge tak-
ing into account the strong statistical relationship between
PM;5 and PMyq for regularization; Second, we include an
attention layer capable of capturing an influential historical
feature, the recursive temporal pattern of air quality data
for pollution prediction; Third, deviating from state-of-the-
art fusion strategies [13], [28], we utilize model and input
prediction uncertainties generated from different forecast
strategies, to provide uncertainty-based prediction fusion.
Experimental results show that our proposed methods have
achieved better results when compared to the traditional
time-series and deep-learning baseline models (i.e., Las-
soAir and TradAir). The following paragraphs will highlight
how theses novelties are linked to the improvements of
long-term air pollution forecast as shown in Section ??,
and what can be done to further improve our proposed
approach.

First, domain-specific knowledge taking into account
of the temporal-spatial nature of air pollution data can
improve further the performance of our model over long-
term forecast. More specifically, the strong correlation be-
tween PM,5 and PM;o values is used as a regularization
term in the loss function. Such regularization procedure
can produce more accurate predictions over the second day
(see Table 2 and 3). In addition, to capture the periodic
patterns of air pollution, we incorporate the temporal trend
(such as peak/non-peak hours or weekday/weekend) into
our deep-learning models, which serve an attention layer
to better capture the recurrent temporal patterns (recurrent
daily, weekly, monthly, and seasonal patterns). We also
include the station IDs to capture the spatial character-
istics, though more urban morphology information such
as building height and density are yet to be integrated.
Overall, though the Bayesian deep-learning models in the-
ory should automatically capture better any underlying
domain-specific knowledge based on the training data, such
as the correlation between PM,5 and PM;y values or the
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recurrent temporal patterns of PM,5s and PM;y concentra-
tions, our tailored-made domain-specific learning procedure
generally performs better in practice. This suggests that
incorporating any influential, high-saliency domain-specific
knowledge to our model, such as the high temporal- or
high spatial-correlation feature of the air pollution data, can
further improve our models prediction accuracy.

Second, different forecast strategies can be exploited
to further improve our model’s performance over long-
term forecast. For any air pollution forecast of the next 48
hours, recursive prediction strategy tends to perform better
over the initial hours (the first 12 hours), while one-time
prediction strategy tends to improve gradually over the
later hours (the last 24 hours), due to the following reasons.
First, recursive prediction can better capture the temporal
correlation across each individual hour, thus resulting in
more accurate forecast during the initial hours. Second, one-
time prediction can achieve lower error rates during the
later hours, as predictions are less likely affected by error
accumulation. Although the error trends of the two forecast
strategies are consistent across all deep-learning models,
the Lasso regression models (see Table 2 and Table 3) have
exhibited a different trend. This may be explained by their
difference in model structures: First, for one-time prediction,
the temporal correlation has been ignored because 48 Lasso
models have been trained to predict air qualities of the next
48 hours individually; Second, for recursive prediction, the
Lasso model only uses the previous-hour data for predicting
the next-hour air pollution values. Moreover, it is noted
that some Lasso regression models (LassoAir using one-time
prediction strategy) can even outperform the deep-learning
models for prediction in the short term (in particular, the
first 12-h) in London. This finding is consistent with some
previous studies in air quality modelling. For example, a
European study finds that machine learning models cannot
add benefits to the performance of air quality prediction,
especially when (1) the non-linear relationships between air
pollution and other predictors are not significant and (2)
the variation of air pollution concentrations is low [65]. The
results of Lasso regression models have two implications
for deep learning-based air pollution forecast, especially for
short-term forecast in London. First, as compared to our
proposed deep learning models, one advantage of Lasso
regression is that the most important input variables are
selected during the training process (i.e., some regression
coefficients can be zero). Therefore, instead of using all the
data as the input, feature analysis and selection could be
performed when training the deep learning models. Second,
Lasso regularization can be linked to Bayesian regression
models with Laplace priors [66]. Therefore, instead of using
Gaussian priors, more informative priors that better charac-
terize the air quality data could be examined in the Bayesian
deep learning models. Furthermore, for our proposed deep-
learning models based on one-time and recursive strate-
gies, each performs better in air pollution forecast over
the longer-term, given that the temporal correlation of the
predictions across different periods have been taken into
account in the network structures.

Furthermore, uncertainty-based prediction fusion can
enable more accurate forecast in the short and long term
(see Table 4 and 5). More specifically, motivated by the



characteristics of one-time prediction strategy and recursive
prediction strategy, hybrid models are also used so that
the hourly predictions derived from these two strategies
can automatically complement each other based on their
associated uncertainty measures. As shown in Table 5, we
have found that hybrid models generally perform better
than models based on single-prediction strategy; while our
Bayesian hybrid models (BayesAir and DBayesAir) have
lower error rates when compared to the baseline hybrid
models (TradAir and LassoAir). This suggests that different
forecast strategies can complement each other over long-
term prediction, and uncertainty-based prediction fusion
strategies tend to give a higher accuracy. Further, the lowest
uncertainty-based strategy performs better across the Bei-
jing and the London dataset in general, while the average
uncertainty-based strategy performs slightly better on the
second day prediction across the London dataset. To fully
capitalize on the strengths of each forecasting strategy across
different periods, it would be important to select the most
trusted prediction (prediction with the lowest uncertainty).
The uncertainty-based strategy can be adopted if the data
are more predictable and the second day prediction is of
more interests.

In general, as shown in Table 5, air pollution forecast for
London achieves a higher accuracy as compared to Beijing,
suggesting that the London data is more regular and pre-
dictable than the Beijing data, due to the following reasons.
First, more missing values were observed in the Beijing data,
and errors due to missing data imputation could lead to
lower data quality and result in lower prediction accuracy.
More sophisticated missing data recovery capturing the
temporal data correlation characteristics can be used in
future [67]. Similar to the iterative back-propagation method
proposed by [11], an iterative Bayesian back-propagation
approach can be used to integrate missing data recovery
strategies with our model to recover long-term missing air
pollution data and improve the quality of our data input
and model performance over longer-term pollution forecast.
Second, during the test period, some sudden changes in air
quality due to sandstorms in Beijing have been observed.
This may lead to lower prediction accuracy because the ad-
hoc air pollution patterns may not be learned automatically
during the training process.

Our study has demonstrated the feasibility of using a
domain-specific Bayesian model for more accurate long-
term (48-hr) air pollution forecast. When compared with the
state-of-the-art models, our proposed approach may achieve
an even better performance by adding certain spatial factors
(such as nearby air pollution concentrations, weather con-
ditions, street canyon effects, etc.). Based on the separate
feature importance analysis conducted by [28] (see Table
2 in [28]), the SMAPE is respectively 39.5% and 44.4%,
with the model taking into account (1) both the spatial and
the temporal features, or (2) only the temporal features.
This implies that our proposed deep-learning models can
be further improved if important spatio-temporal features
of air quality dynamics are taken into account in future
modelling.

One major limitation of our work is the lack of important
spatial or temporal features that determine the occurrence of
air pollution. Although the strong statistical relationship be-
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tween PM, 5 and PM; has been incorporated into our mod-
els as one type of domain-specific knowledge, more critical
features that contribute to air pollution in the urban areas
should be taken in account in our future study. Based on
salient score analysis and Granger causality test, previous
literature suggest that traffic speed/density, street canyon
effects, local air quality and weather measurements from
adjacent stations, and regional environmental conditions,
are important factors for air quality modelling [9], [11], [68].
These critical temporal or spatial features of air pollution,
when combined with feature selection and neural attention
modelling, can be added to our domain-specific air pollu-
tion forecast model to further improve the performance of
our existing model. Moreover, we can use the saliency scores
to determine which factors should be taken into account for
air pollution forecast, and how domain-specific knowledge
can help our deep-learning model attend to the most influ-
ential part instead of the full dataset. This can further im-
prove the interpretability of our proposed model. Another
limitation of our work is about the distribution assumption
of the network weights in Bayesian deep-learning models.
Previous Bayesian deep-learning studies often take the as-
sumption of a Gaussian distribution for network weights
and prediction outputs, but this may not hold true across all
types of data especially the environmental data [69]. Future
work may investigate other distribution assumptions.

6 CONCLUSION

Providing air pollution forecasts with uncertainty mea-
sures and domain-specific knowledge-integration has been
largely overlooked in previous data-driven deep-learning
approaches. This study investigates the air pollution forecast
problem through a Bayesian deep-learning approach with
domain-specific knowledge. Using Beijing, China and Lon-
don, the UK as case studies, experimental results show that
on average, incorporating Bayesian methods and domain-
specific knowledge can reduce the prediction errors by
a maximum of 3.7% and 12.4% for Beijing and London,
respectively. Moreover, hybrid Bayesian models are able to
achieve the lowest prediction errors and the best ones can
improve the traditional hybrid baselines by 1.8% to 9.5%
for Beijing and London, respectively. Our results highlight
the importance of including domain-specific knowledge and
suggest that introducing Bayesian techniques not only im-
proves the accuracy of traditional deep-learning models, but
also allows fusing of different forecast strategies to provide
more accurate results. In future, our proposed model will
include more influential factors for air pollution forecast,
such as the spatio-temporal data from nearby monitoring
stations. We will also integrate more influential domain-
specific knowledge (e.g., by incorporating building height
and density that capture the spatial effects of air pollution
nearby the roadside stations) and evaluate the relative per-
formance of air pollution forecast.
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