
Martingale posterior distributions
Edwin Fong1,2, Chris Holmes1,2 and Stephen G. Walker3

1The Alan Turing Institute, London, UK
2Department of Statistics, University of Oxford, Oxford, UK
3Department of Statistics and Data Sciences, University of Texas, Austin, United States
Address for correspondence: Chris Holmes, Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX2 
3LB, UK. Email: cholmes@stats.ox.ac.uk

Read before The Royal Statistical Society at a meeting organized by the Research Section on Monday, 12 December 2022, 
Dr Maria De Lorio in the Chair.

Abstract
The prior distribution is the usual starting point for Bayesian uncertainty. In this paper, we present a different 
perspective that focuses on missing observations as the source of statistical uncertainty, with the parameter 
of interest being known precisely given the entire population. We argue that the foundation of Bayesian 
inference is to assign a distribution on missing observations conditional on what has been observed. In the 
i.i.d. setting with an observed sample of size n, the Bayesian would thus assign a predictive distribution on 
the missing Yn+1:∞ conditional on Y1:n, which then induces a distribution on the parameter. We utilize 
Doob’s theorem, which relies on martingales, to show that choosing the Bayesian predictive distribution 
returns the conventional posterior as the distribution of the parameter. Taking this as our cue, we relax the 
predictive machine, avoiding the need for the predictive to be derived solely from the usual prior to 
posterior to predictive density formula. We introduce the martingale posterior distribution, which returns 
Bayesian uncertainty on any statistic via the direct specification of the joint predictive. To that end, we 
introduce new predictive methodologies for multivariate density estimation, regression and classification 
that build upon recent work on bivariate copulas.
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1 Introduction
Statistical uncertainty in a parameter of interest arises due to missing observations. If a complete 
population is observed, then the parameter of interest can be assumed to be known precisely. In 
this paper, we argue that the Bayesian accounts for this uncertainty by constructing a distribution 
on the missing observations conditional on what has been observed. This, in turn, induces a distribu
tion on the parameter given the observed data, which we will see is the posterior distribution. In this 
work, we will describe and generalize this framework in detail for the case where the observations are 
independent and identically distributed (i.i.d.), and we will also briefly consider other data structures.

In the i.i.d. case, given Y1: n∼iidF0, where F0 is the unknown true sampling distribution, the missing 
observations are the remaining Yn+1:∞, and as such we focus our modelling efforts directly on the 
predictive density

p(yn+1: ∞ ∣ y1: n). (1.1) 

Here, the construction of the predictive density is for parameter inference and not for forecasting 
future observations as is more usual. For inference, we assume that the object of interest is fully 
defined once all the observations have been viewed, which we write as θ∞ = θ(Y1:∞). It is clear 
then that (1.1) induces a distribution on θ∞, and we call this scheme of imputing Yn+1:∞ and 
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computing θ∞ as predictive resampling. A key observation is that Y1:∞ will always contain the ob
served Y1:n = y1:n as the predictive Bayesian considers the observed sample to be fixed, in contrast 
to the frequentist consideration of other possible values of Y1:n.

For i.i.d. observations, the traditional Bayesian approach is to elicit a prior density π(θ) and sam
pling density fθ(y), derive the posterior π(θ | y1:n), then compute the predictive density through

p(y ∣ y1: n)= ∫ fθ(y)π(θ ∣ y1: n) dθ. (1.2) 

A concise summary of our approach is the following: while de Finetti (1937) provided a represen
tation of Bayesian inference, which relies on exchangeability and the prior distribution, we will 
introduce a framework based on the results of Doob (1949), which relies solely, in the i.i.d. 
case, on the predictive distribution. We will see that this framework based on Doob’s results is 
more flexible and the mathematical requirement amounts to the construction of a martingale— 
it is this flexibility we exploit in this paper. In fact, through Doob’s theorem, we will see that pre
dictive resampling, as described above, is identical to posterior sampling when using (1.2) as the 
predictive and θ indexes the sampling density, in which case θ∞ ∼ π(θ | y1:n). Denoting by p(y) the 
prior predictive, this connection is illustrated below for the traditional Bayesian case:

fθ(y), π(θ) −→
Bayes′ rule

π(θ ∣ y1: n)−→
posterior predictive

∫fθ(y)π(θ∣y1: n) dθ
p(y ∣ y1: n)

π(θ ∣ y1: n)←− Doob′s theorem

Yn+1: ∞∼ p(·∣y1: n)
p(y ∣ y1: n) ←−

predictive update
p(y) 

However, the traditional Bayesian focus on the prior on θ makes no appeal to the underlying cause 
of the uncertainty, that is, the unobserved part of the study population Yn+1:∞. Furthermore, the 
traditional prior-to-posterior computation is becoming increasingly strained as model complexity 
and data sizes grow. In our work, we advocate the predictive resampling strategy—given y1:n, 
our starting point is directly the predictive model (1.1) and the target statistic of interest θ∞, noting 
now that θ∞ is no longer restricted to indexing the sampling density. We relax de Finetti’s assump
tion of exchangeability, but we must now take care to construct (1.1) so that θN is indeed convergent 
to some θ∞, where θN = θ(Y1:N) can be viewed as an estimator. We highlight here that we use n and 
N for the size of the observed dataset and the imputed population, respectively. In the spirit of Doob, 
we rely heavily on martingales, which also aid in ensuring that expectations of limits coincide with 
fixed quantities seen at the sample of size n. This can be regarded as a predictive coherency condi
tion, and we designate the distribution of θ∞ as the martingale posterior. Our choice of (1.1) will be 
density estimators based on recent ideas in the literature, specifically the conditionally identically 
distributed (c.i.d.) sequence of Berti et al. (2004) and bivariate copula update of Hahn et al. (2018).

We now discuss why one would want to go through the route of obtaining the martingale pos
terior via the induced distribution of θ∞ from (1.1) rather than the traditional likelihood-prior 
construction. Firstly, predictive models are probabilistic statements on observables, which 
removes the need to elicit subjective probability distributions on parameters that may have no real- 
world interpretations and only index the sampling density. Secondly, the martingale posterior 
establishes a direct connection between prediction and statistical inference, opening up the possi
bility of using modern probabilistic predictive methods for inference (Breiman, 2001) and trans
parently acknowledges the source of statistical uncertainty as the missing Yn+1:∞. Thirdly, working 
directly with predictive distributions is highly practical. For an elicited 1-step ahead predictive, we 
can predictively resample by carrying out the recursive update

{p(y ∣ y1: N−1), yN} 7! p(y ∣ y1: N) 

to sample Yn+1:N for a large enough N such that θN has effectively converged to a sample from the 
martingale posterior, or N matches a known finite study population size. In complex scenarios 
such as multivariate density estimation and regression, we introduce new copula-based method
ologies where our computations remain exact, GPU-friendly and parallelizable, returning us 
Bayesian uncertainty without any reliance on Markov chain Monte Carlo (MCMC). Finally, a 
predictive approach more clearly delineates the core similarities and differences between 
Bayesian and frequentist uncertainty.
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We will focus on the i.i.d. data setting in this work, which corresponds to exchangeable trad
itional Bayesian models. In this setting, the martingale posterior can indeed be regarded as a gen
eralization of the traditional Bayesian model, as the class of c.i.d. models is more general and 
contains the class of exchangeable models which we will see in Section 3.2. In more complex 
data structures beyond i.i.d. data, such as those encountered in hierarchical modelling or time ser
ies, our framework would still apply. In this case, the missing observations we require may no lon
ger be Yn+1:∞, and model elicitation would no longer only involve a sequence of predictive 
distributions. For example, a simple hierarchical setting is the observation process Yi ∼ p(yi | θi), 
where θi is itself drawn from an unknown G0 and we may be interested in some functional 
γ(G0). Here, we only observe Y1:n = y1:n, so the missing observations of interest are now the unob
served random effects θ1:∞. We can thus seek to impute θ1:n ∼ p(θ1:n | y1:n) from the data, followed 
by the missing remainder θn+1:∞ ∼ p(θn+1:∞ | θ1:n). Computing γ(θ1:∞) would then return us a pos
terior sample. For the remainder of the paper, we will focus only on the i.i.d. case and leave the 
details of non-i.i.d. settings for future work.

In Section 2, we formally investigate the connection between predictive and posterior inference 
and introduce a predictive framework for inference and the resulting martingale posterior. We 
then utilize the bootstrap as a canonical example to distinctly compare Bayesian and frequentist 
uncertainty. We postpone the discussion of related work until Section 2.5 in order to provide con
text beforehand. In Section 3, we discuss predictive coherence conditions for martingale posteri
ors, utilizing c.i.d. sequences. In Section 4, we revisit the bivariate copula methodology of Hahn 
et al. (2018) for univariate density estimation and extend it to obtain the martingale posterior. 
We then generalize this copula-based method to multivariate density estimation, regression and 
classification. Section 5 then provides a thorough demonstration of the above methods through 
examples. In Section 6, we discuss some theoretical properties of the martingale posterior with 
the copula-based methodology. Finally, we discuss our results in Section 7.

2 A predictive framework for inference
2.1 Doob’s theorem and Bayesian uncertainty
Uncertainty quantification lies at the core of statistical inference, and Bayesian inference is one 
framework for handling uncertainty in a formal manner. The Bayesian begins with the random 
variables (Θ, Y1, Y2, …), where (Y1, Y2, …) are the observables of interest, and Θ is the parameter 
which indexes the sampling density fθ(y). We assume throughout that the appropriate densities ex
ist. For i.i.d. data, the Bayesian elicits a joint probability model for the observables and parameter 
with joint density

p(θ, y1: N) = π(θ)
􏽙N

i=1

fθ(yi) (2.1) 

for each N. Here, the density π(θ) represents prior knowledge about the parameter which generates 
the observations, and under a subjectivist point of view, Π(A) = ∫A π(θ) dθ represents the subjective 
probability that the generating parameter value Θ lies in the set A. Marginalizing out Θ gives the 
joint density of the observables,

p(y1: N) = ∫
􏽙N

i=1

fθ(yi) dΠ(θ). (2.2) 

De Finetti, however, argued that the direct likelihood-prior interpretation of the Bayesian model 
was insufficient, as Θ is of a ‘metaphysical’ nature and probability statements should only be on 
observables (Bernardo & Smith, 2009). This then motivated the notion of exchangeability of 
the infinite sequence (Y1, Y2, …), where the joint probability P of the finite sequence of observables 
Y1:N = (Y1, …, YN) is invariant to the ordering of Yi for all N. Through de Finetti’s representation 
theorem (de Finetti, 1937) and extensions thereof (e.g., Hewitt & Savage, 1955), the assumption 
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of exchangeability induces the likelihood-prior form of the joint density in (2.2) (where Π may not 
have a density), which motivates such a specification of the Bayesian model. The representation 
theorem, however, is only part of the story. As alluded to in Section 1, the source of statistical un
certainty is the lack of the infinite dataset Yn+1:∞ with which we could pin down any quantity of 
interest precisely. Bayesian uncertainty through the lens of the prior is still opaque in this regard, 
even with the aforementioned representation theorem.

The key to understanding the source of uncertainty lies in the predictive imputation of observ
ables, for which we require a result from Doob. Doob (1949) established consistency of the 
Bayesian method when the observations are distributed according to (2.2). For this result, we re
quire that the model is identifiable, that is Fθ ≠ Fθ′ whenever θ ≠ θ′, where Fθ is the cumulative dis
tribution function of fθ. Let us assume that data has yet to be observed, so the missing observations 
are Y1:∞. Following the discussion in Section 1, one can regard (2.2) as the joint predictive density 
on the missing population and can estimate the parameter indexing the sampling density as a func
tion of the imputed Y1:N. An appropriate and intuitive point estimate for the Bayesian is the pos
terior mean, which we write as

θ̅N = E[Θ ∣ Y1: N].

We now use a secondary result of Doob (1949) to confirm that the prior uncertainty in Θ arises 
from the predictive uncertainty in Y1:∞.

Theorem 1 (Doob, 1949). Assume Θ is in a linear space with E[|Θ|] < ∞, and (Θ, Y1, 
Y2, …) is distributed according to (2.1), so Θ ∼ Π. Under identifiability and 
measurability conditions on Fθ, we have

θ̅N → Θ a.s. 

For the above result, the key is to rely on θ̅N being a martingale, that is

E[θ̅N ∣ Y1: N−1] = θ̅N−1 

almost surely. Doob’s martingale convergence theorem then ensures that θ̅N converges to a limit 
almost surely. The identifiability condition ensures that the parameter is recoverable from the in
finite sample so that the limit of θ̅N is indeed Θ. For Θ in more general metric spaces, consistency 
results with general notions of posterior expectations are provided in Ghosal and van der Vaart 
(2017, Theorem 6.8). As an aside, we highlight that Doob (1949) provided a more general result: 
the Bayesian posterior distribution converges weakly to the Dirac measure δΘ almost surely for 
Π-almost every Θ as N → ∞. The technical details of a more general version of this result can 
be found in Ghosal and van der Vaart (2017, Theorem 6.9). In the Bayesian nonparametric 
(BNP) case where Θ is a probability density function, we have a nonparametric extension of the 
above results (Lijoi et al., 2004).

Returning to the task at hand, we can summarize the above by considering two distinct methods 
of sampling Θ from the prior Π before seeing any data. The first is to draw Θ ∼ Π directly, which is 
the opaque view of the inherently random parameter that we are trying to shed light on. The se
cond, which inspires the remainder of our paper, begins with sequentially imputing the unseen ob
servables Y1, Y2, Y3… from the sequence of predictive densities

Y1 ∼ p(·), Y2 ∼ p(· ∣ y1), Y3 ∼ p(· ∣ y2, y1), . . .

until we have the complete information Y1:∞ in the limit. Given this random infinite dataset, the 
limiting point estimate ̅θ∞ = limN→∞ θ̅N, that is the posterior mean computed on the entire dataset, 
is in fact distributed according to Π. This equivalence highlights the fact that a priori uncertainty in 
Θ is a consequence of the uncertainty in Y1:∞, and the function ̅θ provides a means to precisely re
cover our quantity of interest when all information is made available to us.
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Of course, such an interpretation is equally valid a posteriori, that is after we have observed 
Y1:n = y1:n. Here, sampling Θ ∼ Π(· | y1:n) is equivalent to sampling Yn+1:∞ conditional on y1:n 

and computing θ̅∞ as if we have observed the infinite dataset, noting that Y1:n = y1:n is now fixed. 
This can be seen by simply substituting the prior π in (2.1), (2.2) and Theorem 1 with the posterior 
π(· | y1:n). In conclusion, Doob’s result highlights that the Bayesian seeks to simulate what is needed 
to pin down the parameter but is missing from reality, that is Yn+1:∞ in the i.i.d. case, and we find 
this to be a compelling justification for the Bayesian approach.

We now conclude this section with a concrete demonstration of the equivalence between pos
terior sampling and the forward sampling of Yn+1:∞ through a simple normal model with un
known mean based on an example from Hahn (2015).

Example 1 Let fθ(y) =N (y ∣ θ, 1), with π(θ) =N (θ ∣ 0, 1). Given an observed dataset y1:n, 
the tractable posterior density takes on the form π(θ ∣ y1: n) =N (θ ∣ θ̅n, σ̅2

n) 
where

θ̅n =
􏽐n

i=1 yi

n + 1
, σ̅2

n =
1

n + 1
.

The posterior predictive density then takes on the form 

p(y ∣ y1: n) =N (y ∣ θ̅n, 1 + σ̅2
n). For observed data, we generated y1: n ∼iid fθ(y) 

for n = 10 with θ = 2, giving θ̅n = 1.84.
We can plot the independent sample paths for the posterior mean, ̅θn+1: N, as 

we recursively forward sample Yn+1:N, where N = n + 1000 in this example. In 
Figure 1, we see that the sample paths of ̅θn+i each converge to a random Θ as i 
increases, with the density of θ̅N very close to the analytic posterior. From 
Doob’s consistency theorem, we know this is exact for N → ∞.

2.2 The methodological approach
Through Doob’s result in Theorem 1, we have demonstrated the predictive view of Bayesian infer
ence as a means to understand how the posterior uncertainty in Θ arises from the missing infor
mation Yn+1:∞. The predictive view of Bayesian inference partitions posterior sampling into two 
distinct tasks. The first is the simulation of Yn+1:∞ through the sequence of 1-step ahead predictive 
distributions to assess the uncertainty that arises from the missing observables. The second is the 
recovery of the parameter of interest Θ from the simulated complete information, which is facili
tated by the limiting posterior mean point estimate θ̅∞. The uncertainty in Θ then flows from the 
uncertainty in Yn+1:∞. Inspired by this, we will now demonstrate the practical importance of this 
interpretation by introducing a predictive framework for inference built exactly on these two 
tasks. This framework eliminates the need for the usual likelihood-prior construction of the 

(a) (b)

Figure 1. (a) Sample paths of θ̅n+i through forward sampling; (b) Kernel density estimate of θ̅N samples and 
analytical posterior density π(θ | y1:n) .
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Bayesian model, and as such generalizes the traditional Bayesian posterior to the martingale 
posterior.

2.2.1 Sampling the missing data
For the predictive Bayesian, the role of the posterior π(θ | y1:n) is to aid in the updating of the pre
dictive density, p(· ∣ y1: N−1) 7! p(· ∣ y1: N) after observing YN, and the likelihood and prior can be 
viewed as merely intermediate tools to construct the sequence of predictives (Roberts, 1965). To 
obviate the need of a likelihood-prior specification, our proposal is to specify the sequence of 
1-step ahead predictive densities {p(· | y1:N)}N≥n directly, which implies a joint density through 
the factorization

p(yn+1: N ∣ y1: n) =
􏽙N

i=n+1

p(yi ∣ y1: i−1). (2.3) 

However, we must take care in our elicitation of {p(· | y1:N)}N≥n to ensure the existence of the limit 
θ∞. As this is technical, we defer a formal discussion of this choice and the conditions required to 
Section 3. For now, we point out that a sufficient condition is for the 1-step ahead predictive dens
ities to satisfy a martingale condition similar to that of Doob, with details given in Section 3.2. It 
may seem that constructing this sequence will incur too much complexity, but we will show this is 
in fact feasible and desirable. One key idea is to utilize a general sequential updating procedure 
whereby given an observed YN = yN, we have a direct and tractable iterative update 
{p(· ∣ y1: N−1), yN} 7! p(· ∣ y1: N).

2.2.2 Recovering the quantity of interest
We now discuss the second task: given a sample Yn+1:∞, we require a procedure to recover the 
quantity of interest. In a traditional parametric Bayesian model, the quantity of interest is usually 
the unknown parameter θ that indexes the sampling density, and as shown by Doob, the limiting 
posterior mean ̅θ∞ serves this purpose. A more general framework is the decision task discussed in 
Bissiri et al. (2016), where the aim is to minimize a functional of an unknown distribution function 
F0 from which samples Y1:n are i.i.d.. For some loss function ℓ(θ, y), the quantity of interest θ is 
now defined as

θ0 = arg min
θ

∫ ℓ(θ, y) dF0(y). (2.4) 

More details can be found, for example, in Huber (2004) and Bissiri et al. (2016). Typical examples 
are ℓ(θ, y) = |θ − y| for the median, ℓ(θ, y) = (θ − y)2 for the mean, and ℓ(θ, y) = − log fθ(y) for the 
Kullback–Leibler minimizer between some parametric density fθ and the sampling density f0. The 
choice of the negative log-likelihood is also interesting as it allows us to target the parameters of a para
metric model without the assumption that the model is well-specified (Bissiri et al., 2016; Walker, 
2013). While misspecification under our framework is still an open question, the Bayesian bootstrap 
has particularly desirable theoretical and practical properties under misspecification (Fong et al., 2019; 
Lyddon et al., 2018, 2019). We will also consider more general forms of θ0, e.g., the density of F0.

Working now in the space of probability distributions, the traditional Bayesian approach would 
be to elicit a prior on F, perhaps nonparametric, and derive the posterior Π(dF | y1:n). Here, F rep
resents the Bayesian’s subjective belief in the unknown true F0. A posterior sample of θ is then ob
tained as follows: draw F ∼ Π(dF | y1:n) and compute the θ minimizing ∫ ℓ(θ, y) dF(y). For our 
generalization beyond the likelihood-prior construction, we do not have a posterior mean nor a 
posterior F and thus require an alternative to recover the quantity of interest given a sample of 
Yn+1:∞ conditioned on y1:n. Our proposal is to construct the random limiting empirical distribu
tion function

F∞(y) = lim
N→∞

1
N

􏽘n

i=1

1(yi ≤ y) +
􏽘N

i=n+1

1(Yi ≤ y)

􏼨 􏼩
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and take θ to minimize ∫ ℓ(θ, y) dF∞(y). Here, our F∞ takes the place of the posterior draw of F, and 
its existence will rely on the martingale condition as mentioned above. We can write θ∞, θ(F∞) or 
θ(Y1:∞) interchangeably for the parameter of interest computed from the completed information. 
If we specify p(· | y1:n) through the usual likelihood-prior construction, then sampling F from the 
posterior, in fact, yields the same random distribution function as F∞ almost surely; this theoret
ical justification for the limiting empirical distribution function F∞ is in Online Supplementary 
Material, Appendix C.2.

2.3 The martingale posterior
Our framework for predictive inference is summarized as follows. Suppose we observe Y1:n i.i.d. 
from some unknown F0 and are interested in the θ0 defined by (2.4). We specify a sequence of pre
dictive densities {p(· | y1:n)}n≥0 which satisfies the martingale condition to be discussed in Section 
3.2 and implies a joint distribution through (2.3). We then impute an infinite future dataset 
through

Yn+1 ∼ p(· ∣ y1: n), Yn+2 ∼ p(· ∣ y1: n+1), . . . , YN ∼ p(· ∣ y1: N−1) 

for N → ∞. Given the infinite random dataset Yn+1:∞ and the corresponding empirical distribution 
function F∞, we compute θ∞ = θ(F∞). We designate the distribution of θ∞ as the martingale pos
terior, where we use the notation Π∞ for comparability to traditional Bayes.

Definition 1 (Martingale posterior). The martingale posterior distribution is defined as

Π∞(θ∞ ∈ A ∣ y1: n) = ∫ 1{θ(F∞) ∈ A} dΠ(F∞ ∣ y1: n), (2.5) 

for measurable set A, which is a subset of the parameter space.

Drawing samples of θ∞ from the martingale posterior involves repeating the above simulation 
procedure given above. We refer to this Monte Carlo scheme as predictive resampling, which has 
strong connections with the Bayesian bootstrap of Rubin (1981), as we will see in Section 2.4. In 
practice, however, we may be unable to simulate N → ∞, or the study population may be of finite 
size N. In this case, we can instead impute Yn+1:N for finite N, giving us the analogous empirical 
distribution function FN and parameter θN = θ(FN) or θ(Y1:N).

Definition 2 (Finite martingale posterior). The finite martingale posterior is similarly de
fined as

ΠN(θN ∈ A ∣ y1: n) = ∫ 1{θ(y1: N) ∈ A}p(yn+1: N ∣ y1: n) dyn+1: N.

In the finite form, the role of the two constituent elements, p(yn+1:N | y1:n) and θ(y1:N), is even 
clearer. For infinite populations, we also highlight that the value of θN varies around θ∞, but 
this may be negligible for sufficiently large N. If the population is actually finite and of size N, 
then θN would be the actual target and thus not an approximation. Finally, we reiterate that 
the martingale posterior (2.5) is equivalent to the traditional Bayesian posterior when using 
(1.2) as the predictive. A summary of the notation and an illustration of the imputation scheme 
is provided, respectively, in Online Supplementary Material, Appendices A and B.

2.4 The Bayesian bootstrap
The resemblance of the martingale posterior to a bootstrap estimator should not have gone un
noticed, as both involve repeated sampling of observables followed by computing estimates 
from the sampled dataset. The Bayesian bootstrap of Rubin (1981) is often described as the 
Bayesian version of the frequentist bootstrap. After observing y1:n, one draws a random 
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distribution function from the posterior through

w1: n ∼ Dirichlet(1, . . . , 1), F(y) =
􏽘n

i=1

wi1(yi ≤ y).

A posterior sample of the statistic of interest can then be computed as θ(F). One interpretation of 
the Dirichlet weights is to generate uncertainty through the randomization of the objective func
tion (Jin et al., 2001; Newton et al., 2020; Newton & Raftery, 1994; Ng & Newton, 2022). Closer 
to our perspective are the connections to BNP inference, which have been explored in much detail 
within the literature as it is the non-informative limit of a posterior Dirichlet process (Ghosal & 
van der Vaart, 2017; Lo, 1987; Muliere & Secchi, 1996). Recent work has exploited the compu
tational advantages of the Bayesian bootstrap for scalable nonparametric inference; see Saarela 
et al. (2015), Lyddon et al. (2018), Fong et al. (2019), Newton et al. (2020), Knoblauch and 
Vomfell (2020), and Nie and Ročková (2023).

2.4.1 The empirical predictive
Within the framework of martingale posteriors, the Bayesian bootstrap has a particularly elegant 
interpretation that follows from the equivalence to the Pólya urn scheme (Blackwell & MacQueen, 
1973; Lo, 1988). The Bayesian bootstrap is equivalent to the martingale posterior if we define our 
sequence of predictive probability distribution functions to be the sequence of empirical distribu
tion functions, that is

P(Yn+1 ≤ y ∣ y1: n) = Fn(y) =
1
n

􏽘n

i=1

1(yi ≤ y). (2.6) 

This is easy to see as sampling Yn+1 ∼ Fn(y) amounts to drawing with replacement 1 of n colours 
with probability 1/n from the urn, and updating to Fn+1(y) is equivalent to reinforcing the urn, that 
is

Fn+1(y) =
n

n + 1
Fn(y) +

1
n + 1

1(yn+1 ≤ y).

Continuing on to ∞, the proportions of colours converge in distribution to the Dirichlet distribu
tion. Interestingly, this choice of predictive implies an exchangeable future sequence from the con
nection to the Dirichlet process. The atomic support of the predictive is however slightly 
problematic if F0 is continuous, as any new observations from F0 will be assigned a predictive 
probability of zero; we will introduce a methodology that remedies this in Section 4. 
Generalizations to other atomic predictives can, for example, be found in Zabell (1982) and 
Muliere et al. (2000).

One can consider the empirical distribution function as the simplest nonparametric predictive 
for i.i.d. data and can thus regard the Bayesian bootstrap as the simplest BNP model. The uncer
tainty from the Bayesian bootstrap arises not from the random weights, but from the sequence of 
empirical predictive distributions. We resample with replacement, treating each resampled point 
as a new observed datum; this fundamental observation is our motivation for the term predictive 
resampling.

2.4.2 Comparison to the frequentist bootstrap
Throughout this section, we have assumed the existence of an underlying F0 from which Y1:n are 
i.i.d., which, in turn, implies the existence of an unknown true θ0 much like the frequentist. This 
has some connections to frequentist consistency under our framework, which we discuss in Section 
6.3. The posterior random variable θ∞ then represents our subjective uncertainty in θ0 after ob
serving Y1:n = y1:n. The Bayesian bootstrap and Efron’s bootstrap (Efron, 1979) are then ideal ves
sels for the contrasting of Bayesian and frequentist uncertainty. Both methods are nonparametric 
and begin by constructing the empirical predictive Fn as in (2.6) from the atoms of y1:n as an 
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estimate of F0, and both involve resampling. The key difference lies in how the resampling is car
ried out.

The frequentist draws a dataset of size n i.i.d. from Fn, which we write as Y∗1: n with correspond
ing empirical distribution function F∗n, and computes θ(F∗n) as a random sample of the estimator. 
The Bayesian, on the other hand, draws an infinite future dataset Yn+1:∞ through predictive resam
pling and computes θ(F∞) as a random sample of the estimand, where F∞ is the limiting empirical 
distribution function of {y1:n, Yn+1:∞}, noting again that the Bayesian holds y1:n fixed. This is sum
marized in Algorithms 1 and 2. Notably, the specification in both bootstraps are equivalent: it is 
merely the elicitation of Fn(y), which entirely characterizes both types of uncertainty.

Algorithm 1: Bayesian bootstrap

Set Fn from the observed data y1:n

for j← 1 to B do

for i← n + 1 to ∞ do

Sample Yi ∼ Fi−1

Update Fi ← {Fi−1, Yi}

end

Compute F∞ from {y1:n, Yn+1:∞}

Evaluate θ(j)
∞ = θ(F∞)

end

Return {θ(1)
∞ , . . . , θ(B)

∞ }

Algorithm 2: Efrons bootstrap

Set Fn from the observed data y1:n

for j← 1 to B do

for i← 1 to n do

Sample Y∗i ∼ Fn

No update to Fn

end

Compute F∗n from {Y∗1: n}

Evaluate θ(j)
n = θ(F∗n)

end

Return {θ(1)
n , . . . , θ(B)

n }

2.5 Related work
There have been many others that shared de Finetti’s view on the emphasis on observables for in
ference. The work of Dawid (1984, 1992a, 1992b) on prequential statistics, a portmanteau of 
probability/predictive and sequential, is one such example. In his work, Dawid focuses on the im
portance of forecasting and introduces a statistical methodology that assigns predictive probabil
ities and assesses these methods on their agreement with the observed data. In particular, Dawid 
(1984) recommends eliciting a sequence of 1-step ahead predictive distributions as we do but mo
tivates this by arguing that forecasting is the main statistical task. As pointed out in Section 1, this 
is in contrast to our case where parameter inference is the main task of interest and the sequence of 
predictives is mainly a convenient tool to construct the joint predictive on future observations. We 
will see in Section 3.2 that stricter conditions are required on this sequence of predictives for in
ference. Another strong proponent of the predictive approach is the work of Geisser: he believed 
that the prediction of observables was of much greater importance than the estimation of param
eters, which he described as ‘artificial constructs’ (Geisser, 1975). His emphasis is on the predictive 
motivated cross-validation (Geisser, 1974; Stone, 1974), which is now popular for Bayesian model 
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evaluation (Gelman et al., 2014; Vehtari & Lampinen, 2002). Works such as Dawid (1985) and 
Lauritzen (1988) also consider parameters as functions of the infinite sequence of observations us
ing the notion of repetitive structures. Finally, the work of Rubin on both the potential outcomes 
model (Rubin, 1974) and multiple imputation (Rubin, 2004) highlights the idea of inference via 
imputation.

An early application of what is essentially finite predictive resampling and martingale posteriors 
is Bayesian inference for finite populations, first discussed in Roberts (1965) and Ericson (1969)
and later by Geisser (1982, 1983). A finite population Bayesian bootstrap is described in Lo 
(1988), in which a finite Pólya urn is used to simulate from the posterior. The ‘Pólya posterior’ 
of Ghosh and Meeden (1997) uses the same approach following an admissibility argument. 
These methods have applications in survey sampling or the interim monitoring of clinical trials 
(Saville et al., 2014).

There have been recent exciting directions of work that investigate the predictive view of BNP. 
Fortini et al. (2000) investigate under what conditions parametric models arise from the sequence 
of predictives using the concept of predictive sufficiency and derive conditions such that the joint 
distribution is exchangeable. Fortini and Petrone (2012, 2014) discuss the construction of a range 
of popular exchangeable BNP priors through a sequence of predictive distributions, motivated 
through a predictive de Finetti’s representation theorem (Fortini & Petrone, 2012, Theorem 2). 
Berti et al. (2020) then generalize the nonparametric approach to c.i.d. sequences; we will later 
see that c.i.d. sequences, as introduced in Berti et al. (2004), play a crucial role in our work. 
However, the previously described methods are mostly constrained to the discrete case. Hahn 
(2015) and Hahn et al. (2018) construct c.i.d. models through a predictive sequence for univariate 
density estimation, respectively, utilizing the kernel density estimator and the bivariate copula. 
Hahn (2015) also discusses the connection of Bayesian uncertainty and prediction with a weaker 
argument and gives a similar example to our Example 1. Predictive resampling is then used to sam
ple nonparametric densities from a finite martingale posterior; however, Hahn (2015) instead spe
cifies the predictive distribution PN for large N and works backwards to find the sequence of 
predictives. Fortini and Petrone (2020) analyse the predictive recursion algorithm of Newton 
et al. (1998) and the implied underlying quasi-Bayesian model. In their work, they carry out pre
dictive resampling to simulate from the prior law of the mixing distribution in an example and ob
tain its asymptotic distribution under the c.i.d. model, that is, an asymptotic approximation to the 
martingale posterior. An interesting aside is the recent work of Waudby-Smith and Ramdas (2023)
which utilizes adaptive betting with martingale conditions for the purpose of constructing fre
quentist confidence intervals. We aim to unify these related strands of research under a single 
framework.

3 Predictive resampling for martingale posteriors
For the martingale posterior, we now embark on the task of eliciting the general 1-step ahead pre
dictive distributions, with the traditional Bayesian posterior predictive as a special case. For nota
tional convenience, we write the sequence of predictive probability distribution functions 
estimated after observing Y1:i = y1:i as

Pi(y) := P(Yi+1 ≤ y ∣ y1: i), i ∈ {1, 2, . . . } (3.1) 

which may have corresponding density functions pi(y). The subscript indicates the length of the 
conditioning sequence, and there may be a P0(y) as some initial choice. For a general sequence 
of predictives, where exchangeability no longer necessarily holds, we instead define our joint dis
tribution on y1:N through this sequence of 1-step ahead predictives and the chain rule as in (2.3). 
The Ionescu-Tulcea theorem (Kallenberg, 1997, Theorem 5.17) guarantees the existence of such a 
joint distribution as we take N → ∞, which has been pointed out by works such as Dawid (1984), 
Fortini and Petrone (2012), and Berti et al. (2020).

Beyond the traditional Bayesian posterior predictive, there is good justification for specifying 
the model with 1-step ahead predictives, instead of, say m-step ahead. It is simple to interpret 
and estimate a 1-step ahead predictive as the decision-maker’s best estimate of the unknown sam
pling distribution function F0, and methods such as maximum likelihood estimation already do 
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this. Finally, we will see that a 1-step update of the predictive allows for the enforcing of the c.i.d. 
condition for predictive coherence.

While the prescription of (3.1) remains a subjective task, we find it to be no more subjective than 
the selection of a sampling density. There is no longer a need to elicit subjective distributions on 
parameters which merely index the sampling distribution with no physical meaning, which has 
been described as ‘intrinsic’ (Dawid, 1985). In nonparametric inference, we also do not need to 
elicit priors directly on the space of probability distributions, which can be cumbersome. The un
certainty arises simply from the elicitation of (3.1). It is clear that we can still use external infor
mation and subjective judgement not provided by the data y1:n in this construction.

3.1 A practical algorithm for uncertainty
Given the model specification (3.1), suppose we wish to undertake inference on a statistic of inter
est θ(F0), defined through a loss function ℓ(θ, y) as in (2.4). We can obtain finite martingale pos
terior samples through predictive resampling given in Algorithm 3, noting the similarity to the 
Bayesian bootstrap algorithm.

Algorithm 3: Predictive resampling

Compute Pn from the observed data y1:n

N > n is a large integer

for j← 1 to B do

for i← n + 1 to N do

Sample Yi ∼ Pi−1

Update Pi ← {Pi−1, Yi}

end

Compute FN from {y1:n, Yn+1:N}

Evaluate θ(j)
N = θ(FN) or θ(j)

N = θ(PN)

end

Return {θ(1)
N , . . . , θ(B)

N } ∼iid ΠN(· ∣ y1: n)

In summary, we run a forward simulation starting at Pn(y) by consecutively sampling from the 
1-step ahead predictives and updating as we go. For large N, we now have a random dataset {y1:n, 
Yn+1:N} from which we can compute the empirical distribution function FN(y) and statistic of inter
est θ(FN). In particular, when the sequence of predictives takes on the form (1.2), combined with 
the self-information loss, −log fθ(y), is this procedure equivalent to traditional Bayesian inference.

The empirical distribution is atomic, which may be problematic if the object of interest θ0 re
quires the limiting F∞ to be continuous, for example, if θ0 is the probability density of F0 or a 
tail probability. In this case, we can instead compute θ(PN), where PN is the random predictive dis
tribution function conditioned on {y1:n, Yn+1:N}, which would typically be continuous. We can re
gard PN as the finite approximation to the limiting predictive distribution function P∞ := limN→∞ 
PN, which serves the same purpose as the limiting empirical F∞ in Section 2.2.2. In fact, P∞ and F∞ 
coincide for traditional Bayesian models, and even for the more general c.i.d. sequence of predic
tives that we will consider shortly. We discuss this in Online Supplementary Material, Appendix C, 
borrowing results from Doob (1949), Berti et al. (2004), and Lijoi et al. (2004).

Some experimental and theoretical guidance for selecting a sufficiently large N to estimate P∞ is 
given in Sections 5 and 6. However, it is also interesting to consider a finite population, where the 
F0 of interest is indeed the empirical distribution function of a population of size N, as discussed in 
Sections 2.3 and 2.5. In this case, truncating predictive resampling at N indeed returns the correct 
uncertainty in any parameter of interest θ(Y1:N) of the finite population.

3.2 Predictive coherence and conditionally identically distributed sequences
The notion of coherence in one’s belief on the parameter θ is key to the subjective Bayesian, where 
coherence may be defined in a decision-theoretic sense (Bernardo & Smith, 2009, Chapter 2.3) or 
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through Dutch book arguments (e.g., Heath & Sudderth, 1978). Extensions of coherence to fore
casting are given in Lane and Sudderth (1984), Berti et al. (1998), and more examples of coherence 
in general can be found in Robins and Wasserman (2000), Eaton and Freedman (2004). More re
cently, the notion of coherence of belief updating was introduced in Bissiri et al. (2016), where a 
belief update on a statistic of interest θ is coherent if the update is equivalent whether computed 
sequentially with y1 followed by y2 or with {y1, y2} in tandem through an additive loss condition. 
In bypassing the traditional likelihood-prior construction, we must forsake the usual coherence of 
belief updating and exchangeability. Instead, we specify conditions for a valid martingale poster
ior entirely in terms of the predictive distribution function, which we term predictive coherence.

Suppose we observe Y1:n i.i.d. from some F0 and construct Pn(y) as in (3.1). We can then view the 
predictive machine Pn(y) as the best estimate of the unknown distribution function F0 from which 
the data arose, incorporating all observed data and any possible subjective knowledge. The first 
minimal condition is that the sequence of predictive distribution functions Pn+1(y), Pn+2(y)… con
verges to a random distribution function. Secondly, we would ensure that predictive resampling 
does not introduce any new information or bias, as Pn is already our best summary of the observed 
y1:n, and the procedure should merely return uncertainty. Formally, we write these conditions, re
spectively, as follows:

Condition 1 (Existence). The sequence Pn+1(y), Pn+2(y), … converges to a random P∞(y) 
almost surely for each y ∈ R, where P∞ is a random probability distribution 
function.

Condition 2 (Unbiasedness). The posterior expectation of the random distribution func
tion satisfies

E[P∞(y) ∣ y1: n] = Pn(y) 

almost surely for each y ∈ R.

Under Condition 1, P∞ is defined through the sequence of predictives, and we can thus treat P∞ 
directly as the random distribution function without the need for an underlying Bayes’ rule re
presentation. This, in turn, gives us the posterior uncertainty in any statistic θ(P∞). Condition 2
is stricter and implies that Pn is our best estimate of F0 and is equal to the posterior mean.

Fortunately, Conditions 1 and 2 are satisfied if the sequence Yn+1, Yn+2, … is conditionally iden
tically distributed (c.i.d.), as introduced and studied in Berti et al. (2004). Many useful properties 
of c.i.d. sequences have been shown in their work, which we now summarize. The sequence Yn+1, 
Yn+2, … is c.i.d if we have

P(Yi+k ≤ y ∣ y1: i) = Pi(y), ∀k > 0 

almost surely for each y ∈ R. This states that conditional on y1:i, any future data points will be 
identically distributed according to the predictive Pi. This predictive invariance is particularly nat
ural as a minimal predictive coherence condition and serves as an analogue to de Finetti’s ex
changeability assumption in the predictive framework. In fact, as shown in Kallenberg (1988), 
the c.i.d. condition is a weakening of exchangeability, and Berti et al. (2004) also show that 
c.i.d. sequences are asymptotically exchangeable, which we state formally in Theorem 3 in 
Section 6.1.

An equivalent formulation of c.i.d. sequences which connects closely to the predictive coherency 
conditions is that Pi(y) is a martingale for i ∈ {n + 1, n + 2, …}, that is

E[Pi(y) ∣ y1: i−1] ≡ ∫ Pi(y) dPi−1(yi) = Pi−1(y) (3.2) 

almost surely for each y ∈ R, noting that Pi depends on yi as in (3.1). Relying again on Doob’s mar
tingale convergence theorem (Doob, 1953), the sequence Pn(y), Pn+1(y), … converges to P∞(y) almost 
surely for each y ∈ R, and P∞ can be shown to be a random probability distribution function (Berti 
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et al., 2004); we state this formally in Theorem 4 in Section 6.1. In this case, we also designate the 
distribution of P∞ as the martingale posterior when we do not specify θ∞. Condition 2 is then satisfied 
as the sequence Pn+1(y), Pn+2(y), … is uniformly integrable. Furthermore, we are guaranteed the ex
istence of the limiting empirical distribution function F∞ as required in Section 2.2.2, and in fact 
F∞(y) = P∞(y) almost surely so the interchangeability of θ(F∞) and θ(P∞) is justified. This equivalence, 
as well as the convergence of θ(Y1:N) with N for a certain class of parameters, is discussed in Online 
Supplementary Material, Appendix C.1. Although not explored here, connections of the c.i.d. prop
erty to other notions of coherence, such as those given at the start of this subsection, would be inter
esting to investigate especially given the absence of the prior distribution.

Although the above predictive coherence conditions are for a valid martingale posterior, we still 
need to specify a sequence of predictive distributions. Clearly, the traditional Bayesian posterior pre
dictive satisfies the above conditions, but in the interest of computational expediency or the desire to 
bypass the likelihood-prior construction, we may wish to consider more general predictive machines. 
The remainder of this paper will consider recursive predictive densities using bivariate copulas.

4 Recursive predictives with bivariate copulas
In this section, we focus primarily on the elicitation of the sequence of predictives (3.1) in the con
tinuous case, where pi(y) is the density of Pi(y) in (3.1). Analogous predictives are derivable for the 
discrete case, and these are obtained in Berti et al. (2020). In particular, we investigate the prescrip
tion of this sequence of predictives through a recursive manner, that is for i ∈ {0, 1, …}

pi+1(y) = ψ ρ
i+1{pi(y), yi+1} 

where ψ ρ
i is a sequence of update functions, possibly parameterized by a hyperparameter ρ. In this 

case, we require an initial guess p0(y) for our recursion, which plays the role of a prior guess on f0. 
A recursive update of this form is not necessary for a martingale posterior, but it allows for simple 
satisfaction of conditions for predictive coherence, as discussed in Section 3.2, and computations 
for predictive resampling will also be significantly easier. Furthermore, when one is only interested 
in estimating pn(y), recursive updates may have computational advantages as one does not need to 
explicitly estimate the posterior.

Recursive updates have previously been motivated as a fast alternative to MCMC in Dirichlet pro
cess mixture models (DPMM). The predictive recursion algorithm was first introduced by Newton 
et al. (1998), which estimates the mixing distribution through a recursive update, and its properties 
have been studied in detail in the literature; see Martin (2021) for a thorough review. One interesting 
property shown in Fortini and Petrone (2020) is that the sequence of observables in Newton’s algo
rithm is c.i.d.; however, the computation of the predictive densities is intractable and requires numer
ical integration, so we will not discuss this method further here. Direct recursive updates for the 
predictive density were then introduced in Hahn (2015), Hahn et al. (2018), Berti et al. (2020), all 
of which satisfy the c.i.d. condition. The bivariate copula method of Hahn et al. (2018) is particularly 
tractable and well motivated, and we will now build on this method in this section.

4.1 Bivariate copula update
To satisfy the c.i.d. condition required for predictive coherence, we can extend the martingale con
dition to hold for the sequence of densities pn, pn+1, … such that for i ∈ {n + 1, n + 2, …}

E[pi(y) ∣ y1: i−1] ≡ ∫ pi(y)pi−1(yi) dyi = pi−1(y) (4.1) 

for each y ∈ R, assuming the expectations exist. We highlight again that pi depends on yi as it is the 
density of (3.1). The above is a sufficient condition for (3.2) to hold, so our sequence is c.i.d. and 
the existence and unbiasedness conditions are satisfied giving us a valid martingale posterior. In 
fact, the martingale convergence theorem shows that pi(y) → p∞(y) almost surely for each 
y ∈ R, but more assumptions are needed to show that p∞ is the density of P∞(y); we explore 
this in Theorem 5 in Section 6.1.
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One particular tractable form of update rule ψ ρ
i that satisfies (3.2) is the bivariate copula 

(Nelsen, 2007) update interpretation of Bayesian inference first introduced in Hahn et al. 
(2018) for univariate data. A bivariate copula is a bivariate cumulative distribution function 
C:[0, 1]2 → [0, 1] with uniform marginal distributions, and in the cases, we consider it will have 
a probability density function c: [0, 1]2 → R. The bivariate copula can be regarded as character
izing the dependence between two random variables independent of their marginals, which can be 
seen through Sklar’s theorem in the bivariate case.

Theorem 2 (Sklar (1959)). For a bivariate cumulative distribution function F(y1, y2) with 
continuous marginals F1(y1), F2(y2), there exists a unique bivariate copula C 
such that

F(y1, y2) = C{F1(y1), F2(y2)}.

Furthermore, if F has a density f with marginal densities f1, f2, we can write

f (y1, y2) = c{F1(y1), F2(y2)}f1(y1)f2(y2) 

where c is the density of C.

This holds for higher dimensions, but we state it for d = 2 as this is what we will be working 
with. From this, we can see that the bivariate copula can model the dependence structure between 
consecutive predictive densities, and thus we have the following corollary, with the proof given in 
Online Supplementary Material, Appendix D.1.

Corollary 1 The sequence of conditional densities p0, p1, … satisfies the martingale con
dition (4.1) if and only if there exists a unique sequence of bivariate copula 
densities c1, c2, … such that

pi+1(y) = ci+1{Pi(y), Pi(yi+1)}pi(y) (4.2) 

for i ∈ {0, 1, …} and Pi is the distribution function of pi.

In the univariate case, we can thus elicit a c.i.d. model through a sequence of copulas, that is we 
have (4.2) as our update function ψ ρ

i+1. We highlight that ci+1 is the bivariate copula density that 
models the dependence between {Yi+1, Yi+2} conditioned on Y1:i. Although the sequence ci+1 can 
technically depend arbitrarily on y1:i (and the sample size i + 1) without violating the martingale 
condition, we will later constrain this dependence. As all exchangeable Bayesian models are 
c.i.d., there exists a unique sequence of copulas which may or may not be tractable that character
ize the model (Hahn et al., 2018). This sequence takes on exactly the form

pi+1(y) =
∫ fθ(y)fθ(yi+1)π(θ ∣ y1: i) dθ

pi(y)pi(yi+1)
􏽼���������������􏽻􏽺���������������􏽽

ci+1{Pi(y),Pi(yi+1)}

pi(y). (4.3) 

The copula density arises following Theorem 2 as the numerator in (4.3) is the joint density 
pi(y, yi+1) with marginal densities pi(y) and pi(yi+1). Instead of specifying the sampling distribution 
and prior, we will now consider the specification of the sequence of copulas ci directly. The form 
for ci inspired by the DPMM is particularly attractive and serves well as the canonical extension of 
the Bayesian bootstrap predictive to continuous random variables. In the remainder of this section, 
we will first review the method of Hahn et al. (2018) for univariate density estimation and extend 
the methodology to include predictive resampling and hyperparameter selection. We then intro
duce analogous copula updates for more advanced data settings, including multivariate density 
estimation, regression and classification.
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4.2 Univariate case
Tractable forms of this sequence of copulas in Bayesian models are investigated in Hahn et al. 
(2018), which correspond to conjugate priors. The update of particular interest is that of the 
DPMM (Escobar & West, 1995) of the particular form

fG(y) = ∫ N (y ∣ θ, 1) dG(θ), G ∼ DP(a, G0), G0 =N (θ ∣ 0, τ−1), 

where a > 0 is the scalar precision parameter that we set to a = 1. The model is nonparametric, 
making it a strong candidate for a predictive update, but only the copula update for i = 0 is tract
able. Inspired by this first update step, Hahn et al. (2018) suggest that the general update to com
pute the density pi(y) after observing y1:i for i ∈ {0, …, n − 1} takes on the form

pi+1(y) = (1 − αi+1)pi(y) + αi+1cρ{Pi(y), Pi(yi+1)}pi(y)

Pi+1(y) = (1 − αi+1)Pi(y) + αi+1Hρ{Pi(y), Pi(yi+1)}
(4.4) 

where Pi(y) is the distribution function of pi(y). Here cρ(u, v) is the bivariate Gaussian copula dens
ity and Hρ(u, v) is the conditional Gaussian copula of the forms:

cρ(u, v) =
N 2{Φ−1(u), Φ−1(v) ∣ 0, 1, ρ}
N {Φ−1(u) ∣ 0, 1}N {Φ−1(v) ∣ 0, 1}

, Hρ(u, v) = Φ
Φ−1(u) − ρΦ−1(v)

�������
1 − ρ2

􏽰

􏼨 􏼩

(4.5) 

where Φ−1 is the standard inverse normal distribution function and N 2 is the standard bivariate 
density with correlation ρ ∈ (0, 1). The role of ρ as a bandwidth will be explored shortly. The up
date (4.4) is then a mixture of the independent copula density and the Gaussian copula density, 
and the sequence αi =O(i−1) ensures the update approaches the independent copula as i → ∞. 
Although asymptotic independence is not necessary for the martingale condition, this property 
holds for Bayesian sequences of copulas (Hahn et al., 2018) and is indeed important for frequentist 
consistency when estimating pn as we will see in Section 6.3. We will see the specific suggested form 
of αi at the end of this section.

Note the similarity of the update in (4.4) to the generalized Pólya urn for the Dirichlet process, 
which for c = 1 has the update Pi+1(y) = (1 − αi+1)Pi(y) + αi+11(yi+1 ≤ y). We can thus interpret 
(4.4) as a smooth generalization of the Bayesian bootstrap update for continuous distributions. 
One can also interpret (4.4) as a Bayesian kernel density estimate (KDE) that satisfies the c.i.d. con
dition, as the regular KDE cannot satisfy this condition (West, 1991). The update can be visualized 
in Figure 2, where for convenience we write ui = Pi(y), vi = Pi(yi+1). The Gaussian copula kernel 
cρ(ui, vi)pi(y) is a data-dependent kernel roughly centred at yi+1, as shown in the left. The kernel 
becomes sharper as ρ increases, and we recover the Bayesian bootstrap in the limit of ρ → 1 
(with αi = 1/i). The update is then a mixture of pi(y) and the copula kernel, which gives us 
pi+1(y) in the right panel.

The recursive update was first introduced to compute pn(y), but properties of the update make it 
a highly suitable candidate for predictive resampling. Firstly, by Corollary 1, this update is guar
anteed to provide a c.i.d. sequence and hence satisfy the existence and unbiasedness conditions. 
Secondly, the update of the predictive distribution is online and does not require an expensive re
computation of the predictive distribution at each step. Finally, the predictive resampling update is 
particularly computationally elegant as yi+1 ∼ Pi(y) implies that Pi(yi+1) ∼ U[0, 1], so all that is re
quired is the simulation of uniform random variables. The forward sampling step then involves 
simulating Vi ∼ U[0, 1] and computing

pi+1(y) = [1 − αi+1 + αi+1cρ{Pi(y), Vi}]pi(y)

Pi+1(y) = (1 − αi+1)Pi(y) + αi+1Hρ{Pi(y), Vi} 

iterated over i ∈ {n, …, N}, which gives us a random pN(y) at the end. There is no need to actually 
sample Yi+1 ∼ Pi(y), which is possible but is more computationally expensive. In Section 6, we will 
see that this update form allows easy analysis of the theoretical properties of predictive resampling.
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The bandwidth ρ controls the smoothness of the density estimate, which we can set in a data- 
dependent manner, as we show in Section 4.5.2. On the other hand, the sequence αi is responsible 
for the uncertainty as we will see in Section 6, so extra care must be taken when eliciting this. Hahn 
et al. (2018) suggest the form αi = (i + 1)−1 inspired from the stick-breaking process of the posterior 
DP as in the Bayesian bootstrap, which works well for estimating pn(y) but we find this performs 
poorly when predictive resampling, giving too little uncertainty. This was also observed in Fortini 
and Petrone (2020) in the case of Newton’s recursive method. However, it should be observed that 
the posterior over the mixing distribution G is actually a mixture of DPs, that is

[G ∣ θ1: n, y1: n] ∼ DP a + n,
aG0 +

􏽐n
i=1 δθi

a + n

􏼒 􏼓

, [θ1: n ∣ y1: n] ∼ π(θ1: n ∣ y1: n) 

where π(θ1:n | y1:n) is intractable. As shown in Online Supplementary Material, Appendix E.1.1, we 
only require the simplifying assumption of π(θ1: n ∣ y1: n) =

􏽑n
i=1 G0(θi), which corresponds to each 

datum belonging to its own cluster in a similar spirit to the KDE. This then returns us the same 
copula update as (4.4) with

αi = 2 −
1
i

􏼒 􏼓
1

i + 1
. (4.6) 

Intuitively, the additional mixing over θ1:n results in the inflated value compared to αi = (i + 1)−1. 
Note this is still O(i−1), matches with initial update step for i = 1, and works much better in prac
tice as it approaches 0 more slowly. We use this sequence for the remainder of the copula methods.

4.3 Multivariate case
In this section, we extend the univariate method to multivariate data y ∈ Rd, allowing us to both 
learn pn(y) recursively and retain the c.i.d. sequence so we can predictively resample to obtain un
certainty. Even without predictive resampling, a general multivariate density estimator pn(y) is of 
interest, as the KDE is known to perform poorly in high dimensions; see Wang and Scott (2019) for 
a review. Computation for the multivariate DPMM (Escobar & West, 1995; MacEachern, 1994; 
Neal, 2000) may scale poorly as the number of dimensions grows. Variational inference (VI) is a 
quicker approximation, as demonstrated in Blei and Jordan (2006), but there is a strong depend
ence on the optimization procedure, which may impair performance in high dimensions. A copula 
method for bivariate data is suggested in the appendix of Hahn et al. (2018), but it does not scale 
well with dimensionality and is not c.i.d.. A recursive method for multivariate density estimation is 
introduced in Cappello and Walker (2018), but numerical integration on a grid is still required, 
which scales exponentially with d, or a Monte Carlo scheme is required. Fortini and Petrone 

(a) (b)

Figure 2. Current predictive density pi(y) and new datum yi+1 (†); (a) Copula kernel cρ(ui , vi )pi (y ) for correlation 
ρ = 0.7, 0.8, 0.9 ; (b) Corresponding updated predictive density pi+1(y) for αi+1 = 0.5; note 
that we write ui = Pi(y), vi = Pi(yi+1).

1372                                                                                                                                                  Fong et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/5/1357/7597700 by guest on 10 O
ctober 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad005#supplementary-data


(2020) propose a multivariate extension of Newton’s recursive method, but it also requires an ap
proximate Monte Carlo scheme to evaluate the predictive density.

Extending the above argument in Corollary 1 to multivariate data is not as straightforward, as 
we would like to factorize the joint density into pi(y, yi+1) = k(y, yi+1)pi(y)pi(yi+1), which does not 
have the copula interpretation like in the 2-dimensional case. Furthermore, building high- 
dimensional copulas are a difficult task, and bivariate copulas are good building blocks for higher 
dimensional dependency (Aas et al., 2009; Bedford & Cooke, 2001; Joe & Xu, 1996).

4.3.1 Factorized kernel
With the above in mind, we now consider the first step update of a multivariate DPMM below

fG(y) = ∫
􏽙d

j=1

N (yj ∣ θj, 1) dG(θ), G ∼ DP(a, G0), G0(θ) =
􏽙d

j=1

N (θj ∣ 0, τ−1) 

where yj is the jth dimension of y, and likewise for θj. Note the factorized normal kernel and in
dependent priors for each θj. From this, we see that we can factorize p0(y) =

􏽑d
j=1 p0(yj). It is 

shown in Online Supplementary Material, Appendix E.1.2 that the first update step takes on 
the form

p1(y) = 1 − α1 + α1

􏽙d

j=1

cρ{P0(yj), P0(yj
1)}

􏼢 􏼣

p0(y) 

where yj
i is the jth dimension of the ith data point. However, naively using this update for i > 1 will 

result in the sequence pi(y) no longer satisfying the martingale condition in (4.1), and we also find 
that it performs poorly empirically. A simple but key extension allows us to retain the c.i.d. 
sequence:

pi+1(y) = 1 − αi+1 + αi+1

􏽙d

j=1

cρ(u j
i , v j

i )

􏼨 􏼩

pi(y) (4.7) 

where

u j
i = Pi(yj ∣ y1: j−1), v j

i = Pi(y
j
i+1 ∣ y1: j−1

i+1 ).

The input to the bivariate normal copula is now the conditional cumulative distribution function 
at y and yi+1 for a particular dimension ordering, and this change ensures many desirable proper
ties. Firstly, we can verify that the martingale condition (4.1) now holds through a multivariate 
change of variables from yi+1 to v1: d

i , so the c.i.d. condition is satisfied. By marginalizing yd, 
yd−1, …, yk+1 in descending order, we also have that the marginals for a single ordering of dimen
sions has the same update

pi+1(y1: k) = 1 − αi+1 + αi+1

􏽙k

j=1

cρ(u j
i , v j

i )

􏼨 􏼩

pi(y1: k). (4.8) 

From this, we can update the conditional distribution functions via

uk
i+1 = (1 − αi+1)uk

i + αi+1Hρ(uk
i , vk

i )
􏽙k−1

j=1

cρ(u j
i , v j

i )

􏼨 􏼩
pi(y1: k−1)

pi+1(y1: k−1)
(4.9) 
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and likewise for vk
i+1. As a result, all terms in the update (4.7) can be computed tractably, with no 

need for numerical integration or approximations, allowing us to extend this method to any num
ber of dimensions as computation complexity is linear in d. Notably, we must specify an ordering 
of the dimensions of y, which at first may seem undesirable. However, it is not an assumption on 
dependence, and the only implication is that the subset of ordered marginal distributions continue 
to satisfy (4.8), which is a sort of marginal coherence. Interestingly, the form of (4.8) suggests that 
pi(y

1:k) depends only on the first k dimensions of y1:i. Practically, we find the dimension ordering 
makes little difference, and we recommend selecting the ordering such that any conditional or mar
ginal distributions of interest remain tractable. In Online Supplementary Material, Appendix E.1. 
3, we provide an extension to the above for mixed-type data.

Predictive resampling again takes on a simple form due to the nature of the update (4.7). We can 
imagine drawing each dimension of Y ∼ Pi(· ) in a sequential nature, that is

[Y1] ∼ Pi(y1), [Y2 ∣ y1] ∼ Pi(y2 ∣ y1), . . . , [Yd ∣ y1: d−1] ∼ Pi(yd ∣ y1: d−1). (4.10) 

Letting Vj
i denote Pi(Y

j | Y1:j−1), we then have that Vj
i ∼iidU[0, 1] for j = {1, …, d}, which we can sub

stitute into (4.7) and (4.9), similar to the univariate case. Predictive resampling again only requires 
sampling d independent uniform random variables for each forward step and computing the 
update.

4.4 Regression
We now consider extending the copula method and predictive resampling to the regression setting, 
where we have univariate yi ∈ R (which can be easily extended to multivariate) with correspond
ing covariates xi ∈ X , where, for example, X = Rd. We will later also consider binary regression, 
where yi ∈ {0, 1}. One assumption is that the covariates are random, where we write 

{yi, xi} ∼iid f0(y, x), and we are interested in f0(yi | xi). We term this the ‘joint method’, as we infer 
the full joint f0(yi, xi) from which the conditional then follows. Examples of this are Müller 
et al. (1996), Shahbaba and Neal (2009), and Hannah et al. (2011), where the prior on 
f0(yi, xi) is a DPMM. The second type of assumption, which we call the ‘conditional method’, is 
the more common framework. Here we assume that x1:n are fixed design points and the random
ness arises from the response y1:n, so we infer a family of conditional densities {fx(y): x ∈ X }. The 
most common framework is the additional assumption of yi = g(xi) + ϵi, where ϵi are independent 
zero-mean noise, and a prior on the mean function g is assumed, e.g., a Gaussian process 
(Rasmussen, 2003). Alternatively, one can elicit a prior on {fx(y): x ∈ X } directly, for example, 
with mixture models based on the dependent Dirichlet process (MacEachern, 1999). We recom
mend Wade (2013), Wade et al. (2014), and Quintana et al. (2022) for thorough reviews.

4.4.1 Joint method
The joint method follows easily from the multivariate: we first estimate the joint predictive density 
pi+1(y, x), then compute the conditional pi+1(y | x) = pi+1(y, x)/pi+1(x). Utilizing (4.8), we have the 
tractable update for the conditional density

pi+1(y ∣ x) = pi(y ∣ x)
{1 − αi+1 + αi+1cρy

(qi, ri)
􏽑d

j=1 cρx
(uj

i, vj
i)}

{1 − αi+1 + αi+1
􏽑d

j=1 cρ(u
j
i, vj

i)}
(4.11) 

where

qi = Pi(y ∣ x), ri = Pi(yi+1 ∣ xi+1)

uj
i = Pi(xj ∣ x1: j−1), vj

i = Pi(x
j
i+1 ∣ x1: j−1

i+1 ).
(4.12) 

Here, we can have separate bandwidths for y and x, and even one for each dimension of x. The 
updates for qi+1, ri+1, uj

i+1, vj
i+1 are the same as in (4.9), and again all terms are tractable. 

Predictive resampling, in this case, requires simulating both {Y, X} ∼ Pi(y, x) just like in (4.10).
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4.4.2 Conditional method
When x is high-dimensional, it may be cumbersome to model pn(x) when we are only interested in 
the conditional density. The conditional method models p(y | x) directly, and we turn to the de
pendent Dirichlet process (DDP) and its extensions for inspiration. In particular, consider the gen
eral covariate-dependent stick-breaking mixture model

fGx (y) = ∫ N (y ∣ θ, 1) dGx(θ), Gx =
􏽘∞

k=1

wk(x)δθ∗k 

where wk(x) follows an x-dependent stick-breaking process, and θ∗k ∼iidN (θ ∣ 0, τ−1). A full deriv
ation is provided in Online Supplementary Material, Appendix E.2.2. We can show that the up
date step of the predictive takes the form

pi+1(y ∣ x) = {1 − αi+1(x, xi+1) + αi+1(x, xi+1)cρy
(qi, ri)}pi(y ∣ x) (4.13) 

where α1(x, x′) =
􏽐∞

k=1 E[wk(x)wk(x′)], ρy = 1/(1 + τ) and qi, ri are as in (4.12). The term α1(x, x′) is 
tractable for some choices of the construction of wk(x), e.g., the kernel stick-breaking process 
(Dunson & Park, 2008). Unfortunately, this does not provide guidance on how to generalize to 
αi(x, x′). Instead, we turn to the joint copula method in the previous section for inspiration, which 
can be written as (4.13) with

αi(x, x′) =
αi
􏽑d

j=1 cρx
(uj

i−1, vj
i−1)

1 − αi + αi
􏽑d

j=1 cρx
(uj

i−1, vj
i−1)

.

This form of αi(x, x′) can be viewed as a distance measure between x and x′ that is dependent on 
Pn(x) which is updated in parallel. To avoid modelling Pn(x), we can simplify the above and con
sider the following as a distance function directly:

αi(x, x′) =
αi
􏽑d

j=1 cρxj {Φ(xj), Φ(x′j)}

1 − αi + αi
􏽑d

j=1 cρxj {Φ(xj), Φ(x′j)}
(4.14) 

which is equivalent to the joint method but leaving Pn(x) = P0(x) without updating, providing us 
an increase in computational speed. This form requires x1:n to be standardized for good perform
ance, and we find that specifying independent bandwidths for each dimension in x works well. 
This method is similar to the normalized covariate-dependent weights of Antoniano-Villalobos 
et al. (2014).

If x1:n is indeed a subsequence of a deterministic sequence of design points x1, x2, …, then pre
dictive resampling simply involves selecting xi for i > n from this sequence and drawing [Yi+1 | xi+1]  
∼ Pi(y | xi+1). If X1:n is actually random and we have chosen the conditional approach simply for 
convenience, then we can draw the future Xn+1:N from the sequence of empirical predictives as in 
the Bayesian bootstrap. We have, however, noticed some numerical sensitivity to this choice of 
Pn(x) in the uncertainty in pn(y | x) for x far from the observed dataset; this is illustrated in 
Online Supplementary Material, Appendices G.5 and G.6. Once again, conditional on Xi+1 = xi+1, 
we have that Pi(Yi+1 ∣ xi+1) ∼ U[0, 1], so predictive resampling only consists of simulating independ
ent uniform random variables and updating. An example of using the Bayesian bootstrap for the 
covariates is provided in Online Supplementary Material, Appendix G.6.

4.4.3 Classification
For classification, both the joint and conditional approach generalize easily to when yi ∈ {0, 1}. To 
this end, we can derive the copula update for a beta-Bernoulli mixture. As shown in Online 
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Supplementary Material, Appendix E.3, this gives

dρy
{qi, ri} =

1 − ρy + ρy
qi∧ri
qiri

if y = yi+1

1 − ρy + ρy
qi−{qi∧(1−ri)}

qiri
if y ≠ yi+1

􏼨

where qi = pi(y | x), ri = pi(yi+1 | xi+1) and ρy ∈ (0, 1). We can simply replace the bivariate Gaussian 
copula density cρy

(qi, ri) in (4.11) and (4.13) with dρy
(ui, vi). One can check that qi is indeed a mar

tingale when predictive resampling, and forward sampling can be done directly as drawing binary 
Yn+1 from the Bernoulli predictive is straightforward. Unfortunately, we do not have the useful 
property of Pi(yi+1) ∼ U[0, 1] in the discrete case, so predictive resampling beyond the Bayesian 
bootstrap for Xn+1:N is computationally expensive at O(N2), or approximation via a grid is re
quired. The Bayesian bootstrap for Xn+1:N is still feasible as we only need to compute pN(y | x) 
at the observed x1:n. An example of this method is provided in Online Supplementary Material, 
Appendix G.5.

4.5 Practical considerations
In this section, we discuss some practical considerations. Further details, such as those regarding 
sampling and optimization, are given in Online Supplementary Material, Appendix F.

4.5.1 Initial density
For the copula methods, we require an initial guess p0(y) to begin our recursive updates, which can 
contain prior information. As it is a statement on observables, it is easier to elicit than a traditional 
Bayesian prior. In practice, we recommend standardizing each variable in the data yj

1: n to have 
mean 0 and variance 1 and using the default initialization N (yj ∣ 0, 1) for each dimension in an 
empirical Bayes fashion. For discrete variables, a suitable default choice is the uniform distribution 
over the classes. Finally, in the regression case, we can include prior information on the regression 
function, e.g., p0(y ∣ x) =N (y ∣ βTx, 1). However, p0(y ∣ x) =N (y ∣ 0, 1) tends to work well as a 
default choice.

4.5.2 Hyperparameters
As we recommend the fixed form of αi in (4.6), the only hyperparameter in the copula update is the 
constant ρ which parameterizes the bivariate normal copula in (4.5). While Hahn et al. (2018) sug
gest a default choice for ρ, we prefer a data-driven approach. Fortunately, there is an obvious 
method to select ρ using the prequential log score of Dawid (1984), that is to maximize 􏽐n

i=1 log pi−1(yi) for density estimation or 
􏽐n

i=1 log pi−1(yi ∣ xi) for regression, which is related to 
a cross-validation metric (Fong & Holmes, 2020; Gneiting & Raftery, 2007). This fits nicely 
into our simulative framework, as ρ is selected on how well the sequence of predictives forecasts 
consecutive data points, which then informs us on the future predictives for predictive resampling. 
We can also specify a separate ρj for each dimension, which corresponds to differing length scales 
for the update from each conditional distribution. For optimization, gradients with respect to ρ 
can be computed quickly using automatic differentiation.

4.5.3 Permutations
Due to our relaxation of exchangeability in Section 3.2, one downside to the copula update and 
c.i.d. sequences, in general, is the dependence of pn on the permutation of y1:n when there is no 
natural ordering of the data. For permutation invariance, we can average pn and the corresponding 
prequential log-likelihood over M random permutations of y1:n. We find in practice that M = 10 is 
sufficient, which is computationally feasible for moderate n due to the speed of the copula update, 
and the method is also parallelizable over permutations. For predictive resampling, we then begin 
with the permutation averaged pn and forward sample with the copula update. From asymptotic 
exchangeability in Theorem 3 in Section 6.1, averaging over permutations is not required for for
ward sampling provided N is chosen to be sufficiently large. Theoretical properties of permutation 
averaging are explored in Tokdar et al. (2009), Dixit and Martin (2019), which we do not consider 
here.

1376                                                                                                                                                  Fong et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/5/1357/7597700 by guest on 10 O
ctober 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad005#supplementary-data


4.5.4 Computational complexity
For computing pn(y) in the multivariate copula method, there is an overhead of first computing vj

i 
for j ∈ {1, …, d}, i ∈ {0, …, n − 1} using (4.9), which requires O(n2d) operations, followed by O(nd) 
operations to compute pn(y) at a single y (which is then parallelizable). After computing pn(y), pre
dictive resampling N future observables requires O(Nd) for each sample of pN(y); this is fully par
allelizable across test points and posterior samples. Interestingly, we first compute pn(y) and only 
predictively resample after if uncertainty is desired, allowing for large computational savings if we 
are only interested in prediction. The regression methods have a similar computational cost.

5 Illustrations
In this section, we demonstrate the martingale posteriors induced by the copula methods of the 
previous section. Code for all experiments is available online at https://github.com/edfong/MP. 
We will demonstrate the copula method on examples where θ0 is the density itself or the loss func
tion induces a simple parameter, e.g., quantiles. However, any θ0 of interest (as in Section 2.2.2) 
can technically be computed directly from the density or from y1:n and samples of Yn+1:∞, although 
this may require a high-dimensional grid or relatively expensive sampling. As a result, for cases 
with complex loss functions that do not rely on the smoothness of F∞ (e.g., a parametric 
log-likelihood), we recommend the Bayesian bootstrap instead as a computationally efficient pre
dictive resampling approach. For examples regarding the Bayesian bootstrap, we refer the reader 
to the references in Section 2.4, and we qualitatively compare the Bayesian bootstrap and the cop
ula methods in Section 7.

For all examples, we follow the recommendations of Section 4.5 for P0 and averaging over per
mutations. We will demonstrate the monitoring of convergence to P∞, but we set N = n + 5000 as 
a standard default for the number of forward samples, where n is the size of the dataset. All copula 
examples are implemented in JAX (Frostig et al., 2018), which is a Python package popular in the 
machine learning community. JAX is ideal for our copula updates: its just-in-time compilation fa
cilitates a dramatic speed-up for our iterative updates especially on a GPU, and its efficient auto
matic differentiation allows for quick hyperparameter selection. Note that the first execution of 
code induces an overhead compilation time of between 10–20 s for all examples. We carry out 
all copula experiments on an Azure NC6 Virtual Machine, which has a one-half Tesla K80 
GPU card. The copula methods consist of many parallel simple computations on a matrix of dens
ity values, which is very suitable for a GPU, unlike traditional MCMC. The DPMM with MCMC 
examples are implemented in the dirichletprocess package (Ross & Markwick, 2018), 
which utilizes Gibbs sampling. Other benchmarks are implemented in sklearn (Pedregosa 
et al., 2011). Unless otherwise stated, default hyperparameter values are set for baselines. As 
the baseline packages are designed for CPU usage, we run them on a 2.6 GHz 6-Core Intel Core 
i7-8850H CPU. Further details can be found in Online Supplementary Material, Appendix G.2.

5.1 Density estimation

5.1.1 Univariate Gaussian mixture model
We begin by demonstrating the validity of the martingale posterior uncertainty returned from pre
dictive resampling by comparing to a traditional DPMM in a simulated example, where the true 
density is known. We also discuss the monitoring of convergence of predictive resampling. For the 
data, we simulate n = 50 and n = 200 samples from a Gaussian mixture model:

f0(y) = 0.8N (y ∣ −2, 1) + 0.2N (y ∣ 2, 1).

For all plots, we compute the copula predictive pn(y) on an even grid of size 160. Figures 3 and 4
show the martingale posterior density using the copula method for n = 50 and n = 200, respective
ly, compared to the traditional DPMM of Escobar and West (1995) with MCMC. We draw B =  
1000 samples for both methods. We see that the resulting uncertainty and posterior means are 
comparable between the copula and DPMM, and the uncertainty decreases as n increases. The 
true density is largely contained within the 95% credible intervals.
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For predictive resampling with the copula method, we judge convergence by considering the L1 

distance between the forward sampled pN and initial pn. This is demonstrated in Figure 5 for a sin
gle forward sample for n = 50. On the left, we have a numerical estimate of ‖pN − pn‖1 which con
verges to a constant, and likewise for ‖PN − Pn‖1 on the right, where ‖ · ‖1 is the L1 norm and is 
computed on the grid. We see in this example that N = n + 5000 is sufficiently large for pN to ap
proximate p∞. When we are not plotting on a grid and instead predicting over some test set, we 
may instead monitor

1
ntest

􏽘ntest

i=1

|pN(yi) − pn(yi)|.

(a) (b)

Figure 3. Posterior mean (—) and 95% credible interval ( ) of (a) pN(y) for the copula method and (b) p∞(y) for the 
DPMM, for n = 50 with true density (- - -) and data (†).

(a) (b)

Figure 4. Posterior mean (—) and 95% credible interval ( ) of (a) pN(y) for the copula method and (b) p∞(y) for the 
DPMM, for n = 200 with true density (- - -) and data (†).

(a) (b)

Figure 5. Estimated L1 distance (a) ‖pN − pn‖1 and (b) ‖PN − Pn‖1 for a single forward sample for n = 50.
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Optimization of the prequential log-likelihood gives us the optimal hyperparameter ρ = 0.77 
and 0.78 for n = 50 and 200, respectively. The prequential log-likelihood is returned easily 
from the copula method, allowing for easy hyperparameter selection. However, computing the 
marginal likelihood for the DPMM is non-trivial, and thus setting the hyperparameters of the pri
ors in a data-driven way, that is empirical Bayes, remains a difficult task. Here, we select the 
DPMM hyperparameters to match the smoothness of the posterior mean of the copula method 
for comparability of the uncertainty.

5.1.2 Univariate galaxy dataset
We now demonstrate the martingale posterior sampling of a parameter of interest that requires a 
smooth density, through predictive resampling and the computation of θ(PN). We analyse the clas
sic ‘galaxy’ dataset (Roeder, 1990), thereby extending the example of Hahn et al. (2018) to the 
predictive resampling framework. The dataset consists of n = 82 velocity measurements of galax
ies in the Corona Borealis region. For all plots, we compute p(y) on an even grid of size 200, and 
unnormalize after the copula method so that the scale of y is in km/s.

Figure 6 compares predictive resampling with the copula method for B = 1000 posterior sam
ples of pN, where the selected bandwidth is ρ = 0.93. The bandwidth for KDE was computed 
through 10-fold cross-validation, and DPMM hyperparameters are set to the suggested values 
in West (1991). The 95% credible intervals and posterior mean of the copula approach are com
parable with that of the DPMM. Excluding compilation times, the optimization for ρ and compu
tation of pn(y) on the grid of size 200 took 0.5 s, and predictive resampling took 2 s. In 
comparison, DPMM with MCMC took 25 s for the same number of samples (B = 1000), where 
the samples are not independent; the plots for MCMC are thus produced with B = 2000. Given 
this random density, we can also compute the statistics of interest θ directly from the grid of dens
ity values. Martingale posterior samples of the number of modes and 10% quantiles of the random 
density are shown in Figure 7, with comparison to the DPMM. Here the copula method tends to 
prefer 4 modes, whereas the DPMM prefers 5.

5.1.3 Bivariate air quality dataset
We demonstrate the martingale posterior for bivariate data using the method of Section 4.3.1, 
which has large computational gains over posterior sampling with DPMM when the density is 
of interest, where the latter is expensive due to dimensionality. For this, we look at the ‘airquality’ 
dataset (Chambers, 2018) from DPpackage. The dataset consists of daily ozone and solar radi
ation measurements in New York, with n = 111 completed data points. For all plots, we compute 
pn(y) on a grid of size 25 × 25.

We fit the multivariate copula method of Section 4.3.1 with one bandwidth per dimension, and 
optimizing the prequential log-likelihood returns ρ = [0.47, 0.82]. Predictive resampling B = 1000 
martingale posterior samples returns us the martingale posterior mean and standard deviation of 

(a) (b)

Figure 6. Posterior mean (—) and 95% credible interval ( ) of (a) pN(y) for the copula method and (b) p∞(y) for the 
DPMM, with KDE and data (†).
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the bivariate density as shown in Figure 8. Again excluding compilation times, the optimization for 
ρ and computation of pn(y) on the grid of size 625 took 1 s, and predictive resampling took 10 s in 
total. For comparison, the DPMM with MCMC required 4 min for the same number of samples. 
Further details and comparisons to the DPMM are given in Online Supplementary Material, 
Appendix G.4.

Figure 9 plots a martingale posterior sample of the density, with the corresponding L1 distance 
convergence plot. We see that N = 5000 is again sufficient, which suggests a dimension independ
ent convergence rate of PN → P∞. This is justified in the theory in Section 6.

5.1.4 Multivariate UCI datasets
In this section, we demonstrate the multivariate copula method of Section 4.3.1 as a highly effect
ive density estimator compared to the usual DPMM, as we do not need to deal with the posterior 
sampling or integration over high-dimensional parameters. We demonstrate on multivariate data
sets from the UCI Machine Learning Repository (Asuncion & Newman, 2007). To prevent mis
leadingly high-density values, we remove non-numerical variables and one variable from any pairs 
with Pearson correlation coefficient greater than 0.98 (e.g., see Tang et al., 2012). We compare to 
the KDE, DPMM and multivariate Gaussian and evaluate the methods with a 50-50 test-train split 
and average the test log-likelihoods over 10 random splits.

For the copula method, we use a single value of ρ for all dimensions for a fair comparison to the 
KDE. We find that having distinct ρ1:d slightly improves predictive performance at the cost of high
er optimization times. For the KDE, we use a single scalar bandwidth set through 10-fold cross- 
validation. For the DPMM, we set the Gaussian kernel to have diagonal covariance matrices 
and use VI (Blei & Jordan, 2006). Using a full covariance matrix kernel is unreliable likely due 

(a) (b)

Figure 7. (a) Posterior samples of number of modes for the copula method (■) and DPMM ( ); (b) Posterior density 
of 10% quantiles for the copula method (—) and the DPMM .

(a) (b)

Figure 8. Posterior (a) mean and (b) standard deviation of pN(y) for the copula method with scatter plot of data (†).
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to local optima for VI, and MCMC is too computationally expensive for large d. For the multivari
ate Gaussian, we use the empirical mean and covariance.

As shown in Table 1, the performance is significantly better on test data for these datasets. The 
better performance than the KDE is likely due to the regularizing effect of p0(y), which is important 
here as n is only of moderate size. The DPMM (VI) likely performs poorly as the diagonal covari
ance cannot capture dependent structure, and the number of variational parameters is still high so 
optimization is difficult. We provide a more detailed analysis of the degradation in performance 
with the dimensionality of the DPMM with VI in Online Supplementary Material, Appendix G. 
7, where the copula method remains robust to dimensionality.

Overall, the run-times for the copula method, KDE and DPMM (VI) are similar, all of which are 
orders of magnitude faster than the DPMM with MCMC. For a single train-test split, the slowest 
example of the above (Breast cancer) for the copula method required less than 4 s in total to op
timize ρ, while computing the overhead vj

i and predicting on the test data required less than 100ms. 
For the same example, the KDE and DPMM (VI) required around 1.5 and 6 s respectively.

5.2 Regression and classification

5.2.1 Regression in LIDAR dataset
We now demonstrate the joint copula regression method of Section 4.4.1 on a non-linear hetero
scedastic regression example, where the copula method performs well off-the-shelf. We use the 
LIDAR dataset from Wasserman (2006), which consists of n = 221 observations of the distance 
travelled by the light and the log ratio of intensity of the measured light from the two lasers; 
the latter is the dependent variable. For the plots below, we evaluate the conditional density on 
a y, x grid of 200 × 40 points.

For the copula method, we optimize the prequential conditional log-likelihood over the M = 10 
permutations and get ρy = 0.90, ρx = 0.83. The predictive mean and 95% central interval of 
pn(y | x) are shown in Figure 10, compared to the DPMM, and we observe that the copula methods 
handle the nonlinearity better. The optimization, fitting and prediction on the grid took under 4 s 
for the copula method, compared to 5 min for the DPMM with MCMC for the same number of 
samples.

Table 1. Average test log-likelihood, standard errors (in brackets) and best performance in bold

Dataset n d Gaussian KDE DPMM (VI) Copula

Breast cancer 569 26 −17.8 (0.61) −25.6 (0.29) −33.4 (0.80) −13.0 (0.26)

Ionosphere 351 32 −49.4 (1.97) −32.3 (0.79) −36.5 (0.59) −21.5 (1.63)

Parkinsons 195 16 −14.3 (0.54) −15.6 (0.41) −25.7 (0.92) −9.9 (0.28)

Wine 178 13 −16.1 (0.26) −15.7 (0.20) −22.8 (0.61) −14.6 (0.17)

(a) (b)

Figure 9. (a) Random sample of pN(y); (b) Corresponding estimated ||pN − pn||1.
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In Figure 11, we see martingale posterior samples of pN(y | x = 0) for the copula method com
pared to the DPMM. For reference, predictive resampling the B = 1000 martingale posterior sam
ples on the y grid for a single x took under 3 s. One can see in Figure 11 that there is more posterior 
uncertainty in the density pN(y | x = 0) for the copula methods, as the DPMM has a simpler mean 
function (weighted sum of linear). Convergence of the conditional density under predictive resam
pling is now dependent on the value of x. Figure 13b shows the L1 distances as before for x = 0; 
however, we find that more forward samples are needed for x far from the data. Figure 12 then 
shows martingale posterior samples of pN(y | x = −3) where x is far from the data, and we see 
that both the copula and DPMM methods have larger uncertainty as expected. However, predict
ive resampling for the conditional copula method of Section 4.4.2 does not always demonstrate 
this desirable behaviour for outlying x; the joint and conditional methods are compared in 
Online Supplementary Material, Appendix G.6 and this undesirable behaviour is also noted in 
Online Supplementary Material, Appendix G.5.

One may also be interested in the uncertainty in a point estimate for the function which we write 
as θx, in this case, the conditional median. In Figure 13a, we plot the martingale posterior mean 
and 95% credible interval of the conditional median of PN(y | x), where we see the uncertainty 
increasing with x . Here we predictively resample on a y, x grid of size 40 × 40 and compute the 
median numerically; this took 12 s for B = 1000 samples.

5.2.2 Multivariate covariates in UCI datasets
We now demonstrate the conditional copula method for prediction in the regression and classifi
cation setting with multivariate covariates, which is of particular interest to the machine learning 
community. For high-dimensional covariates, the conditional copula method performs better than 

(a) (b)

Figure 10. pn(y | x) (—) with 95% predictive interval ( ) for the (a) joint copula method and (b) joint DPMM, with data ( ).

(a) (b)

Figure 11. Posterior mean (—) and 95% credible interval ( ) of (a) pN(y | x = 0) for the joint copula method and (b) 
p∞(y | x = 0) for the joint DPMM.
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the joint method, both in terms of computational speed and test log-likelihood. This is likely due to 
the dominance of estimating Pn(x) in high dimensions, which disrupts the estimate of Pn(y | x).

Similar to the multivariate density estimation, we demonstrate the regression and classification 
conditional copula methods on UCI datasets with scalar y and multivariate x. Again, we evaluate 
the methods with 10 random 50-50 test-train splits and evaluate the average test conditional 
log-likelihoods. We convert categorical variables into dummy variables and report the prepro
cessed covariate dimensionality in Table 2. We compare to Bayesian linear regression and 
Gaussian processes (GP) with a single length scale RBF kernel as baselines for regression, and simi
larly to logistic regression and GPs with the logistic link and Laplace approximation for classifi
cation. We use the Laplace approximation as it is available off-the-shelf in sklearn, and we 
found that independent kernel length scales (ARD) performed worse due to overfitting given n 
is moderate. For the conditional copula method, we have distinct bandwidths ρ1:d for each cova
riate, which we optimize through the prequential log-likelihood over M = 10 permutations.

In Table 2, we see the test log-likelihoods, where the copula method is competitive with the GP, 
though, in general, we find that the GP provides a better estimate for the mean function for regres
sion. Again, optimization took the most time due to the d bandwidths, taking on average 30 s per 
fold for the slowest example (‘Statlog’). The time for actual fitting and prediction on the test set 
was under 120 ms per fold for all examples. The GP on the slowest examples required around 
20 s per fold for the marginal likelihood optimizations, but computation time scales as O(n3).

6 Theory
In this section, we provide a theoretical analysis of the martingale posteriors and predictive resam
pling using the copula update introduced in Section 4. We utilize the theory of c.i.d. sequences 

(a) (b)

Figure 12. Posterior mean (—) and 95% credible interval ( ) of (a) pN(y | x = −3) for the joint copula method and (b) 
p∞(y | x = −3) for the joint DPMM.

(a) (b)

Figure 13. (a) Posterior mean (—) and 95% credible interval ( ) of the conditional median of PN(y | x), with data ( ). 
(b) Estimated L1 distance ‖pN (· ∣ x) − pn(· ∣ x)‖1 for a single forward sample with x = 0.
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from the works of Berti et al. (2004, 2013). We then show frequentist consistency (with little n) 
under relatively weak conditions for the multivariate copula update by extending the proof of 
Hahn et al. (2018), and we discuss its implications. All proofs are deferred to Online 
Supplementary Material, Appendix D.

6.1 Martingale posteriors for copula density estimation
We first analyse the properties under predictive resampling of the multivariate copula recursive 
update for the martingale posterior. We write Pi(y) as the joint cumulative distribution function 
of the density pi(y) with update (4.7), and consider predictive resampling starting at pn(y) such 
that Yi+1 ∼ Pi(y) for i = n, n + 1…, N. As before, n corresponds to the number of observed data 
points, whereas N − n corresponds to the number of forward samples drawn from predictive re
sampling. The first two results follow directly from the c.i.d. property of the sequence.

Theorem 3 (Berti et al. (2004, Theorem 2.5)). The sequence YN+1, YN+2, … is asymptot
ically exchangeable, that is

(YN+1, YN+2, . . . )→
d

(Z1, Z2, . . . ) 

for N → ∞, where (Z1, Z2, …) is exchangeable.

The above justifies that we may not need to average over permutations for sufficiently large N 
when predictive resampling.

As mentioned in Section 3.2, we would like PN(y) → P∞(y) at each y ∈ Rd, which indeed holds 
for predictive resampling here from the c.i.d. sequence:

Theorem 4 (Berti et al., 2004, Lemmas 2.1, 2.4). There exists a random probability 
measure P∞ such that PN converges weakly to P∞ almost surely.

Specifically for the univariate case of the copula update above, we can strengthen this to conver
gence in total variation, which also implies that the limiting predictive P∞ is continuous, following 
from an interesting result in Berti et al. (2013).

Theorem 5 For y ∈ R, suppose the sequence of probability measures PN has density func
tion pN(y) and cumulative distribution function PN(y) satisfying the updates 
(4.4). Let us assume that the initial Pn(y) is continuous and its density satisfies

∫K p2
n(y) dy < ∞ 

Table 2. Average test log-likelihood, standard errors (in brackets) and best performance in bold

Dataset n d Linear GP Copula

Regression Boston 506 13 −0.842 (0.043) −0.404 (0.040) −0.351 (0.025)

Concrete 1030 8 −0.965 (0.008) −0.364 (0.014) −0.445 (0.013)

Diabetes 442 10 −1.096 (0.017) −1.089 (0.015) −1.003 (0.018)

Wine Quality 1599 11 −1.196 (0.017) −0.497 (0.034) −1.143 (0.020)

Classification Breast cancer 569 30 −0.107 (0.005) −0.105 (0.005) −0.096 (0.008)

Ionosphere 351 33 −0.348 (0.005) −0.304 (0.006) −0.388 (0.016)

Parkinsons 195 22 −0.352 (0.007) −0.364 (0.013) −0.257 (0.010)

Statlog 1000 20 −0.530 (0.009) −0.542 (0.011) −0.541 (0.006)
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for all K, where K is a compact subset of R with finite Lebesgue measure. For 
the sequence

αi = 2 −
1
i

􏼒 􏼓
1

i + 1
, 

let us assume further that ρ < 1/
��
3
√

. We then have 

(a) P∞ is absolutely continuous with respect to the Lebesgue measure almost 
surely, with density p∞.

(b) PN converges in total variation to P∞ almost surely, that is

lim
N→∞

∫ |pN(y) − p∞(y)| dy = 0 a.s. 

The assumptions hold if pn(y) is continuous. From this, we are justified in using pN(y) as an ap
proximate sample of the martingale posterior p∞(y). We conjecture that the choice of ρ < 1/

��
3
√

can be relaxed, and empirically it seems the case. Furthermore, this restriction on ρ is not needed 
if αi = (i + 1)−1. Unfortunately, we have been unable to extend Theorem 5 to the multivariate cop
ula update, as the update for P(yj | y1:j−1) is not as easy to bound. We also conjecture that the L1 

convergence holds true in the multivariate case, and again the empirical results suggest so.
We can also quantify to some degree the convergence rate to P∞ as we predictively resample. We 

have the following result from a variant of the Azuma-Hoeffding inequality from McDiarmid 
(1998).

Proposition 1 For M > N and any ϵ ≥ 0, the cumulative distribution function PN(y) of the 
density in (4.7) satisfies

sup
y

P(|PM(y) − PN(y)| ≥ ϵ) ≤ 2 exp
−ϵ2

2ϵαN+1

3
+

1
2
􏽐M

i=N+1 α2
i

⎛

⎜
⎝

⎞

⎟
⎠.

Taking the limit (superior) as M → ∞ of the above gives insight into the quality of the approxi
mation of P∞ when we truncate the predictive resampling at PN. For our choice of αi from (4.6), we 
have 

􏽐∞
i=N+1 α2

i =O(N−1), so the limiting probability of a difference greater than ϵ decreases 
roughly at rate exp (−ϵ2cN) for some constant c. Notably, this rate is independent from the dimen
sionality d and instead depends only on the sequence αi. Furthermore, we have some notion of pos
terior contraction in Proposition 1 if we instead consider N as the number of observed data points 
and M as the number of forward samples.

6.2 Martingale posteriors for conditional copula regression
For the regression case, where y ∈ R, x ∈ Rd, we analyse the update given in (4.13) and (4.14). 
Assuming we have observed y1:n, x1:n, we draw the sequence Xn+1:∞ from the Bayesian bootstrap 
with x1:n. While this is no longer the traditional c.i.d. setup, we still have that PN(y | x) is a mar
tingale under predictive resampling, so we have that PN(y | x) converges pointwise for each x al
most surely. Fortunately, Berti et al. (2006, Theorem 2.2) assure that the martingale posterior 
P∞(y | x) exists.

Theorem 6 For each x ∈ Rd, there exists a random probability measure P∞(· | x) such that 
PN(· | x) converges weakly to P∞(· | x) almost surely.

We also have the appropriate extension to Proposition 1 below.
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Proposition 2 For M > N and any ϵ ≥ 0, the cumulative distribution function PN(y | x) of 
the density in (4.13) satisfies

sup
y

P(|PM(y ∣ x) − PN(y ∣ x)| ≥ ϵ) ≤ 2 exp
−ϵ2

4ϵCαN+1

3
+ 2C2

􏽐M
i=N+1 α2

i

⎛

⎜
⎝

⎞

⎟
⎠

for each x ∈ Rd, where C depends only on ρ and x.

It can be shown that C increases as x moves from the origin. Assuming x1:n is standardized, this 
implies that the number of forward samples needed for convergence may increase as x shifts away 
from the data. The above results can also be easily extended to the classification scenario.

6.3 Frequentist consistency of copula density estimation
To simulate from the martingale posterior given Y1:n, we start with the density pn computed from 
(4.7), so we would like to verify that it is indeed an appropriate predictive density. In this section, 
we thus concern ourselves with the frequentist notion of consistency, that is we look at the prop
erties of the density estimate pn assuming Y1:n is i.i.d. from some probability distribution with 
density function f0 as we take n → ∞. It should be noted that this is distinct from the 
Doob-type asymptotics of predictive resampling in the previous sections where we take N → ∞.

The frequentist consistency of the univariate copula method was first discussed in Hahn et al. 
(2018) based on the ‘almost supermartingale’ of Robbins and Siegmund (1971). We will now ex
tend the result to the multivariate copula method, of which the univariate method is a special case. 
The full proof can be found in Online Supplementary Material, Appendix D.6. Instead of the 
Kullback–Leibler divergence, we work with the squared Hellinger distance between probability 
density functions p1 and p2 on y ∈ Rd, defined as H2(p1, p2):= 1− ∫

�������������
p1(y)p2(y)

􏽰
dy. We then 

have the main result.

Theorem 7 For Y1: n ∼iid f0, suppose the sequence of densities pn(y) satisfies the updates 
in (4.7). Assume that ρ ∈ (0, 1), αi = a(i + 1)−1 where a < 2/5, and there exists 
B < ∞ such that f0(y)/p0(y) ≤ B for all y ∈ Rd. We then have that pn is 
Hellinger consistent at f0, that is

lim
n→∞

H2(pn, f0) = 0 a.s. 

Intuitively, the update (4.7) can be regarded as a stochastic gradient descent in the space of prob
ability density functions, where αi+1 is the step-size. As is standard in stochastic optimization 
(Kushner & Yin, 2003), consistency of the copula method relies delicately on the decay of the se
quence αi, which ensures we approach the independent copula at the correct rate. A similar con
dition is, for example, discussed in Tokdar et al. (2009) for Newton’s algorithm. On the one hand, 
we require 

􏽐∞
i=1 αi = ∞ to ensure that the initialization p0 is forgotten. On the other hand, we re

quire the sequence αi to decay sufficiently quickly to 0, that is 
􏽐∞

i=1 α2
i < ∞, for information to ac

cumulate correctly. The requirement on a also ensures the information in later terms decay 
properly. Notably, the condition on a < 2/5 is different to the suggestion for predictive resampling, 
so a different choice of αn may be more suitable when consistency is of primary interest. The se
cond assumption is a regularity condition on the tails of the initial p0 being heavier than f0, which 
motivates a heavy-tailed initial density as also suggested by Hahn et al. (2018). Interestingly, the 
bounded condition on f0/p0 is the only requirement on f0 for consistency, which follows from the 
nonparametric update. However, unlike the KDE there are no conditions on the bandwidth ρ, 
which likely follows from the data dependence of the copula kernel.

There are a number of unanswered questions when compared to the consistency of traditional 
Bayes. The first is whether the martingale posterior converges weakly to the Dirac measure at F0, as 
we have only shown Hellinger consistency of the posterior mean measure of P∞. We believe this is 
likely to be positive, as there is a notion of posterior contraction as in Proposition 1. A related 
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inquiry is the rate of convergence of pn, or the martingale posterior on p∞, to the true f0. The se
cond and more ambitious question is whether the above approach provides a general method to 
prove consistency for other copula models. For the multivariate copula method, we only require 
the weak tail condition on f0, but the proof relies heavily on the nonparametric nature of the up
date. It is still unclear what the conditions would be if the copula sequence corresponded to a para
metric Bayesian model, such as the examples given in Hahn et al. (2018). In the absence of the prior 
under the predictive view, a question of interest is whether an analogue to the Kullback–Leibler 
property of the traditional Bayesian prior (e.g., Ghosal & van der Vaart, 2017, Definition 6.15) 
exists, which would highlight a predictive notion of model misspecification.

7 Discussion
We see that Bayesian uncertainty, at its core, is concerned with the missing observations required 
to know any statistic of interest precisely. In the i.i.d. case, this is Yn+1:∞, and our task is to obtain 
the joint distribution p(yn+1:∞ | y1:n), which is simplified through the factorization into a sequence 
of 1-step ahead predictive densities. One open question is whether there are more general methods 
to elicit this joint beyond the likelihood-prior construction and the prequential factorization. For 
the more general data setting, the Bayesian would be tasked with eliciting p(ymis | yobs), where the 
missing observations ymis would be specific to the setting and statistic of interest. We highlight that 
ymis must be sufficiently large to compute the statistic precisely, unlike in multiple imputation 
(Rubin, 2004) where the imputed data is often finite and for computational convenience. For fu
ture work, identifying ymis and extending the methodology in more complex data settings such as 
time series or hierarchical data is of primary interest.

In terms of practical methodology, it is worth comparing when one would prefer to use the 
Bayesian bootstrap versus the copula methods. When the data is high-dimensional but a low- 
dimensional statistic is of interest, the copula methods may not be suitable, as computing the dens
ity on a grid or sampling the data directly is required. Fortunately, the Bayesian bootstrap shines in 
this setting. On the other hand, the discreteness of the Bayesian bootstrap makes it unsuitable for 
when smoothness is required, for example, when the density is directly of interest, or in regression 
where we rely on smoothness with x. In these settings, the copula methods are highly suitable. 
Together, the predictive framework allows us to cover a wide variety of settings with practical ad
vantages over the traditional Bayesian approach.

We believe our framework offers an interesting insight into the interplay between Bayesian and 
frequentist approaches. As we have seen through the lens of the Bayesian bootstrap, Bayesians and 
frequentists are concerned with Yn+1:∞ and Y1:n, respectively. Analysis of the frequentist asymp
totic properties of martingale posteriors also offers new challenges, as we must work with the pre
dictive distribution directly, and it is unclear if the methods used in our paper generalize to other 
copula models. For generalizations of our martingale posterior framework, imputing aspects of 
the population instead of the entire population directly may also help bridge the gap between 
Bayesian and frequentist methods. In the hierarchical example in Section 1, we can in fact treat 
θi as the mean of population i from which we observe a single sample yi. We would thus be imput
ing the means of observation populations (i.e., the random effects) instead of the entire population 
of observables directly. This interpretation would align well with our philosophy of only imputing 
what one would need to carry out the statistical task.
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This is a fascinating paper, both wide and deep. I have been intrigued by it, and it has stimulated 
many comments and questions. 

Savage (1961) described Fisher’s fiducial argument as ‘a bold attempt to make the Bayesian om-
elet without breaking the Bayesian eggs’. Tonight’s paper appears to cook up a posterior omelet 
without using any eggs at all—no statistical model for the data nor any prior distribution are re-
quired. This is a remarkable achievement! 

While it is supposed that the data y1 : n = (y1, . . . , yn) have arisen from an exchangeable distri-
bution, this property is not used. The only ‘modelling’ done is the construction of a joint distribu-
tion for never-to-be-observed future values Yn+1 : ∞. This involves an initial choice for the forecast 
distribution Pn for Yn+1, and a choice of updating method to move from Pi to Pi+1 (i ≥ n), taking 
into account a value Yi+1 simulated from Pi. However, it is not clear how these choices, and the 
implied ‘posterior’ inference, depend on the observed data y1 : n, nor what general principles and 
pragmatic considerations might inform them. 

We are told that these ‘predictive models are probabilistic statements on observables’—but the 
observable (indeed, observed) quantities are Y1 : n, which are not modelled. In contrast, the mod-
elled Yn+1 : ∞ are fictions of the authors’ imagining. Different specifications of the one-step-ahead 
predictive distributions (all satisfying the martingale property) will lead to different distributions 
for Yn+1 : ∞, and so to different ‘posteriors’. 

While considerable attention is given to the updating process, less is said about the crucial choice 
of the initialising Pn. One possibility is to use the empirical distribution of the data, as in the pro-
cess leading to the Bayesian bootstrap. Another, briefly mentioned in Section 4.5.1, arrives at Pn by 
starting from an assessed prior predictive P0 for Y1, and using the chosen updating formula with 
the observed data. The sequence P0, P1 . . . , Pn−1 so generated can be considered as a ‘prequential 
model’ (Dawid, 1991) for Y1, . . . , Yn. We can then apply various prequential tests of the compati-
bility of this model with the observed data y1, . . . , yn (Dawid, 1992): for example, we can test 
whether the successive conditional probability integral transforms P0(y1), . . . , Pn−1(yn) look 
like a random sample from the uniform distribution on [0, 1]. When such a compatibility test 
is failed, that is evidence that our updating formula is not a good match to the observed 
data, and should disqualify its further use. (Note that forecasting using the empirical distribution 
would fail an obvious compatibility test as soon as a new observation differed from all earlier 
values.) 
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In Section 4.5.2, the authors maximise the prequential likelihood p0(y1) . . . pn−1(yn) to estimate the 
bandwidth parameter ρ. They then fix this value for the future simulations. A fully prequential ap-
proach would re-estimate ρ after each new simulated value yi, and insert that into the update for Pi. 

Having settled on Pn, and an update scheme with its c.i.d. structure, we obtain the limiting pre-
dictive distribution P∞, living in the tail σ-field of the sequence Yn+1 : ∞. This can be regarded as the 
parameter of an implied statistical model for Yn+1 : ∞, obtained by conditioning on it. But because 
the constructed distribution is not exchangeable, this is not a model for i.i.d. variables. It would be 
good to understand the actual structure of this implied model. 

The development in this paper is very closely tied to the exchangeability assumption, and its 
c.i.d. generalisation which is required for the martingale property. So, how could it be extended 
to more complex models? Consider for example the Markov AR(1) model with 
Yi+1 ∣Y1 : i, θ ∼ N(θYi, 1), mixed over a smooth positive prior distribution for θ over (−1, 1). The 
predictive distribution of Yi+1 is approximately 

N yi
􏽢θi, 1 +

y2
i

􏽐i
j=1 y2

j−1

􏼠 􏼡

, 

with 􏽢θi = (
􏽐i

j=1 yjy j−1)/(
􏽐i

j=1 y2
j−1), and is no longer Markov. Although the joint distribution is 

not exchangeable or c.i.d., the model parameter θ is recovered as limi→∞􏽢θi, and the initial 
Markov model by conditioning on that. In general, what properties of a joint or sequentially spe-
cified distribution for Y1 : ∞ would be required for consistency with a Markov model, and how 
might one approximate that with sequentially updated predictive distributions? 

Another approach might be to update the conditional distribution of Yi given Yi−1, e.g. using 
methods like those in Section 4.4. What then would be the implied parameter and statistical 
model? 

The authors have done a great job in developing and presenting this work, and I am delighted to 
propose a hearty vote of thanks to them. 

Conflict of interest: None declared. 
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Let me first congratulate the authors for an interesting, thought provoking and inspiring article, 
with many fine examples. However, I wonder whether the specific setup has sufficient generality 
to cover interesting cases, and I should have liked to see the ideas in this paper confronted with 
some different situations. 

Firstly, let me remind everyone of the standard Bayesian setup, where we have observables X, Y, 
a parameter Θ of interest that in principle should be added to or be a function of the observables, 
and a Fisherian model, specifying the conditional distribution P{(X, Y) ∈ A × B |Θ = θ}. A 
Bayesian model will also specify a prior distribution π of Θ, hence also a joint distribution 
P{(X, Y, Θ) ∈ A × B × C}. Bayesian inference after observation of X = x will now calculate the 
posterior distribution P{Θ ∈ C |X = x} and/or the predictive distribution P{Y ∈ B |X = x}. 

Note in particular that this setup is universal and applies to almost any thinkable statistical 
problem, whereas the article specialises to a setting with X = (X1, . . . , Xn) and Y = 
Xn+1, Xn+2 . . . (asymptotically) exchangeable, so 

Θ = Θ(A) = lim
N→∞

􏽐n
k=1 1A(Xn+k)

N 

or some variant thereof. The article then circumvents specifying prior and posterior and goes dir-
ectly to the predictive. 

To highlight some of the issues I am thinking of, let us consider the pure birth process (Xt, t > 0) 
specified by letting X0 = 1 and for t > 0 

P{Xt+h = j |Xt = i, Λ = λ} =
iλh + o(h) (j = i + 1)
1 − iλh + o(h) (j = i)
o(h) otherwise.

⎧
⎨

⎩

To make a full Bayesian specification, we add a prior exponential distribution for the unknown 
parameter Λ ∼ exp (1). 

We now have the following facts, see for example Keiding (1974): Observe X on interval [0, t] 
and let St = ∫t0 Xu du. Then, almost surely: 

lim
t→∞

Xte−Λt = W; W |Λ ∼ exp (1) so Λ⊥⊥W; lim
t→∞

Ste−Λt = W/Λ.

Conditional on W = w, the process Xt, t > 0 behaves like an inhomogeneous Poisson process 
(Kendall, 1949, 1966) with intensity μ(t) = wλeλt. Hence, log Xt grows linearly as 

log Xt ∼ log λ + log w + λt 

so W determines the intercept at 0.  
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We now have a choice and could either think of Λ or the pair (W, Λ) as the parameter of interest. In 
both cases, the parameter would be a function of the data for an infinite sample size; the last parameter 
would give a more detailed description of the behaviour as it will not just give the slope but also the 
approximate intercept of ( log Xt, t→∞). In the first case, the log-likelihood function becomes 

ℓ(λ) ∼ (xt − 1) log λ − λst, 

and the MLE is λ̂ = (Xt − 1)/St. In the second case, the log-likelihood function becomes 

ℓ(λ, w) ∼ (xt − 1)( log λ + log w) − λ(txt − st) + w(1 − e−λt) 

and the MLE is more complicated and may not exist, for example if the observed growth curve is con-
cave. In both cases, (Xt, St) is minimal sufficient. 

The predictive distribution for (Xt+h, St+h) given Λ = λ and Xu, u ∈ [0, t] has density with re-
spect to product of counting measure and Lebesgue measure (Keiding, 1974): 

ft,t+h(x, s |Xu = xu, 0 ≤ u ≤ t, λ) = x − 1
xt − 1

􏼒 􏼓

(λh)x−xt e−λ(s−st)gx,xt (s − st), 

where gx,xt (s − st) is explicit and does not contain unknown parameters. This yields the Bayesian 
predictive distribution when Λ ∼ exp (1) as 

ft,t+h(x, s |Xu = xu, 0 ≤ u ≤ t) = x − 1
xt − 1

􏼒 􏼓

hx−xt
Γ(x − xt + 1)

(s − st + 1)a+1 gx,xt (s − st).

This last predictive distribution defines a ‘martingale posterior’ using that the process of sufficient 
statistics (Xu, Su), u > t is a Markov process. Indeed, as exploited by Doob (1949), the sequence of 
posterior distributions is always a martingale. 

Using the idea of today’s article, one could simulate from the predictive distribution and define 
the estimates via the simulated sample (Xu, t < u < T) by using maximum likelihood on the out-
come, hence letting 

λ̂T = (XT − 1)/ST 

or, ignoring the first part of the sample, 

λ̃T = (XT − Xt)/(ST − St) 

or, in principle: 

λ̌ = lim
T→∞

λ̂T.

However, based on the same predictive distribution, one could also wish to estimate W. Or even 
extend the model by allowing negative λ values using an inhomogeneous Poisson model with nega-
tive growth rate λ; this would then accommodate data showing a concave growth curve and give a 
slightly different estimate λ̂T . 

But W, Λ are functions of the infinite sample if and only if λ > 0; Then, the inhomogeneous 
Poisson model is an extreme point model (Lauritzen, 1988), but not otherwise. 

In any case, it seems hard to invent the predictive distribution above without going through the 
standard Bayesian approach so maybe the predictive approach is not so helpful after all? 

Is there a potential advantage in using the martingale posterior framework for describing the 
uncertainty of W by simulation from the predictive rather than the posterior distribution? In 
any case, it is my absolute pleasure to second the vote of thanks for this interesting article. 

Conflict of interest: None declared.  
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I would like to congratulate the authors on an expository and intuitive representation of statistical 
uncertainty. To assist in the further investigation of predictive resampling techniques, I have de-
veloped a software package for R (R Core Team, 2022) which implements some of the algorithms 
presented here as well as from subsequent work (Moya & Walker, 2023). The CopRe package 
(Moya, 2022), named for the copula resampling technique described in Section 4, can be installed 
from the Comprehensive R Archive Network with the command: install.packages(‘copre’). 

The copula resampling algorithm is massively parallelisable, and the simplicity of each recursive 
update makes implementation in very low-level programming languages quite easy. I have devel-
oped CopRe’s core code in C++ (ISO, 2012), parallelised with OpenMP (Chandra et al., 2001). I 
have also written core code in CUDA (NVIDIA et al., 2020) for running the algorithm on a GPU 
that is available upon request. A comparison of the running time for the marginal Dirichlet Process 
Mixture Model (DPMM) sampler of Escobar and West (1994) and Copula Resampling run in ser-
ial or parallelised over a CPU or a GPU is shown in Figure 1. The acceleration of nonparametric 
Bayesian inference presented by the authors is significant. 

By imposing prior information on the mechanics of the data-generating process rather than on 
its parameters, predictive resampling of martingale posteriors overcomes many of the difficulties 
involved with the creation of nonparametric priors, and the implementations of Markov chain 
Monte Carlo samplers for their corresponding posteriors. The current development version of 
CopRe contains a new Gibbs-type sequence resampling function, SeqRe, which exploits the 
known predictive update rule of many Gibbs-type priors to sample full random distributions 
from mixture models like the DPMM without a known representation of the prior or posterior 
on the random measure. The development version of the package containing new experimental  
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features can also be installed via the command: 

devtools :: install github('blakemoya/copre', ref = 'dev')

I encourage experimenters to take advantage of this software and hope that it will accelerate fur-
ther investigation of martingale posteriors. 
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Figure 1. Speedup over the Dirichlet Process Mixture MCMC sampler of Escobar and West (1994) in concert with 
the sequence resampling approach of Moya and Walker (2023) for the MCMC sampler without resampling 
extension and three launch configurations for CopRe. The sample size was n = 100, k = 1000 samples were drawn 
from each algorithm, and for CopRe N = 100 recursive predictive draws were made for each sample. Computations 
were made with core C++/CUDA code on an Intel Core i5 8600 K clocked to 4.8 GHz and an NVIDIA GTX 1070 Ti.   
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I thank the authors for their refreshing ideas, providing many insights and intuitions on the process 
of statistical learning. For years, Bayesians have considered two levels of uncertainty, the likeli-
hood and the prior. By shifting the focus to the predictive distribution as a single expression of 
uncertainty about a future observation (given data), the sequential nature of statistical learning 
is made explicit, together with some of its limitations. If each observation carries a piece of infor-
mation, it follows that any question requiring more than (at most) a countable number of pieces 
cannot be answered by this process and must, rather, be assumed. This encapsulates in a single idea 
the need for smooth link functions and kernels, sparsity priors, and other tools used in different 
contexts to eliminate by design what cannot be learned from data. At the same time, assumptions 
such as exchangeability may lose relevance. For example, if one wished to learn the upper bound of 
a certain quantity, in a standard setup, repeated measurements would be assumed exchangeable. 
However, if measurements 1, 1.1, 2.3 were observed, how much we learn from the third observa-
tion (the change in predictive uncertainty) would arguably depend on the order in which the 
three values were observed. The symmetry relation between measurements is not preserved by 
the learning process. This indicates that model definition in terms of the predictive sequence, by 
asking a different question, may allow inference in the presence of more complex forms of data 
dependence. 

The definition of a coherent predictive model appears challenging and the empirical distribution 
is the simplest possible choice. However, if only x1 was available, setting X2 = x1 almost surely is 
hardly a reasonable way to model uncertainty. Mixture models with data-dependent weights and/ 
or kernel parameters might be an alternative worth exploring. Rather than simply achieving con-
tinuity or greater flexibility, the choice of the kernel could be driven by the need to better extract 
(or filter) the information that each new observation contains about possible future samples. 
This idea is wonderfully illustrated by the bivariate copula construction proposed in 
Section 4. The copula can be interpreted as a measure of the ‘speed’ at which the predictive is 
updated (moves) towards its limit (ideally the distribution of interest) as new observations 
arrive. Studying the relationship between mixtures and copulas could provide a tool to elicit 
new (perhaps approximate but computationally efficient) predictive models. 

Conflict of interest: Isadora Antoniano-Villalobos was a PhD student of Stephen G. Walker, with 
whom she has coauthored some publications. 
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I congratulate the authors for introducing a novel approach for Bayesian inference, which 
avoids directly using the posterior distribution, often not available or computationally expen-
sive. In addition to opening several lines of thinking about the foundations of Bayesian statis-
tics, their proposal unveils many interesting directions to be explored and applied within the 
world of statistics. 

With an infinite population and the epistemic view of uncertainty (see, e.g. Goldstein, 2013), 
namely when the posterior represents the uncertainty due to missing observations, exchangeability 
arises naturally. Here, by applying a martingale convergence result by Doob (1949), the authors 
show that the predictive view of Bayesian inference allows one to obtain the posterior distribution, 
provided the statistic, θn, summarising observations, y1:n, is a martingale. This requirement might 
indeed lead to other types of symmetries, i.e. not necessarily exchangeability. 

Within the exchangeability setting, the proposed predictive approach resembles much to that 
frequently used in Bayesian non-parametrics, e.g. via the Blackwell and MacQueen Pólya-Urn 
and many of its generalisations used for posterior inference. Hence, with the findings in this paper, 
one wonders whether the exchangeability requirement is the most practical one. Furthermore, 
there might be other ways to relax the martingale condition, namely throughout other conver-
gence requirements for θn. 

Clearly, one of the appealing features of the proposed approach is bypassing the prior to pos-
terior computation, by suitably modelling predictive distributions of conditionally identically dis-
tributed (c.i.d.) sequences and θn. For some of the examples in the paper, it is clear what the 
predictive structure should look like, and though the authors propose a fairly general predictive 
using their copula approach, there are many inference scenarios where one would need to be 
very creative to achieve the desired inference, for instance Bayesian inference for phenomena typ-
ically modelled throughout continuous time Markov processes. 
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Figure 1. Martingale posterior and posterior distribution for ρ.   
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For an Autoregressive of order one, AR(1), model with transition density p(xi |xi−1; ρ) 
= N(xi | ρxi−1, 1), and ρ as the parameter of interest, one could use the predictive 

p(xn+1 |x1:n) = N xn+1 ∣ xn
a
b

,
x2

n + b
b

􏼒 􏼓

, 

where a :=
􏽐n

i=2 xixi−1 and b := 1 +
􏽐n

i=2 x2
i−1, with functional statistic ρ̅N = a/b. This proposal 

comes from assuming an N(0, 1) prior for ρ and computing the predictive. However, without pass-
ing throughout such mechanism, a natural question is how could one propose such predictive and 
the form to be used for ρ̅N. Indeed, the authors proposal works very well, see Figure 1. 
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To see the effect of the paper on statistical practice, consider the following hypothetical dialogue 
between a Quantitative Scientist (QS) and a Predictive Statistician (PS). 

QS: I’ve been thinking about the data generating mechanism and what we can safely assume 
pre-experimentally. 

PS: Actually, I’m more interested in what you think your n + 1 data point would be. If you were 
going to predict your n + 1 measurement, how would you do it? 

QS: I’d guess what the true model is and take its mean or median. But, I don’t know what the 
true model is. 

PS: But you do know what the predictive density m(yn+1 | y1 : n) is, right? 
QS: If I assume my likelihood and prior are right. But, I don’t know that. 
PS: Do you believe there is an overall probability model for Y1 : n+1? 
QS: Sure: M. 
PS: Then, we can use De Finetti to backform a likelihood and prior if we want. But let’s not. Let’s 

think about the martingale model m(yn+1 | y1 : n), m(yn+2 | y1 : n+1) and so on.  
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QS: You mean what on average a new random draw would look like given the past data? If I’d 
seen y1 : n+k I’d draw Yn+k+1 from some m(·| y̅n+k). I’d start with a density shaped like this [draws a 
density] and let it tighten a bit as n increases. 

PS: So that’s step k in your martingale model. We could use it, but let’s not. Instead, I’m going to 
form one-step ahead predictive DF’s using y1 : n, y1 : n+1, and so forth. I’m going to draw one data 
point from each DF to find the next. For each step up to N, I’ll find a version of the posterior mean. 
I’ll do this many times and then use the final posterior means to estimate W(·| y1 : n). 

QS: You’re using repeated generation of data I don’t have to find the posterior I do have? 
PS: Yes, I’m completing your experiment conceptually by filling out your missing data. Over and 

over. Then, I can quantify the information you don’t have and derive the variability left in data you 
do have i.e. form the posterior. 

QS: And you’re ignoring everything we know about the data generator besides the data. Where 
does Pθ come in? 

PS: It doesn’t. We’re relying on martingale convergence in the mixture M. By changing the prob-
ability defining the mode of convergence we get the limits we want for Θ̅ and the DF—that’s why 
we can use them to estimate the posterior. 

QS: So, what role do the prior and likelihood—or even conditional mixtures—have anymore? If 
you’re right, why would we bother with them? Some sort of robustness analysis? 

PS: We could. But, we let’s not. Let’s think about the predictive process directly. 
QS: What’s the magic? 
PS: No magic. We just changed the mode from Pθ to M since we’re thinking about the whole 

countably infinite product space Y∞. 
QS: Is θ still a parameter? 
PS: It’s a function value. Take Θn = Θn(Y1 : n) and think of the posterior mean. Or better take 

n = ∞. Each Θ = θ has a Vθ = {y1 : ∞ | θ(y∞) = θ}. 
QS: Don’t θ and a y1 : ∞ that I might conceptually get have to be compatible in that if y1 : ∞ ∉ Vθ 

then θ can’t be true? 
PS: Yes. If you’re looking for magic, it’s that at infinity Θ = Θ(Y1 : ∞) = E(Θ |Y1 : ∞) pointwise in 
Y∞ and as random variables. Then the y1 : ∞ you get gives you your θ. So, in the limit, our compu-
tational procedure mimics what you would get if you had y1 : ∞ —but, we don’t. What you don’t 
sample gives an assessment of your uncertainty. 

QS: But I’m really using a sequence of predictive DF’s not posterior means or conditional 
predictives. 

PS: Yes. That way you get objectivity in your predictive thinking. 
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We have two comments motivated by this interesting paper.  

1. The idea, introduced early in the paper, that ‘the object of interest is fully defined once all the 
observations have been viewed’ is almost exactly 100 years old: it was a cornerstone of the 
remarkable paper by Fisher (1922) and has been referred to for many decades as Fisher con-
sistency. We are surprised that the authors did not make this connection.  

2. The authors make strong distinctions between the frequentist and Bayesian bootstraps. We 
would like to point out the not-so-widely-known fact that the frequentist bootstrap is actually 
an instance of Bayesian nonparametric inference, as follows. Suppose that the context C of 
the problem under study by You (Good, 1950: a person wishing to reason sensibly in the pres-
ence of uncertainty) implies that Your uncertainty about real-valued observables {Y1, Y2, . . . }, 
which have not yet been observed, is exchangeable. Then, de Finetti’s Representation Theorem 
for real-valued outcomes tells us that this is equivalent to the Bayesian hierarchical model 

(F | B∗) ∼ p(F | B∗)
(Yi |FB∗)

(i = 1, . . . , n)

􏼚 􏼛
IID
∼ F,

(1) 

in which F is the empirical CDF based on {Y1, Y2, . . .}, n is a finite positive integer, and B∗ is a 
finite set of propositions, all rendered true by context C and exhaustive of all relevant contextual 
information. As is well known, (a) the conjugate prior for F in this model is the family DP(α, F0) 
of Dirichlet processes, where α > 0 and F0 represent the appropriate prior sample size and prior 
estimate of F, respectively, based on Your information external to the observed data set 
y = (y1, . . . , yn), and (b) conjugate updating yields the posterior 

DP α + n,
αF0 + nF̂n

α + n

􏼠 􏼡

(2) 

for F, in which F̂n is the empirical CDF based on y. To create a low-information prior, it is tempt-
ing to send α ↓ 0; Terenin and Draper (2017) have shown that this is mathematically meaning-
ful, with the resulting prior, which they call DP(0), yielding the important-for-statistical-science 
posterior DP(n, F̂n). A corollary of a result in Terenin et al. (2018) then yields the following the-
orem, stated informally: 

Theorem (Draper & Guo, 2023) Under the conditions detailed above, frequentist bootstrap sam-
ples of size n from (y1, . . ., yn) are asymptotically stochastically indistinguishable from stick- 
breaking samples of the same size from DP(n, F̂n). 

We find empirically that the frequentist bootstrap approximation is good to excellent even 
for n as small as 25; this has useful implications for high-quality Bayesian data science.  

Conflict of interests: None declared. 
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We congratulate the authors for their thought-provoking paper, especially in the three aspects as 
follows.  

(a) Instead of imposing a prior π(θ) on the parameter θ of a likelihood function fθ(y), where both 
π and fθ are elicited subjectively, the authors proposed the framework of martingale posterior 
to directly model the predictive p(yn+1 : ∞ ∣ y1 : n) for which only the prior predictive p(y) needs 
to be specified. As a result, Bayesian inference can be conducted on any parameter (or stat-
istical functional) of the true sampling distribution.  

(b) As the hyperparameter ρ of the copula is chosen in such a data-driven way that p(y1 : n) fits the 
observed data y1 : n well, the impact of the initial guess for the prior predictive, p0(y), on 
p(yn+1 : ∞ ∣ y1 : n) can be adjusted properly. 

(c) Unlike existing MCMC methods which generate autocorrelated posterior samples, the pro-
posed predictive resampling algorithm is GPU-friendly and parallelisable. Thus, independent 
posterior samples can be obtained for inference, leading to improvement of both computa-
tional and statistical efficiency. 

The proposed martingale posterior framework, we believe, has the further potentials in several 
directions.  

(a) In multivariate density estimation, the authors considered the Dirichlet process mixture 
model, which can be represented as Chinese restaurant process, for recursive update of pre-
dictives. Analogously, Indian buffet process, another commonly used framework in Bayesian 
nonparametrics, can also be considered to derive predictive update for factor analysis. One 
example is the latent feature model (Griffths & Ghahramani, 2011), 

yi =
􏽘∞

k=1

zikfik + ϵi, i = 1, . . . , n.

As traditional MCMC methods involve cumbersome Gibbs sampling of an infinite sparse 
binary matrix Z = (zik), it is expected that incorporating predictive resampling would im-
prove the efficiency on inference of latent features, while the main difficulty lies in deriving 
the update rule of predictive density.  

(b) Because variable selection can generally improve statistical efficiency of regression analysis, 
it is of interest to investigate how Bayesian variable selection can be conducted with control 
of the Bayesian false discovery rate under the framework of martingale posterior.  

(c) Although a default choice is suggested for the initial guess p0(y), it is possible to leverage 
some information from the observed data y1 : n to initialise p0(y), similar to empirical 
Bayes methods. This raises a question on how the martingale posterior connects to non-
parametric empirical Bayes, which also estimates the prior from the data.  

Conflict of interests: The authors declare that they have no conflict of interest.  
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We would like to congratulate the authors on their fine and insightful contribution, which pro-
vides an original perspective on Bayesian inference and opens up new exciting research directions. 
The key point is a novel interpretation of the role of prediction: in a Bayesian framework all the 
uncertainty lies in the unobserved data Yn+1,∞ and, once they are imputed through the predictive 
distributions, inference is straightforward. Therefore, prediction rules, besides allowing forecast-
ing and extrapolation, are crucial also to infer parameters of interest. 

In Bayesian non-parametrics there, is a large stream of works focussing on the m-step ahead pre-
diction for exchangeable species sampling data (see, e.g. Favaro et al., 2009; Lijoi et al., 2007), with 
recent contributions also in the partially exchangeable set-up (Camerlenghi et al., 2017). However, 
the predictive distributions are always determined through an indirect procedure that relies on the 
specification of a non-parametric prior and derives the prediction rule as a posterior expected value. 
The authors adopt a different, and more direct, approach by considering conditionally identically dis-
tributed sequences (Berti et al., 2023) that are only asymptotically exchangeable: in this case, the pre-
dictive distributions are available in closed form, but predictions may depend on the order of the 
observed data Y1:n. This seems in contrast with the assumption of independent and identically distrib-
uted data that should imply invariance of inferential results with respect to permutation of the obser-
vations. Therefore, one may wonder whether the analysis could be extended so to come up with novel 
exchangeable predictives, without explicit reference to an underlying prior. 

To overcome the lack of invariance with respect to the ordering of the data, the authors suggest 
to average the predictions over different permutations of Y1:n. While being computationally un-
feasible, averaging over all the permutations induces a symmetry condition which is reminiscent 
of exchangeability. It would be interesting to check whether the ensuing prediction mechanism 
actually identifies an exchangeable sequence. This would boil down to showing invariance of 
the two-step ahead predictives (Fortini et al., 2000). If this were actually the case, the natural 
goal would be to identify the underlying prior. 

In general, the standard prior-likelihood mechanism may still be a plus when it comes to describ-
ing the dependence structure among the observations (i.e. the generative model). For instance, 
hierarchical models, that distinguish global and group-specific parameters, have proven to be use-
ful in multiple fields. We wonder whether it would be possible to encode these structures directly  
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into the predictive distributions: in particular, it would be interesting to ascertain whether the neat 
recursive expressions of Section 4, that allow fast computations, can be retained. 
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We congratulate the authors for this thought-provoking paper. 
The recursive definition of the predictive distributions through a bivariate copula (Section 4) 

depends on a hyperparameter ρ, which the authors tune by minimising the prequential log-score 
−
􏽐n

i=1 log pi−1(yi) (Section 4.5.2). The prequential framework nicely connects with the predictive 
resampling approach used later. However, other strictly proper scoring rules (Gneiting & Raftery, 
2007) could be used in place of the log-score, leading to a generic prequential score 􏽐n

i=1 S(Pi−1, yi), where S(Pi−1, yi) is a scoring rule between the distribution Pi−1 and data yi. 
With exchangeable data, the prequential log-score is the only prequential score invariant to permuta-
tions of y1:n (as it corresponds to the log marginal − log p1:n(y1:n), Fong & Holmes, 2020) and is thus 
a natural choice over other scoring rules. Nevertheless, in the present set-up exchangeability is 
forsaken by defining the predictive distributions directly (as the authors remark in Section 3.2 and 
address in Section 4.5.3); indeed, computing the prequential log-score on multiple permutations of 
the data leads to different values, as each pi is defined iteratively from pi−1. Therefore, there seems 
to be no theoretical reason to prefer the log-score over other strictly proper scoring rules. We also  
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believe the connection to cross-validation mentioned by the authors relies on exchangeability of the 
data through the invariance of the marginal likelihood to data permutations (Fong & Holmes, 2020). 

Besides, while the form of predictive distribution used by the authors provides access to the density 
and thus enables convenient computation of the log-score, extensions of this work could rely on 
predictive distributions whose density can be computed only up to a normalising constant. 
Furthermore, one could employ predictive distributions for which simulation is possible but density 
evaluation is not (relying, for instance, on generative neural networks). In both these cases, the log- 
score would be inaccessible, while other scoring rules [the Hyvärinen score (Hyvärinen, 2005) in the 
former case and the energy or kernel score (Gneiting & Raftery, 2007) in the latter] would enable 
hyperparameter tuning. Interestingly, the kernel score enjoys robustness to outliers in the data in 
different set-ups (Chérief-Abdellatif & Alquier, 2022; Pacchiardi & Dutta, 2021); although we 
are unsure if this property translates to the considered framework, this is worth investigating. 

As a first test, we tuned ρ for the univariate Gaussian mixture model in Section 5.1.1 with 
the prequential energy score (estimated using an importance sampling strategy) and obtained 
comparable values of ρ to the ones reported by the authors with the log-score. 
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We congratulate the authors for an insightful foundational contribution to the statistical literature. 
This work builds on well-established methodologies, such as predictive inference, Doob’s theorem, 
and conditional independent sequences, providing a unifying framework and a novel understanding  
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of Bayesian uncertainty. A central role is played by the predictive characterisation of the random par-
ameter in terms of observable (yet unobserved) quantities, which are regarded as the root of all stat-
istical uncertainty. This brings to a new approach to inference, termed martingale posterior, which 
sheds light on interesting connections between Bayesian and frequentist statistics. Indeed, both lever-
age on an empirical distribution: the former builds it through the predictive distributions, the latter 
through independent and identically distributed samples. Importantly, martingale posteriors go be-
yond some common homogeneity assumptions in the data, such as infinite exchangeability. 
Moreover, this approach may offer practical advantages both in terms of prior elicitation and com-
putations, as illustrated by the authors in some relevant scenarios. 

We believe that the breadth of this contribution will inspire several future research questions. 
Here, we restrict our attention to two aspects that we found particularly interesting. First, the au-
thors underline that inference and prediction under a martingale posterior might depend on the or-
der of the data, even when a natural order does not exist. Such dependence will vanish as the sample 
size increases, but can still be relevant for finite samples. To overcome such an issue, the authors sug-
gest using the average of the predictive distribution over M random permutations of the sample (e.g. 
M = 10). We believe that, in such a scenario, it could be useful to define and study predictive rules 
that go beyond infinite exchangeability yet preserve finite exchangeability for any fixed sample size. 

Second, from a theoretical and modelling perspective, it is often relevant to establish frame-
works that weaken the homogeneity assumption of infinite exchangeability, while still preserving 
well-defined limits as the sample size increases and tractable learning updates. The authors rely on 
an additional principle: the martingale predictive coherence. We believe that it could be of interest 
to relax this principle to study other classes of converging predictive rules, e.g. those that preserve 
exchangeability but are not Kolmogorov consistent. 

To conclude, we believe the work by E. Fong, C. Holmes, and S. Walker will spur several new 
theoretical, modelling, and computational research directions. We commend the authors one more 
time for an outstanding paper. 

Conflict of interest: All authors declare that they have no conflicts of interest. 
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This paper is really interesting and offers a number of intriguing hints. Here, I just make a few 
isolated remarks without any claim of being exhaustive.  

1. I would give more emphasis to the Ionescu-Tulcea theorem (ITT). This theorem is quoted 
only in passing, but it is the cornerstone of this paper. By ITT, the distribution of 
Y1:∞ = (Y1, Y2, . . . ) is completely determined by the assignment of {Pn : n ≥ 0}, where  
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P0(·) = P(Y1 ∈ ·) and Pn(·) = P(Yn+1 ∈ · ∣ Y1:n). Exploiting ITT has at least two advantages: (i) 
The first part of the paper can be made shorter and clearer; (ii) Relying on ITT makes trans-
parent that, in general, to introduce the problem investigated in this paper, there is no need of 
any distributional assumption on Y1:∞. In particular, Y1:∞ needs not be exchangeable. 
Exchangeability should be assumed if (and only if) the inferrer feels that it is reasonable for 
the specific data at hand, which is true in some problems but false in others. As regards 
this paper, the only advantage of exchangeability is that the distribution of Y1:∞ can be 
assigned in two ways: by the usual likelihood/prior scheme (thanks to de Finetti’s theorem) 
or via ITT selecting {Pn : n ≥ 0}. These two routes are equivalent and both determine the dis-
tribution of Y1:∞. Hence, it is obvious that predictive resampling is identical to posterior sam-
pling for exchangeable data. I realise that the existence of these two routes is expository 
useful. But, I do not see any other general reason for assuming exchangeability from the out-
set. See e.g. Berti et al. (2021, 2023).  

2. Suppose the distribution of Y1:∞ is assigned via ITT, but, for some reason, Y1:∞ is requested to 
satisfy some distributional assumption. For instance, Y1:∞ is asked to be exchangeable, or 
c.i.d., or stationary, and so on. This puts some constraints on the predictive distributions 
Pn. So, the problem arises: Is it possible to characterise a distributional assumption on Y1:∞ 
in terms of the Pn ? This issue has been addressed in some cases (exchangeability and c.i.d.) 
but not in others (stationarity, partial exchangeability). See Berti et al. (2021, 2023) and refer-
ences therein.  

3. The information at time n is usually larger than the observed values y1:n. This could be 
modelled by introducing a filtration Gn such that σ(Y1:n) ⊂ Gn and defining Pn as 
Pn(·) = P(Yn+1 ∈ · ∣ Gn). Such a generalisation should have a little cost, as most results on 
c.i.d. sequences work for an arbitrary filtration Gn.  

4. Most probably I miss something, but I have some doubts on Section 2.4.1. It is obviously 
tempting to assign Pn as the empirical measure. But, it does not work. In fact, if Pn is the em-
pirical measure for every n ≥ 1, one obtains the trivial sequence Yn = Y1 a.s. for each n.  

Conflict of interest: None declared. 
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Congratulations on a thought-provoking piece. Building Bayesian inference from a (likelihood, 
predictive) pair, rather than a (likelihood, prior), enriches the paradigm and provides new ways 
to think about, formulate, and solve problems. A few respectful remarks. 

First, although the authors never claim this, it is worth emphasising that the framework is not 
prior-free. There is a posterior and a likelihood, hence the prior is proportional to their ratio. The 
key is that said prior is data-dependent, providing an interesting avenue to develop objective Bayes 
methods, at the cost of losing the coherence property in belief updating. Inspecting the prior can be 
informative. Figure 1 shows a Bernoulli example where truly θ = 0.5 but the implied prior places 
little mass around that value, and a Gaussian example where the prior is centred around the sam-
ple mean.1 This apparently erratic prior behaviour might be problematic for model choice via 
Bayes factors, e.g. returning a very small integrated likelihood in the Bernoulli example. 

Second, while sometimes it is easier to elicit a predictive than a prior, in my experience the re-
verse is often true. For example, in regression, a prior on parameters defines a prior on the R2 co-
efficient, an easy-to-interpret quantity, whereas eliciting predictives may be less intuitive for 
nonstatisticians. Further, note that computational considerations elegantly discussed by the au-
thors severely restrict the range of predictives one may consider in practice, limiting the flexibility 
of the framework. 

Third, I am afraid I disagree on the frameworks’ computational convenience. Doing a single 
optimisation may be faster than sampling, but the framework requires solving many optimisa-
tions. This is not cheaper than posterior sampling in a standard (likelihood, prior) construction, 
also the latter offers fast nonsampling based tools, e.g. Laplace approximations and extensions. 
It would be interesting to consider analogues for the predictive framework. 

Finally, a remark on assuming that at n = ∞ there is no uncertainty left. In some settings this is 
not true, e.g. in high-dimensional regression with p ≫ n (one adds higher-order polynomial terms 
as n grows, say) and a normal prior on the parameters there remains posterior uncertainty even as 
n→∞. The proposed framework does not account for such uncertainty, unless suitable adjust-
ments are made. 

Conflict of interest: None declared. 
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Figure 1. Likelihood, posterior, and prior densities for Bernoulli(0.5) and Normal(5,1) examples with n = 100.  

1 Code at https://github.com/davidrusi/paper_examples/tree/main/2022_Rossell_martingale_posteriors)  
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Fong et al. (2023) present an interesting and novel approach to conducting Bayesian posterior es-
timation utilising a joint predictive distribution over missing potential observations and justify 
how this approach of generating one-step-ahead predictive distributions naturally aligns with 
the Bayesian likelihood-prior paradigm. 

The authors mention time series and hierarchical data as areas of potential future development. 
However, one of the major topics in Bayesian computational statistics is the problem of selecting a 
target model from a subset of candidate models or accounting for uncertainty across such models. 
In their paper, the authors present an approach based on a fixed model structures and conduct pos-
terior inference within those model structures. Given the generality of the approach, I would be 
interested in hearing the authors’ comments on how this approach could be extended to the model 
uncertainty or model misspecification domain and to what extent the missing data dimension 
would need to scale with model space size in order to enable feasibility of any such approach. 
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We congratulate the authors for their thought-provoking article, which includes proposing a 
copula-based update for the predictive density and establishing its frequentist consistency under 
relatively mild assumptions. In this contribution, we further explore the frequentist properties  
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of (Bayesian) predictive densities and illustrate through a simple example that, similarly to the pos-
terior distribution, the predictive distribution can also be inconsistent. One therefore requires cau-
tion when using martingale posteriors, at least for the frequentist. 

Consider a modified version of Example 1 in the present paper, taken from Christensen (2009). 
Let Y1, . . ., Yn ∼iid fθ, where 

fθ(y) = Cauchy(y ∣ θ) θ ∈ Q,
N (y ∣ θ, 1) θ ∈ R\Q,

􏼚

i.e. for rational parameter values θ, we replace the N (θ, 1) Gaussian density by a Cauchy with lo-
cation parameter θ. As in Example 1, we endow θ with a standard Gaussian prior, i.e. 
π(θ) =N (θ ∣ 0, 1). Since the likelihoods in our example and Example 1 are equal almost every-
where under the prior, one can show the corresponding posteriors are also identical, i.e. the pos-
terior is N (θ ∣ θ̅n, σ̅2

n) with θ̅ =
􏽐n

i=1 yi/(n + 1) and σ̅2
n = 1/(n + 1), see Christensen (2009). 

Similarly, the posterior predictive is p(y ∣ y1 : n) =N (y ∣ θ̅n, σ̅2
n + 1). By Example 2 in Hahn et al. 

(2018), the predictive updates can thus be characterised via a Gaussian copula with correlation 
parameter ρn = (1 + n)−1. However, for any fixed θ ∈ Q, which forms a dense set in the parameter 
space R, the data is Cauchy. The posterior is thus inconsistent for any rational ‘true’ parameter 
θ ∈ Q, and the predictive density differs substantially from the true Cauchy density, even as 
n→∞. Following the notation of the paper, this procedure cannot consistently recover 
θ∞ = θ(Y1 : ∞) = fθ, even though this parameter is fully defined by the infinite observations Y1 : ∞. 
Of course, this example does not contradict Theorem 7, as the assumption ‖f0/p0‖∞ ≤ B does 
not hold when f0 is Cauchy and p0 is Gaussian. 

In this simple example, the discontinuous likelihood function causes the posterior inconsistency, 
which in turn implies inconsistency of the predictive distribution. The issue is that the above ap-
proach only works for parameter values in a set of prior probability one, namely R\Q. However, 
prior null sets can be very large if not judged from the prior perspective. This problem becomes 
more pronounced in nonparametric models, where the set of parameters over which the posterior 
is consistent can be topologically negligible compared to those where it is inconsistent, see the clas-
sical results (Diaconis & Freedman, 1986; Freedman & Diaconis, 1983). This in turn results in 
predictive distributions not resembling the true data generating distribution. 

One must therefore be careful with the choice of predictive distribution, justifying the approach 
as is done in Theorem 7. We second the authors’ view that it is of interest to derive new conditions, 
analogous to the Kullback–Leibler property in the classical Bayesian setting, which yield consist-
ency and ideally minimax concentration rates. 
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Statistical uncertainty in (an estimate of) a parameter of a probability distribution is due to missing 
(unseen) observations (when it is estimated), as authors have noted. We can think that an estimate 
of the parameter has the maximal uncertainty when no observation is used for it, and no uncertainty 
when all possible observations are used for it. For example, in Bayesian sense, for a Bernoulli par-
ameter, Beta distribution with parameter values α = 1 and β = 1 represents the full uncertainty. If 
observation counts are infinite, i.e. α and β are infinite, then there is no uncertainty. The uncertainty 
of the parameter estimate may be vanished when imputed or really observed data counts used for it 
are infinite, but the two estimates may converge to different values where the latter is the true value. 
But unfortunately we often do not have the chance to get it. So, it is not possible to eliminate the 
uncertainty correctly, i.e. while obtaining the true limiting value for the estimate, by imputing 
some observations given that some other observations are unknown. This is because 

p(y′n+1 : ∞|y1 : n)= ∫ p(y′n+1 : ∞, θ1 : n|y1 : n) dθ1 : n = ∫ p(y′n+1 : ∞|y1 : n, θ1 : n)p(θ1 : n|y1 : n) dθ1 : n

= ∫ p(y′n+1 : ∞|θ1 : n)p(θ1 : n|y1 : n) dθ1 : n 

if and only if Y′n+1 : ∞ is conditionally independent of Y′1 : n given the value θ1 : n, which is the authors’ 
equation (1.1). That is, imputed observations y′n+1 : ∞ show only the variation that is dictated by the 
observations y1 : n through θ1 : n. However, real observations yn+1 : ∞ from the random variable Y 
may show somewhat different variation unless the observations y1 : n (through θ1 : n) determine 
the true probability distribution of Y. Generally we may get two different values for θ(Y1 : ∞) and 
θ(Y1 : N ∪ Y′N+1 : ∞) for any finite N, even though both of them are without any uncertainty. The 
problem is that if there are any mathematical operations or formulae for making these two values 
the same. Eliminating the uncertainty is not sufficient when we do not obtain the true value of the 
parameter. Note that, p(θ1 : n|y1 : n) is true posterior distribution of the parameter in the event of ob-
served data y1 : n. One should use p(θ0) as the prior distribution in the Bayesian updating 
p(θ1 : n|y1 : n) ∝ p(y1 : n|θ0)p(θ0) to make the operation clear. 

Conflict of interest: None declared.  

The authors replied later, in writing, as follows: 

https://doi.org/10.1093/jrsssb/qkad099 
Advance access publication 29 August 2023   

1412                                                                                                                Discussion Paper Contribution 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/5/1357/7597700 by guest on 10 O
ctober 2024

mailto:priyantha.wijayatunga@umu.se
https://doi.org/10.1093/jrsssb/qkad099


Authors’ reply to the Discussion of 
‘Martingale Posterior Distributions’ 
Edwin Fong1, Chris Holmes2 and Stephen G. Walker3 

1Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong 
2Department of Statistics, University of Oxford, Oxford, UK 
3Department of Statistics and Data Sciences, University of Texas, Austin, USA  

Address for correspondence: Chris Holmes, Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford, 
OX2 3LB, UK. Email: chris.holmes@stats.ox.ac.uk 

We thank all the discussants for their contributions which highlight important aspects of our work 
and additionally provide many hints for future directions of research. We are pleased that the dis-
cussions were generally receptive to expanding beyond the traditional likelihood-prior framework 
of Bayes, and to shift the focus to the predictive distribution. 

We begin our rejoinder by summarizing some core themes that have been raised by the discus-
sants, followed by more detailed discussions. These are as follows: 

• Some discussants highlighted the role of the already observed data, y1:n. In our view, given the 
observed information, the predictive p(yn+1|y1:n) is the analysts’ best density estimator for the 
next observation, and this will reflect the underlying structure of the data. There is no explicit 
need to model the observed y1:n. From an intuitive perspective, there is no uncertainty in what 
has already been seen, i.e. the data y1:n are fully known and we treat it as such. Hence, assign-
ing a probability model to what has been seen could be argued as unnecessary. 

• The martingale posterior is not to be regarded as a replacement of traditional Bayesian ana-
lysis. If it is deemed that the formal Bayesian model, derived from a prior to posterior, leads to 
the best predictive, then this remains a part of the framework espoused in the article. We argue 
however that there are settings where this rigid framework is questionable, such as when 
tasked with eliciting objective priors in the absence of substantive prior information. 

• There is much discussion on the formal structure of the data to be studied. For assumed i.i.d. 
data, the Bayesian adopts an exchangeable structure from their symmetry of beliefs, not because 
they actually believe the measured states are physically dependent, but because the predictives, 
i.e. density estimators for the next observation, evolve as more is seen. It is the predictive which 
depends on the past, rather than the variable coming from it. For example, when considering a 
sequence of tosses of a coin, the outcome of one toss does not influence the outcome of any other 
toss, but an observed toss is certainly informative for estimating the probability of getting heads 
in the next toss. Exchangeability can be viewed as providing a learning model, as can a c.i.d. 
structure for Yn+1:∞, which we adopt as the basic framework for the missing data.  

1 The role of observations 
The role of the observations y1:n in determining the initial predictive Pn was a common theme in 
multiple comments. As highlighted by Dawid, the statistical model is the sequence of predictives. 
While we agree that it is important to link the observed y1:n to the unobserved Yn+1:∞, we argue 
that the traditional starting point of an assumed structure for y1:n can now play a secondary 
role to our primary goal, which is to construct the best predictive Pn for Yn+1 given y1:n. In our 
view, y1:n has already been observed and there is no longer any uncertainty in their values— 
only uncertainty in Yn+1:∞. Draper and Guo highlight the asymptotic equivalence between fre-
quentist and Bayesian bootstraps, which could be a useful approximation in some instances. 
However, we must reiterate that the source of uncertainty is entirely different: the frequentist con-
siders y1:n as random, whereas the Bayesian considers Yn+1:∞ as random given y1:n. 

The elicitation of the distribution of Yn+1:∞ given y1:n is quite a general problem, of which there are 
many approaches. A sequential approach would entail a sequence of one-step ahead predictive distri-
butions. Indeed, this becomes the statistical problem. For example, Dawid’s prequential approach,  
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where one specifies P0, P1, . . . , Pn−1 and assesses its fit to the observed data y1:n is a natural approach, 
and we indeed carry this out to select hyperparameters and learn Pn through our copula updates. 

The secondary focus on the data structure y1:n does not preclude us from using knowledge of the 
data generating mechanism. In the presence of a statistical model, e.g. in the scenario proposed by 
Clarke, we are free to use the plug-in predictive p(·|y1:n) = f (·|􏽢θn), with (􏽢θm)m>n as the possible mar-
tingale, which was recently proposed by Holmes and Walker (2023). This predictive can be based 
on a more conventional statistical model and estimator, such as the maximum likelihood estima-
tor. One can then view this as setting Pn to the best density estimate of the data generating distri-
bution given current knowledge. Of course, if we know something about the structure of Yn+1:∞, 
this may help us elicit the best predictive. 

One is also free to incorporate prior knowledge in addition to the observations. For example, 
Rigo and Antoniano-Villalobos highlight that given a single observation y1, the empirical measure 
as the predictive would return us no uncertainty in the martingale posterior. However, we argue 
that in this setting, it would be natural to incorporate prior information (such as historical data) or 
smoothing as suggested by Antoniano-Villalobos instead of relying on the empirical distribution 
for a single datum. 

Note that all bootstraps fail with a single observation. When n is large, and in the absence of 
substantive background knowledge, having to specify a prior will often be a distraction. The mar-
tingale posterior frees the Bayesian from this restriction. 

When faced with the issue of selecting a predictive, we agree with the discussants that the stand-
ard battery of model selection tools can be utilized, such as prequential tests and scores as sug-
gested by Dawid and Huk et al. This can also be applied to select hyperparameters such as the 
bandwidth ρ or initial guess p0(y), which has close connections to empirical Bayes as highlighted 
by Gu and Yin. We agree with Swallow and Gu and Yin that uncertainty in model selection or 
variable selection is one of the strengths of the Bayesian framework. Future directions of research 
would be to investigate what the missing future data and the decision problem is under the 
martingale posterior framework. To date, given a model, we are able to assess the uncertainty 
via a martingale posterior distribution for the object of interest. We are currently working on 
decision problems where the idea is to make a choice with associated uncertainty quantification. 
The idea here is to generate Yn+1:∞ which makes the decision known, whereas each different 
sequence of future data could present a different decision. 

We agree with Ray and Szabo and Wijayatunga on the importance of frequentist consistency of 
the predictive, which is also connected to the issue of model selection. Ray and Szabo provide an 
interesting example of posterior inconsistency, which we believe can be alleviated through the 
above discussion on model selection. If it were known the model was either normal or Cauchy, 
there are a number of ways this could be determined from y1:n and the appropriate predictive se-
lected. An interesting future direction would be to investigate how good frequentist properties for 
the predictive impact the posterior. 

2 Comparison to traditional Bayes 
Lauritzen, Ascolani et al., Rossell, and Mena highlighted that it may sometimes be easier to elicit a 
likelihood and prior. We agree with this sentiment, and reiterate that the martingale posterior is 
not aiming to replace Bayes, as it encompasses it. We envision many scenarios, as those suggested 
by the discussants, where a prior to posterior calculation leads to the best predictive. 

However, there may be situations in which we do not have any prior information, such as those 
considered by objective Bayesians. One of the goals of the article is to highlight that the prior dis-
tribution is not needed for Bayesian inference, where the uncertainty arises from the unseen 
Yn+1:∞. Aside from the Bayesian bootstrap, another illuminating example is the plug-in predictive 
as discussed in the previous section and Holmes and Walker (2023). Here, our predictive f (·|􏽢θn) is 
based on a statistical model, so we have discarded the prior distribution component of the trad-
itional Bayesian setup. There is now no acknowledged uncertainty in the value of 􏽢θn from a plug-in 
density estimator, but statistical uncertainty in θ∞ is constructed via the sampling from the se-
quence Yn+1:∞. We thus do not entirely agree with Rossell’s comment that we are not prior-free, 
as there is no explicit prior distribution on θ.  
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However, if you have prior information, e.g. in the form an initial predictive density p0, then this 
can also be evaluated in a data-driven way. Another setting where eliciting a prior could be deemed 
inconvenient is in Bayesian non-parametrics, where priors can be technical and not necessarily in-
tuitive. As highlighted by Ray and Szabo, predictive distributions elicited through the 
likelihood-prior construction may be misleading due to large prior null sets, especially in the non- 
parametric setting. Eliciting and evaluating the predictive directly could be a way to bypass these 
issues, though other new challenges arise, and we look forward to exploring this direction further. 

Another reason to bypass the likelihood-prior construction is due to computational reasons. 
Depending on the setting, computation with predictives can be noticeably faster than traditional 
posterior sampling, e.g. the Bayesian bootstrap or predictive resampling as demonstrated by 
Moya, but we acknowledge that this is not always universal. Rossell highlights that optimization 
can be costly, but we agree with Gu and Yin and Moya that parallelization is easily carried out and 
is less straightforward with MCMC methods. Furthermore, predictive resampling as a computa-
tional algorithm is still in its infancy. We hope that additional computational methods or approx-
imations can be developed under the martingale posterior framework. 

3 Structure in the imputed population 
Another common theme among discussants is the structure of the imputed data Yn+1:∞, and going 
beyond exchangeability. Ascolani et al. and Catalano et al. discuss whether one can identify 
novel direct predictive updates which are exchangeable (perhaps only finitely), and Mena and 
Antoniano-Villalobos questions the importance of exchangeability. While we do indeed average 
over permutations in our construction of Pn to ensure some permutation invariance of the predictive, 
this is mostly motivated by practical concerns. It may be undesirable for the analysis to be highly sen-
sitive to the order in which we process the data, but we do not view exchangeability as crucial for the 
martingale posterior. Rigo highlights the importance of the Ionescu-Tulcea theorem in our setting, 
with which we agree. Indeed, when we are only concerned with the structure of Yn+1:∞, our choice 
of c.i.d. sequences gives us sufficient asymptotic structure for the i.i.d. setting, but as seen in the plug-in 
examples above, this is not the only way to guarantee convergence or coherence under the i.i.d. setting. 

Closely connected to the above is the question on the extension of our framework beyond the 
i.i.d. setting. Lauritzen questions if the martingale posterior framework is sufficiently general, and 
provides a pure birth process example. Similarly, Dawid asks what is necessary under a Markov 
setting. AntonianoVillalobos also highlights the importance of assumptions such as smoothness 
and sparsity when our object of interest requires more than a countable number of observations. 
While the generality of the martingale posterior still requires investigation, we provide some pre-
liminary hints below. 

For example, if the data are Markov AR(1) as in Dawid and Mena’s example, the datum 
yn would play a significant role in predicting yn+1, and the predictive would be of the form 
p(yn+1|􏽢θn, yn). The corresponding structure for Yn+1:∞ may not be exactly Markov but the out-
come would be that it is asymptotically Markov as θN → θ∞ eventually. This line of thinking 
may also allow us to generalize beyond the martingale condition as asked by Mena. Hence, the 
structure is to produce the best form of predictive which would arise from the structure of the like-
lihood function, and a formal characterization of this would be of great interest. 

The model proposed by Lauritzen can also be handled using the martingale posterior frame-
work. Suppose we have observed X(t) up to time T from which we have λb. We now take the pre-
dictive to be, for any h > 0, and t ≥ T, 

P(Y(t + h) = j + 1|Y(t) = j, λb(t)) = λb(t)jh 

and 

P(Y(t + h) = j|Y(t) = j, λb(t)) = 1 − λb(t)jh.

We can discretize this in an obvious way: we use intervals of time h/Y[N − 1], for N = 1, 2, . . .

with Y[0] = X[T], for some small h. Hence, jumps can occur at times 
t(N) = t(N − 1) + h/Y[N − 1], with t(0) = T, and 

S(N) = ∫T0 X(u)du + ∫
t(N)
T Y(u)du,
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where the first term on the right is S(T) and the final term on the right is Nh. As we predictively 
resample Y(N), we update λb as we go. Suppose at iteration N we have Y(N) and 􏽢λN, then 

Y(N + 1) = Y(N) + Bernoulli (􏽢λNh),􏽢λN+1 =
Y(N + 1) − 1

S(T) + (N + 1)h
.

It is easy to see that (􏽢λN)N≥0 is a martingale. 
We generated a process using λ = 1.5 and observe X(T) = 15 with T = 1.633 and S(T) = 10 , 

with λb = 1.4. We then sample the martingale posterior for N = 1, . . . , 10000, which is far 
more than is required for the martingale to converge. Repeating this gives us 1,000 samples 
from the martingale posterior, as shown in Figure 1, where the mean of the samples is 1.40. 
Lauritzen’s second example with both {λ, w} seems more challenging, and we defer this to future 
work. 

In the above two examples, we have relied on the parametric statistical model to ensure structure 
in Yn+1:∞, but without the reliance on the full Bayesian machinery (i.e. no prior distribution). An 
extension to hierarchical models would be interesting, as highlighted by Ascolani et al., and it 
would be of interest if the structures considered above can be incorporated directly into the pre-
dictive. We believe this to be a fruitful direction of future research. 
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Figure 1. Histogram representation of samples from the martingale posterior for λ.   
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