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ABSTRACT Estimated time of arrival (ETA) is essential to enable various intelligent transportation
services and reduce passenger waiting time. Estimating the time of arrival of public transport in a highly
dynamic and uncertain transportation system could be challenging. Many indirect factors beyond the
remaining travel distance could dramatically deviate the time of arrival from the original schedule. Existing
distance-based estimation methods disregarding those factors usually result in inaccurate estimations. In this
paper, we propose a new deep learning model, called Deep Encoder Cross Network (DECN), to improve the
ETA prediction based on multiple non-distance-based factors such as weather, road speed and congestion,
and traffic composition. Unlike most regression tasks that output the target directly, we predict the ETA
residual over the location-based ETA prediction. To effectively learn in the large and sparse input feature
space, we use a new neural network structure consisting of three main components. First, a deep neural
network is responsible for modeling explicit feature interactions. Second, an encoder network is constructed
to reduce the input feature dimensionality. Third, a cross-network is introduced to learn from the implicit
feature interactions. We conduct extensive experiments on a large real-world bus ETA dataset of Hong Kong,
which contains about 2.95 × 108 rows with 27 different features on an 84-dimensional space. The results
show that the deep learning approach with the DECN model can improve the ETA error by 11% on average,
and 49% for late arrival. The proposed approach can be further improved and extended to estimate other
traffic information by incorporating non-distance-based related information.

INDEX TERMS Estimated time of arrival, deep learning, neural network.

I. INTRODUCTION
Traffic information is essential to an intelligent transportation
system. Many advanced and next-generation transportation
concepts, such as reversible lane [1], optimal vehicle rout-
ing [2], traffic signal control [3], etc, can only be realized with
the support of a huge amount of information and the corre-
sponding information processing techniques. Sensing [4] and
vehicular communication [5] facilitate traffic data collection.
Although different kinds of data can be sensed and collected
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by multiple types of sensors, the data only represent the
information of current and past events. The ability to pre-
dict future events is crucial to many applications. Predictive
techniques, such as traffic flow [6], and travel demand [7]
predictions, can be applied to historical and real-time data
to get future trends. One traffic information that represents
future events is the estimated time of arrival (ETA). ETA
usually refers to the arrival time of the next transport to
a location. The ACM SIGSPATIAL GIS CUP in 2021 [8]
focused on ETA prediction, which revealed the importance
of ETA to intelligent transportation systems. For example,
traffic congestion was predicted with driving time, indicating
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the linkage between traffic congestion and ETA [9]. Bus
trajectories can also be inferred from the ETA records [10].
For passengers, ETA indicates how long they have to wait at
a specific location [11], or how long they have to wait before
arriving at the next location if they are already on board.
Revealing the ETA and waiting time to passengers may result
in less perceived waiting time [12], positive psychological
effects, and higher customer satisfaction [13].

With mature hardware and software technologies, comput-
ing the ETA of any location and revealing them on mobile
applications is not a difficult task nowadays. The most direct
method to predict ETA is to use location data such as global
positioning system (GPS) data in [14] and [15]. While GPS
may be inaccurate or blocked by tall buildings in densely
populated cities, researchers try to incorporate other data,
in addition to the GPS-based ETA, to improve the estimation,
such as passenger counter [16], fare collection [17], smart
card [18], and crowdsourced smartphone [19], etc. However,
there are many unpredictable events in the highly dynamic
transportation system. Even though many transport operators
have already been revealing the ETA, computing an accurate
GPS-based ETA is still very challenging. Many studies show
that the error between ETA and actual arrival time is associ-
ated with many factors. For example, crowdedness and the
collective travel behaviors of the travelers affect operating
speed, waiting time, travel time reliability, and route and bus
choice [20]. Moreover, estimating the time of arrival can be
difficult in poor weather conditions [21]. Hence, an accurate
ETA system considering those factors is still desired by the
public.

To improve estimation accuracy, researchers put effort into
information technologies such as data-driven and machine
learning approaches. In [22], the authors predicted the bus
arrival time using support vector machines (SVM). The seg-
ment, current segment travel time, and latest next segment
travel time were inputted to the SVM, and the travel time
of the preceding/current bus on links was used to estimate
traffic conditions of links. In [23], artificial neural networks
(ANNs) trained by link-based and stop-based data were inte-
grated with an adaptive algorithm to improve the prediction
accuracy. In [24], a hybrid scheme was used to enhance the
GPS-based ETA by combining it with the inference results
of a neural network based on the decision rules of a Kalman
filter. In [25], a hybrid machine learning model was proposed
for short-term ETA prediction using a multi-cells neural
network-based model. By far, most researchers have focused
on predicting ETA per se without considering the ETA resid-
ual. From the sense of machine learning feasibility, predicting
a residual could be much easier than predicting the actual
output. For example, a famous deep learning model called
ResNet [26] proved the concept of learning just a residual
could be much more effective and efficient than learning
the actual output. A similar idea can be applied to the ETA
prediction using deep learning models. Hence, predicting the
ETA residual, instead of ETA per se, could be promising
research.

In this paper, we aim to obtain an accurate ETA by learning
to predict the ETA residual using proxy data without location
information. The actual ETA can be determined by adding the
ETA residual to the location-based ETA. To project the high
dimensional proxy data feature domain into ETA residual
domain, we use a new neural network structure called Deep
Encoder Cross Network (DECN) that can effectively reduce
the input feature dimensionality and learn on the large and
sparse feature space, which is suitable for the ETA residual
prediction problem in this paper.We conduct extensive exper-
iments on a large real-world bus ETA dataset of Hong Kong,
which contains about 2.95 × 108 rows with 27 different fea-
tures on an 84-dimensional space. Our experimental results
show that the ETA residual approach using DECN effectively
improves the overall ETA error by 11%, and 49% for late
arrival.

The main contributions of this paper are summarized as
follows:
1. We propose a deep learning approach to improve ETA

prediction accuracy by regulating with ETA residual.
The approach predicts ETA residual, instead of the
actual ETA value, which is based on proxy features to
avoid relying on GPS-based location information;

2. We propose a new neural network structure DECN
with three main components: deep neural network, pre-
trained encoder network, and cross network. The deep
neural network is responsible for modeling the explicit
feature interactions. The pre-trained encoder network
is constructed to reduce the input feature dimensional-
ity. The cross network is introduced to learn from the
implicit feature interactions;

3. We construct a big ETA dataset of Hong Kong con-
taining 2.95 × 108 rows with 27 different features
on an 84-dimensional space to evaluate the pro-
posed approach. Results indicate that the ETA error is
improved by 11% on average, and 49% for late arrival.

The rest of this paper is organized as follows. Related work
is presented in Section II. Section III formulates the ETA
system and the ETA residual learning problem. The method-
ology is discussed in Section IV and experimental results are
presented in Section V. Finally, the paper is concluded in
Section VI.

II. RELATED WORK
Accurate ETA information is vital to drivers and passen-
gers to reduce their stress and waiting times. Transportation
operators can use this information to track and manage the
system better [27]. In [28], ETA was predicted by learning
from a large number of historical bus GPS trajectories. The
authors built a time-dependent graph to model the properties
of dynamic road networks, in which the graph represented
road segments between two adjacent bus stops and it allowed
a clustering approach to estimate the distribution of travel
time on the graph. In [29], without relying on GPS data,
the system used radio-frequency identification (RFID) to
update the latest bus stop that has been passed to provide a
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rough knowledge of the real-time bus location between two
bus stops. In [30], the authors predicted the ETA of each
bus route using the bus running times of multiple routes.
Machine learning models, including SVM, ANN, k-nearest
neighbors algorithm, and linear regression, were adopted
for the prediction. Nevertheless, ETA is influenced by the
complex real-time traffic factors, which suggests the potential
improvement of incorporating other proxy data in the predic-
tion. [31] enhanced the accuracy by considering patterns of
traffic flow and driver travel behavior. To mitigate the effect
of dwell time in the ETA prediction, authors of [32] proposed
a segment-based approach to predict bus ETA that separately
predicts the bus ETA and dwell time with two models by
using different impact traffic factors. Reference [33] com-
bined driver information in ETA prediction by constructing
a multi-task learning framework that learned an embedding
of the personalized driving information. The authors in [34]
modeled the traffic links and crosses jointly to learn their
spatial-temporal dependencies in the route, which integrated
into the Neural Factorization Machines for memorizing the
historical patterns and a multiple layer perceptron for inte-
grating various heterogeneous influencing factors. We can
see that many research works use proxy data to improve the
location-based ETA and this is in line with the current trends
of big data research.

The big data cannot be used effectively unless we have
a powerful data mining technique such as deep learning.
Deep learning has been applied in intelligent transportation
systems dramatically in recent years. For example, traffic
flow can be accurately predicted by a well-trained deep neu-
ral network [6], [35]. A novel deep learning model, called
Multi-Scale Convolutional LSTM Network, was proposed
to predict travel demand and origin-destination flows by
considering temporal and spatial correlations and high-level
prediction results of the historical traffic data [36]. Wheel
defects can be detected bymachine learningmethod using the
measured wheel vertical force [37]. Knowing the current and
past observations of the surrounding environment is impor-
tant to autonomous driving applications, which motivates
vehicle behavior prediction [38]. For computer vision tasks,
convolutional neural network is a commonly used neural net-
work structure to capture vision patterns from images. Refer-
ence [39] detected lane boundaries in traffic scenes with the
help of a deep convolutional network. Traffic signs can also
be recognized by a deep convolutional network for advanced
driver-assistance and autonomous systems as in [40]. For
autonomous driving, deep reinforcement learning [41] is an
outstanding technology to address the computational chal-
lenges in the real-world deployment of autonomous driving
agents.

Among the deep learning research works, a groundbreak-
ing neural network architecture, called residual networks
(ResNet) [26], was proposed with extraordinary perfor-
mance on image recognition task, which won the ImageNet
Large Scale Visual Recognition Challenge [42] in 2015.

TABLE 1. Notation summary.

The concept of ResNet is developed based on deep residual
learning, which learns a residual function F(xi) = xi+1 − xi
between layers instead of learning the whole target output
F(xi) = xi+1 directly, where F and xi is the forward function
of layers and input of layer i, respectively. Since then, deep
residual learning and its variants have been widely applied.
For example, the authors in [43] used deep residual learning
to speed up the training process and boost the performance of
image denoising. In [44], the image super-resolution problem
was addressed with better performance by a deep residual
learning-based approach. Deep residual learning can also
be used in the magnetic resonance image (MRI) acquisition
domain as presented in [45]. Moreover, MRI scans are appli-
cable to predict the progression to Alzheimer’s disease using
deep residual learning [46]. Deep residual learning can also
address other problems beyond computer vision-based tasks.
For example, deep residual learning is applied to wireless
communication and networking studies to address clustering
and beamforming [47] and channel estimation problems [48].
For transportation, deep residual learning can detect traffic
congestion in traffic videos [49]. All the above examples
reveal that deep residual learning is a popular and promising
data processing technique extendable to different fields of
study.

III. PROBLEM FORMULATION
In this section, we define the public transport ETA residual
prediction problem. The notation used thereafter is summa-
rized in Table 1.

Consider a public transport network with a set of
pre-defined routes R and a set of stop S. We aim to obtain
an accurate public transport estimated time of arrival t̂τrs for
every stop s ∈ S and route r ∈ R at time τ . The ETA t̂τrs
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refers to the time when a transport service arrives1 at stop s
serving for route r . Each route r consists ofNr stops and each
stop s may serve forMs routes.

Let tτrs and t̃
τ
rs be the ground truth of arrival time and ETA,

respectively, in which the ETA is given by the public trans-
port service provider based on location sensor such as GPS
installed on each public transport. The difference between tτrs
and t̃τrs is defined as ετ

rs, which is dynamic residual based on
real-time road situation. Our objective is make a prediction
on the residual term represented by ε̂τ

rs based on a set of given
proxy data Dproxy so as to minimize the Lp-norm between tτrs
and t̃τrs:

Lp = ||tτrs − (t̃τrs + ε̂τ
rs)||p, ∀s ∈ S, r ∈ R (1)

where tτrs = t̃τrs + ετ
rs, and || · ||p is the norm given by the

pth root of the sum of the p-powers of the absolute value.
The proxy dataDproxy represents the road factors influencing
the ETA residual such as traffic flow, weather, time of day,
etc. GPS data is not included in Dproxy as it has already been
involved to calculate t̃τrs. We do not restrict the data type and
class here to preserve the generality of problem as long as
location information is not included by our definition. Further
discussion of the proxy data used in this work will be given
in Section V.

To predict ε̂τ
rs, a modeling function f with trainable param-

eters θ is used to project the high dimensional input proxy
data Dproxy to the residual domain such that

ε̂τ
rs = f (xproxyi , θ, r, s, τ ), (2)

where xproxyi ∈ D. f (xproxyi , θ, r, s, τ ) can be any function
such as linear regression, support vector regression, decision
tree, random forest, deep neural networks, etc.

Formally, the public transport estimated time of arrival
rectification problem is defined as:
Problem 1 (Public Transport Estimated Time of Arrival

Residual Prediction Problem):

minimize
θ

∑
s∈S,r∈R,τ

∥tτrs − t̃τrs − ε̂τ
rs∥

subject to xproxyi ∈ Dproxy.

Fig. 1 shows the system architecture of the ETA residual
prediction.

IV. METHODOLOGY
A. OVERVIEW
The transportation system is a highly dynamic system and
the proxy data domain for the prediction can be large and
sparse. Predicting ETA residual with sparse proxy data would
be a challenging task using traditional data mining meth-
ods. Therefore, we propose a new deep learning model, i.e.,

1Here we use the general term ‘‘time of arrival’’ as it is widely used by
the public transport service provider to indicate the time of the next service.
For the service departing at the first stop, the time of arrival refers to the
departure time of the transportation service as the vehicles usually arrive and
wait to depart. Without loss of generality, we assume the dwell time is zero
so that the departure time at each stop is equivalent to the arrival time.

FIGURE 1. System architecture of the ETA residual prediction.

DECN, which can effectively reduce the input feature dimen-
sionality and learn in the large and sparse feature space.

B. DEEP ENCODER CROSS NETWORKS
Traditionally, feature engineering is essential to the accuracy
of a prediction model. However, there is no clear guideline
for this process and it may require a tremendous amount
of manual work and exhaustive searching. The aim of the
cross network is to avoid task-specific feature engineering
prior to the prediction model training. A pre-trained encoder
network can project the input feature space to a lower dimen-
sional space without significant information loss so that only
the major combined features are considered by the network
model. Together with a deep neural network that has the
model capability to capture complex relationship across the
input features and inference target, DECN can capture feature
interactions and achieve outstanding performance.

DECN is composed of five components, namely an embed-
ding and stacking layer, an encoder network, a deep neural
network, a cross network, and an output layer. The input data
is first fed to the embedding and stacking layer and encoder
network for dimension reduction. Then, the hidden output of
the embedding and stacking layer is fed to the cross network
and deep neural network in parallel for feature crossing and
extraction. Finally, the outputs of the the deep neural network,
encoder network, and cross network are stacked to go through
the output layer. The overall architecture of DECN is shown
in Fig. 2.

1) EMBEDDING AND STACKING LAYER
The input proxy data of the ETA residual problem contain
sparse and dense features. For example, the categorical fea-
tures, such as district and day of the week, are encoded as
one-hot vectors, and thus these data are very sparse. On the
other hand, numeric features, such as traffic flow, are repre-
sented by their own (normalized) values, which are dense.
Therefore, an embedding is used to transform the sparse
features into dense embedding vectors given as

xembedding
i = wembedding

i xsparsei , (3)

where xsparsei and xembedding
i are the sparse input and embed-

ding vectors of the i-th categorical features, respectively,
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FIGURE 2. DECN architecture.

and wembedding
i is the trainable embedding parameters to be

adjusted during model training.
The output x0 of the embedding and stacking layer is

the concatenation of embedding vectors and the dense
vector for the numeric features, and it is specified
by

x0 =

[
xembedding
1 ; . . . ; xembedding

K ; xdense
]

(4)

for input data with K categorical features, where xdense is the
dense vector for the numeric features.

2) ENCODER NETWORK
An encoder is used to reduce the dimensionality of both
sparse and dense inputs, which can be represented by

hl+1 = φencode
l (wencode

l hl + bencodel ), (5)

where hl is the hidden state of the l-th hidden layer, wencode
l

and bencodel are the trainable weight and bias of the l-th hidden
layer, respectively, and φencode

l is the activation function of
l-th hidden layer.

The encoder network is extracted from an autoencoder
pre-trained using the input data of the training dataset.
By training the autoencoder to reconstruct the input data
as accurately as possible, the encoder can learn to extract
meaningful features from the input data and reduce its dimen-
sionality.

3) DEEP NEURAL NETWORK
The deep neural network is a classic multi-layer perceptron
and each hidden layer is represented by:

hl+1 = φ
deep
l (wdeep

l hl + bdeepl ), (6)

where hl is the hidden state of the l-th hidden layer, wdeep
l

and bdeepl are the trainable weight and bias of the l-th hidden
layer, respectively, and φdeep is the activation function of
l-th hidden layer. One may note that the formulas of the
Encoder and Deep Neural Network are the same. However,
there are two main differences. The first difference is that
their hyperparameters can be different. The second difference
is that their training mechanisms are different. The Encoder
Network is a pre-trained network extracted from an autoen-
coder pre-trained using the input data of the training dataset.
The weight of neurons will be fixed during the training.
For the Deep Neural Network, the weight of neurons was
randomly initialized and updated during the training.

4) CROSS NETWORK
The cross network is composed of cross layers, which per-
form crossing among the stacked vector x0. Each cross layer
can be represented by

xl+1 = x0xTl w
cross
l + bcrossl + xl = fc(xl,wcross

l , bcrossl ) + xl,
(7)

where xl are the intermediate vector outputted from the l-th
cross layer, and wcross

l and bcrossl are the trainable weight and
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bias of the l-th cross layer, respectively. There are two main
differences between the cross layer and the fully connected
layer. The first difference is the feature crossing with x0,
which allows the network to discover high order interaction
and association across features. The second is that each layer
adds back its input, which imitates the network structure of
ResNet [26], to facilitate the training process.

5) OUTPUT LAYER
The output layer combines the intermediate outputs from the
cross network and deep neural network. The intermediate
outputs are stacked and fed to the final layer as the final output
of the DECN as:

O = φout(wout[hencodeLencode; x
cross
Lcross; h

deep
Ldeep

] + bout), (8)

where wout and bout are the trainable weight and bias of the
output layer, respectively, Lencode, Lcross and Ldeep are the
number of encoder, cross and deep neural network hidden
layers, respectively, and φout is the activation function of the
output layer.

To train the model, we use mean squared error (MSE) as
the loss function given by:

MSE(tτrs, ˆtτrs) =
1
BN

BN∑
i=1

(tτrs − ˆtτrs)
2 (9)

where BN is the mini-batch size.

V. EXPERIMENTS
A. DATA COLLECTION AND PRE-PROCESSING
We perform experiments with real-world ETA data of bus
services in Hong Kong to evaluate our proposed approach.
The ETA data can be accessed and downloaded from the
Transport Department,2 whichwas provided by TheKowloon
Motor Bus Company (1933) Limited. It provides real-time
estimated next bus arrival times of all routes and bus stops,
including detailed information such as bus stop name, stop
location, and generated timestamp. It can be represented by
the 4-tuple ⟨r, s, t̃τrs, τ ⟩, where r is the bus route, s is the
stop index of the bus route, t̃τrs is the GPS-based ETA in
absolute time unit computed by the provider, and τ is the
timestamp of the record. Fig. 3 shows an example ETA of a
bus route and bus stops at timestamp equals 15:01:00. There
are 506 bus routes in the dataset. To simplify the formulation,
a bus route with opposite directions constitutes two different
routes. So there are 1012 bus routes in the dataset. The dataset
was streamed every minute for all bus routes and stops during
the period of 21 July 2021 to 21 September 2021, which
contains 2.95×108 ETA records. The distribution of bus stops
across the region of Hong Kong is shown in Fig. 4. Most of
the bus stops are located in the urban regions with a higher
population in Hong Kong, which is an excellent testbed for
studying the effect in an urban city. Most regions with fewer
bus stops are non-residential and non-commercial areas such
as mountains and beaches with low population.

2https://data.gov.hk/en-data/dataset/hk-td-tis_21-etakmb

Moreover, we supplement various additional features to the
dataset for the prediction task. 27 features in total were added
based on the bus route, stop and timestamp. The features are:
1) district, 2) land use, 3) day of week, 4) weather type, 5)
total rainfall, 6) route type, 7) sequence of stop, 8) change
of road category, 9) peak hour, 10) total route distance, 11)
travel distance from the previous stop, 12) wind speed, 13)
maximum rainfall, 14) traffic speed, 15) congestion index,
16) bus occupancy, 17) number of routes at a stop, 18) annual
average daily traffic 2019, 19) annual average daily traffic
2020, 20) hourly flow, and 21-27) vehicle mix (including
shares of motorcycles, cars, taxis, light buses, light duty vans,
med high duty trucks, and buses).

For the traffic-related factors, the annual average daily
traffic, hourly traffic flow, hourly traffic composition and
bus occupancy rates were directly extracted from the Annual
Traffic Census conducted by the Transport Department [50].
Real-time hourly traffic speed at each road segment were
extracted from TomTom API based on millions of consumer
GPS tracking records [51]. Then, the congestion level is
calculated with reference to the real-time speed and speed
limit following the method proposed by Loo and Huang.
Peak-hours are defined as 8am - 10am (morning peak) and
5pm - 7pm (evening peak) [52]. Then, spatial datasets of bus
routes and bus stops provided by the bus company as well
as the road network (available at data.gov.hk) were used to
derive the bus-specific factors, including route distance, types
of bus routes, sequence of bus stop, travel distance from the
previous stop, whether there is a change of road functional
class between stops, and the number of bus routes at a stop.
Moreover, administrative boundaries were used to derive
the districts and land uses where a bus stop is located. For
weather-related variables, the general weather conditions and
wind speed were extracted from. The district-based hourly
rainfall was compiled by the Hong Kong Observatory.

The GPS-based ETA t̃τrs in the dataset is not the same with
the actual bus arrival time tτrs, as the actual arrival time may
be affected by many factors such as traffic congestion and
weather instead of the location only. Hence, we need to first
determine the actual arrival time from the dataset. The ETA
t̃τrs is similar to a staircase function which changes after a
bus leaves the bus stop. The time period within the sudden
changes usually represents the same next bus. Intuitively, the
last record before the change is the most updated and accurate
information we can get from the dataset, as the distance
between the bus and bus stop is the smallest. Therefore,
we assume that the last ETA at each stop for each bus to be
the ground truth of arrival time.

To determine whether a record is the ground truth,
we detect the sudden changes based on the following three
conditions:

• whether the difference between each arrival time is
smaller than a threshold Eq. (10);

• whether the difference between the arrival time and
generated timestamp is smaller than a threshold Eq. (11);
and
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FIGURE 3. An example of ETA of a bus route and bus stops at 15:01:00. The buses move from south to north.

FIGURE 4. Distribution of bus stops.
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• whether the difference of the difference between each
arrival time is larger than a threshold Eq. (12).

The conditions are: ∣∣∣t̃τrs − t̃τ+1
rs

∣∣∣ ≤ δ1 (10)∣∣t̃τrs − τ
∣∣ ≤ δ2 (11)∣∣∣∣∣∣t̃τ−1

rs − t̃τrs
∣∣∣ −

∣∣∣t̃τrs − t̃τ+1
rs

∣∣∣∣∣∣ ≥ δ3 (12)

We define the ETA residual as:

ετ
rs = tτrs − t̃τrs. (13)

Algorithm 1 shows the algorithm to determine the ground
truth and bus ETA residual.

Algorithm 1 Bus Arrival Time Error Analysis
Input: ETA dataset DETA
Output: ETA dataset with ground truth and residual Dtruth
1: Sort DETA based on r, s, τ
2: for each r ∈ R and s ∈ S do
3: for each d ∈ DETA in descending order do
4: if Eqs. (10), (11), and (12) are satisfied then
5: trs := t̃τrs
6: end if
7: ετ

= trs − t̃τrs
8: d := [d, trs, ετ ]
9: end for

10: end for
11: Dtruth := DETA
12: return Dtruth

After determining the ground truth, we prepare the dataset
for model training. We first transform all categorical features
into one-hot vectors. Then, we randomly split the dataset by
the ETA records (rows) into training, validation, and testing
sets in the ratio of 0.64 : 0.16 : 0.2. To be more specific,
we use the training set to train the model and the valida-
tion set is used to validate the error for better parameters
update during training. The testing set is untouched until
the model training completed, which produces the resulting
testing errors. The ratio is just a rule of thumb in machine
learning that splits the training and testing sets into an 8:2
ratio, and the same ratio for training and validation sets, which
results in 0.8 × 0.8 : 0.8 × 0.2 : 0.2. Some may also
use a ratio of 7:1:2 for simplicity. In general, the lower the
training-to-testing ratio, the harder the model to be gener-
alized. Therefore, we try not to take advantage of a larger
training-to-testing ratio and set it to 0.64: 0.16: 0.2. Finally,
we fit a min-max scaler using only the training set to scale all
non-categorical input features to the range between zero to
one. The non-categorical input features of the validation and
testing set are scaled using the same min-max scaler. Note
that the scaling is performed after the split as the testing set
should not be included in the feature normalization process,
which is a common practice to handle a dataset.

B. BASELINE MODELS AND SETTINGS
We use the following models as baseline models to evaluate
the efficiency of DCN:

• Raw: The distance-based ETA alone without regulation
by ETA residual.

• Historical Average (HA): The historical average of all
ETA residuals is used to be the prediction value.

• Linear Regression (LR): A set of input independent
variable xi and the set of output dependent variable y are
used to fit a linear equation y = βixi+cwith the smallest
error.

• K-nearest Neighbors (k-NN) Regressor: KNN is a super-
vised machine learning algorithm for the categorical
target variable. It can be used for regression tasks in
which the target variable is numeric.

• Random Forest (RF): An ensemble learning method for
regression by combining multiple decision trees.

• Fully-Connected Neural Network (FCNN): An univer-
sal model inspired by biological neural networks that
perform non-linear mapping from input to output by the
weights and biases of the neural network.

We chose the methods for comparison because they are
well-known and standard machine learning models, which
can be good benchmarks for the prediction task.

We use two common metrics, root mean square error
(RMSE) and mean absolute error (MAE), to evaluate the
models, which are computed as follows:

RMSE(y, ŷ) =

√√√√ 1
N

N∑
i=1

(y− ŷ)2 (14)

MAE(y, ŷ) =
1
N

N∑
i=1

|y− ŷ|, (15)

where yi and ŷi are the ground truth and predicted values,
respectively, and N is the number of samples. Since our
goal is to compare the computed values of the prediction
model with the raw distance-based ETA which also contains
error per se. We define a benchmark metric, error differ-
ence, to indicate the difference between the computed values
of compared model and the raw distance-based model as
follows:

Ediff = Eraw − Ei, (16)

where Ei is the RMSE or MAE of model i.
Table 2 summarized the parameters of the models used in

the experiments. We run experiments with different parame-
ters and the current settings shown in Table 2 give the best
performance.

C. EXPERIMENT RESULTS
1) COMPARISON WITH BASELINE MODELS
We test the ETA improvement with the ETA residual pre-
dicted by the baseline models. Figs. 5 and 6 show the
normalized ETA improvement compare to raw ETA using
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TABLE 2. Parameter settings.

different models for training and testing set, respectively.
The ETA improvement value is calculated by one minus
the normalized error value of Raw for better visualization.
Since the value shown is the one minus percentage error,
the higher the value, the better the performance. In general,
regulation with ETA residual may not always be beneficial
to the ETA error. We can see that there are values lower
than zero, which means regulating the ETA with residual
decreases accuracy. In other words, a poorly predicted ETA
residual could increase the overall ETA error. We can see
how the approaches fit the models from the training results.
In Fig. 5, HA increases both the RMSE and MAE caused by
the negative effect from the average ETA residual. For LR, the
performances are similar to Raw. An interesting observation
from LR is that the RMSE is above zero while MAE is below
zero. That means LR has both positive and negative effects
if we consider RMSE and MAE, respectively. This result
is mainly due to the mathematical square of the error gap
between the samples. This can be interpreted as LR increasing
the average absolute error, but it reduces the gap between
the samples, especially for the samples with large errors. k-
NN has improvement in both RMSE and MAE, which means
the model fitting seems effective. RF has the highest training
accuracy as it is an ensemble machine learning method that
can fit the training data well with the large number of decision
trees. The training accuracy of FCNN and DECN are not
as good as RF since the neurons are limited to such a large
dataset. As expected, DECN can model the training dataset
better than FCNNwith the additional cross network for sparse
feature learning. In theory, we can train the neural networks
to near zero error given a neural network with enough model
capacity. However, the training results only show the ability to
fit themodel with the training dataset.We need to consider the
generalization ability for the unseen sample, i.e., the testing

set error. Considering the error of validation set during the
training, we have set the number of neurons to an appropriate
value by experiments to avoid over-fitting. Therefore, the
training error of FCNN and DECN are withheld to the levels
shown in Fig. 5.

Fig. 6 shows the testing set accuracy of different models.
The generalization ability of the models can be seen from the
results. Similar to Fig. 5, the accuracy is calculated by one
minus the normalized error. HA has a negative impact on the
ETA accuracy. The testing accuracy, based both on RMSE
and MAE, is similar to the training errors, which suggests
the average ETA residual calculated from the training set
has a similar effect on the testing set, and thus the sets are
independent and identically distributed. LR also has similar
testing accuracy compared to the training errors. For k-NN,
the change in testing accuracy is below zero, which means
that it is poorly generalized on new samples, and it is not a
good model for this problem. The improvement of RF indi-
cates a much more serious generalization issue as the testing
improvement reduces dramatically compared to the training
results. FCNN is slightly better than the mentioned models,
and DECN is the best among all the models. Although the
testing improvement is slightly higher than the training set,
it is a normal consequence of having slightly lower training
errors in machine learning models. The results suggest that
DECN can improve the ETA accuracy by 11% on average.
Fig. 7 shows samples of the target and corresponding pre-
diction values. Considering the two results, it can be seen
that predicting the ETA residual from proxy data is not
a trivial task. Many well-known machine learning models
fail to model or generalize the ETA residual. Nevertheless,
by considering the nature of data, we discover an effective
deep learning model – DECN for the ETA residual prediction
via the experiments. These findings will help us to better
understand the model effectiveness and identify the method
to improve the ETA accuracy.

2) COMPARISON OF DEEP LEARNING MODELS
We study the training, validation, and testing results of the
two neural network models, FCNN and DECN, to understand
the model training process. Figs. 8 and 9 present the learning
curves of FCNN and DECN. The training and validation
RMSE and MAE per epoch of the methods are plotted in
the figures. The errors are normalized by the Raw errors.
The training errors are similar for both methods and decrease
smoothly along with the training epoch. However, the valida-
tion errors are quite different. The validation errors of DECN
decrease along with the training epoch, while the validation
errors of FCNN increase significantly at the beginning. This
indicates that the FCNN is seriously overfitted and cannot
generalize the prediction from the training data. Note that
the testing results are performed by the model instance with
the lowest validation error, not the one after the last training
epoch. Although FCNN has the same structure as the deep
neural network part of DECN, it cannot learn from the data
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FIGURE 5. Training set normalized ETA error of different models.

FIGURE 6. Testing set normalized ETA error of different models.

without the help of cross layer. The results suggest that the
cross layer facilitates the learning from the sparse feature.

3) COMPARISON OF EARLY AND LATE ARRIVAL
We study the performance of predicting early and late ETA
by dividing the dataset based on the ETA error. We use two
identical models to predict the early and late ETA separately.
Fig. 10 shows the prediction improvement of both early

and late prediction. Interestingly, there is a great difference
between the prediction improvement of early and late arrival.
The prediction of late arrival is muchmore accurate compared
to that of early arrival. This may indicate that the late arrival
is much easier to learn compared to early arrival using the
proxy data. The reason for this phenomenon could be due
to the fact that most of the traffic conditions, such as traffic
congestion and bad weather, are delaying vehicles rather than
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FIGURE 7. 200 samples of target and the corresponding prediction value.

FIGURE 8. Learning curve (RMSE) of the FCNN and DECN.

FIGURE 9. Learning curve (MAE) of the FCNN and DECN.

advancing them. In other words, the information extracted
from the proxy data mostly signifies the late arrival rather
than the early arrival. For example, the vehicle may be late
in a bad traffic condition such as in traffic congestion or bad
weather even though the location of the vehicle indicates that
it is close to the next station. The raw ETA is an estimation
of the time required by free-flow speed from point to point

FIGURE 10. Prediction error of early and late arrival.

without the delay caused by bad traffic conditions. Therefore,
the early arrival may not be easily predicted from the proxy
data. This finding may help us understand more about the
cause of ETA errors.

VI. CONCLUSION
A reliable and accurate ETA system is desired by both
the transport operators and passengers. Current static
distance-based ETA suffers from the deviation by many
dynamic traffic factors. To improve the accuracy of the
widely used distance-based ETA, we propose a deep learning
approach to improve the ETA prediction based on multiple
factors that are correlated to the ETA. We use a new neural
network structure, DECN, to effectively learn in the large
and sparse input feature space. Our experimental results on
a large real-world dataset demonstrate the effectiveness of
our approach. It can be shown that DECN can learn from the
sparse feature and predict the ETA residual that is used to
offset the error of distance-based ETA. The resulting average
error of ETA is improved by 11% on average, and 49% for
late arrival using our approach. In this work, we consider the
ETA residual as a deterministic function of the input feature
and project the residual using a deterministic neural network.
In the future, we may extend this work by using a Bayesian
based neural network to capture the stochastic properties
of the residual. Another future research direction would be
exploring additional input features that are correlated to the
ETA for further improving the prediction accuracy. Besides
applying the method to public transport, it can be applied to
other transport modes such as the ETA of private vehicles
and Mobility-as-a-Service [53] and improve the accuracy
in a system-wide level. This research work is a significant
milestone of improving ETA prediction by using the resid-
ual framework, which exceeds the performance of classic
methods. Our contribution of introducing DECN to the ETA
residual prediction may open the door for many problems in
transportation research.
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