
RethinkQuery Optimization in HTAP Databases
Anonymous Submission #182

Abstract

The advent of data-intensive applications has fueled the evolution of
hybrid transactional and analytical processing (HTAP). To support
mixed workloads, mainstream HTAP databases typically maintain
two data copies that are specially tailored for data freshness and
performance isolation. In particular, a copy in a row-oriented format
is well-suited for OLTP workloads, and a second copy in a column-
oriented format is optimized for OLAP workloads. Such a hybrid
design opens up a new design space for query optimization: plans
can be optimized over different data formats and can be executed
over isolated resources, which we term hybrid plans.

In this paper, we demonstrate that hybrid plans can largely ben-
efit query execution (e.g., up to 11× speedups in our evaluation).
However, these benefits cannot be fulfilled, or will be at the cost
of sacrificing data freshness and performance isolation since tradi-
tional optimizers cannot precisely model and plan the execution of
analytical queries on real-time updated HTAP databases.

Therefore, we proposeMetis, an HTAP-aware optimizer. We
demonstrate, both theoretically and experimentally, that using the
proposed optimizations in Metis, a system can benefit from hybrid
plans, and these optimizations are robust to the changes in work-
loads without damaging HTAP properties.

CCS Concepts

• Information systems→ Data management systems; Data-
base management system engines; Database query processing;
Query optimization.

Keywords

HTAP database, hybrid physical format, query optimization
ACM Reference Format:

Anonymous Submission #182. 2018. Rethink Query Optimization in HTAP
Databases. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX). ACM, New
York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Today, data-intensive applications often utilize vast amounts of
data for diverse real-time business tasks (e.g., data-driven deci-
sions [8, 16, 31]), necessitating weaving analytical and transac-
tional processing techniques together [50]. In response, many re-
cent academic and industrial efforts have been devoted to devel-
oping hybrid transactional and analytical processing (HTAP) sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

PK Tuple ID

Results*

Primary Index
Key (s) PK

Results*

Secondary Indices

In
di

ce
s

R
ow

-o
rie

nt
ed

 S
to

re

C
ol

um
n-

or
ie

nt
ed

 S
to

re

Async. Data Synchronization

N-ary

Storage Model

Decomposition
Storage Model

Delta Merge

(a) Hybrid Physical Layout.

Data
Freshness

Perf.

Isolation

Range Scan
Efficiency

Probe
Efficiency

Better

Resource

Utilization

Optimization
Efficiency

METIS
Row-oriented Plan Column-oriented Plan
HTAP-agnostic Plan

(b) Performance Comparison.

Figure 1: Figure 1a shows an example of the hybrid physical layout

in modern HTAP systems (e.g., SQL Server [33], TiDB [37]): the row-

oriented tables are well-suited for updates and probes; a second copy

in a column-oriented layout is optimized for range scan. Leveraging

a hybrid physical layout, Metis strikes a practical balance between

performance, isolation, and freshness for HTAP (see 1b).

tems [6, 18, 35, 37, 39, 46–48, 55, 57, 62–64, 67, 69, 73], which are
expected to provide 1 prompt analysis of fresh data and 2 isolate
the performance of interleaved workloads.

A practical HTAP database generally consists of an online trans-
actional processing (OLTP) engine that supports high throughput
transaction processing, and an online analytical processing (OLAP)
engine supports complex analytics with low latency. To handle
mixed workloads efficiently, mainstream HTAP databases (e.g., SQL
Server [47], TiDB [37], SAP HANA [48], ByteHTAP [18], and Al-
loyDB [35]) typically employ the two engines with specialized data
stores. An example is shown in Figure 1a: a row-oriented store (for
short, row store) that stores data tuples as rows are optimized for op-
erating on a single record at a time and accessingmany attributes, fa-
vor for OLTP; a column-oriented store (for short, column store) that
stores tuples attribute-at-a-time in columns is optimized for operat-
ing on a few attributes with massive rows, favor for OLAP. Given
such a design, different workloads can be independently processed
on their desirable stores, providing isolations in the storage layer.

Unfortunately, restricting each workload to its specialized store
leaves much of the performance potential unrealized. This is be-
cause, for read-only queries, both the row and column store can
significantly outperform one another based on the characteristics
of system implementations and workloads [5, 33, 44] (see our ex-
perimental results in §2.2). Thus, even for a single analytical query,
neither row store nor column store can be the optimal data source
since row store may be ideal for a portion of sub-queries, and col-
umn store can be optimal for the rest.

To reach the full potential of the hybrid physical layouts, several
HTAP systems [33, 37] have integrated the two stores as alternative
data access methods in their query optimizers to generate hybrid
plans for queries. Specifically, a hybrid plan allows a single query to
retrieve data from both the row and column stores simultaneously
and calculate results based on a consistent snapshot (data view).
Motivation. Nevertheless, existing approaches [33, 37] select ac-
cess paths and do query optimizations simply based on selectiv-

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

ity [44], neglecting the data dynamicity of HTAP databases. In
§3, we show that blindly pursuing hybrid plans can easily make the
generated plans sub-optimal and damage important HTAP proper-
ties (e.g., performance isolation).

Therefore, in this paper, we take the first step to systematically
study the optimizations of hybrid plans given HTAP databases. Our
key insight is that, to keep hybrid plans efficient, we should put
data dynamicity into the design of the query optimizer by capturing
the effect of the mutual relationship between reads (i.e., read-only
queries) and writes (i.e., write transactions). Based on our insight,
we identify three key challenges below.

The first challenge is how to precisely model the cost of data access
paths when new writes continuously update the replicated data copy
for reads? Modern HTAP databases support timely updates in the
read-optimized column store (i.e., the data copy for reads) through a
separate delta store (or a write-optimized storage layer). Delta store
accumulates updates continuously and periodically merges them
into the columnar storage (see Figure 1a, detailed in §2.1). This delta-
main architecture makes the traditional cost model imprecise for
evaluating the cost of data access paths: there is no fixed selectivity
threshold for access path selection; rather, the division depends on
the workload’s dynamicity (i.e., the concurrency of writes).

To address this challenge, we propose a new cost model incor-
porating the data dynamicity into the optimizer: Demain (Delta-
main model). Demain captures the performance of select opera-
tors in both delta stores and column stores and thus can efficiently
guide the access path selection.

The second challenge is how to optimize data freshness and exe-
cution time together, especially when new writes are propagated asyn-
chronously? Generally, in an HTAP database, optimizing execution
time can be at the cost of data freshness. This is because, due to the
nature of data replication, the visibility of new writes in the col-
umn store (i.e., the data copy for reads) is always delayed. Hence,
even if the column store may outperform the row store (i.e., the
data copy for writes) on the sequential scan, the execution must be
blocked until the new writes are fully synchronized to the column
store, leading to a longer response latency.

Multiple existing works [37, 63, 67] strive to minimize the visibil-
ity delay by evolving their system architectures. However, depend-
ing on the deployment, the problem is still pronounced (e.g., 10𝑠
delay in DB2 IDAA [15], 8𝑚𝑖𝑛𝑠 delay in production at Google [73],
606𝑚𝑠 delay in experiments at ByteDance [18]).

For this challenge, we propose a new visibility-aware plan selec-
tion algorithm. It firstly estimates the visibility delay between the
row store and column store based on the ongoing and predicted
workload characteristics. When optimizing queries, it advances the
query performance by pre-executing plans on the available data,
thus masking the notorious visibility delays.

The final challenge is how to ensure isolated performance between
reads and writes when query plans are hybrid? A strawman approach
is using a pre-defined quota for the reads in row stores (i.e., the
data copy for writes). For example, TiDB limits the default access
table size on its row store for the OLAP workload to at most 500
𝑀𝐵 [37]. However, manual intervention cannot effectively utilize
resources while reducing query latency. A configuration that works
well for one workload is unlikely to work well for another.

We develop our query re-optimization approach for hybrid plans

in HTAP databases. Instead of scheduling resources [63] or limiting
resource usage [37, 47, 55], our re-optimization approach can auto-
matically adapt to the workload shift. In our approach, when a high
resource contention is detected, it re-optimizes the plans by oppor-
tunistically combining efficient sub-plans of previously-optimized
plans into a good new plan, which can alleviate the resource con-
tention without a whole plan re-optimization.
System Integration.We combine all these new optimization tech-
niques into our prototype: Metis1, an HTAP-aware plan optimizer.
Metis is developed based on the storage that supports both on-disk
row store and column store. Updates are propagated from the row
store to the column store continuously and asynchronously. We
detail our storage model of the integrated system in §5.

Overall, Metis captures the data dynamicity to keep hybrid
plans efficient. Metis pushes the boundary of traditional optimizers’
design space by adding data freshness and performance isolation as
new design goals. Figure 1b compares Metis, row-oriented, column-
oriented, and HTAP-agnostic plans. Among them, Metis achieves
a practical point in the design space and can speed up analytical
queries in HTAP databases without sacrificing HTAP properties.
Contributions. To the best of our knowledge, this paper provides
the first treatment of efficiently accommodating hybrid plans in
HTAP databases. Our contributions are four-fold:
• We systematically analyze hybrid plans given HTAP databases.
• We develop Metis, along with a new cost model (Demain), a
new visibility-aware plan selection algorithm, and a new plan
re-optimization approach to ensure performance isolation.
• We extensively evaluate Metis under various workloads, includ-
ing CH-benCHmark [22], TPC-DS [24], and YCSB [29]. The eval-
uation results demonstrate the effectiveness of Metis: it can gen-
erate efficient and HTAP-friendly hybrid plans; the plans are ro-
bust to the change of workloads and will not damage the proper-
ties of HTAP databases.
• Metis can be a practical template for the future adoption of
HTAP-aware query optimizations in other HTAP databases.
The rest of the paper is organized as follows. §2 discusses the

background of HTAP databases and the motivation for hybrid plans.
§3 details the problems of HTAP-agnostic hybrid plans. §4 provides
an overview of Metis. §5 discusses our new cost model. §6 presents
our visibility-aware algorithm and re-optimization approach. §7
evaluates the performance of Metis. Finally, a discussion of related
works is available in §8, and §9 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first provide an overview of hybrid data formats
in HTAP databases and show the motivation for hybrid plans. For
discussions on the related works, we refer readers to §8.

2.1 Hybrid Data Format in HTAP

Following the philosophy of “one size doesn’t fit all” [58], many of
the state-of-the-art HTAP systems (e.g., SQL Server [47], TiDB [37],
SAP HANA [48], Oracle Dual [46], Vegito [67], Janus [10], Uni-
Store [39], L-store [64], IBM DB2 IDAA [15], PolarDB-IMCI [21],
F1 Lightning [73], and AlloyDB [35]) utilize multiple physical de-

1Metis was the Titan goddess of good counsel, planning, and wisdom, which signifies
our optimizations for generating an efficient execution plan.

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

signs to handle complicated HTAP workloads efficiently. In this pa-
per, we focus on typical implementations of row stores and column
stores, as they are good standards and are implemented by almost
all the HTAP databases with hybrid data formats. We summarize
their common features and optimizations below.
Row store and indices. Row stores that store all attributes for a
single tuple contiguously are ideal for write-intensive workloads.
In existing HTAP databases, write transactions are all handled by
row stores, and the databases do not support independent write
transactions on column stores. In this paper, we follow this standard
and do not consider the potential of optimizing write transactions
across hybrid physical layouts but focus on read-only queries.

We consider indices as a part of the row store, which is critical
to performance. For example, 𝐵+ tree indices provide ordering of
data based on the key columns in the index and allow efficient
lookups. Compared to the column store, retrieving data through
the 𝐵+ tree can benefit I/O bandwidth when the size of the results
set is small. 𝐵+ trees can also provide a sort order when querying
specified columns.
Column store and its implementations. Recent years have
witnessed the popularity of column stores to speed up analytical
queries. The rationale is that the column-oriented data format can
reduce I/O costs when operating on a few attributes with massive
rows. Furthermore, a column store can absorb a series of optimiza-
tions on its scan operator, including vectorized execution [13, 41, 51]
and working over compressed data [3, 4].

Unlike traditional data warehouses (e.g., [28, 71]), most HTAP
databases opt to exclude secondary indexing over their column
store since it incurs intolerable overhead and complexity of real-
time updates [45]. Our paper considers sequential column scans as
the major access paths in column stores. However, our methodology
is general to the implementations.
Delta store and data synchronization. As discussed previously
(§1), the delta store is a common and important by-production of
HTAP databases [37, 50]. Principally, the delta store is designed
to support real-time updates on column stores efficiently. As the
column stores are heavily read-optimized, a write-optimized delta
store (or a write-optimized storage layer) is necessary to keep col-
umn stores (even loosely) synchronized with row stores. Otherwise,
column stores may never catch up with the state of row stores due
to the gap in write efficiency.

We argue that delta store is universal in HTAP databases, e.g.,
delta stores in SQL Server and ByteHTAP, deltaTree in TiDB, L2-
delta in SAPHANA, a write-optimized storage layer (i.e., organizing
data in insertion order) in PolarDB-IMCI, and transaction maps
in Oracle Dual. We consider such an HTAP-specific design as a
significant distinction of our Demain model compared to other
existing cost models when performing access path selection.

Given the delta-main architecture of column stores, updates
generated from row stores are first written into the delta stores and
periodically merged into the underlying read-optimized column
storage (usually in the background).

When performing a scan on column store, queries first retrieve
fresh data from delta stores and combine them with the results set
from read-optimized columns to generate a fresh data view.

20

25

30

0

1

2

3

4

5

E
xe

cu
ti

on
T

im
e

(s
)

(a) CH-benCHmark Q7

70

80

90

100

110

0

30E
xe

cu
ti

on
T

im
e

(s
)

(b) TPC-DS Q72

10−7 10−4 10−1 102

Selectivity (%)

100

101

102

103

E
xe

cu
ti

on
T

im
e

(m
s)

(c) Access Path Selection

Figure 2: Motivation of using the hybrid plan in an HTAP database:

neither the row-oriented plan nor the column-oriented plan could

be optimal for a number of given queries (e.g., 2a and 2b). One of the

reasons is that row-oriented operations may outperform column-

oriented operations when query predicates are selective (e.g., see 2c).

2.2 Motivation of Hybrid Plans

We now experimentally motivate hybrid plans and show practical
scenarios where hybrid plans take effect. For theoretical analysis,
we refer readers to the discussions of the Demain model (§5).

We show the potential of hybrid plans using HTAP-agnostic hy-
brid plans on a static database without real-time updates. Specifi-
cally, HTAP-agnostic hybrid plans are generated by simply adding
column scans as an alternative access path into the cost model
of row stores without considering the data dynamicity of HTAP
databases. When putting the plans into the HTAP context, such
plans can lead to sub-optimal performance, which we study in §3.

We did the experiments on two well-studied benchmarks: CH-
benCHmark [22] and TPC-DS [24]. Both of them contain multiple
queries with wide variations in complexity and range of scanned
data. We calculated the speed-ups for each query by comparing
the execution time of the hybrid plan to the faster one of the row-
and column-oriented plans. Detailed experiment configurations for
hardware, software, and workloads are shown in §7.

The evaluation results show: in CH-benCHmark, nine queries
(i.e., 40.9%), out of twenty-two, benefit from hybrid plans and
achieve 1.68× speedups in geometric mean; in TPC-DS, seventy-
seven queries (i.e., 77.8%), out of ninety-nine, benefit from hybrid
plans and achieve 3.06× speedups. We show two representative
queries from each workload in Figure 2a and Figure 2b.

Based on our experiments, we conclude three factors that mo-
tivate the desirability of hybrid plans. The first factor is the diver-
sity of data access patterns inside a single query. When a query
joins multiple tables, the variance of data size and query selectiv-
ity2 on each table motivates using different access paths for differ-
ent tables. The performance comparison of the row- and column-
oriented scan with different selectivity is shown in Figure 2c.

The second factor is the division of data schema. Star schemas [34,
59] and snowflake schemas [49, 70], as two successful templates,
provide a clear division between dimension tables and fact tables,
where dimension tables are most likely to join fact tables with
2Same as previous papers [45, 66], we say a predicate (filter) is selective (or its selectivity
is low) when the result set has few qualifying tuples. A selectivity that ranges from 0%
to 100% signifies the percentage of qualifying tuples in the database.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

their primary keys. Therefore, when using such schemas in HTAP
databases, retrieving data from row stores (with the primary indices)
for dimension tables and retrieving data from column stores for
fact tables can be a competitive candidate for the optimal plan.

The third factor is the queries’ requirement for physical prop-
erties (e.g., sort order). When a query requires specific properties
on a portion of tables, either demand by user requests (e.g., “order
by” in SQL) or demand by an inside operator (e.g., sort-merge join
requires ordered data), specific stores (e.g., a 𝐵+ tree index that de-
livers sorted data) have the opportunities to outperform the others
on these tables, leading to hybrid plans.

3 Problems of HTAP-agnostic Hybrid Plans

In this section, we study the performance issues caused by the
mutual relationship between reads (read-only queries) and writes
(write transactions) when using HTAP-agnostic hybrid plans. In
particular, we study the impact of writes on reads in §3.1 and §3.2,
and in turn, the impact of reads on writes in §3.3. Based on the
study, we motivate the desiderata of HTAP-aware plans.

3.1 Impact of Data Synchronization

Data synchronization causes read amplification on column scans,
changes the selectivity division between column stores and row
stores, and thus influences the decisions on access path selection.

Practically, an HTAP database can trade write performance for
read by adopting different delta-merge strategies. For instance,
database administrators can set a rigid boundary for the size of
delta stores and enforce delta merge operations immediately when
the size of delta stores exceeds the limitations. Thus, the effect of
read amplification on column scans can be bounded at a low level.
However, such an approach must block writes (known as write
stalls [54, 74]) when the write workloads are heavy, and the speed
of delta merge cannot catch up with the new writes.

Instead of imposing such a hard boundary, we explore the impact
of data synchronization from the optimizer’s view, which should be
general to the underlying strategies. We assume that the database
engines merge delta periodically in the background. For a real-time
workload, we consider OLTP write concurrency as the major factor
contributing to the overhead of data synchronization.

In our experiments, we executed the YCSB [29] workload for
OLTP to fine-tune its concurrency and read/write ratio and used a
plain query (i.e., the 𝑄2 in §7.1) for OLAP. Specifically, the OLAP
query scans a table in the database with a predictor to control the
selectivity. We run OLTP workloads for 10 minutes to warm up.
Figure 3a shows the results: the execution time for column scans
increased proportionally with the concurrency of OLTP workloads.

We then put the impact of data synchronization into the picture
of access path selection. Figure 3b shows the results. Same as in
previous papers [45], we define selectivity crossover as the selec-
tivity that the row store and column have an identical execution
time. Thus, the column store should be optimal for queries with
higher selectivity than the crossover. The results show: as the con-
currency grows, the crossover point rises to higher selectivity at
the beginning and plateaus eventually when the throughput of data
synchronization is close to saturation.
Takeaways. Retrieving data from delta stores causes additional
overhead to column scan, which is critical to access path selection.

0 50 100 150 200 250
Number of OLTP Threads

0
1
2
3
4
5
6
7

T
im

e
fo

r
C

ol
.

S
ca

n
(s

)

1.06x
1.18x

1.35x

0
10
20
30
40
50
60

O
LT

P
T

pu
t

(k
tp

s)

Selectivity = 1% OLTP Throughput

(a) Impact of OLTP Concurrency on

Column Scan (YCSB 50% write).

50 100 150 200 250
Number of OLTP Threads

0.00

0.03

0.06

0.09

0.12

0.15

C
ro

ss
ov

er
S

el
ec

ti
vi

ty
(%

)

Index Scan is Better

Column Scan is Better

Crossover under YCSB (50% write)

(b) Impact of OLTPConcurrency on

Crossover Selectivity.

Figure 3: Impact of Delta Store (Read Amplifications).

0 50 100 150 200 250
Number of TP Threads

0

1

2

3

4

5

V
is

ib
ili

ty
D

el
ay

(s
)

1.24s

0.48s

3.82s

1.25s

YCSB (50% write) CH-benCHmark

Figure 4: Freshness Loss

0 100 200 300 400 500
Number of TP Threads

0

1000

2000

3000

4000

O
LT

P
T

pu
t

(k
tp

s)

32% 58%

w/o. Hybird Plans with Hybird Plans

Figure 5: Throughput Drop

3.2 Impact on Data Freshness

Ensuring high data freshness is one of the most important design
goals of real-time HTAP databases. Generally, in HTAP, row stores
have better data freshness than column stores as all data are gener-
ated on row stores and then propagated into column stores asyn-
chronously. As suggested by previous papers [37, 50, 73], in most
deployment scenarios, such a freshness loss can not be ignored (§1).

We studied the visibility delay, defined as the time delay between
an update committed on the row store and when queries on the
column store can read that update. We report the 99.9th visibility
delay (in ten seconds) of our integrated HTAP databases. The results
are shown in Figure 4. Overall, the visibility delay increased (i.e.,
positively correlated) with the concurrency of OLTP workloads due
to the overhead of processing more data.

Our observation is that, from the optimizer’s perspective, queries
can always enjoy the best data freshness by either executing queries
on the row store or blocking the query execution on the column
store until all new data becomes visible. However, it introduces
a new opportunity for hybrid plans: an optimizer can opt to pre-
execute a portion of sub-plans on the row store while optimizing
the execution time for the rest of the plans on desirable data sources
without blocking the entire plan. We detail our visibility-aware
plan selection algorithm in §6.1.

3.3 Impact on Performance Isolation

Another essential property of HTAP databases is performance iso-
lation, which is critical in providing independent service-level-
agreement for both OLTP and OLAP. As pointed out by several
real-world studies [16, 19, 60], in an HTAP application, the OLTP
service always serves mission-critical tasks. Its performance should
be maintained in the face of OLAP workloads.

Without hybrid plans, operations for retrieving data in each kind
of workload are handled by separate stores. In this case, database ad-
ministrators can simply assign hardware resources (e.g., CPU cores)
to each store with resource management tools (e.g., Cgroup [43]) or
deploy stores across machines to provide isolation by nature, along
with independent scalability for OLTP and OLAP.

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Desiderata Roadmaps of Metis Design Knobs Proposed Solution

Low Execution Time Access Path Selection Cost Model Demain Model
High Data Freshness Masking the Cost of Visibility Delay Plan Selection Algo. Visibility-aware Optimizations

Strong Performance Isolation Restricting the Abuse of Hybrid Plans Re-optimization Algo. Proactive Re-optimization with Plan Stitch

Table 1: Desideratas, roadmaps, design knobs, and solutions of Metis for efficient query optimization in HTAP Databases.

However, when using hybrid plans, such isolation is broken. Is-
sues are two-fold. The first is the performance drop in OLTP. Fig-
ure 5 shows the OLTP throughput loss of the HTAP databases
on the CH-benChmark workload (see §7 for detailed configura-
tions). When the workload for OLTP is light (i.e., less than 256
OLTP threads), hybrid plans have little effect on OLTP throughput.
Things change when loads of row stores are closed to be saturated:
hybrid plans impose an OLTP throughput drop (up to 58%) due to
the competition for both physical resources and logical resources
(e.g., latches in internal data structures). The second issue is the
inefficiency of hybrid plans. Under high contention, hybrid plans
that operate row-oriented scans must wait for the schedule, caus-
ing their performance to fall short of expectations.

These two new issues are specific to HTAP databases and may
not be pronounced in traditional data warehouses that only perform
read-only queries since they do not target to provide performance
isolation between workloads.

3.4 Desiderata of HTAP-aware Optimizations.

Referring to our discussions above, we summarize three desiderata
of an HTAP-aware optimizer, which should be general to different
databases’ architectures and optimizers’ designs.
• Low Execution Time. Firstly, a well-customized HTAP optimizer
should leverage layout and storage-specific optimizations (e.g.,
hybrid physical layouts) to fully optimize query plans and the
plans should be robust to the change of workloads.
• High Data Freshness. Second, an HTAP-aware query optimizer
should not only demand the queries to reply fast but keep the
data insights as fresh as possible. HTAP introduces data freshness
as an additional dimension to analytical processing [63]. Hence,
both data freshness and execution time should be considered
when applying new query optimizations.
• Strong Performance Isolation. Third, a practical HTAP optimizer
should keep performance isolation between OLTP and OLAP
workloads even if the storage is shared with the upper engines.

4 Metis Overview

This section provides an overview of Metis, a prototype of our
HTAP-aware query optimizations. As shown in Table 1, Metis
responds to each desideratum of HTAP-aware optimizations by
redesigning several critical design knobs of the optimizers.

4.1 Workflow and Key Components

Figure 6 illustrates the workflow of Metis. After receiving query
optimization requests, Metis first performs cost estimations for
enumerated plans based on the cost model and cardinality estima-
tion, in particular, using the Demain model for access path selec-
tion (§5). Then, Metis eliminates those far-from-optimal plans and
uses its visibility-aware planning algorithm to pick up a set of seed
plans (§6.1). To execute, Metis starts with the plan that has the

Query

Results

HTAP-aware Optimizations

Workload-aware Re-optimizations

Estimate cost for
alternative data
access paths

Use visibility-aware
algorithm to pick

seed plans

Execute query

& monitor resource

utilization

Yes

Run-time statistics

No, switch to a new
switchable plan

Are plan efficient &
workloads isolated?

§5 §6.1

§6.2

1

2

Figure 6: An overview of Metis’s workflow for HTAP-aware

optimizations and workload-aware re-optimizations.

lowest estimation cost and continuously monitors the query per-
formance (e.g., by validating its statistics estimation). To ensure
performance isolation, Metis monitors the resource utilization of
the database. When the plan fails to fit in its performance bound-
ary (e.g., 20% in our implementations, by default), either caused
by violating performance isolation or errors in estimates for inter-
mediate subexpressions, Metis stitches a new plan from the set of
seed plans based on a more accurate run-time measurement (§6.2).
Finally, the results are returned to the clients.

Different from sticking to such a plan-first execute-next approach,
Metis interleaves plan optimization and execution. Metis prepares
a set of seed plans in the first pass of query optimization, enabling
the optimizer to defer the plan choice to run-time. In this way,
Metis can combine the knowledge of accurate statistics and run-
time resource utilization, conforming to the nature of continuously
updated HTAP databases. Meanwhile, predefined seed plans may
avoid losing partial work in the query execution pipeline.
Design Rationales. Metis improves the accuracy of traditional
cost models by considering the mainstream architectures of HTAP
databases and picks visibility-aware plans by considering the data
synchronization mechanism in which replicated data becomes visi-
ble in sequence. Metis proactively ensures performance isolation
between workloads by re-optimizing generated “optimal” plans.

4.2 Limitations and Discussions

Metis has two limitations. First, same as other cost-model-based
optimizers, Metis relies on cardinality estimation to predicate the
size of the results set, which may not be accurate for complex
queries [14, 32]. In our implementations, Metis inherits cardinality
estimation, transformation rules, and logical optimizations (e.g.,
join re-ordering algorithm) from [9, 20, 37]. However, thanks to
the adoption of proactive re-optimizations, Metis can mitigate the
negative effects of errors by switching to a new plan in run-time.

Second, Metis models column scans as sequential scans and as-
sume all data are decompressed before computing. Notable data
warehouses advance their OLAP performance by working directly
over compressed data. However, it could be challenging when con-

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

sidering hybrid plans: in this case, we need to determine an assem-
blage point or design a new intermediate representation for data
from the row store and column store, as well as model the cost. We
leave these exciting explorations as our future work.

5 Demain Model

Demain provides a template of our methodology to evaluate the
performance penalty of delta stores. To begin with, we first draft
the storage model of our integrated system below.
Storage Model. Following the trends of new HTAP databases, our
system adopts the storage-computation separation architecture and
leverages the in-storage computing power to perform table scans
efficiently. The row store of our system is implemented over log-
structured merge trees (for short, LSM-tree). Specifically, each row
in the row store is stored as a key-value pair, using its Table ID
and Row ID as a key and storing all of the attributes (columns)
contiguously as a value. When performing a table scan, the storage
engine retrieves all key-value pairs that have the same table ID as
the given table. To speed up the look-up performance on the row
store, we can build both primary and secondary indices. All indices
are also implemented as key-value pairs. For instance, an entry of a
primary index stores its primary key as a key, and the value is the
corresponding row ID of the indexed row.

Data in the column store is stored by columns and in the form
of arrays (i.e., vectors or chunks of columns) during the execution.
Particularly, to handle HTAP, it supports timely updates by a colum-
nar delta tree that organizes an append-only delta store with a 𝐵+
tree index to locate updates efficiently. When performing a column
scan, the storage engine retrieves data from both the delta store and
the stable column chunks and then merges the results for output.

In the rest of this section, we provide model preliminaries in §5.1,
model the access paths in §5.2, and discuss the selection in §5.3.

5.1 Model Preliminaries

As shown in Table 2, Demain models access paths in HTAP from
four perspectives: queries, datasets, hardware, and storage. In par-
ticular, we differentiate the bandwidth for row store and column
store since they can be deployed across machines or proclaimed
with an isolated quota in a single machine. In the later reference,
we also differentiate the I/O bandwidth for sequential and random
access with a superscript.

Without loss of generality, our cost model targets range scans,
which typically filter out data according to the given predictors. We
show a sample in 𝑆𝑄𝐿 below:
SELECT col1 FROM table WHERE col1 between ${a} and ${b}

When answering range queries in an LSM tree database, besides the
requested data, tombstones (i.e., the metadata that records invalid
instances of the deleted key) and invalid entries have to be read
and discarded [65]. We omit the cost of reading the tombstones
since their size contributes little to a full table scan. We model read
amplifications by the size ratio of the LSM tree (i.e., 𝑇 in Table 2),
which is a factor that captures how much the capacity of the LSM
tree level 𝑖 (𝑖 ≥ 1) is greater than that of the level 𝑖 − 1.

5.2 Modeling Access Path In HTAP

Network I/O Cost. The storage-computation separation architec-
ture incurs new overhead in retrieving data. We model the network

Query 𝑠𝑒𝑙 Selectivity of query q (%)
𝑤𝑟𝑒𝑠 Results witdh (bytes per output tuple)

Dataset 𝑁 Data size (tuples per column)
𝑡𝑠 Tuple size (bytes per tuple)

Hardware
Resource

𝐵𝑛𝑒𝑡 Network bandwidth (bytes/s)
𝐿𝑛𝑒𝑡 Latency of in-Network delay (s)

𝐷𝐵𝑟𝑜𝑤 Disk bandwidth of read in row store (bytes/s)
𝐷𝐵𝑐𝑜𝑙 Disk bandwidth of read in column store (bytes/s)
𝑀𝐵𝑟𝑜𝑤 Memory bandwidth of read in row store (bytes/s)
𝑀𝐵𝑐𝑜𝑙 Memory bandwidth of read in column store (bytes/s)

𝑝 The inverse of CPU frequency
𝑓𝑝 Factor accounting for instruction pipeline
𝑓𝑣𝑒𝑐 Factor accounting for vectorized OLAP engine

Storage

𝑇 Size ratio of the LSM tree, reference value = 10
𝑤𝑎 Attribute width (bytes)
𝑤𝑖𝑑 RowID width (bytes)
𝑏𝑑 𝐵+ tree fanout for delta store
𝑤𝑘 Key width of the index (bytes)
𝑁𝑑 Delta size (Unconsolidated tuples per column)

Table 2: Preliminaries and notations for Demain. We color

all those HTAP-related preliminaries in grey.

cost by considering the transmission delay and in-network delay.
For simplicity, we exclude the stack delay on the end host. Thus,
the cost of forwarding data results from storage nodes to computa-
tion nodes is:

𝐶𝑜𝑠𝑡𝑛𝑒𝑡 =
𝑠𝑒𝑙 · 𝑁 ·𝑤𝑟𝑒𝑠

𝐵𝑛𝑒𝑡
+ 𝐿𝑛𝑒𝑡 (1)

Row Scan. Scanning data in the underlying row stores are accessed
sequentially for a given table. The cost of retrieving data on the
storage node includes three parts. First, it requires moving data from
disks (e.g., SSD) to memory. Second, it relies on moving data from
memory to the CPU cache to perform scans. Third, it consumes
CPU circles to filter data according to the predictor. It should be
noted that all these steps can be done in a pipeline manner. Hence,
the cost should be dominated by the struggler. Thus, we have the
cost for a row scan in seconds:

𝐶𝑜𝑠𝑡𝑟𝑜𝑤 = 𝑇 · 𝑁 ·𝑚𝑎𝑥

{
𝑡𝑠

𝐷𝐵
𝑠𝑒𝑞
𝑟𝑜𝑤

,
𝑡𝑠

𝑀𝐵
𝑠𝑒𝑞
𝑟𝑜𝑤

, 𝑓𝑝 · 𝑝
}
≈ 𝑇 · 𝑁 · 𝑡𝑠

𝐷𝐵
𝑠𝑒𝑞
𝑟𝑜𝑤

(2)

Index Scan. Given an index on the accessed column, the cost of
retrieving data from the index are two-fold. First, the index needs to
be sequentially traversed to find a set of row IDs corresponding to
the requested value range. Second, the storage engine should filter
rows according to the proposed set without paying for the overhead
of reading the entire key-value pairs. Here, we omit the minor cost
of memory and CPUs. Without loss of generality, we have:

𝐶𝑜𝑠𝑡𝑖𝑛𝑑𝑒𝑥 = 𝐶𝑜𝑠𝑡𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 +𝐶𝑜𝑠𝑡𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (3)

≈ 𝑇 · 𝑁 · (𝑤𝑘 +𝑤𝑖𝑑)
𝐷𝐵

𝑠𝑒𝑞
𝑟𝑜𝑤

+ 𝑇 · 𝑁 · (𝑤𝑖𝑑 + 𝑠𝑒𝑙 · 𝑡𝑠)
𝐷𝐵𝑟𝑎𝑛𝑑𝑟𝑜𝑤

(4)

A special case is that if all needed data can be obtained from the
indexed keys (a.k.a covering index), the cost of data traversal can
be eliminated (e.g., the SQL in §5.1).

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Column Scan on Static Data. To perform a column scan on static
(consolidated) column storage, we can retrieve data from the speci-
fied single column directly instead of reading the entire tuple. Thus,

𝐶𝑜𝑠𝑡∗
𝑐𝑜𝑙

= 𝑁 ·𝑚𝑎𝑥

{
𝑤𝑎

𝐷𝐵
𝑠𝑒𝑞

𝑐𝑜𝑙

,
𝑤𝑎

𝑀𝐵
𝑠𝑒𝑞

𝑐𝑜𝑙

,
𝑓𝑝 · 𝑝
𝑓𝑣𝑒𝑐

}
≈ 𝑁 ·𝑤𝑎

𝐷𝐵
𝑠𝑒𝑞

𝑐𝑜𝑙

(5)

Delta Scan.We now explore the cost model for range scans on the
delta store. As an optimization, our system has implemented 𝐵+
trees over its append-only delta stores (see storage model in §5).
We model the cost of retrieving data from the 𝐵+ tree in two parts.
The first part is for traversing the internal structure of the 𝐵+ tree
to find the starting point in the first leaf node corresponding to the
requested value range. The second part is for traversing leaf nodes
to read the indexed row IDs and find the tuples in the delta store
according to the row IDs.

Particularly, in the delta store, a tuples ID in the leaf node of the
𝐵+ tree can be either matched to a 𝑑𝑒𝑙𝑒𝑡𝑒 or an 𝑖𝑛𝑠𝑒𝑟𝑡 operation. For
those 𝑑𝑒𝑙𝑒𝑡𝑒 operations, a row ID does not essentially cost a read
in the delta store. We can simply merge those 𝑑𝑒𝑙𝑒𝑡𝑒 operations
into the results of the column scan by ignoring the corresponding
rows. In practice, we use lightweight statistics in the delta stores
to count the number (ratio) of 𝑖𝑛𝑠𝑒𝑟𝑡 operations; the others are
𝑑𝑒𝑙𝑒𝑡𝑒 operations. We assume each tuple in the delta store matches
a full tuple update, i.e., the size of the indexed tuple equals its tuple
size in row format. We also assume a uniform distribution for data
access and updates. Hence, the worst case for the cost of a delta
scan becomes:

𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑡𝑎 = 𝐶𝑜𝑠𝑡𝑇𝑟𝑒𝑒𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 +𝐶𝑜𝑠𝑡𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (6)

𝐶𝑜𝑠𝑡𝑇𝑟𝑒𝑒𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 = (1 + ⌈𝑙𝑜𝑔𝑏 (𝑁𝑑)⌉) ·
𝑏

2 · (𝑓𝑝 · 𝑝 +
1

𝐷𝐵𝑟𝑎𝑛𝑑
𝑐𝑜𝑙

) (7)

𝐶𝑜𝑠𝑡𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 = 𝑁𝑑 ·
(𝑤𝑖𝑑 + 𝑠𝑒𝑙 · 𝑡𝑠)

𝐷𝐵𝑟𝑎𝑛𝑑
𝑐𝑜𝑙

(8)

Column Scan in HTAP. Putting Equation 6 and Equation 5 to-
gether, we have the overall cost of a column scan in HTAP:

𝐶𝑜𝑠𝑡𝑐𝑜𝑙 = 𝐶𝑜𝑠𝑡∗
𝑐𝑜𝑙
+𝐶𝑜𝑠𝑡𝑑𝑒𝑙𝑡𝑎 (9)

The total cost of retrieving data should also combine with the
cost of network I/O for transmission data from storage nodes to
computation nodes (see Equation 1), which can be critical for esti-
mating the latency or further optimizing the physical plans (e.g., re-
ducing network I/O cost by performing additional in-storage com-
putation). However, for a simple access path selection task that is
discussed above, the cost is not critical since the storage engine fil-
ters data according to the predictor for each access path (i.e., row
scan, index scan, and column scan) locally and thus the size of the
transmitted results set should be identical.

5.3 Access Path Selection

Using the equations in §5.2, we first detail the comparison between
row scans, column scans on static data, and index scans. From Equa-
tion 2 and Equation 5, it’s evident that, for a disk-based database,
the major advancement of column stores is to help reduce I/O cost
(i.e., slim down the cost from𝑇 · 𝑡𝑠 to𝑤𝑎 for each tuple, where 𝑡𝑠 is
always ≥ 𝑤𝑎 and𝑇 is always ≥ 1). This benefit is pronounced espe-

cially when the table has massive columns, and the number of re-
quested columns is few. It becomes a bit tricky when an index exists
on the conditional columns. The read performance of the row store
can be enhanced since the index can help skip unnecessary tuple ac-
cess but only read the entire tuples corresponding to the requested
value range. Given this, traditional optimizers decide the threshold
of switching access path depending on the query selectivity (i.e., 𝑠𝑒𝑙
in Equation 3). When the query has a lower selectivity, the overall
cost of the index scan should be lower. It should also be noted that
index scans may have poorer performance than row scans when
the 𝑠𝑒𝑙 is particularly large since they pay additional overhead on
sequential index traversal and do data traversal randomly.

We then discuss the access path selection inMetis. Metis refines
the cost of column scan in Equation 9. Hence, the row store hasmore
potential to outperform the column store due to the performance
penalty of data synchronization on the delta scan (Equation 6).
According to our model, Metis prefers a row scan when the 𝑠𝑒𝑙 is
particularly large, and the performance penalty of 𝑁𝑑 outpaces the
benefit of slimming I/O cost 𝑇 · 𝑡𝑠 to𝑤𝑎 . When 𝑠𝑒𝑙 is particularly
small, Metis prefers an index scan. Otherwise, Metis chooses a
column scan.

6 Runtime Optimizations

In this section, we propose two optimizations to make plans gener-
ated by Metis visibility-aware and provide performance isolation
property to the database in the face of resource contention.

6.1 Visibility-aware Plan Optimization

Given the revised cost model, when performing plan enumeration,
Metis represents each physical plan in a directed acyclic graph
(DAG), which constructs a partial order for plan execution. Metis
leverages DAGs to predicate plan performance. Each vertex in the
graph corresponds to a physical operator. Each edge represents a
dependency between two operators due to data dependency. Specif-
ically, there exist two types of edges: if an operator (𝑂𝑖) must wait
for the whole data output of another operator (𝑂 𝑗) before execu-
tion, we term such a dependency as a hard dependency (𝑂𝑖 → 𝑂 𝑗);
otherwise, if 𝑂𝑖 can be executed in a pipeline manner, we term it
as a soft dependency (𝑂𝑖 ; 𝑂 𝑗).

For example, if a hybrid plan P1 retrieves data from table A in the
row store using an index scan (𝑂𝐴_𝑖𝑛𝑑𝑒𝑥), retrieves data from table B
in the column store using a column scan (𝑂𝐵_𝑐𝑜𝑙𝑢𝑚𝑛), and joins table
A and table B using a pipelined hash join [36] by assuming table A
as a build table (𝑂𝐴_𝑏𝑢𝑖𝑙𝑑) and table B as a probe table (𝑂𝐵_ 𝑝𝑟𝑜𝑏𝑒),
then there exist three edges between four operators: 𝑂𝐴_𝑖𝑛𝑑𝑒𝑥 ;

𝑂𝐴_𝑏𝑢𝑖𝑙𝑑 , 𝑂𝐵_𝑐𝑜𝑙𝑢𝑚𝑛 ; 𝑂𝐵_ 𝑝𝑟𝑜𝑏𝑒 , and 𝑂𝐴_𝑏𝑢𝑖𝑙𝑑 → 𝑂𝐵_ 𝑝𝑟𝑜𝑏𝑒 .
Recall the critical insight into the visibility-aware plan selection:

scheduling pre-execution on the available data ahead instead of
blocking queries until all data becomes visible can help mask the
visibility delay of HTAP databases. Therefore, in P1, Metis can
retrieve data from the row store and perform the first phase (i.e.,
building a hash table) of the hash join ahead of retrieving data from
the column store, reducing the overall response latency. Compared
to an alternative physical plan P2 that retrieves all data from the
column store and then performs hash join, P1 may outperform P2
in query latency even if the execution time of the index scan is a
bit longer than the column scan since P2 has to be blocked until

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

Algo 1: Freshness-efficient Plan Selection (§6.1).
1 Para: 𝐺𝑝 ← The DAG representation of a hybrid plan 𝑝

2 Para:M← The cost model that estimations cost in seconds
3 Para: 𝛼 ← The visibility delay in the HTAP database
4 Function planSelection(DAGs, 𝛼) do
5 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛← ∅; 𝐶𝑜𝑠𝑡𝑏𝑠𝑒𝑡 ← 0;
6 for each 𝐺𝑝 in DAGs do
7 𝐶𝑜𝑠𝑡𝑝 ← calculateCost(𝐺𝑝 , 𝛼);
8 if 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 == ∅ ∨ 𝐶𝑜𝑠𝑡𝑝 < 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡 :
9 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 = 𝑝; 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡 ← 𝐶𝑜𝑠𝑡𝑝 ;

10 return 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛;
11 Function calculateCost(𝐺𝑝 , 𝛼) do

12 𝑝𝑟𝑒𝐶𝑜𝑠𝑡 ← 0; 𝑒𝑥𝑒𝐶𝑜𝑠𝑡 ← estimateCost (𝐺𝑝 ,M) ;
13 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑆𝑒𝑡 ← findAllPendingTasks(𝐺𝑝);
14 𝑠𝑢𝑏𝑠 ← removePendingTasks(𝐺𝑝 , 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑆𝑒𝑡);

/* removePendingTasks returns the strongly connected

components after removing pending tasks in 𝐺𝑝. */

15 foreach sub ∈ subs do
16 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 ← estimateCost (sub,M);
17 if 𝑝𝑟𝑒𝐶𝑜𝑠𝑡 < 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 : 𝑝𝑟𝑒𝐶𝑜𝑠𝑡 ← 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 ;
18 return Cost← 𝑒𝑥𝑒𝐶𝑜𝑠𝑡 + 𝛼 - min {𝑝𝑟𝑒𝐶𝑜𝑠𝑡, 𝛼};

the new data of table A is integrated into the column store.
Another comprehensive example is shown in Figure 7, where

the parts of plans in the green box are ready to be executed.
Algorithm 1 shows the pseudocode for our visibility-aware plan

selection. Based on the DAG abstraction, we first calculate pre-
execution tasks for each plan by removing unavailable pending
tasks in the graph (Lines 13-14). By doing so, we get a set of pre-
execution tasks (i.e., 𝑠𝑢𝑏𝑠). Each task in the set is a strongly con-
nected component that contains multiple physical operators. Since
there is no data dependency between the tasks in 𝑠𝑢𝑏𝑠 , they can be
executed in parallel. Therefore, the overall performance improve-
ment of scheduling pre-execution should be the execution time of
the longest task. We combine the knowledge of visibility delay into
the plan cost at Line 18, which captures the end-to-end query la-
tency observed by users. Finally, we use the revised cost to guide
the selection function (Lines 4-10) and generate a visibility-aware
physical plan that has the cheapest cost on query latency.
Discussions. For data consistency, Metis guarantees snapshot
isolation and always uses the latest timestamp to execute queries,
guaranteeing the best data freshness. In Figure 7, we assume all data
in the column store is not visible at the plan-generated time and
becomes visible atomically when all new data is synchronized into
the column store. This simplified abstraction matches the behavior
that the storage engine retrieves data with a global timestamp 𝑡𝑠𝑞 ,
and blocks all reads until the timestamp of the column store 𝑡𝑠𝑐𝑜𝑙
≥ 𝑡𝑠𝑞 . In practice, several optimizations are proposed to optimize
such centralized timestamp management by using a subdivided
timestamp for each table or partition. For example, our database
system manages individual timestamps for different data chunks,
where updates to a data chunk are sequenced individually. Using
fine-grained timestamps, a portion of data can be available in the

Time
column-store

state
row-store

state
visibility delay

Snapshot TS

Index Scan
Column Scan

A B
C

Plan #1

A B
C

Plan #2

C
A B

C

Plan #4

A B

Plan #3

Figure 7: An example of visibility-aware plan selection. The parts

of the plans in the green box are ready to be executed.

column store at the plan-generated time, and the visibility of the
column store increments gradually. We follow such optimizations
from the integrated databases in our implementations.

Additionally, incremental computation techniques can be com-
bined into the pre-execution on the column store to improve the
performance further. We leave these developments as our future
work since it is orthogonal to our proposal. Given incremental com-
putation, our visibility-aware algorithm is still applicable.

6.2 Proactive Query Re-optimizations

To keep plans efficient and workloads isolated, Metis re-optimizes
plans proactively. Figure 8a shows an overview of our approach.
Intuitively, when performing query optimizations, Metis generates
a set of seed plans (i.e., a row-oriented plan, a column-oriented
plan, and an HTAP-aware plan). When executing queries, Metis
starts with the cheapest plan and continuously re-optimizes plans
by stitching sub-plans from other seed plans.
Seed Plans. To generate seed plans, Metis uses the revised cost
model (§5) and visibility-aware plan selection algorithm (§6.1).
Metis first generates a hybrid plan with the cheapest cost. Based
on the same logical structure of the hybrid plan, Metis generates
an optimized row-oriented plan and an optimized column-oriented
plan by considering different physical operators. Therefore, all seed
plans have the same logical structure but may adopt different phys-
ical operators (e.g., row scan versus column scan, nested loop join
versus hash join, and stream aggregation versus hash aggregation).
Generally, seed plans consist of three physical plans when there
exists a hybrid plan that outperforms the row-oriented and column-
oriented plans; otherwise, seed plans consist of two plans.

We do not individually optimize the logical structure for the
row-oriented and column-oriented plans since the cardinality es-
timations that can influence the optimality of the logical plan
(e.g., to decide an optimal join order) are exactly the same. For re-
optimizations on the logical structures at runtime (e.g., runtime
join reorder), several notable works [7, 11, 52] have been proposed,
which are orthogonal to our paper and can be adopted by Metis.
Runtime Statistics. To decide whether a query plan should be
re-optimized, Metis quantitatively evaluates the effects of its deci-
sions based on runtime statistics. For efficient execution, Metis re-
optimizes physical operators when the estimated cardinality is far
from the real statistics (e.g., beyond 20%). Multiple existing works
also adopt a similar strategy [12, 30, 32, 75]. For the performance
isolation between workloads, Metis stitches sub-plans to alleviate
resource contention. We use a threshold of the observed physical
resource utilization to control the use of the physical resource (e.g.,
80% CPU utilization) and use a threshold of contention footprint

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Run-time

Statistics

OLTP Executor OLAP Executor

Switchable-plan Generator Sub-Plan Stitch

Row-oriented Plan
Column-oriented Plan

HTAP-aware Hybrid Plan Stitched Plan

Hybrid Physical Layout

[Resource]

[Freshness]
[Delta Size]

[Workload]

Query Scheduler

Se
ed

 P
la

n

(a)An overview of proactive plan re-optimization in Metis.

Sort-merge Join

HTAP-aware Hybrid Plan

Index

Scan (C)

Hash Join

Column

Scan (B)

Index

Scan (A)

Stitched PlanColumn-oriented Plan

Hash Join

Column

Scan (C)

Hash Join

Column

Scan (B)

Column

Scan (A)

Hash Join

Column

Scan (C)

Hash Join

Column

Scan (B)

Index

Scan (A)

Exe.

Interim Results

Interim Results

(b)An example of combining sub-plans to keep the query execution

efficient and ensure the performance isolation between workloads.

Figure 8: Proactive plan re-optimization and sub-plan stitch.

(i.e., the number of conflict transactions) to control the logical con-
tention on each table.
Plan Stitch. Inspired by [30], when re-optimizing a plan, Metis
stitches sub-plans from the seed plans without losing partial work
in the query execution pipeline. As the seed plans in Metis have
the same logical structure, stitching a new plan is essentially re-
optimizing the selection of physical operators for the remaining
un-executed plans. For future extensions, our framework is gen-
eral to different re-optimization techniques. Besides runtime re-
optimizations on logical plans mentioned previously, one may also
consider combining efficient previously-executed physical plans
into the seed plans.
Example. We now show an example of query re-optimizations.
The example query in Figure 8b joins Tables A, B, and C. Metis
starts the execution with the cheapest hybrid plan and generates
the interim results by joining Table A and B. Due to inaccurate
cardinality or resource contention, re-optimization is trigged when
retrieving data from Table C. In this case, Metis stitches a new
plan with the column-oriented plan in the set of seed plans. The
stitched plan uses a column scan for Table C instead of an index
scan for better performance. Consequently, Metis uses a hash join
instead of a sort-merge join because the cost will be higher when
the column store can not provide a sort order of the input data.
Given this stitched plan, Metis then reuses the interim results and
continues the execution.

7 EXPERIMENTS

In this section, we extensively study the performance of Metis and
compare the performance of HTAP-aware plans with row-oriented,
column-oriented, and HTAP-agnostic plans in various aspects.

Our evaluation focused on the following questions:
§7.2 Can Metis benefit the performance of analytical queries?
§7.3 How does Metis’s visibility-aware plan selection algorithm

help with reducing response latency?
§7.4 Can Metis retain performance isolation between workloads

when executing hybrid plans?
§7.5 How does Metis adapt to the shifting workloads?

7.1 Evaluation Setups

Hardware Configurations.We ran all experiments on a cluster
with seven machines. Each machine has a 2.60GHz Intel(R) Xeon(R)
E5-2690 v3 CPU (i.e., 24 cores with a single NUMA node), 64GB
memory with 544Gbps bandwidth, 960GB Dell DD4G0 SSD with
6Gbps bandwidth, and a 40Gbps NetXtreme NIC.
System Deployments. We compiled Metis on Ubuntu 18.04. We
ran three row stores and three column stores. Each of them is
deployed on individual machines. Data is loaded and continuously
written into the row store and asynchronously replicated into the
column store. We set up a client program along with a computation
node on a single machine to send client requests and perform off-
storage computation. We emulated 3𝑚𝑠 in-network delays among
machines using Linux tc [38], which is in line with the network
latency inside a data center [1, 2].
Workloads. To emulate diverse application scenarios and analyze
the performance of Metis, we used three well-studied workloads.
CH-benCHmark.We used CH-benCHmark, a notable workload in
HTAP scenarios, to evaluate the performance of Metis under hy-
brid workloads. It integrates an OLAP workload (i.e., TPC-H [25])
into an OLTPworkload (i.e., TPC-C [26]) with a unified data schema.
It contains five types of transactions and twenty-two types of ana-
lytical queries. Similar to TPC-C, CH-benCHmark organizes data
in warehouses. We used 100 data warehouses in our experiments.
TPC-DS. We adopted TPC-DS [24] with 𝑠 𝑓 = 100 for analyzing
hybrid plans in §2.2. Overall, TPC-DS contains much more complex
analytical queries than CH-benCHmark. For instance, TPC-DS has
24 tables and 7.9 join operators per query, while CH-benCHmarks
has 12 tables and 2.9 join operators per query on average. As TPC-
DS is a pure OLAP workload without any transactions or data
modifications, we did not use it in evaluating HTAP-aware plans.
YCSB. YCSB is a performance benchmark suite. To provide a more
in-depth analysis of Metis under hybrid workloads, we developed
a micro-benchmark using the APIs of the YCSB [23]. The micro-
benchmark includes two tables (A and B). Each table has 100 mil-
lion rows with a 64-bit primary key attribute and ten data attributes.
Primary indices are built on each table. In addition to the transac-
tions that perform ten reads or writes on these attributes, we create
an analytical query (Q1) that joins the two tables and controls the
amount of data accessed by each table with range predictors. We
also make a simple select query (Q2) that queries Table A with a
range predictor to provide a micro analysis on access path selection.
Baselines.The primary competitor of Metis is usingHTAP-agnostic
plans. Specifically, the HTAP-agnostic approach reused the state-of-
the-art cost model of the row store and simply added column scans
as an alternative data access path without considering any HTAP
contexts (§3). The approach is used by multiple existing HTAP
databases [37, 46]. In our experiments, we generated the HTAP-
agnostic plans using the same codebase of Metis while ignoring
the new HTAP-aware optimizations (§5 and §6).

We also study the performance of two additional baselines: row-
oriented and column-oriented plans, where the space of query opti-
mization is restricted to row stores or column stores, respectively.

7.2 Overall Performance

7.2.1 Benefits of hybrid plans. We first evaluate the performance of
Metis under the default settings of the CH-benCHmark workload.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

Row-oriented Col.-oriented HTAP-agnostic HTAP-aware

Q1 69.06s 7.37s 7.37s (C) 7.37s (C)
Q2 26.98s 2.42s 2.42s (C) 2.42s (C)
Q3 48.71s 4.52s 48.71s (R) 4.52s (C)
Q4 5.68s 7.02s 3.51s (H) 3.07s (H)
Q5 10.27s 11.32s 7.78s (H) 7.10s (H)
Q6 9.33s 1.00s 1.00s (C) 1.00s (C)
Q7 29.55s 4.59s 2.89s (H) 2.53s (H)
Q8 46.18s 8.42s 8.42s (C) 8.42s (C)
Q9 158.92s 28.97s 183.81s (H) 28.97s (C)
Q10 3.70s 4.68s 4.99s (H) 2.83s (H)
Q11 14.77s 2.78s 2.78s (C) 2.78s (C)
Q12 26.27s 2.56s 42.19s (H) 2.56s (C)
Q13 60.74s 5.73s 5.73s (C) 5.73s (C)
Q14 12.73s 1.40s 1.40s (C) 1.40s (C)
Q15 150.10s 2.63s 2.63s (C) 2.63s (C)
Q16 27.05s 1.25s 1.25s (C) 1.25s (C)
Q17 92.02s 12.02s 12.02s (C) 12.02s (C)
Q18 8.67s 14.11s 8.67s (R) 8.67s (R)
Q19 35.55s 2.82s 28.38s (H) 2.82s (C)
Q20 41.69s 6.38s 6.38s (C) 6.38s (C)
Q21 OOM 18.93s 9.42s (H) 8.97s (H)
Q22 3.57s 1.21s 9.69s (H) 0.87s (H)

G-Mean 24.87s 4.53s 6.91s 3.86s

Table 3: A comparison of the row-oriented, column-oriented, HTAP-

agnostic, and HTAP-aware query optimization approaches under

CH-benCHmark. We mark the generated row plans with R, column

plans with C, and hybrid plans with H in the last two columns. For

theHTAP-agnostic approach, we highlight the negative optimization

cases in grey. For the HTAP-aware approach, we highlight the hybrid

plans with “optimal” latecny in the hatched cells.

For OLTP, we ran 256 threads to saturate the throughput, achieving
3082.64 𝑡𝑝𝑠 . For OLAP, we executed analytical queries in sequence.
Each query is optimized and then executed one by one using multi-
cores. By default, we used 24 threads for intra-query parallelism.

Table 3 shows the results of analytical queries’ response latency.
The column-oriented plans outperformed the row-oriented plans
in most of the queries. Exceptions are 𝑄4, 𝑄5, 𝑄10, and 𝑄18. For
HTAP-agnostic and HTAP-aware plan optimization approaches,
we marked the generated row plans with R, column plans with C,
and hybrid plans withH .

As shown in Table 3, Metis (using HTAP-aware plans) always
performed better than the competitors for all analytical queries.
Compared to the HTAP-agnostic approach, Metis’s closest com-
petitor, Metis achieved 1.79× speedups in geometric mean.

As illustrated in §3, HTAP-agnostic plans can lead to poor perfor-
mance due to error-prone cost estimation. Hence, the response la-
tency of the HTAP-agnostic plans was even 1.52× than the column-
oriented plans, let alone realizing the potential of hybrid plans. We
highlight the sub-optimal cases in grey. Similar negative effects
were validated in [33]. We also observed that the performance of
the hybrid plans generated by the HTAP-agnostic approach might
be even poorer than both row-oriented and column-oriented plans
on specific queries (e.g., 𝑄9, 𝑄10, 𝑄12, and 𝑄22).

Given this, one may think about building an HTAP optimizer
without hybrid plans but select the row-oriented and column-

Light Medium Heavy
OLTP Concurrency

0
2000
4000
6000
8000

10000
12000
14000

O
L

A
P

C
om

p.
T

im
e

(s
ec

.)

(a) CH Completion Time

Light Medium Heavy
OLTP Concurrency

0
10
20
30
40
50
60
70
80

O
L

A
P

C
om

p.
T

im
e

(s
ec

.)

(b) YCSB Completion Time

Figure 9: Analytical Queries Completion Time (ten rounds).

16 32 64 128 256
OLTP Concurrency

0.00

0.03

0.06

0.09

0.12

0.15

C
ro

ss
ov

er
S

el
ec

ti
vi

ty

Measured Predicated

Figure 10:Accuracy of Demain.

0 5 10 15 20 25 30
Number of OLAP Threads

0

1

2

3

4

O
LT

P
T

pu
t

(k
tp

s)

0.0

0.4

0.8

1.2

1.6

O
L

A
P

T
pu

t
(q

ps
)

TP Tput (Metis)

AP Tput (Metis)

TP Tput (HTAP-agnostic)

AP Tput (HTAP-agnostic)

Figure 11: Impact on OLTP.

oriented plans for each query, achieving the best of the two. How-
ever, it should only be feasible with a unified cost model that can
precisely predicate the cost of both two plans. When creating a uni-
fied cost model, the problems inside the HTAP-agnostic approach
still exist, i.e., such an optimizer can always choose sub-optimal
plans due to the error-prone cost estimation.

Metis corrects sub-optimal plans in two-fold. First, the Demain
model provides a revision for access path selection. For example,
in 𝑄9, the HTAP-agnostic plan retrieves data from the row store
for the table order and the rest of the data from the column store.
On the contrary, according to our new cost model, Metis addi-
tionally retrieves data from the row store for the table nation
and supplier. Second, Metis’s runtime re-optimization alleviates
the performance degradation caused by resource contention, espe-
cially when accessing data from the row store. For instance, the
new order transactions that updated d_next_o_id frequently in
CH-Benchmark can cause a big footprint in the corresponding data
chunk. In such a case, Metis prefers using the column store for re-
trieving data from the corresponding table district.

Furthermore, Metis enhanced the query performance with its
visibility-aware optimization algorithm (§6.1). Benefited queries are
𝑄4, 𝑄5, 𝑄10, 𝑄21, and 𝑄22. We provide an ablation study in §7.3.
Takeaways. Neither the row store nor the column store can be
superior for retrieving data. Metis can achieve the best potential
of hybrid plans under HTAP workloads.
7.2.2 Performance under different OLTP concurrency. As the OLTP
concurrency in HTAP workloads may change over time, we next
study how Metis performed under various OLTP concurrencies.
The adaptivity of Metis was studied in §7.5.

We created three distinct scenarios for both CH-benCHmark and
YCSB workloads, where the OLTP concurrency is light (∼20% peak
throughput), medium (∼50% peak throughput), and high (∼80% peak
throughput). Specifically, we used 32 OLTP threads for light concur-
rency, achieving 732.54 𝑡𝑝𝑠 for CH-benCHmark and 8180.42 𝑡𝑝𝑠 for
YCSB. We used 128 OLTP threads for medium concurrency, achiev-

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝑄4 𝑄5 𝑄7 𝑄10 𝑄21 𝑄22
Visibility-Agnostic 3.51s 7.78s 2.89s 3.57s 9.42s 1.07s
Visibility-Aware 3.07s 7.10s 2.53s 2.83s 8.97s 0.87s

Table 4: Impact of visibility-aware optimizations.

Index Scan(lineitem:l2)

952.59ms

13.58ms

156.07ms

17.17ms

17.79ms

633.79ms

3.31s

8.93s

9.42s

32.49ms

1.275s

 Hybrid Plan with Optimal Cost

Hash join

Merge join

Hash join

Hash join

Hash join

Column Scan(lineitem:l1)

Index Scan(order)

Column Scan(stock)

Column Scan(supplier)Column Scan(nation)

(a) Hybrid plan with optimal cost.

Visibility-Aware Hybrid Plan
8.97s

Index Scan(lineitem:l2)

952.59ms

156.07ms

32.49ms

1.275s

Hash join

Merge join

Hash join

Hash join

Hash join

Column Scan(lineitem:l1)

Index Scan(order)

Column Scan(stock)

Index Scan(nation) Index Scan(supplier)
18.58ms 24.77ms

25.42ms

183.79ms

2.83s

8.33s

(b) Visibility-aware hybrid plan

Figure 12: An example of the impact of pre-execution.

ing 1930.98 𝑡𝑝𝑠 for CH-benCHmark and 23108.06 𝑡𝑝𝑠 for YCSB. We
used 256 OLTP threads for high concurrency, achieving 3082.64 𝑡𝑝𝑠
for CH-benCHmark and 41556.60 𝑡𝑝𝑠 for YCSB.

We reported the completion time of analytical queries in ten
rounds. For CH-benCHmark, OLAP clients issued 220 TPC-H-like
queries iteratively. For YCSB, OLAP clients issued 10𝑄1 with 0.01%
selectivity in Table A and 1% selectivity in Table B.

Figure 9 shows the experimental results with error bars.
CH-benCHmark. The results demonstrated that OLTP concur-
rency could affect the performance of all types of plans. This is be-
cause, as the OLTP concurrency increased, more transactions could
consume more physical and logical resources in the row store and
cause more data synchronization operations in the column store.
Compared to HTAP-agnostic plans, the performance degradation
of Metis (using HTAP-aware plans) was relatively small.
YCSB. For YCSB, we observed that, under light and medium OLTP
concurrency, both the HTAP-agnostic and HTAP-aware plans could
be optimal. We checked the physical plan by the ANALYZE state-
ments in 𝑆𝑄𝐿. The plan retrieved data from Table A in the row
store and from Table B in the column store. Then, the plan joined
Table A with Table B using Hash Join. Metis performed slightly
better thanks to the pre-execution scheduling.

Under high OLTP concurrency, Metis shifted to the column plan
to alleviate resource contention on the row store. At the same time,
the HTAP-agnostic approach still used the hybrid plan, leading to
sub-optimal performance (i.e., 1.56× latency in our evaluation).
7.2.3 Accuracy of Demain. Weanalyzed the accuracy of theDemian
model by comparing the predicted crossover selectivity against the
measured crossover selectivity for access path selection. Recall the
definition of crossover in §3.1. The crossover is the selectivity when
the row store and column have an identical execution time. We
used YCSB𝑄2 and fine-tuned the selectivity of the predictor to find
the measured crossover. The predicated crossover was calculated
by solving the equation when the index scan has the exact cost as
the column scan in §5. As shown in Figure 10, Metis accurately
predicted the crossover point under different OLTP concurrency.
The error rate was up to 12.28% and within the standard deviation
of the measured crossover selectivity.

Time (s)
0

20

40

60

80

O
LT

P
T

pu
t

(t
ps

)

Medium
OLTP

Heavy
OLTP Medium OLTP

0 300 600 900 1200 1500
Time into Workload (s)

0
500

1000
1500
2000
2500

O
L

A
P

L
at

.
(m

s)

Sel(A) = 0.01%; Sel(B) = 1%; Sel(A) = 0.01%; Sel(B) = 0.01%

Figure 13: Impact of Shifted Workload.

7.3 Impact of Visibility-Aware Optimizations

Ablation Study. Table 4 shows an ablation study by independently
removing our visibility-aware optimization algorithm in Metis.
For clarity, we only present the queries that can potentially benefit
from pre-execution in CH-Benchmark.
Case Study of Ablation. Figure 12 shows the physical plan of CH-
benCHmark 𝑄21 with the accumulated execution time for each op-
erator. In particular, Figure 12a shows the hybrid plan with “opti-
mal ” cost, which was generated by disabling our visibility-aware
algorithm. Figure 12b reveals the visibility-aware hybrid plans.

To retrieve data from table nation and supplier, column scan
can outperform row scan slightly (i.e., 13.58𝑚𝑠 versus 18.58𝑚𝑠 and
17.17𝑚𝑠 versus 24.77𝑚𝑠). However, due to the visibility delay (i.e.,
∼800𝑚𝑠 measured in our experiment), data in the column store was
unavailable until all new data was synchronized from the row store.
Therefore, the plan with the “optimal ” cost had to be blocked and
not scheduled until new data became visible in the column store. On
the contrary, our visibility-aware plans could be scheduled ahead
of the full data synchronization as new data was available in the
row store. By doing so, a portion of the plan (i.e., the grey part in
Figure 12b) could be executed ahead of time to mask the visibility
delay. Then, the amortized cost (183.79𝑚𝑠) of the sub-plan was
cheaper than the sub-plan of the “optimal ” plan (633.79𝑚𝑠).

As a result, though the visibility-aware plan could pay more
cost to retrieve data from table nation and supplier, its overall
response latency was shorter than the plan with the “optimal ” cost
(i.e., 8.97𝑠 compared to 9.42𝑠).

7.4 Performance Isolation of Workloads.

As discussed in §3.3, hybrid plans introduce new challenges in per-
formance isolation, and the HTAP-agnostic approach may largely
degrade OLTP performance. We study that impact in this experi-
ment using Metis under the CH-benCHmark workload. We first
set up 256 OLTP threads to saturate the OLTP throughput and then
increased the OLAP workloads by adding OLAP threads (clients).

As shown in Figure 11, for Metis, the OLAP throughput in-
creased with the number of OLAP threads and eventually plateaued;
the OLTP throughput was basically preserved throughout the ex-
periment. On the contrary, the HTAP-agnostic approach incurred
a much more server OLTP throughout degradation compared to
Metis, in line with the evaluation results in §3.3. This is because
Metis will proactively re-optimize in-efficient plans in the face of
resource contention. As evidence, as shown in Table 3, when using
256 OLTP threads, the HTAP-agnostic approach totally generated

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

nine hybrid plans for analytical queries in CH-benCHmark, which
should be optimal when given static data. In contrast, the number
of hybrid plans in Metis was six.

Meanwhile, we observed that the throughput of OLTP indeed in-
curred a slight degradation (up to 8%). We conclude this degradation
for two reasons: (1). OLTP and OLAP requests shared the same front
end of the database (e.g., sessions and 𝑆𝑄𝐿 parser) and (2). a part of
internal service inside the database (e.g., 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 allocation).

7.5 Impact of Changed Workloads

So far, we have studied the performance variance of Metis under dif-
ferent OLTP concurrency in §7.2.2, the accuracy of access path selec-
tion in §7.2.3, and the efficiency of visibility-aware plan selection in
§7.3. In this experiment, we study the adaptive capabilities of Metis
by examining its OLTP throughput and OLAP latency over time.

Figure 13 shows the OLTP throughput and OLAP (i.e., YCSB
𝑄1) latency in YCSB. Recall in §7.2.2, 𝑄1 prefers a hybrid plan
that retrieves data from Table A in the row store and Table B in
the column store when the contention between workloads is low.
As we shifted the number of OLTP threads from 128 to 256 at
300𝑠 , the OLTP increased correspondingly, which consumes ∼ 92%
of CPU circles on the row store. In such a case, Metis avoided
retrieving data from the row store favor for both query efficiency
and performance isolation between workloads. Metis re-optimized
the hybrid plan by its proactive re-optimization technique (§6.2)
and thus retrieved data from Tables A and B in the column store,
in line with the results in §7.2.

At 900𝑠 , we changed the selectivity on Table B. Metis generated
a row-oriented plan that retrieved all data in the row store and
joined the two tables using Sort-merge Join instead of Hash Join.

8 RELATEDWORK

Query optimization is a well-studied research area. Massive influ-
ential works have been proposed since the 1970s. In this paper, we
rethink optimization techniques in the era of HTAP by standing on
the shoulders of giants. We summarize related works below.

8.1 Query Optimization in HTAP Databases

Independent optimizers. Several HTAP databases [15, 18, 57]
process query optimizations for OLTP and OLAP independently,
using a routing-based approach, and are not designed for hybrid
data access. After receiving 𝑆𝑄𝐿 requests, they rely on embedded
user-level hints or a smart middleware layer to differentiate point
and scan-intensive queries. Then, they execute queries on the desir-
able engines and stores. This approach is easy to implement; how-
ever, at the cost of performance since optimizations are conducted
in isolation, and the prior knowledge of queries can always be lim-
ited and inaccurate.
Integrated optimizer. Another approach adopted by multiple
HATP databases [6, 21, 27, 35, 37, 39, 46, 47, 55, 61, 68, 73] is sup-
plementing column stores as an additional data access path. For
instance, F1 Lightning [73] generates logical plans using its F1
optimizer (i.e., an optimizer designed for OLTP) and considers
lightning-only indexes and views during physical planning. SQL
Server [33] analyzes and recommends column stores by its Data-
base Engine Tuning Advisor (DTA) when suitable for a given work-
load. TiDB [37] extends query optimizer to explore physical plans

accessing both row and column stores. Oracle Dual [46] supple-
ments column indices to its optimizer as an alternate execution
method for high-speed table scans. Compared to Metis, all of them
either do not support hybrid plans or generate HTAP-agnostic plans.

8.2 Access Path Selection in Modern Databases

Access path selection is one of the most fundamental optimizations
in databases for retrieving tuples from tables. Besides the important
works [17, 56, 66] proposed at the beginning of the database system,
recent studies focus on the analysis of access path selection over
large-scale column databases, in-memory row-oriented databases,
and hybrid physical designs in HTAP databases.

Kester et al. [45] analyze the problem of access path selection
for in-memory analytical databases by comparing probes on 𝐵+
trees to shared scans on column stores. Dziedzic et al. [33] present
the analysis of access path selection for a commercial-strength
database, considering secondary 𝐵+ trees on top of column-store
indexes. Abadi et al. [5] provide an experimental study to quantify
the significant differences between column store and row-oriented
𝐵+ trees. Unlike existing works, our paper discusses the access path
selection over the specially-tailored HTAP databases (i.e., using
delta-main architectures) and models row stores as LSM trees.

8.3 Proactive Query Re-optimizations

Several previous works [12, 30, 32, 40, 42, 53, 72, 75] inspire Metis’s
resource-aware query re-optimization.
Proactive Re-optimizations. Particularly, Babu et al. [12] take
the first step to re-optimize plans proactively. They estimate statis-
tics computed as bounding boxes and generate a switchable seed
plan for runtime re-optimization. Ding et al. [30] harness valuable
information of efficient sub-plans collected from other previously-
executed plans and stitch these sub-plans at runtime.
Resource-aware Query Plan. Viswanathan et al. [72] integrate
resource planning within a query planner using a cost-based model
in Hive and Spark. Li et al. [53] propose a resource-aware deep-
learning model that can predict the execution time of plans and thus
combine the knowledge of available resources into query planning.

While sharing the same goal to re-optimize query plans for
efficiency, Metis is additionally designed to keep performance
isolation between workloads. To do so, Metis prepares three seed
plans for different data access paths and continuously monitors
resource utilization (§6.2).

9 CONCLUSION

In this paper, we demonstrate that hybrid plans are desirable for
HTAP databases since all row scans, index scans, and column scans
can benefit analytical queries. We systematically analyze the chal-
lenges and desiderata of hybrid plans. As HTAP databases evolve
specially-tailored architectures and target specific design goals, ex-
isting works either generate sub-optimal plans or sacrifice HTAP
properties, prompting a revisit of query optimization techniques.

Based on our analysis, we propose Metis, an HTAP-aware hy-
brid optimizer, which uses a revised cost model for access path
selection, selects plans with visibility-aware optimization and re-
optimizes queries proactively to keep plans efficient and isolate the
performance between workloads. Our experiments on extensive
workloads show the efficiency and adaptivity of Metis.

RethinkQuery Optimization in HTAP Databases Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

References

[1] AWS Latency Monitoring. https://www.cloudping.co/grid.
[2] Regions, Availability Zones, and Local Zones. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/using-regions-availability-zones.html.
[3] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and

execution in column-oriented database systems. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 671–682, 2006.

[4] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-oriented
database systems. Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009.

[5] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. Column-stores vs. row-
stores: how different are they really? In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 967–980, 2008.

[6] Michael Abebe, Horatiu Lazu, and Khuzaima Daudjee. Proteus: Autonomous
adaptive storage for mixed workloads. Technical report, Technical Report. Uni-
versity of Waterloo. https://cs. uwaterloo. ca . . . , 2022.

[7] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica,
and Jingren Zhou. Reoptimizing data parallel computing. In NSDI, volume 12,
pages 281–294, 2012.

[8] Nitin Agrawal and Ashish Vulimiri. Low-latency analytics on colossal data
streams with summarystore. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 647–664, 2017.

[9] Rafi Ahmed, Allison Lee, Andrew Witkowski, Dinesh Das, Hong Su, Mohamed
Zait, and Thierry Cruanes. Cost-based query transformation in oracle. In VLDB,
volume 6, pages 1026–1036, 2006.

[10] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Janus:
A hybrid scalable multi-representation cloud datastore. IEEE Transactions on
Knowledge and Data Engineering, 30(4):689–702, 2017.

[11] Ron Avnur and Joseph M Hellerstein. Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pages 261–272, 2000.

[12] Shivnath Babu, Pedro Bizarro, and David DeWitt. Proactive re-optimization. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, pages 107–118, 2005.

[13] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In Cidr, volume 5, pages 225–237. Citeseer, 2005.

[14] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski,
and Campbell Fraser. Smooth scan: Statistics-oblivious access paths. In 2015 IEEE
31st International Conference on Data Engineering, pages 315–326. IEEE, 2015.

[15] Dennis Butterstein, Daniel Martin, Knut Stolze, Felix Beier, Jia Zhong, and
Lingyun Wang. Replication at the speed of change: A fast, scalable replication so-
lution for near real-time htap processing. Proc. VLDB Endow., 13(12):3245–3257,
aug 2020.

[16] Shaosheng Cao, XinXing Yang, Cen Chen, Jun Zhou, Xiaolong Li, and Yuan Qi.
Titant: Online real-time transaction fraud detection in ant financial. Proc. VLDB
Endow., 12(12):2082–2093, aug 2019.

[17] Surajit Chaudhuri. An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 34–43, 1998.

[18] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, et al. Bytehtap: bytedance’s htap system
with high data freshness and strong data consistency. Proceedings of the VLDB
Endowment, 15(12):3411–3424, 2022.

[19] M Keith Chen and Michael Sheldon. Dynamic pricing in a labor market: Surge
pricing and flexible work on the uber platform. Ec, 16:455, 2016.

[20] Inc. ClickHouse. ClickHouse — open source distributed column-oriented DBMS.
https://github.com/ClickHouse/ClickHouse/tree/22.6.

[21] Alibaba Cloud. PolarDB: Cloud-Native Relation Database. https://www.
alibabacloud.com/product/polardb.

[22] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Ste-
fan Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel
Poess, et al. The mixed workload ch-benchmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems, pages 1–6, 2011.

[23] Brian Cooper. Yahoo! cloud serving benchmark. https://github.com/
brianfrankcooper/YCSB.

[24] The Transaction Processing Council. TPC-DS. http://www.tpc.org/tpcds/.
[25] The Transaction Processing Council. TPC-H. http://www.tpc.org/tpch/.
[26] The Transaction Processing Council. TPC-C. http://www.tpc.org/tpcc/, 2014.
[27] Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and

Marco Slot. Citus: Distributed postgresql for data-intensive applications. In
Proceedings of the 2021 International Conference on Management of Data, pages
2490–2502, 2021.

[28] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. The snowflake elastic data warehouse. In Proceedings of
the 2016 International Conference on Management of Data, pages 215–226, 2016.

[29] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. Ycsb+ t: Bench-
marking web-scale transactional databases. In 2014 IEEE 30th International Con-

ference on Data Engineering Workshops, pages 223–230. IEEE, 2014.
[30] Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek Narasayya.

Plan stitch: harnessing the best of many plans. Proceedings of the VLDB Endow-
ment, 11(10):1123–1136, 2018.

[31] Science Direct. Real-Time Pricing. https://www.sciencedirect.com/topics/
engineering/real-time-pricing.

[32] Anshuman Dutt and Jayant R Haritsa. Plan bouquets: query processing without
selectivity estimation. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1039–1050, 2014.

[33] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R Narasayya, and
Manoj Syamala. Columnstore and b+ tree-are hybrid physical designs important?
In Proceedings of the 2018 International Conference on Management of Data, pages
177–190, 2018.

[34] Matteo Golfarelli and Stefano Rizzi. From star schemas to big data: 20 years of
data warehouse research. A comprehensive guide through the Italian database
research over the last 25 years, pages 93–107, 2017.

[35] Google. Alloydb for postgresql under the hood: Columnar engine. https://cloud.
google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine,
2022.

[36] Hui-I Hsiao, Ming-Syan Chen, and Philip S Yu. On parallel execution of multiple
pipelined hash joins. In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 185–196, 1994.

[37] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. Tidb: a raft-based htap database.
Proceedings of the VLDB Endowment, 13(12):3072–3084, 2020.

[38] Bert Hubert. tc(8), linux manual page. https://man7.org/linux/man-pages/man8/
tc.8.html.

[39] SnowFlake Inc. Unistore: A modern approach to working with transactional
and analytical data together in a single platform. https://www.snowflake.com/
workloads/unistore/.

[40] Alekh Jindal, Lalitha Viswanathan, and Konstantinos Karanasos. Query and
resource optimizations: A case for breaking the wall in big data systems. arXiv
preprint arXiv:1906.06590, 2019.

[41] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. Row-wise
parallel predicate evaluation. Proceedings of the VLDB Endowment, 1(1):622–634,
2008.

[42] Navin Kabra and David J DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In Proceedings of the 1998 ACM SIGMOD interna-
tional conference on Management of data, pages 106–117, 1998.

[43] The kernel development community. Control Groups. https://docs.kernel.org/
admin-guide/cgroup-v1/cgroups.html.

[44] Michael S Kester, Manos Athanassoulis, and Stratos Idreos. Access path selection
in main-memory optimized data systems: Should i scan or should i probe? In
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 715–730, 2017.

[45] Michael S Kester, Manos Athanassoulis, and Stratos Idreos. Access path selection
in main-memory optimized data systems: Should i scan or should i probe? In
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 715–730, 2017.

[46] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
Oracle database in-memory: A dual format in-memory database. In 2015 IEEE
31st International Conference on Data Engineering, pages 1253–1258. IEEE, 2015.

[47] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. Real-time analytical processing with sql
server. Proceedings of the VLDB Endowment, 8(12):1740–1751, 2015.

[48] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha,
and Wook-Shin Han. Parallel replication across formats in sap hana for scaling
out mixed oltp/olap workloads. Proceedings of the VLDB Endowment, 10(12):1598–
1609, 2017.

[49] Mark Levene and George Loizou. Why is the snowflake schema a good data
warehouse design? Information Systems, 28(3):225–240, 2003.

[50] Guoliang Li and Chao Zhang. Htap databases: What is new and what is next. In
Proceedings of the 2022 International Conference on Management of Data, pages
2483–2488, 2022.

[51] Meng Li, Zheyu Miao, Di Wu, Feifei Li, Sheng Wang, Wei Cao, Zhi Qiao, Bin Yu
Ruan, Kun Yu Liang, Jun Xin Yang, et al. Rovec: Runtime optimization of vec-
torized expression evaluation for column store. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[52] Quanzhong Li, Minglong Shao, Volker Markl, Kevin Beyer, Latha Colby, and Guy
Lohman. Adaptively reordering joins during query execution. In 2007 IEEE 23rd
International Conference on Data Engineering, pages 26–35. IEEE, 2006.

[53] Yan Li, LiweiWang, ShengWang, Yuan Sun, and Zhiyong Peng. A resource-aware
deep cost model for big data query processing. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pages 885–897. IEEE, 2022.

[54] Chen Luo and Michael J Carey. On performance stability in lsm-based storage
systems. Proceedings of the VLDB Endowment, 13(4), 2019.

https://www.cloudping.co/grid
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://github.com/ClickHouse/ClickHouse/tree/22.6
https://www.alibabacloud.com/product/polardb
https://www.alibabacloud.com/product/polardb
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.tpc.org/tpcc/
https://www.sciencedirect.com/topics/engineering/real-time-pricing
https://www.sciencedirect.com/topics/engineering/real-time-pricing
https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://www.snowflake.com/workloads/unistore/
https://www.snowflake.com/workloads/unistore/
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Submission

[55] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.
Greenplum: A hybrid database for transactional and analytical workloads. In
Proceedings of the 2021 International Conference on Management of Data, pages
2530–2542, 2021.

[56] Stefan Manegold, Peter Boncz, and Martin L Kersten. Generic database cost
models for hierarchical memory systems. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases, pages 191–202. Elsevier, 2002.

[57] MySQL. Mysql heatwave. https://dev.mysql.com/doc/heatwave/en/heatwave-
introduction.html, 2022.

[58] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. Hybrid transactional/analytical
processing: A survey. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 1771–1775, 2017.

[59] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The star
schema benchmark and augmented fact table indexing. In Performance Evaluation
and Benchmarking: First TPC Technology Conference, TPCTC 2009, Lyon, France,
August 24-28, 2009, Revised Selected Papers 1, pages 237–252. Springer, 2009.

[60] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. Hybrid
transaction/analytical processing will foster opportunities for dramatic busi-
ness innovation. Gartner (2014, January 28) Available at https://www. gart-
ner. com/doc/2657815/hybrid-transactionanalyticalprocessing-foster-opportunities,
pages 4–20, 2014.

[61] Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen,
Evan Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, et al. Cloud-native
transactions and analytics in singlestore. In Proceedings of the 2022 ACM SIGMOD
International Conference on Management of Data, 2022.

[62] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. Db2 with blu acceleration: So much more than just a
column store. Proceedings of the VLDB Endowment, 6(11):1080–1091, 2013.

[63] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia
Ailamaki. Adaptive htap through elastic resource scheduling. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
2043–2054, 2020.

[64] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and
Mustafa Canim. L-store: A real-time oltp and olap system. arXiv preprint
arXiv:1601.04084, 2016.

[65] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. Lethe: A tunable delete-aware lsm engine. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 893–908, 2020.

[66] P Griffiths Selinger, MortonMAstrahan, Donald D Chamberlin, Raymond A Lorie,
and Thomas G Price. Access path selection in a relational database management
system. In Proceedings of the 1979 ACM SIGMOD international conference on
Management of data, pages 23–34, 1979.

[67] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. Retrofitting high availability
mechanism to tame hybrid transaction/analytical processing. In 15th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 21), pages
219–238, 2021.

[68] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and
Christof Bornhövd. Efficient transaction processing in sap hana database: the end
of a column store myth. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 731–742, 2012.

[69] Inc. SingleStore. SingleStore: Real-TimeDistributed SQL. https://www.singlestore.
com/.

[70] T Spenser and T Loukas. From star to snowflake to erd: Comparing data ware-
house design approaches. Enterprise Systems Journal, 14:62–69, 1999.

[71] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. Amazon aurora: Design considerations for high
throughput cloud-native relational databases. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 1041–1052, 2017.

[72] Lalitha Viswanathan, Alekh Jindal, and Konstantinos Karanasos. Query and
resource optimization: Bridging the gap. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE), pages 1384–1387. IEEE, 2018.

[73] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. F1 lightning: Htap as a service. Proceedings
of the VLDB Endowment, 13(12):3313–3325, 2020.

[74] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, gLiu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. Matrixkv: reducing write stalls and write amplification
in lsm-tree based kv stores with a matrix container in nvm. In Proceedings of the
2020 USENIX Conference on Usenix Annual Technical Conference, pages 17–31, 2020.

[75] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. Robust query optimiza-
tion methods with respect to estimation errors: A survey. ACM Sigmod Record,
44(3):25–36, 2015.

https://dev.mysql.com/doc/heatwave/en/heatwave-introduction.html
https://dev.mysql.com/doc/heatwave/en/heatwave-introduction.html
https://www.singlestore.com/
https://www.singlestore.com/

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND MOTIVATION
	2.1 Hybrid Data Format in HTAP
	2.2 Motivation of Hybrid Plans

	3 Problems of HTAP-agnostic Hybrid Plans
	3.1 Impact of Data Synchronization
	3.2 Impact on Data Freshness
	3.3 Impact on Performance Isolation
	3.4 Desiderata of HTAP-aware Optimizations.

	4 Metis Overview
	4.1 Workflow and Key Components
	4.2 Limitations and Discussions

	5 Demain Model
	5.1 Model Preliminaries
	5.2 Modeling Access Path In HTAP
	5.3 Access Path Selection

	6 Runtime Optimizations
	6.1 Visibility-aware Plan Optimization
	6.2 Proactive Query Re-optimizations

	7 EXPERIMENTS
	7.1 Evaluation Setups
	7.2 Overall Performance
	7.3 Impact of Visibility-Aware Optimizations
	7.4 Performance Isolation of Workloads.
	7.5 Impact of Changed Workloads

	8 RELATED WORK
	8.1 Query Optimization in HTAP Databases
	8.2 Access Path Selection in Modern Databases
	8.3 Proactive Query Re-optimizations

	9 CONCLUSION
	References

