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Unextendible product bases (UPBs) play a key role in the study of quantum entanglement and nonlocality.
Here we provide an equivalent characterization of UPBs in graph-theoretic terms. Different from previous graph-
theoretic investigations of UPBs, which focused mostly on the orthogonality relations between different product
states, our characterization includes a graph-theoretic reformulation of the unextendibility condition. Building
on this characterization, we develop a constructive method for building UPBs in low dimensions and shed light
on the open question of whether there exist genuinely unextendible product bases (GUPBs), that is, multipartite
product bases that are unextendible with respect to every possible bipartition. We derive a lower bound on the
size of any candidate GUPB, significantly improving over the state of the art. Moreover, we show that every
minimal GUPB saturating our bound must be associated to regular graphs and discuss a possible path towards
the construction of a minimal GUPB in a tripartite system of minimal local dimension. Finally, we apply our
characterization to the problem of distinguishing UPB states under local operations and classical communication,
deriving a necessary condition for reliable discrimination in the asymptotic limit.
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I. INTRODUCTION

An important notion in the study of quantum entanglement
and nonlocality is the notion of unextendible product basis
(UPB) [1]. Mathematically, a UPB is a set of orthogonal
product vectors whose complementary subspace contains no
product vector [1]. UPBs have a number of properties that
make them important in quantum information and quantum
foundations. For example, the complementary subspace of a
UPB is a completely entangled subspace, that is, a subspace
containing only entangled states [2–4]. The normalized pro-
jector on the complementary subspace of a UPB is a bound
entangled state, that is, a state from which no pure entangle-
ment can be distilled [1,5]. UPBs also play a central role in the
study of Bell inequalities with no quantum violation [6–9],
where they offer insights into the foundations of quantum
theory.

The construction and characterization of UPBs has at-
tracted great attention over the past two decades [5,10–21].
A famous open question in the field is whether there exists a
multipartite UPB that is a UPB with respect to every possible
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bipartition. Such a UPB is called a genuinely unextendible
product basis (GUPB) [22] and its complementary subspace
is a genuinely entangled subspace, that is, a subspace that
contains only genuinely entangled states [2,22,23].

Sets of orthogonal product states that cannot be com-
pleted to full product bases in every bipartion were found
in Ref. [24]. However, these sets do not provide examples
of GUPBs, because noncompletability to a full product ba-
sis for the whole Hilbert space is a weaker property than
nonextendibility to a larger set of orthogonal product states. A
universal construction for genuinely entangled subspaces was
given in [25]. However, determining whether the orthogonal
complement of such subspaces admits a product basis and, in
the affirmative case, constructing the product basis is highly
nontrivial. For these reasons, the existence of GUPBs is still
an open question.

Recently, Demianowicz gave a lower bound on size that
GUPBs must have, if they exist [26]: for an N-partite GUPB
in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN the number of vectors in the basis,
denoted by k, must satisfy the bound

k � D

dmax
+

⌊
D

dmax
− 2

N − 1

⌋
+ 1, (1)

where D := d1d2 · · · dN and dmax := max{d1, d2, . . . , dN }
(here and in the rest of the paper, we always assume the con-
dition dm � 3 for every m ∈ {1, . . . , N} because no bipartite
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UPB—and therefore no GUPB—exists when one of the local
dimensions is smaller than 3 [1,5]).

In this paper, we provide a graph-theoretic characterization
of UPBs and GUPBs. Similarly to previous graph-theoretic
investigations of UPBs [10–14], our characterization uses the
notion of orthogonality graph [27], a central notion in classical
and quantum information theory [28–36]. While the previous
works mostly focused on the orthogonality relations between
different basis vectors, our work also includes a graph-
theoretic characterization of the unextendibility condition.
This characterization translates directly into a constructive
method for building UPBs, which we illustrate by building
a new UPB for a two-qubits and two-qutrits quantum system.
For GUPBs, the characterization implies a new lower bound,
which significantly improves over the state of the art. Specifi-
cally, we show that the size of a GUPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗
CdN is lower bounded as

k �
∑N

m=1
D
dm

− 1

N − 1
. (2)

In general, the estimate of k provided by Eq. (2) is always
larger than or equal to the estimate of k provided by Eq. (1).
The difference between the two bounds becomes visible when
the component systems have different local dimensions. For
example, consider a tripartite system where the component
systems have local dimensions d1 = d2 = 2p and d3 = 3p for
some integer p. In this case, bounds (1) and (2) read k � 6p2

and k � 8p2, respectively, and the difference between them
becomes arbitrarily large as p increases.

The connection between UPBs/GUPBs and orthogonal-
ity graphs also implies other constraints on the structure of
UPBs/GUPBs. In particular, we show that minimal UPBs
saturating a bound by Bennett et al. [1] must necessarily
correspond to regular graphs and we show that the same
holds for minimal GUPBs saturating our bound (2). Finally,
we use the regularity condition to discuss a possible path to
the construction of a minimal GUPB in a tripartite quantum
system of minimal local dimension.

An important property of UPBs is that they consist of
product states that cannot be perfectly distinguished using
local operations and classical communication (LOCC), a phe-
nomenon that has become known as quantum nonlocality
without entanglement [1,37] and has been recently shown
to admit a device-independent certification [38]. Asymptotic
LOCC is the topological closure of LOCC [39], which means
that an error is allowed but must vanish in the limit of an in-
finite number of rounds. Using our characterization of UPBs,
we provide a necessary condition for perfect discrimination
of UPBs with asymptotic LOCC and show that certain UPBs
cannot be perfectly discriminated even within asymptotic
LOCC.

The rest of this paper is organized as follows. In Sec. II,
we review the concepts of UPBs, GUPBs, and orthogonality
graphs. In Sec. III, we establish a connection between UPBs
and orthogonality graphs and derive upper and lower bounds
on the degrees of vertices of the orthogonality graphs associ-
ated to UPBs. In Sec. IV, we derive Eq. (2) and discuss its
relations with other bounds on the size of GUPBs. In Sec. V,
we provide an improved bound valid for certain local dimen-
sions. In Sec. VI, we show that minimal GUPBs saturating the

bound (2) should be associated to regular graphs and we use
this result to discuss a possible route to construct a minimal
GUPB. In Sec. VII, we give an efficient necessary condition
for perfect discrimination of UPBs within asymptotic LOCC.
Finally, the conclusions are provided in Sec. VIII.

II. PRELIMINARIES

In this section, we review a few basic facts about notation,
unextendible product bases, orthogonality graphs, and orthog-
onal representations.

Notation. In this paper, the number of vectors in a UPB
will always be denoted by k and will be called the size of
the UPB. The total dimension of the space Cd1 ⊗ Cd2 ⊗ · · · ⊗
CdN will always be denoted by D := d1d2 · · · dN . Moreover,
we will assume that the local dimensions are listed in nonde-
creasing order, namely d1 � d2 � · · · � dN . Finally, we will
often work with unnormalized product states, which simplifies
some of the expressions.

Unextendible product bases. Let us start from the mathe-
matical definition.

Definition 1. A set of orthogonal product states U =
{|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 ⊂ Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN is

an unextendible product basis (UPB) if the orthogonal com-
plement of Span{|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 has nonzero

dimension and contains no product state. A UPB is called a
genuinely unextendible product basis (GUPB) if it is a UPB
with respect to every possible bipartition of the tensor product
Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN .

A well-known result about bipartite UPBs is that they can
only exist if the local dimensions are strictly larger than 2
[1,5]: in other words, there is no UPB for bipartite systems of
the form C2 ⊗ Cn or of the form Cn ⊗ C2, for some n � 2.

In the multipartite case, it is important to stress that the no-
tion of GUPB is much stronger than the notion of multipartite
UPB. A multipartite UPB cannot be extended by any vector of
the fully product form |ψ1〉A1 |ψ2〉A2 · · · |ψN 〉AN , where |ψm〉Am

is a state of subsystem Am. In contrast, a GUPB cannot even
be extended by vectors of the form |�1〉S1 ⊗ |�2〉S2 , where
|�1〉 and |�2〉 are (possibly entangled) states of the quantum
systems associated to a partition of the composite system
A1 · · · AN into two disjoint parts S1 and S2.

The fact that no bipartite UPB can exist with local dimen-
sions smaller than 3 implies that an N-partite GUPB can only
exist if

dm � 3, ∀m ∈ {1, . . . , N}. (3)

Another important type of constraint on multipartite UPBs
and GUPBs concerns their size. A first bound was provided by
Bennett et al. [1], who showed that the size of a multipartite
UPB is lower bounded as

k �
N∑

m=1

(dm − 1) + 1. (4)

Later, Alon and Lovász [10] showed that the above inequality
holds with the “>” sign if at least one of the dimensions
(dm)N

m=1 is even and the sum
∑N

m=1(dm − 1) + 1 is odd.
Applying the above bounds to the bipartition (A1|A2 · · · AN )
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yields the following bounds on the size of GUPBs [26]:

k �

⎧⎨
⎩

d1 + D
d1

, if d1 and D
d1

are even,

d1 + D
d1

− 1, otherwise.
(5)

In the rest of the paper, we will call a lower bound nontrivial
if it improves over Eq. (5) for some values of N and of the
local dimensions. An example of a nontrivial lower bound is
Demianowicz’s bound (1) in the case when (N − 1)dN < N d1

and when certain conditions on the local dimensions are satis-
fied [26]. Another example of a nontrivial lower bound is our
bound (2), which is nontrivial for a larger set of values of the
local dimensions.

Orthogonality graphs. An undirected simple graph G =
(V, E ) is an ordered pair consisting of a set V of vertices and
a set E of edges, which is an irreflexive, symmetric relation
on V . A vertex u is a neighbor of a vertex v if u and v are
adjacent, namely (u, v) ∈ E . The neighborhood NG(v) of a
vertex v is the set of all neighbors of v. The degree degG(v)
is the number of vertices in the neighborhood NG(v), i.e.,
degG(v) = |NG(v)|. If the degree of each vertex is k, the graph
is called k-regular. A complete graph Kn is an (n − 1)-regular
graph with n vertices, that is, a graph in which every two
different vertices are connected. For two graphs G1 = (V1, E1)
and G2 = (V2, E2), the union of graphs G1 and G2 is the graph
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2).

The orthogonality graph of a set of vectors
{|ϕ(1)〉, . . . , |ϕ(k)〉} ⊂ Cd is the graph G = (V, E ) with
vertex set V = {v1, . . . , vk} and edge set E = {(vi, v j ) |
〈ϕ(i)|ϕ( j)〉 = 0}.

A connection between UPBs and orthogonality graphs was
made by Alon and Lovász in Ref. [10], where it was used to
prove existence results about minimal UPBs satisfying Ben-
nett el al.’s bound (4). We now introduce a new definition that
will allow us to provide an if and only if characterization of
UPBs in terms of orthogonality graphs.

Definition 2. Let G = (V, E ) be the orthogonality graph of
the set {|ϕ(1)〉, . . . , |ϕ(k)〉} ⊂ Cd and let W ⊆ V be a subset
of the vertices. We say that the subset W is saturated if the
corresponding vectors {|ϕ(i)〉 | vi ∈ W } span the whole space
Cd . Otherwise, we call the set W unsaturated.

For a set of N-partite product vectors
{|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN ,

one can define N orthogonality graphs.
Definition 3. Let {|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 in Cd1 ⊗

Cd2 ⊗ · · · ⊗ CdN be a set of N-partite product vectors. For
m ∈ {1, . . . , N}, the orthogonality graph Gm = (V, Em) is the
graph with vertex set V = {v1, v2, . . . , vk} and edge set Em =
{(vi, v j ) | 〈ϕ(i)

m |ϕ( j)
m 〉Am = 0}.

Note that all the graphs Gm have the same vertex set and
(generally) different edges due to the (generally) different
orthogonality relations between the vectors in different sub-
systems.

We now give a necessary and sufficient condition, formu-
lated in terms of orthogonality graphs, for a set of product
states to be a UPB.

Lemma 1. Let U be a set of k product vectors in Cd1 ⊗
Cd2 ⊗ · · · ⊗ CdN and let (Gm)N

m=1 be the corresponding

orthogonality graphs. The set U is a UPB if and only if the
following conditions hold.

(i)
⋃N

m=1 Gm = Kk .
(ii)

⋃N
m=1 Wm 
= V for every N-tuple (W1,W2, . . . ,WN )

in which Wm is an unsaturated set for Gm for every m ∈
{1, . . . , N}.

The proof of Lemma 1 is provided in Appendix A. To
illustrate the lemma, we consider the following example.

Example 1. The following product vectors form a UPB in
C2 ⊗ C2 ⊗ C2 ⊗ C3:

|ψ1〉 = |0〉A1 |0〉A2 |0〉A3 |0〉A4 ,

|ψ2〉 = (|0〉 + |1〉)A1 (|0〉 + |1〉)A2 (|0〉 + |1〉)A3 |1〉A4 ,

|ψ3〉 = (|0〉 + 2|1〉)A1 (|0〉 + 2|1〉)A2 (|0〉 + 2|1〉)A3 |2〉A4 ,

|ψ4〉 = |1〉A1 (2|0〉 − |1〉)A2 (|0〉 − |1〉)A3 (|0〉 + |1〉 + |2〉)A4 ,

|ψ5〉 = (|0〉 − |1〉)A1 |1〉A2 (2|0〉 − |1〉)A3 (|0〉 + 2|1〉 − 3|2〉)A4 ,

|ψ6〉 = (2|0〉 − |1〉)A1 (|0〉 − |1〉)A2 |1〉A3 (5|0〉 − 4|1〉 − |2〉)A4 .

(6)

The UPB {|ψi〉}6
i=1 has the minimum size compatible with

Bennett et al.’s bound (4), which in this case reads k �∑4
m=1(dm − 1) + 1 = 6.
Analysis of Example 1. For the vectors in Example 1, the

orthogonality graphs (Gm)4
m=1 and their common vertex set

are shown in Fig. 1. It is then easy to check that the
union of the graphs (Gm)4

m=1 is the complete graph K6.
Hence the first condition in Lemma 1 is satisfied. Regard-
ing the second condition, note that every two vectors in
the set {|0〉, (|0〉 + |1〉), (|0〉 + 2|1〉), |1〉, (|0〉 − |1〉), (2|0〉 −
|1〉)} ⊂ C2 are linearly independent and therefore form a basis
for C2. Hence the size of any unsaturated set Wm in Gm

can be at most 1 for every m ∈ [1, 3]. Similarly, since any
three vectors in the set {|0〉, |1〉, |2〉, (|0〉 + |1〉 + |2〉), (|0〉 +
2|1〉 − 3|2〉), (5|0〉 − 4|1〉 − |2〉)} ⊂ C3 are linearly indepen-
dent, the size of any unsaturated set W4 in G4 is at most 2.
Putting everything together, we obtain that the union of any
four unsaturated sets (Wm)4

m=1 cannot contain all vertices in V .
Since both conditions in Lemma 1 are satisfied, we conclude
that the vectors {|ψi〉}6

i=1 form a UPB.
Lemma 1 also implies an upper bound on the number of

elements in the unsaturated sets associated to a UPB.
Lemma 2. Let (Gm)N

m=1 be the orthogonality graphs asso-
ciated to a UPB of size k. Then, the size of any unsaturated set
Wm in Gm is upper bounded as

|Wm| � k − 1 −
∑

i∈{1,...,N}\{m}
(di − 1). (7)

The proof is provided in Appendix A.
Orthogonal representations of a graph. An orthogonal

representation [27] of a graph G = (V, E ) in dimension d is
a set of k = |V | vectors {|ϕ(1)〉, . . . , |ϕ(k)〉} ⊂ Cd such that
〈ϕ(i)|ϕ( j)〉 = 0 for every pair of adjacent vertices vi and v j .
The representation is called faithful if 〈ϕ(i)|ϕ( j)〉 = 0 only if
vi and v j are adjacent.
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FIG. 1. Orthogonality graphs of the UPB in Example 1.

One way to search for an orthogonal representation of a
given graph is to solve the following optimization problem:

minimize
∑

(vi,v j )∈E

|〈ϕ(i)|ϕ( j)〉|

subject to 〈ψ |ϕ(i)〉 = 1, ∀i = 1, . . . , k, (8)

where |ϕ(i)〉 are variable vectors and |ψ〉 is an arbitrarily cho-
sen nonzero constant vector. Here, the constraint (8) ensures
that every |ϕ(i)〉 is nonzero. This constraint does not restrict
the search space of orthogonal representations since, for any
given valid orthogonal representation, one can always rotate
the vectors globally so that each vector has a nonzero overlap
with |ψ〉 and scale each vector individually to make every
overlap be one. In our realization of this algorithm, we fix
the first component of each vector |ϕ(i)〉 to be one, which is
equivalent to setting |ψ〉 to be the unit vector along the first
axis. After optimization, if the objective function reaches zero,
then the vectors {|ϕ(i)〉}k

i=1 satisfy the desired orthogonality
relations.

Equation (8) shows that the search for orthogonal repre-
sentations of a graph is an optimization problem with linear
constraints. Various algorithms for this task are known, such
as sequential least squares programing [40,41]. Notice that the
problem in Eq. (8) is not a convex optimization and therefore
optimization algorithms are not guaranteed to find the global
minimum. Still, when an algorithm returns the value zero, this
value is automatically guaranteed to be the global minimum
and the result of the optimization is an orthogonal represen-
tation of the given graph. In general, the solution may not be
faithful, meaning there may exist vectors |ϕ(i)〉 and |ϕ( j)〉 that
are orthogonal even if the corresponding vertices vi and v j are
not adjacent.

Lemma 1 suggests a systematic route to construct UPBs of
any desired size k in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN as follows.

(1) Decompose the complete graph Kk into N subgraphs
(Gm)N

m=1.
(2) For each Gm, find an orthogonal representation in Cdm .
(3) For each arbitrary N-tuple (Wm)N

m=1 of unsaturated sets
Wm in Gm = (V, Em), check that

⋃N
m=1 Wm 
= V .

The first step, namely the decomposition of the complete
graph into subgraphs (Gm)N

m=1 will be discussed in the next
section of the paper. Once a decomposition is given, the sec-
ond step can be attempted by optimization algorithms that
search for an orthogonal representation of the graphs Gm,
as discussed in the previous paragraph. Computationally, this
step is the most challenging one. Finally, the third step can be

achieved by brute force enumerating all the unsaturated sets
of the graphs Gm, once the decomposition (Gm)N

m=1 and an
orthogonal representation of the graphs Gm are known. The
computational cost of this step is tolerable for instances of
the problem where N and D are small. In general, the size
of every unsaturated set in Gm is upper bounded by k − 1 −∑

i∈{1,...,N}\{m}(di − 1) (by Lemma 2) and further inspection of
the structure of the orthogonality graphs Gm and their orthog-
onal representations can further reduce this number. Hence,
as long as the number of systems N and the total dimension D
are small, the enumeration of all N-tuples of unsaturated sets
remains computationally feasible.

To illustrate our method, we construct here a new UPB
of size 8 for a two-qubits and two-qutrits system. The ba-
sis and its orthogonality graphs are shown in Example 3 in
Appendix A. This UPB has the minimum size compatible
with Alon and Lovász’s bound (4), which in this case reads∑4

m=1(dm − 1) + 1 = 7 is odd and at least one of the local
dimensions (2,2,3,3) is even.

Later in the paper, we will further discuss the minimal
case N = 3, with d1 = d2 = d3 = 3. In this case, k can be
generally bounded as 7 � k � 23 for UPBs and 13 � k � 23
for GUPBs [the lower bounds come from Eq. (4) for UPBs
and from Eqs. (1) and (2) for GUPBs, while the upper bound
comes from the fact that the projector on the span of a UPB
is the orthogonal complement of a bound entangled state with
positive partial transpose, and no such state can have a rank
smaller than 4 [42].

III. ORTHOGONALITY GRAPHS OF UPBS

In this section, we show that the orthogonality graphs as-
sociated to UPBs must satisfy nontrivial conditions on the
degree of their vertices. In particular, we show that every
minimal UPB saturating Bennett et al.’s bound (4) must cor-
respond to regular graphs.

Lemma 3. For every UPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN , the
degrees of the vertices in the orthogonality graphs (Gm)N

m=1
must satisfy the condition

dm − 1 � degGm
(vi ) � k − 1 −

∑
i∈{1,...,N}\{m}

(di − 1),

∀vi ∈ V, ∀m ∈ {1, . . . , N}. (9)

The proof of Lemma 3 is provided in Appendix A.
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Our bounds on the degrees of the vertices are satisfied
with the equality sign when the UPB has the minimal size
compatible with Bennett et al.’s bound (4) as follows.

Proposition 1. For a minimal UPB saturating Bennett
et al.’s bound (4), the orthogonality graph Gm is a (dm − 1)-
regular graph for every m ∈ {1, . . . , N}.

An example of this situation is Example 1. There, Gi is a
1-regular graph for 1 � i � 3 and G4 is a 2-regular graph.

Since regularity is a strong graph-theoretic property,
Proposition 1 establishes strong constraint on every minimal
UPB saturating Bennett et al.’s bound. In the next section, we
build on the connection with orthogonality graphs to derive
the bound (2) on the size of candidate GUPBs. Later in the
paper, we will show that the bound (2) plays for GUPBs a
similar role as Bennett et al.’s bound for UPBs: as we will
show, every minimal GUPB saturating bound (2) must be
associated to regular orthogonality graphs.

IV. BOUND ON THE GUPB SIZE

In this section, we derive the bound (2) and discuss its
relations with other bounds on the size of GUPBs.

Theorem 1. Every GUPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN must
satisfy the bound (2) or equivalently

k �
⌈∑N

m=1
D
dm

− 1

N − 1

⌉
. (10)

Proof. Let us assume there exists a GUPB U in Cd1 ⊗
Cd2 ⊗ · · · ⊗ CdN . Since U is a UPB with respect to the bi-
partition Am | {A1A2 · · · AN } \ {Am} for 1 � m � N , Lemma 3
implies that the degree of every vertex vi of Gm satisfies the
condition

degGm
(vi ) � k − 1 −

(
D

dm
− 1

)
= k − D

dm
. (11)

Now, Lemma 1 tells us that the union of the graphs (Gm)N
m=1 is

the complete graph Kk . Since the complete graph Kk is (k − 1)
regular, we have the bound

N∑
m=1

degGm
(vi ) � k − 1. (12)

Combining Eqs. (11) and (12), we then obtain the relation

N∑
m=1

(
k − D

dm

)
� k − 1, (13)

which implies the desired bound

k �
∑N

m=1
D
dm

− 1

N − 1
. (14)

Since k is (by definition) an integer, the bound also holds with
the ceiling sign, as in Eq. (10). �

Our lower bound coincides with Demianowicz’s bound (1)
when the local dimensions are all equal, i.e., if dm = d,∀m ∈
{1, . . . , N}. In general, however, our bound is strictly more
accurate, as shown in the following proposition.

Proposition 2. The right-hand side (RHS) of Eq. (10) is
always larger than or equal to the RHS of Eq. (1).

TABLE I. Comparison among three lower bounds on the GUPB
size for different values of the local dimensions.

Local
dimensions Bound (1) [26] Bound (5) [1,10,26] Our bound (2)

(3,3,4) 13 14 16
(3,3,5) 13 17 19
(3,3,3,4) 36 38 45
(3,3,4,4) 48 50 56
(3,3,3,3,4) 101 110 128
(3,3,3,4,4) 135 146 162

The proof of Proposition 2 is provided in Appendix B.
Another benefit of the new bound (2) is that it provides a

nontrivial lower bound in new cases, including values of the
local dimensions for which no previous bound could improve
over Eq. (5). Some examples of this situation are illustrated in
Table I.

In Ref. [26], Demianowicz showed that Eq. (1) is a
nontrivial lower bound if and only if (N − 1)dmax < Ndmin,
where dmin = min{d1, d2, . . . , dN }, and the local dimensions
satisfy the conditions (d1, d2, d3) 
= (2p, 2p, 3p − 1) and
(d1, d2, d3) 
= (2p − 1, d̃, 3p − 2) for every integer p � 2 and
every integer d̃ satisfying 2p − 1 � d̃ � 3p − 2. In contrast,
we now show that our lower bound (2) remains nontrivial
even when the local dimensions are of the form (d1, d2, d3) =
(2p, 2p, 3p − 1) or (d1, d2, d3) = (2p − 1, d̃, 3p − 2).

Proposition 3. In the tripartite case, the bound (2) is non-
trivial when (d1, d2, d3) = (2p, 2p, 3p − 1) for some integer
p � 2 and when (d1, d2, d3) = (2p − 1, d̃, 3p − 2) for some
integer p � 2 and some integer d̃ ∈ [2p − 1, 3p − 2].

The proof of Proposition 3 is provided in Appendix B.

V. IMPROVED BOUND UNDER CONDITIONS
ON THE LOCAL DIMENSIONS

We now show that our bound (2) can be slightly improved
if the local dimensions satisfy certain conditions as follows.

Proposition 4. If at least one of the local dimensions
(dm)N

m=1 is even and the sum
∑N

m=1
D
dm

− 1 is an odd multiple

of N − 1, then the size of any GUPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗
CdN is lower bounded as

k �
∑N

m=1
D
dm

− 1

N − 1
+ 1. (15)

The proof of Proposition 4 is provided in Appendix B. For
example, if (d1, d2, d3) = (3, 4, 5), then k � 24 for a GUPB
of size k in C3 ⊗ C4 ⊗ C5 by Proposition 4. Similarly, if
(d1, d2, d3, d4) = (4, 4, 4, 4), then k � 86. This second exam-
ple can be generalized to all situations in which the number of
system N is even and all local dimensions are equal to N .

Corollary 1. If N is even and dm = N for every m ∈
{1, . . . , N}, then the minimum size of a GUPB in (CN )⊗N is
lower bounded as

k � NN − 1

N − 1
+ 1. (16)
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The bound (16) is another example of a nontrivial bound,
i.e., of a bound that improves over bound (5). Here the im-
provement is exponential: for asymptotically large N , the
difference between the RHS of Eq. (16) and the RHS of
Eq. (5) grows as NN−2. It is also worth noting that the bound
(16) provides also a small improvement over bound (1) in a
scenario where all local dimensions are equal.

VI. ORTHOGONALITY GRAPHS FOR MINIMAL GUPBS

We now derive an analog of Proposition 1 for GUPBs,
showing that a certain kind of minimal GUPBs must be as-
sociated to regular graphs.

Proposition 5. For a minimal GUPB saturating the bound
(2), the orthogonality graph Gm is a (k − D

dm
)-regular graph for

every m ∈ {1, . . . , N}.
The proof of Proposition 5 is provided in Appendix B. We

now use Proposition 5 to put forward a possible approach to
construct a GUPB of minimal size and local dimension. Since
UPBs do not exist in C2 ⊗ Cn [1,5], the minimal setting for
a GUPB is a three-qutrits system. By bounds (1) and (2), we
know that the size of a candidate GUPB must be at least 13.

Now, Proposition 5 shows that, if there exists a GUPB of
size 13 in C3 ⊗ C3 ⊗ C3, then each orthogonality graph Gm

is a 4-regular graph. We then have the following proposition.
Proposition 6. A set of product states

{|ϕ(i)
1 〉A1 |ϕ(i)

2 〉A2 |ϕ(i)
3 〉A3}13

i=1 in C3 ⊗ C3 ⊗ C3 is a GUPB
if the following three conditions hold.

(i)
⋃3

m=1 Gm = K13, where each orthogonality graph Gm is
a 4-regular graph.

(ii) The subspace spanned by any five states in {|ϕ(i)
m 〉Am}13

i=1
has dimension 3 for any m = 1, 2, 3.

(iii) The subspace spanned by any nine states in
{|ϕ(i)

j1
〉Aj1

⊗ |ϕ(i)
j2

〉Aj2
}13

i=1 has dimension 9 for any ( j1, j2) ∈
{(1, 2), (1, 3), (2, 3)}.

Proof. Immediate from Lemma 1 and the fact that the
orthogonality graphs (Gm)3

m=1 are 4-regular. �
Proposition 6 provides a possible approach to construct a

tripartite GUPB of the minimum local dimension. There are
three steps for constructing a GUPB of size 13 in C3 ⊗ C3 ⊗
C3:

(1) decompose the complete graph K13 into three 4-regular
graphs (Gm)3

m=1;
(2) find an orthogonal representation for each Gm in C3;
(3) check the conditions (ii) and (iii) of Proposition 6.
We now discuss the possible ways forward and the

challenges arising in the above steps. Regarding step
(1), there are many ways to decompose K13 into three
4-regular graphs. In particular, one can decompose K13

into three Cayley graphs [43]. To do this, one has
to consider the group of integers modulo 13, Z13 =
{0,±1,±2,±3,±4,±5,±6}. Given a 2-element set S =
{p, q}, where 1 � p 
= q � 6, one can construct the Cayley
graph G(S) = (V, E ), where V = Z13 and E = {(a, b) | a −
b ∈ S ∪ (−S)}. By construction, G(S) is a 4-regular graph.
By partitioning the set {1, 2, 3, 4, 5, 6} into three 2-element
subsets S1 = {p1, q1}, S2 = {p2, q2}, and S3 = {p3, q3}, we
then obtain the desired decomposition K13 = ⋃3

m=1 G(Sm ).

Note that there are (6
2)×(4

2)×(2
2)

3×2×1 = 15 distinct partitions of

{1, 2, 3, 4, 5, 6} into three 2-element subsets, where
(n

i

)
is

the binomial coefficient. Hence there are 15 distinct decom-
positions of K13 into three Cayley graphs. While step (1)
is relatively straightforward, a bottleneck arises in step (2),
where one has to find an orthogonal representation of the
graphs in the decomposition of K13. For each decomposition,
our algorithm in Sec. II can find the orthogonal representa-
tions of at most two graphs, leaving the third unspecified.

The bottleneck of the orthogonal representations remains
even if one replaces the decomposition into Cayley graphs
with some other decomposition of K13 in terms of regular
graphs. To better understand the origin of the problem, we
point out that it is not overwhelmingly difficult to find orthog-
onal representations for all 4-regular graphs with 13 vertices,
as the total number of such graphs, up to isomorphism, is
10 880 [44]. However, our algorithm for searching orthogonal
representation does not ensure the fulfillment of condition
(ii) or (iii) of Proposition 6. By iterating the algorithm on
the same graph, one may hope to find orthogonal represen-
tations fulfilling condition (ii) by chance. Unfortunately, we
did not encounter any such solutions. One way to circumvent
the problem would be to translate the condition (ii) into a
constraint that has to be satisfied while searching for the
orthogonal representation with our algorithm in Sec. II. The
problem with this approach is that condition (ii) results in non-
linear constraints, which heavily slow down the convergence
of the optimization process. We managed to run the modified
algorithm twice on all 4-regular 13-vertex graphs, but did
not find any orthogonal representation satisfying condition
(ii). Due to these obstacles, finding an example of GUPB
through the above route still requires a major investment of
computational resources.

VII. APPLICATION: LOCAL APPROXIMATION FOR
PERFECT DISCRIMINATION OF UPBS

In this section, we consider local approximation for per-
fect discrimination of UPBs. It is known that UPBs cannot
be perfectly distinguished under LOCC, which shows the
phenomenon of quantum nonlocality without entanglement
[5,37]. More generally, some UPBs still cannot be per-
fectly distinguished by using asymptotic LOCC (denoted by
LOCC), wherein an error is allowed but must vanish in the
limit of an infinite number of rounds [45,46]. LOCC is the
topological closure of LOCC and the LOCC class is a proper
subset of the LOCC class [39], that is,

LOCC � LOCC. (17)

Cohen gave a necessary condition for perfect discrimination
of orthogonal product states within LOCC [46].

Lemma 4. (Ref. [46]). Consider a set of orthogonal
product states S = {|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 ⊂ Cd1 ⊗

Cd2 ⊗ · · · ⊗ CdN . For each party As, define the subset of
all index pairs JAs = {(i, j) | 〈ϕ(i)

s |ϕ( j)
s 〉As = 0; 〈ϕ(i)

t |ϕ( j)
t 〉At 
=

0,∀t 
= s}. If for each party As the set {|ϕ(i)
s 〉As〈ϕ( j)

s |}(i, j)∈JAs

spans a space of dimension d2
s − 1, then S cannot be perfectly

discriminated within LOCC.
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It is not easy to check this condition when the size of the
set is large. Next, we transform this condition into another
condition.

A positive operator-valued measure (POVM) on Cd is a
set of positive semidefinite operators {Em = M†

mMm}, which
satisfy the completeness relation

∑
m Em = I, and I is the

identity operator on Cd . Each Em is called a POVM ele-
ment. A measurement is trivial if all the POVM elements are
proportional to the identity operator. Otherwise, it is called
nontrivial.

For a set of orthogonal product states {|�i〉 =
|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1 ⊂ Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN ,

a measurement {Em = M†
mMm} on party As is called

an orthogonality-preserving local measurement if the
postmeasurement states {IA1 ⊗ · · · ⊗ IAs−1 ⊗ Mm ⊗ IAs+1 ⊗
· · · ⊗ IAN |�i〉}k

i=1 keep being mutually orthogonal for each m.
Lemma 5. Consider an orthogonal set of product states

{|�i〉 = |ϕ(i)
1 〉A1 |ϕ(i)

2 〉A2 · · · |ϕ(i)
N 〉AN }k

i=1. For each party As, the
set {|ϕ(i)

s 〉As〈ϕ( j)
s |}(i, j)∈JAs

spans a subspace of dimension d2
s −

1 if and only if the only orthogonality-preserving local mea-
surements on As are trivial.

Proof. First, we prove the necessity. Assume an orthogo-
nality-preserving local measurement {Em} is performed on As

party; then we obtain

〈�i|IA1 ⊗ · · · ⊗ IAs−1 ⊗ Em ⊗ IAs+1 ⊗ · · · ⊗ IAN |� j〉
= 〈

ϕ(i)
s

∣∣Em

∣∣ϕ( j)
s

〉
As

∏
1�t 
=s�N

〈
ϕ

(i)
t

∣∣ϕ( j)
t

〉
At

= 0, ∀i 
= j.

If (i, j) ∈ JAs , then 〈
ϕ(i)

s

∣∣Em

∣∣ϕ( j)
s

〉
As

= 0. (18)

We obtain

Tr
(
Em

∣∣ϕ( j)
s

〉
As

〈
ϕ(i)

s

∣∣) = 0, ∀(i, j) ∈ JAs . (19)

Let Q be the subspace spanned by the set
{|ϕ(i)

s 〉As〈ϕ( j)
s |}(i, j)∈JAs

and Q⊥ be the orthogonal complement
of Q. By Eq. (19), Em ∈ Q⊥. If Em is proportional to the
identity operator, then it must satisfy Eq. (19). Further,
since Dim(Q) = d2

s − 1, then Dim(Q⊥) = 1, and Em must
be proportional to the identity operator. Thus the only
orthogonality-preserving local measurements on party As are
trivial.

Now we prove the sufficiency by contradiction. Note
that Dim(Q) � d2

s − 1, as the identity operator belongs to
Q⊥. Assume Dim(Q) � d2

s − 2. Let PC be the subspace
spanned by the set of Hermitian matrices {|ϕ(i)

s 〉As〈ϕ( j)
s | +

|ϕ( j)
s 〉As〈ϕ(i)

s |, i|ϕ(i)
s 〉As〈ϕ( j)

s | − i|ϕ( j)
s 〉As〈ϕ(i)

s |}(i, j)∈JAs
, i.e.,

PC =
{ ∑

(i, j)∈JAs

ai, j
(∣∣ϕ(i)

s

〉
As

〈
ϕ( j)

s

∣∣ + ∣∣ϕ( j)
s

〉
As

〈
ϕ(i)

s

∣∣)

+ bi, j
(
i
∣∣ϕ(i)

s

〉
As

〈
ϕ( j)

s

∣∣ − i
∣∣ϕ( j)

s

〉
As

〈
ϕ(i)

s

∣∣) | ai, j, bi, j ∈ C

}
.

Since any element of {|ϕ(i)
s 〉As〈ϕ( j)

s |, |ϕ( j)
s 〉As〈ϕ(i)

s |} is a linear
combination of the two Hermitian matrices {|ϕ(i)

s 〉As〈ϕ( j)
s | +

|ϕ( j)
s 〉As〈ϕ(i)

s |, i|ϕ(i)
s 〉As〈ϕ( j)

s | − i|ϕ( j)
s 〉As〈ϕ(i)

s |}, and vice versa,

then PC = Q. Further, we define the R subspace

PR =
{ ∑

(i, j)∈JAs

ai, j
(∣∣ϕ(i)

s

〉
As

〈
ϕ( j)

s

∣∣ + ∣∣ϕ( j)
s

〉
As

〈
ϕ(i)

s

∣∣)

+ bi, j
(
i
∣∣ϕ(i)

s

〉
As

〈
ϕ( j)

s

∣∣ − i
∣∣ϕ( j)

s

〉
As

〈
ϕ(i)

s

∣∣) | ai, j, bi, j ∈ R

}
.

Then PR contains only Hermitian matrices and PR ⊂ PC .
Assume {H1, H2, . . . , Hn} is a linearly independent set in PR.
Let

n∑
k=1

(xk + iyk )Hk = 0, (20)

where xk + iyk ∈ C, xk, yk ∈ R. Taking the Hermitian conju-
gate on both sides, we have

n∑
k=1

(xk − iyk )Hk = 0. (21)

Then by Eqs. (20) and (21), we have
∑n

k=1 xkHk = 0 and∑n
k=1 ykHk = 0. This means that xk = yk = 0 and xk + iyk =

0 for any 1 � k � n. Thus any linearly independent set in PR

is also a linearly independent set PC . We obtain

Dim(PR) � Dim(PC ) = Dim(PQ) � d2
s − 2. (22)

Since the dimension of subspace consisting of all Hermitian
matrices on Cds is d2

s , we have Dim(P⊥
R ) � 2. There must

exist E ∈ P⊥
R , which is not proportional to the identity matrix.

Furthermore, there must exist c ∈ R such that each eigenvalue
λ of cE satisfies |λ| < 1

2 . Then { 1
2I + cE , 1

2I − cE} is a non-
trivial orthogonality-preserving local measurement on As. �

Then by using Lemmas 4 and 5, we obtain the following.
Proposition 7. Consider a set of orthogonal product states

S = {|ϕ(i)
1 〉A1 |ϕ(i)

2 〉A2 · · · |ϕ(i)
N 〉AN }k

i=1. For each party As, if the
only orthogonality-preserving local measurements on As are
trivial, then S cannot be perfectly discriminated within
LOCC.

There are a lot of sets of orthogonal product states that can-
not be perfectly discriminated within LOCC [47–63] and the
main method is to show that the only orthogonality-preserving
local measurements on each party are trivial. By Proposition
7, these sets of orthogonal product states cannot be perfectly
discriminated within LOCC either.

Cohen showed that, when
∑N

m=1(dm − 1) + 1 � 2dmax

− 1, the UPB with the minimum size k = ∑N
m=1(dm − 1) + 1

in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN cannot be perfectly discriminated
within LOCC [46]. However, when

∑N
m=1(dm − 1) + 1 <

2dmax − 1, there are still some UPBs with the minimum size
that cannot be perfectly discriminated within LOCC.

Example 2. Let

|�1〉 = |0〉A1 |0〉A2 |0〉A3 ,

|�2〉 = (|0〉 + |1〉)A1 (|0〉 + |1〉)A2 |1〉A3 ,

|�3〉 = (|0〉 + 2|1〉)A1 (|0〉 + 2|1〉)A2 |2〉A3 ,

|�4〉 = |1〉A1 (2|0〉 − |1〉)A2 (|0〉 − |2〉 + |3〉)A3 ,

|�5〉 = (|0〉 − |1〉)A1 |1〉A2 (|0〉 + |1〉 − |3〉)A3 ,

|�6〉 = (2|0〉 − |1〉)A1 (|0〉 − |1〉)A2 (|1〉 + |2〉 + |3〉)A3 .

(23)
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FIG. 2. Orthogonality graphs of the UPB in Example 2.

Then {|�i〉}6
i=1 is a UPB with the minimum size 6 in C2 ⊗

C2 ⊗ C4 and it cannot be perfectly discriminated within
LOCC.

Proof. The orthogonality graphs (Gm)3
m=1 of {|�i〉}6

i=1 are
shown in Fig. 2. Then it is easy to check that ∪3

m=1Gm =
K6. Hence the first condition in Lemma 1 is satisfied. Re-
garding the second condition, note that every two vectors in
the set {|0〉, (|0〉 + |1〉), (|0〉 + 2|1〉), |1〉, (|0〉 − |1〉), (2|0〉 −
|1〉)} ⊂ C2 are linearly independent; the size of any unsat-
urated set Wm in Gm can be at most 1 for every m = 1, 2.
Similarly, since any four vectors in the set {|0〉, |1〉, |2〉, (|0〉 −
|2〉 + |3〉), (|0〉 + |1〉 − |3〉), (|1〉 + |2〉 + |3〉)} ⊂ C4 are lin-
early independent, the size of any unsaturated set W4 in G4

is at most 3. Putting everything together, we obtain that the
union of any three unsaturated sets (Wm)3

m=1 cannot contain all
vertices in V . Since both conditions in Lemma 1 are satisfied,
we conclude that the vectors {|�i〉}6

i=1 form a UPB.
Next, we show that {|�i〉}6

i=1 cannot be perfectly discrimi-
nated within LOCC.

Assume an orthogonality-preserving local measurement
{Em} is performed on A1 party, where each POVM element
Em can be written as a 2 × 2 matrix Em = (ai, j )i, j∈Z2 under
the basis {|i〉}i∈Z2 . By the orthogonality graph G1, we know
that v1 and v4 are adjacent; then we obtain 〈0|Em|1〉A1 =
〈1|Em|0〉A1 = 0, that is, a0,1 = a1,0 = 0. Moreover, since v2

and v5 are adjacent, we have (〈0| + 〈1|)Em(|0〉 − |1〉)A1 = 0
and it implies a0,0 = a1,1. Thus the orthogonality-preserving
local measurements {Em} on A1 are trivial.

Since the orthogonality graph G2 is similar to G1, we can
also show that the only orthogonality-preserving local mea-
surements on A2 are trivial in the same way.

Assume an orthogonality-preserving local measurement
{Em} is performed on A3 party, where each POVM element
Em can be written as a 4 × 4 matrix Em = (ai, j )i, j∈Z4

under the basis {|i〉}i∈Z4 . By the orthogonality graph
G3, we known that v1, v2, and v3 are two adjacent to
each other; then we obtain 〈0|Em|1〉A3 = 〈1|Em|0〉A3 =
〈0|Em|2〉A3 = 〈2|Em|0〉A3 = 〈1|Em|2〉A3 = 〈2|Em|1〉A3 = 0,
that is, a0,1 = a1,0 = a0,2 = a2,0 = a1,2 = a2,1 = 0. Since
v1 and v6 are adjacent, we have 〈0|Em(|1〉 + |2〉 + |3〉)A3 =
(〈1| + 〈2| + 〈3|)Em|0〉A3 = 0 and it implies a0,3 = a3,0 = 0.
By using v2 and v4, we have 〈1|Em(|0〉 − |2〉 + |3〉)A3 =
(〈0| − 〈2| + 〈3|)Em|1〉A3 = 0 and it implies a1,3 = a3,1 = 0.
By using v3 and v5, we have 〈2|Em(|0〉 + |1〉 − |3〉)A3 =
(〈0| + 〈1| − 〈3|)Em|2〉A3 = 0 and it implies a2,3 = a3,2 = 0.
By using v4 and v5, we have (〈0| − 〈2| + 〈3|)Em(|0〉 + |1〉 −
|3〉)A3 = 0 and this implies a0,0 = a3,3. By using v4 and
v6, we have (〈0| − 〈2| + 〈3|)Em(|1〉 + |2〉 + |3〉)A3 = 0

and this implies a2,2 = a3,3. By using v5 and v6, we
have (〈0| + 〈1| − 〈3|)Em(|1〉 + |2〉 + |3〉)A3 = 0 and this
implies a1,1 = a3,3. Then we obtain a0,0 = a1,1 = a2,2 = a3,3.
This means that the only orthogonality-preserving local
measurements on A3 are trivial.

By Proposition 7, the UPB {|�i〉}6
i=1 cannot be perfectly

discriminated within LOCC. �
We can also use Proposition 7 to show that other UPBs

are indistinguishable within LOCC. This does not mean
that this approach is applicable to all UPBs. For example,
let {|�i〉}5

i=1 be the UPB with the minimum size in C3 ⊗
C3 [5]; then {|�i〉}5

i=1

⋃{|0〉A1 |3〉A2 , |1〉A1 |3〉A2 , |2〉A1 |3〉A2} is
a UPB with size 8 in C3 ⊗ C4. However, a nontriv-
ial orthogonality-preserving local measurement {|0〉A2〈0| +
|1〉A2〈1| + |2〉A2〈2|, |3〉A2〈3|} can be performed on party A2.
Moreover, all UPBs with the minimum size appear to be
indistinguishable within LOCC.

VIII. CONCLUSIONS

In this paper, we established a graph-theoretic characteri-
zation of UPBs and GUPBs. Building on this characterization,
we developed a constructing method for finding UPBs in low
dimensional systems and we derived a new lower bound on
the number of elements in any GUPB. Our bound significantly
improves on the state of the art [26], thus placing stronger
restrictions on potential candidates of GUPBs. Equivalently,
our bound implies an upper bound on the rank of any bound
entangled state built from a GUPB. Our results indicate a po-
tential route to find a minimal tripartite GUPB consisting of 13
product vectors. While the numerical search for such GUPB
is still challenging, our construction helps clarify where the
problems lie and may eventually help find a suitable modi-
fication that is amenable to numerical search. Moreover, we
presented an efficient necessary condition for perfect discrim-
ination of UPBs within asymptotic LOCC, which can be used
to show that some UPBs cannot be perfectly discriminated
within asymptotic LOCC.

Besides addressing the open problem of the existence of
GUPBs, we provided a systematic route to the construction
of multipartite UPBs of any desired size between the mini-
mum and the maximum. Equivalently, our construction can
be viewed as a systematic way of constructing bound entan-
gled states of different ranks. In addition, our results have
an application to the study of nonlocality without entangle-
ment. In Ref. [38] it was shown that quantum measurements
exhibiting nonlocality without entanglement can be certified
in a device-independent way. Since our results provide a sys-
tematic construction of multipartite UPBs, the corresponding
scenarios of nonlocality without entanglement are likely to
give rise to new self-testing procedures. Finally, another in-
teresting direction is the study of nontrivial Bell inequalities
with no quantum violation [6–8]. In this context, our work can
be used to construct such inequalities in multipartite systems
with larger local dimensions, going beyond the multiqubit
scenario typically considered in the literature.

ACKNOWLEDGMENTS

We thank S. M. Cohen, Y. Zhang, M.-S. Li, and L. Chen
for discussing this problem. F.S., G.B., and G.C. acknowledge

033144-8



GRAPH-THEORETIC CHARACTERIZATION OF … PHYSICAL REVIEW RESEARCH 5, 033144 (2023)

3

1

2

3

4

5

6

7

8

4

1

2

3

4

5

6

7

8

2

1

2

3

4

5

6

7

8

1

1

2

3

4

5

6

7

8

FIG. 3. Orthogonality graphs of the UPB in Example 3.
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APPENDIX A: PROOFS OF LEMMAS 1, 2, AND 3

Lemma 1. Let U be a set of k product vectors in Cd1 ⊗
Cd2 ⊗ · · · ⊗ CdN and let (Gm)N

m=1 be the corresponding or-
thogonality graphs. The set U is a UPB if and only if the
following conditions hold.

(i)
⋃N

m=1 Gm = Kk .
(ii)

⋃N
m=1 Wm 
= V for every N-tuple (W1,W2, . . . ,WN )

in which Wm is an unsaturated set for Gm for every m ∈
{1, . . . , N}.

Proof. The proof builds on arguments by Bennett et al. (cf.
Lemma 1 of [1]), which are translated here into the graph the-
oretic framework of our paper by using the notion of saturated
set. First, we observe that the product states in the set U are
mutually orthogonal if and only if

⋃N
m=1 Gm = Kk . Hence we

only need to show that a set of orthogonal product states U is
unextendible if and only if condition (ii) holds.

The “only if” part is proven by contrapositive: we show
that if condition (ii) is violated, then the set U must be ex-

tendible. The proof is as follows: if there exists an unsaturated
set Wm of Gm for every 1 � m � N such that

⋃N
m=1 Wm = V ,

then we can find a state |ψ〉Am ∈ Cdm that is orthogonal to
any state in {|ϕ(i)

m 〉Am | vi ∈ Wm} for every 1 � m � N and
|ψ1〉A1 |ψ2〉A2 · · · |ψN 〉AN is orthogonal to any state in U .

For the “if” part, we also proceed by contrapositive: we
assume that U is extendible and show that condition (ii) must
be violated. If U is extendible, then there exists a product state
|ψ1〉A1 |ψ2〉A2 · · · |ψN 〉AN that is orthogonal to any state in U .
Let Wm = {vi | 〈ψm|ϕ(i)

m 〉Am = 0} for every 1 � m � N ; then
Wm must be an unsaturated set of Gm for every 1 � m � N
and

⋃N
m=1 Wm = V . �

Lemma 2. Let (Gm)N
m=1 be the orthogonality graphs asso-

ciated to a UPB of size k. Then, the size of any unsaturated set
Wm in Gm is upper bounded as

|Wm| � k − 1 −
∑

i∈{1,...,N}\{m}
(di − 1). (A1)

Proof. The proof is by contradiction. Suppose that there
existed an integer m0 ∈ {1, . . . , N} and an unsaturated set Wm0

such that |Wm0 | � k − ∑
i 
=m0

(di − 1). Then, the set V \ Wm0

contains l � ∑
i 
=m0

(di − 1) vertices. These l vertices can be
divided into N − 1 subsets, putting at most dm − 1 vertices
in the mth subset, for every m ∈ {1, . . . , N} \ {m0}. The mth
subset, denoted by Wm, is by construction an unsaturated set in
Gm. Also, the above construction guarantees that

⋃N
m=1 Wm =

V . But this condition is in contradiction with the fact that the
graphs (Gm)N

m=1 are the orthogonality graphs of a UPB, be-
cause Lemma 1 showed the relation

⋃N
m=1 Wm 
= V for every

N-tuple of unsaturated subsets (W1, . . . ,WN ). This concludes
the proof by contradiction. �

Lemma 3. For every UPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN , the
degrees of the vertices in the orthogonality graphs (Gm)N

m=1
must satisfy the condition

dm − 1 � degGm
(vi ) � k − 1 −

∑
i∈{1,...,N}\{m}

(di − 1),

∀vi ∈ V, ∀m ∈ {1, . . . , N}. (A2)

Proof. The upper bound is immediate from the fact that the
degree degGm

(vi ) = |NGm (vi)|, where NGm (vi ) is the neighbor-
hood of vi in Gm. Since the neighborhood of a vertex in an
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orthogonality graph is, by definition, an unsaturated set, the
upper bound on its size follows from Lemma 2.

For the lower bound, we assume that there ex-
ists an orthogonality graph Gm = (V, Em) and a ver-
tex v j ∈ V such that degGm

(v j ) � dm − 2. Then we can
find a state |φ〉Am in Cdm which is orthogonal to any

state in {|ϕ(i)
m 〉Am | vi ∈ {v j} ∪ NGm (v j )}. The product state

|ϕ( j)
1 〉A1 · · · |ϕ( j)

m−1〉Am−1 |φ〉Am |ϕ( j)
m+1〉Am+1 · · · |ϕ( j)

N 〉AN is orthogo-
nal to any state in {|ϕ(i)

1 〉A1 |ϕ(i)
2 〉A2 · · · |ϕ(i)

N 〉AN }k
i=1, which

contradicts that {|ϕ(i)
1 〉A1 |ϕ(i)

2 〉A2 · · · |ϕ(i)
N 〉AN }k

i=1 is a UPB. �
Example 3. The following product vectors form a UPB of

size 8 in C2 ⊗ C2 ⊗ C3 ⊗ C3:

|ψ1〉 = |0〉A1 |0〉A2 (|0〉 + |1〉 + |2〉)A3 (|0〉 + |1〉 + |2〉)A4 ,

|ψ2〉 = (|0〉 + |1〉)A1 (|0〉 + |1〉)A2 (|0〉 + |1〉 − 2|2〉)A3 (2|0〉 − |1〉 − 2|2〉)A4 ,

|ψ3〉 = (|0〉 + 2|1〉)A1 |1〉A2 (4|0〉 + 2|1〉 + 3|2〉)A3 (3|0〉 + 6|1〉 − 2|2〉)A4 ,

|ψ4〉 = (|0〉 + 3|1〉)A1 (|0〉 − |1〉)A2 (2|0〉 − |1〉 − 2|2〉)A3 (|0〉 + |1〉 − 2|2〉)A4 ,

|ψ5〉 = |1〉A1 |0〉A2 (|0〉 + 4|1〉 − |2〉)A3 (|0〉 + 4|1〉 − |2〉)A4 ,

|ψ6〉 = (|0〉 − |1〉)A1 (|0〉 + |1〉)A2 (2|0〉 + |1〉 + 6|2〉)A3 (−8|0〉 + 5|1〉 + 3|2〉)A4 ,

|ψ7〉 = (2|0〉 − |1〉)A1 |1〉A2 (3|0〉 + 6|1〉 − 2|2〉)A3 (4|0〉 + 2|1〉 + 3|2〉)A4 ,

|ψ8〉 = (3|0〉 − |1〉)A1 (|0〉 − |1〉)A2 (−8|0〉 + 5|1〉 + 3|2〉)A3 (2|0〉 + |1〉 + 6|2〉)A4 . (A3)

Proof. The orthogonality graphs (Gm)4
m=1 of {|ψi〉}8

i=1 are
shown in Fig. 3. Then it is easy to check that ∪4

m=1Gm = K8.
Hence the first condition in Lemma 1 is satisfied. Regarding
the second condition, note that every two vectors in the
set {|0〉, (|0〉 + |1〉), (|0〉 + 2|1〉), (|0〉 + 3|1〉), |1〉, (|0〉 −
|1〉), (2|0〉 − |1〉), (3|0〉 − |1〉)} ⊂ C2 are linearly indepen-
dent. Hence the size of any unsaturated set W1 in G1 can be
at most 1. Since every three vectors in the set {|0〉, (|0〉 +
|1〉), |1〉, (|0〉 − |1〉), |0〉, (|0〉 + |1〉), |1〉, (|0〉 − |1〉)} ⊂ C2

are linearly independent, the size of any unsaturated set W2

in G2 can be at most 2. Moreover, since any three vectors in
the set {(|0〉 + |1〉 + |2〉), (|0〉 + |1〉 − 2|2〉), (4|0〉 + 2|1〉 +
3|2〉), (2|0〉 − |1〉 − 2|2〉), (|0〉 + 4|1〉 − |2〉), (2|0〉 + |1〉 +
6|2〉), (3|0〉 + 6|1〉 − 2|2〉), (−8|0〉 + 5|1〉 + 3|2〉)} ⊂ C3 are
linearly independent, the size of any unsaturated set Wm in Gm

is at most 2 for every 3 � m � 4. Putting everything together,
we obtain that the union of any four unsaturated sets (Wm)4

m=1
cannot contain all vertices in V . Since both conditions in
Lemma 1 are satisfied, we conclude that the vectors {|ψi〉}8

i=1
form a UPB. �

APPENDIX B: PROOFS OF PROPOSITIONS 2, 3, 4, AND 5

Proposition 2. The RHS of Eq. (10) is always larger than
or equal to the RHS of Eq. (1).

Proof. First, we show that the RHS of Eq. (10) satisfies the
equality⌈∑N

m=1
D
dm

− 1

N − 1

⌉
=

⌊∑N
m=1

D
dm

− 2

N − 1

⌋
+ 1. (B1)

If the number s :=
∑N

m=1
D

dm
−1

N−1 is an integer, then one

has the relations s = �
∑N

m=1
D

dm
−1

N−1 
 and �
∑N

m=1
D

dm
−2

N−1 � + 1 =
� s(N−1)−1

N−1 � + 1 = s. If instead
∑N

m=1
D

dm
−1

N−1 is not an integer,

it can be written as
∑N

m=1
D

dm
−1

N−1 = s + t
N−1 for some integer

s and some integer 1 � t � N − 2. Then, �
∑N

m=1
D

dm
−1

N−1 

= s + 1 and �

∑N
m=1

D
dm

−2

N−1 � + 1 = s + � t−1
N−1� + 1 = s + 1.

Thus k � �
∑N

m=1
D

dm
−1

N−1 
 = �
∑N

m=1
D

dm
−2

N−1 � + 1.
To conclude, we use the bound⌊∑N

m=1
D
dm

− 2

N − 1

⌋
+ 1 �

⌊
N D

dmax
− 2

N − 1

⌋
+ 1

= D

dmax
+

⌊
D

dmax
− 2

N − 1

⌋
+ 1, (B2)

where the last term in the inequality is the RHS of Eq. (1).
Combining Eqs. (B1) and (B2) we then obtain that the RHS
of Eq. (10) is larger than or equal to the RHS of Eq. (1). �

Proposition 3. In the tripartite case, the bound (2) is non-
trivial when (d1, d2, d3) = (2p, 2p, 3p − 1) for some integer
p � 2, and when (d1, d2, d3) = (2p − 1, d̃, 3p − 2) for some
integer p � 2 and some integer d̃ ∈ [2p − 1, 3p − 2].

Proof. In both cases, we prove the inequality⌊∑3
m=1

D
dm

− 2

N − 1

⌋
+ 1 � d1 + D

d1
+ 1. (B3)

When (d1, d2, d3) = (2p, 2p, 3p − 1) with integer p � 2, we
have ⌊∑3

m=1
D
dm

− 2

N − 1

⌋
+ 1 = 8p2 − 2p

and

d1 + D

d1
+ 1 = 6p2 + 1.

Hence the inequality (B3) is equivalent to

2p2 − 2p − 1 � 0. (B4)
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Note that Eq. (B4) holds for any p � 2. Hence the bound (2)
is nontrivial for every p � 2.

Let us now consider the case where (d1, d2, d3) =
(2p − 1, d̃, 3p − 2) for some integer p � 2 and some integer
d̃ satisfying 2p − 1 � d̃ � 3p − 2. In this case, we have

⌊∑3
m=1

D
dm

− 2

N − 1

⌋
+ 1 =

⌊
d̃ (5p − 3) + 6p2 − 7p

2

⌋
+ 1

and

d1 + D

d1
+ 1 = 2p + d̃ (3p − 2),

and the inequality (B3) is equivalent to

⌈
d̃ (p − 1) − 6p2 + 11p − 2

2

⌉
� 0. (B5)

Notice that if Eq. (B5) holds for d̃ = 3p − 2, then it holds for
any 2p − 1 � d̃ � 3p − 2. Since

(3p− 2)(p− 1) − 6p2 + 11p− 2 = −3p2 + 6p � 0 (B6)

for any p � 2, then Eq. (B5) holds for any p � 2 and 2p −
1 � d̃ � 3p − 2. Therefore, Eq. (B3) holds for any p � 2 and
2p − 1 � d̃ � 3p − 2, meaning that the bound (2) is nontriv-
ial for these values. �

We now provide the proofs of Propositions 4 and 5. The
proofs are presented in inverted order, because the proof of
Proposition 4 uses Proposition 5 as an intermediate step.

Proposition 5. For a minimal GUPB saturating the bound
(2), the orthogonality graph Gm is a (k − D

dm
)-regular graph for

every m ∈ {1, . . . , N}.

Proof. For the bound (2) to be saturated, we must have

k =
∑N

m=1
D

dm
−1

N−1 or, equivalently,

(N − 1) k =
N∑

m=1

D

dm
− 1. (B7)

Since {|ϕ(i)
1 〉A1 |ϕ(i)

2 〉A2 · · · |ϕ(i)
N 〉AN }k

i=1 is still a UPB in the bi-
partition Am | {A1A2 · · · AN } \ {Am} for 1 � m � N , then by
Lemma 3, the degree of every vertex vi of Gm satisfies

degGm
(vi ) � k − D

dm
. (B8)

On the other hand, the minimality condition (B7) implies

N∑
m=1

(
k − D

dm

)
= k − 1 �

N∑
m=1

degGm
(vi ), (B9)

where the inequality comes from
⋃N

m=1 Gm = Kk . Combining
the two inequalities above, we obtain degGm

(vi) = k − D
dm

for
1 � m � N . �

Proposition 4. If at least one of the local dimensions
(dm)N

m=1 is even and the sum
∑N

m=1
D
dm

− 1 is an odd multiple

of N − 1, then the size of any GUPB in Cd1 ⊗ Cd2 ⊗ · · · ⊗
CdN is lower bounded as

k �
∑N

m=1
D
dm

− 1

N − 1
+ 1. (B10)

Proof. We prove that, when the local dimensions satisfy
the above conditions, the bound (2) cannot hold with the
equality sign. If a GUPB saturated the bound (2), its size

should be k′ =
∑N

m=1
D

dm
−1

N−1 and k′ is odd. This means that
each orthogonality graph Gm is a (k′ − D

dm
)-regular graph with

k′ vertices by Proposition 5. By Handshaking Lemma [64],
k′(k′ − D

dm
) must be even for each 1 � m � N . Assume dm is

even, then D
dm′ is even for m′ 
= m. In this case, k′(k′ − D

dm′ ) is
odd and this is impossible. Thus a GUPB of size k′ does not
exist. This completes the proof. �

[1] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor,
J. A. Smolin, and B. M. Terhal, Unextendible Product
Bases and Bound Entanglement, Phys. Rev. Lett. 82, 5385
(1999).

[2] K. R. Parthasarathy, On the maximal dimension of a com-
pletely entangled subspace for finite level quantum systems,
Proc. Math. Sci. 114, 365 (2004).

[3] B. R. Bhat, A completely entangled subspace of maximal di-
mension, Int. J. Quantum Inf. 04, 325 (2006).

[4] J. Walgate and A. J. Scott, Generic local distinguishability and
completely entangled subspaces, J. Phys. A: Math. Theor. 41,
375305 (2008).

[5] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.
Terhal, Unextendible product bases, uncompletable product
bases and bound entanglement, Commun. Math. Phys. 238, 379
(2003).
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