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Abstract

On-demand matching between waiting passengers and idle drivers is one of the most impor-
tant components in a ride-sourcing system. A variety of matching mechanisms have been
developed to meet different needs of ride-sourcing platforms, e.g. mitigating supply-demand
imbalance, maximizing platform revenue. In this paper, we focus on a block matching sys-
tem, a special type of matching mechanism, where the region of interest is partitioned into
blocks, and on-demand matching is separately and simultaneously conducted in each block.
Block matching can bring many benefits, such as limiting order assignment with long pick-up
distance, simplifying the process of deployment, etc. However, it still remains a challeng-
ing yet interesting issue to determine the block size for the matching system, which is a key
decision variable governing passengers” waiting time. To solve the problem, we model the
ride-sourcing system with block matching via a M/M/c queue, in which the service rate is
endogenous and partially determined by passengers’ average pick-up time. Based on the
model, we find that the average queueing time of passengers decreases with block size in-
creasing, while the average pick-up time may increase instead. In addition, the average total
waiting time (sum of average queueing and pick-up time) become nearly invariant to the
change of block size when the block size is large, which we call plateau phenomenon. In the
plateau, ride-sourcing platforms can choose the block size based on other standards while the
average total waiting time is always maintained at the nearly lowest value. The findings are
verified via an agent-based simulation study, demonstrating that the proposed model can be
an effective tool to approximate block matching system.

Keywords: Ride-sourcing service, matching mechanism, queueing theory
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1 Introduction

Recent years have witnessed a fast popularization of ride-sourcing service. Transportation net-
work companies (TNCs), such as Uber, Lyft and Didi, are using smart-phone APPs to offer
on-demand mobility services to passengers around the world, via the broad application of mod-
ern mobile communication and Global Position System (GPS). Uber, for instance, is now offering
a variety of services in more than 700 metropolitan areas in 65 countries (Wang and Yang, 2019).
Didji, the largest ride-sharing company in China, is generating millions of daily ride-hailing de-
mand in a single city, Beijing (Tong et al., 2017). In New York City, Lyft and Uber cars are even
estimated to outnumber conventional taxis 4 to 1 (Jiang et al., 2018).

The rapid development of ride-sourcing services has raised many operational issues, such
as estimated time of arrival (ETA), on-demand matching, ride-pooling operations, empty vehi-
cle re-positioning, information sharing and disclosure, and rating mechanism (Wang and Yang,
2019). Among these issues, on-demand matching is the main footstone for real-time operations,
and thus has intrigued much attention from researchers. In general, a matching algorithm is
implemented by ride-sourcing platforms to assign waiting passengers to idle vehicles. There are
multiple objectives for a matching operation, such as maximization of platform revenue, maxi-
mization of the number of matched orders, or minimization of passengers’ average waiting time.

The on-demand matching approaches developed in the literature can be majorly grouped
into two streams: bipartite matching (Xu et al., 2018; Chen et al., 2019; Shah et al., 2020), and
queue-based matching (Liao, 2003; Lee et al., 2004; Zhang and Pavone, 2016; Xu et al., 2020b;
Feng et al., 2020; Besbes et al., 2021). For bipartite matching, waiting passengers and idle drivers
are respectively collected and grouped in a batch way within a certain time window, and pairs
are formed between each pair of waiting passenger and idle driver. The matching problem is
then transformed to finding the best matching on the bipartite graph structure, which can be
solved by combinatorial optimization algorithms. Bipartite matching may generate some extra
waiting time for passengers since the platform does not assign vehicles to passengers during the
time window for order and vehicle accumulation. In comparison, queue-based matching may
mitigate this problem, where the arriving vehicles are always assigned to waiting passengers
instantly. When there are multiple waiting passengers and no arriving vehicles, the passengers
will be formed into a queue, and wait to be served in some pre-defined order, which is often
described via queueing models. Specially, when passenger queue is served via First-Come-First-
Serve (FCFS) rule, the fairness is protected for longer-waiting passengers, since they possess
higher priority for the next matching. In comparison, the bipartite matching usually does not
differentiate the waiting time of passengers when making matching decision, and thus some
passengers may keep unmatched for a long period.

In this paper, we focus on block matching, a special type of queue-based matching that has
been utilized by some ride-sourcing platforms (Xu et al., 2020b) or bike-sharing platforms (He
et al., 2021). The core idea of block matching is to partition the whole region (e.g. one city) into
various small blocks, and the on-demand queue-based matching is separately and simultane-
ously implemented in each block. This special matching mechanism has several advantages over
regular queue-based matching without matching blocks: 1) The blocks can help to avoid distant
matching, since the matching processes are limited within each block. Therefore, the time and
operational cost led by distant pick-up can be reduced. 2) The setting of blocks potentially makes
it more flexible and convenient for other operations, such as pricing and idle vehicle reposition-
ing. For example, He et al. (2021) study a bike-sharing problem where pricing and queue-based
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matching are implemented within blocks with the same partition. Under some scenarios, the
price of service within a block is mainly based on the matching process of that individual block,
and the pricing problem for the whole region can thus be divided into sub-problem for each
single block, which simplifies the optimal solution seeking process. 3) The length of queue in
each block is reduced, and thus the computation speed to obtain matching result is improved.
Take matching under First-Dispatch rule as an example, with First-Dispatch rule, when there are
fewer passengers than vehicles, the arriving passengers is always dispatched to the nearest idle
vehicle. When there are more passengers than vehicles, the next idle vehicle is dispatched to the
longest waiting passenger, which actually follows FCFS rule. The interest of longer waiting pas-
sengers will be considered, as mentioned before. Under First-Dispatch rule, the time complexity
for the block matching is found to be negatively related to the number of blocks, as shown in
Appendix A. This means the increase of the number of blocks can help to reduce computational
complexity given the same size of inputs in some cases. This is validated from the comparison
of running time for simulation under different block sizes in Fig. 16.

To properly design a block matching system, a key problem is to determine the area of each
block (block size). On one hand, a larger block size may lead to a larger pick-up distance because
passengers may be matched to some faraway drivers in the block. The system service rate is
thus decreased and the waiting time for passengers may increase. In addition, a larger block
size can increase the number of passengers in each block, which will further increase passenger’s
waiting time. On the other hand, the increasing number of vehicles within a larger block may
help to reduce waiting time of passengers. These mixed effects make it challenging to decide the
proper block size. In addition, the proper block size also depends on the specific market-related
parameters (number of vehicles, average trip time, unit arrival rate). To solve this challenging
issue, we model the ride-sourcing system with block matching with a M/M/c queue for each
block, in which the service rate is endogenously interacted with the average pick-up time of the
system. We also develop an algorithm to find the steady state solution for the system. For system
performance metrics, we focus on average queueing time, average pickup time, and average
total waiting time for passengers, which are important measurements of system efficiency and
passengers’ satisfaction. Based on the developed model, patterns of the metrics in terms of
block size are depicted and analyzed under different number of vehicles, average trip time,
passengers’ arrival rate. Significant insights on block size determination are summarized for
platform managers. Specially, we find a plateau phenomenon of total waiting time, which means
this metrics almost keeps the same low value within an interval of large block size. The platform
manager can thus select block size within this interval without worrying the influence on average
total waiting time of passengers. Via extensive simulation studies, the phenomenon and other
insights of the modelling analysis are validated under different supply-demand scenarios. In
summary, this paper makes the following contributions:

* We develop a theoretical model to delineate a ride-sourcing market under a block match-
ing mechanism, which is a practical mechanism for ride-sourcing companies but was rarely
investigated in the literature. Most importantly, we spell out the endogenous relationship
between the system’s service rate and average pick-up time, by leveraging a M/M/c queu-
ing model with endogenous pick-up time. Namely, the average pick-up time accounts for
vehicles” service time and thus affects the service rate, while the service rate governs idle
vehicles” density and in turn influences the average pick-up time.

¢ Based on the proposed model, we explore and study the trends of average queuing time,
average pickup time, and average total waiting time for passengers with respect to block

3
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size under different supply-demand scenarios. An interesting phenomenon is that the
metrics becomes invariant to the block size when it already becomes large. The useful
insights can be utilized by platform managers for the determination of proper block size
when adopting block matching mechanism.

¢ Simulation studies are conducted to demonstrate that our proposed model can well approx-
imate the simulated outcome, which is regarded as a proxy for the reality. In the future,
the proposed model can be also explored in the analysis for other scenarios that potentially
use block matching, such as food order delivery and freight order matching.

The remainder of this paper is organized as follows. Section 2 provides a literature review on
past studies for matching operation and application of queueing theory in ride-sourcing service.
Section 3 details the model framework for block matching. Section 4 provides the method to find
the steady-state solution of the model, conduct a graphical analysis and explain the observed
special phenomenon for block matching. Numerical experiments and discussions are provided
in Section 5, followed by conclusions in Section 6.

2 Literature Review

2.1 Matching operation for ride-sourcing service

One important task for ride-sourcing service is the matching between waiting passengers and
idle vehicles. As mentioned above, there are a variety of objectives for the matching operation,
including minimization of passengers’ average waiting time and other kinds of delay (Wong and
Bell, 2006; Seow et al., 2009; Alonso-Mora et al., 2017), minimization of the required number of
vehicles (Vazifeh et al., 2018), maximization of matching quantity (Ozkan and Ward, 2020), and
maximization of drivers’ revenue over a time period (Xu et al., 2018; Tang et al., 2019; Yu et al,,
2019).

As mentioned above, there are two types of matching approaches, including bipartite match-
ing and queue-based matching. For bipartite matching, a current trend of researches is to con-
sider the effects of current decision on the future state of the system, and integrate reinforcement
learning technology with bipartite matching to achieve long-term objectives. For example, Xu
et al. (2018) propose a reinforcement learning method to obtain long-term rewards, which are
added with the immediate reward in the online bipartite matching model. The long-term reward
represents the expected value of the next order after he/she completes the current one, while the
immediate reward reflects a driver’s expected revenue from serving the current order. Chen et al.
(2019) first shows the intrinsic relationship between matching and pricing, and then optimizes
the two operations simultaneously. The pricing strategies are learned via a contextual bandit al-
gorithm and the matching strategies are optimized with the help of temporal difference. Inspired
by the fact that extending the matching time interval may significantly reduce the average pickup
time (Yang et al., 2020), Ke et al. (2020) adopts deep reinforcement learning methods to delay the
bipartite matching of some orders for a potential better matching outcome (with a short pick-up
time) in the incoming time intervals. Shi et al. (2019) develop a reinforcement learning based
algorithm to operate a community owned electric vehicle fleet, which provides ride-hailing ser-
vices to local residents. The goals are to minimize passengers’ waiting time, electricity cost, and
operational costs of the vehicle, and multiple operations are implemented together via bipartite
matching.



167

168

169

170

171

172

173

174

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Queue-based matching also attracts a variety of interests from researchers and ride-sourcing
companies. Wang et al. (2019a) analyze the dynamics of passengers and drivers in a queueing
model where the platform can control the matching process by setting a threshold on the ex-
pected pick-up time. Applying fluid approximations, they explore the impacts of the threshold
on the number of vehicles with different states (idle/pick-up/occupied), based on which a policy
to adjust the threshold is designed for time-varying demand. Feng et al. (2020) conduct exten-
sive numerical experiments in two cases with circular road and grid network under queue-based
matching rules, in order to explore the relationship between system performance metrics and
the utilization level, which represents the traffic density of the system. The relationship is found
not monotone, and the phenomenon is further analyzed via a theoretic queuing model for the
system.

Still, most previous researches focus more on queue-based matching without region parti-
tion, while there are only two papers examining queuing systems with matching blocks, i.e. Xu
et al. (2020b) for ride-hailing systems and He et al. (2021) for bike-sharing systems. Xu et al.
(2020b) study the supply curve of ride-hailing systems under different market conditions based
on a double-ended queueing model. The supply curve with finite matching radius is found
always backward bending, but weaker bend can be gained via adjustment of the radius. In com-
parison, we focus more on the impact of block size on the system performance metrics, such as
passengers’ queuing time and pick-up time. We also examine the impacts of a few important
parameters, such as the number of vehicles and the length of average trip time, on the selection
of matching block size. In addition, the endogenous relationship between the average pick-up
time and the service rate is well characterized in our model, and the solution finding procedure
for the steady state of the system is developed. Moreover, we implement an extensive simulation
study on a realistic simulator to validate the model and analytical results. Meanwhile, while He
et al. (2021) try to address the joint design of incentives (via “crowdsourcing”) and spatial capac-
ity allocations (enabled by “geo-fencing”) based on strategic queues for bike-sharing platforms,
the attention in this paper is paid to the determination of block size under the block matching
mechanism.

2.2 Application of queueing theory for ride-sourcing service

In addition to matching operation, queueing theoretic models have been adopted for other op-
eration issues in ride-souring systems. For idle vehicle repositioning (rebalancing), the vehicles
is guided by the designed algorithm to cruise to some area, where they can get matched under
a certain queue-based matching rule, in order to balance the supply and demand. There has
been a rich stream of research on this important issue (Zhang et al., 2018; Yahia et al., 2021; Ma
et al., 2019; Calafiore et al., 2017; Braverman et al., 2019; Wollenstein-Betech et al., 2020; Zhang
et al., 2016; Sayarshad and Chow, 2017; Spieser et al., 2016a; Li et al., 2021; Bazan et al., 2018;
Spieser et al., 2016b). For example, Zhang et al. (2018) model the mobility-on-demand (MoD)
systems as two coupled closed Jackson networks with passenger loss. They show that the system
can be approximately balanced by solving two decoupled linear programs and exactly balanced
through nonlinear optimization, based on which a real-time closed-loop rebalancing policy is
designed and tested. Ma et al. (2019) focus on the combination of ride-sourcing system and ex-
isting transit system. Queueing-theoretic algorithms are developed to make joint decision of idle
vehicle relocation and ride sharing. Braverman et al. (2019) focus on empty-car routing based on
a closed queueing network model of ridesharing systems. They establish both process-level and
steady-state convergence of the queueing network to a fluid limit in a large market regime where



212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

demand for rides and supply of cars tend to infinity, and use this limit to study a fluid-based
optimization problem.

In addition to idle vehicle repositioning, another important operation for the application of
queueing theory is pricing (Bai et al., 2019; Castillo et al., 2017; Yan et al., 2020; Courcoubetis and
Dimakis, 2018; Taylor, 2018; Ruch et al., 2019; Waserhole and Jost, 2016; Li et al., 2019; Banerjee
et al., 2015; Xu et al., 2020a). Among the researches, Bai et al. (2019) consider an on-demand
service platform using earning-sensitive independent providers with heterogeneous reservation
price (for work participation) to serve its time and price-sensitive passengers with heterogeneous
valuation of the service. They include the steady-state waiting time performance based on a
queueing model in the passenger utility function to characterize the optimal price and wage
rates that maximize the profit of the platform, and discuss the determination of price and payout
ratio under different market situation. Castillo et al. (2017) discuss the wild goose chase (WGC)
phenomenon in ride-sourcing market, where vehicles are dispatched to pick up distant passen-
gers, wasting drivers’ time and reducing earnings. Based on queueing models for the matching
process, they suggest to utilize dynamic surge pricing to control the WGC under changing mar-
ket conditions.

Moreover, queueing models are also frequently utilized in the pooling/sharing operations
for ride-sourcing platforms (Yan et al., 2020; Zhang et al., 2018; Ma et al., 2019; Ozkan and Ward,
2020; Braverman et al., 2019; Wang and Honnappa, 2017; Waserhole and Jost, 2016; Jacob and
Roet-Green, 2021; Banerjee et al., 2015). For instance, Jacob and Roet-Green (2021) develop a
queueing model to find the ride-sharing platform’s optimal revenue in equilibrium when pas-
sengers are strategic and drivers are independent agents, with both solo and pooling service
available. They find that offering both solo and pooled rides is optimal when the distribution of
passenger-type is not skewed and congestion is not high. Counter intuitively, when congestion
is high, the platform benefits from offering only one ride choice. Other interesting topics raised
by ride-sourcing operations with queueing model applied include fleet sizing and capacity plan-
ning (Besbes et al., 2021; Bazan et al., 2018; Li et al., 2019), service reservation (Yahia et al., 2021),
curbside stopping (Qiu et al., 2020), system coordination (Ruch et al., 2019). Still, less attention is
paid to block matching system and the resulting problem of block size determination, which we
focus on in this study.

3 Model

In this section, we first make several simple assumptions about the studied market, and provide
the nomenclature table as preliminary. The matching process in one block of the studied region
is then modelled via a M/M/c queue, based on which the steady-state probability of the queue
length and the corresponding metrics are obtained. Moreover, we also construct a formula to con-
sider the impact of average pick-up time on the service rate, which completes the mathematical
description of the system.

3.1 Preliminary

To simplify the process of model construction and analysis, we make several simple and common
assumptions of the ride-sourcing market for the studied region. The drivers” and passengers’
spatial distribution are assumed homogeneous, and matching blocks are of the equal size. The
inter-arrival time for passengers and drivers is assumed to obey exponential distribution, which

6
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Symbol Description

Atoral Area for the studied region.

M The number of matching blocks.

A Area for one block. A = A1/ M.

K Vehicle fleet size for the studied region.
Aunit Arrival rate of passengers for unit area.

A Arrival rate of passengers for area of one block. A = A1 A.
U Service rate of vehicles.

c Average number of vehicles in one block. ¢ = K/ M.

n The number of passengers in the system for one block.

t Average trip time for passengers in the studied region.

v Average vehicle speed.

wo Maximal tolerable expected waiting time for passengers when joining the queue.

d (i) Function of a passenger’s average distance to the closest idle vehicle in a unit-size
block with i idle vehicle available for dispatching.

L, Average queue length of passengers in the steady state of the system.

W, Average queueing time for passengers in the steady state of the system.

Wy Average pick-up time in the steady state of the system.

W Average total waiting time (including queueing and pick-up time) for passengers

in the steady state of the system.

Table 1: List of main symbols

is a regular assumption for queueing theoretic studies (Feng et al., 2020; Xu et al., 2020b; Besbes
et al., 2021). In addition, the balking behavior can also be considered in the model, where
passengers may reject to join the waiting queue of a block if the expected waiting time is longer
than a threshold. This is practical in reality, since the platforms like Didi show the current queue
length and expected waiting time before passenger choose to join. For the rule of assignment
between passenger queues and arriving vehicles, we focus on the First-Dispatch (FD) rule as
mentioned before, which is extensively utilized and studied in previous researches (Xu et al.,
2020b; Besbes et al., 2021). Under FD rule, when there are fewer waiting passengers than idle
vehicles, the arriving passenger is always dispatched to the nearest idle vehicle. When there
are more passengers than idle vehicles, the next idle vehicle is dispatched to the longest waiting
passenger.

Under the assumptions and rules made above, we can efficiently model the matching process
in an individual block of the region via a M/M/c queueing model specified in the next section.
The major symbols for the model construction are listed in Table 1.

3.2 M/M/c model

M/M/C model is a classic modelling method in queueing theory. The first and second M rep-
resent that the interarrival time of customers and service time by the system are assumed to be
exponentially distributed, while C means that the number of servers (e.g. vehicles in our study)
is larger than one. In a M/M/C model, customers gradually arrive in the system, forming as a
queue, and get served by the servers in the system, and the equilibrium state of this process can
be theoretically depicted by the model. The detail of M/M/C queue utilization in this study is
provided as follows. Suppose the platform have a fleet of K vehicles, and the area of the studied

7
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Figure 1: Birth and death process in each single block

region is Aoy. The platform partitions the space into M equal-size matching blocks. Thus, the
average number of vehicles in each block is ¢ = K/M, the area of one block is A = A1/ M,
and the arrival rate of passengers for one block is A = A, A. Since we mainly consider the sta-
tionary equilibrium state of the market and focus on the extraction of general insights, we only
aggregately consider the average number of vehicles in each block in this study. The impact of
the changing demand and supply can be explored in the future study. The average service rate of
an individual vehicle is defined as y. Considering the similarity in supply and demand situation
for each block as assumed in the last section, we can focus on the matching process within each
individual block, which is modelled as a M/M/c queue and described by the birth-death process
in Fig. 1. The state represents the number of passengers in the block, and the ”birth” rate and
“death” rate are respectively A, and y,. For rate of completions (or “deaths”), it depends on the
number of passengers in the block. If there are ¢ or more passengers, then all c idle vehicles (as
previously mentioned, there are c idle vehicles in one block on average) must be matched and
become busy. Otherwise, when there are fewer than c¢ passengers in the system, n < ¢, only n
of the c idle vehicles will be matched and occupied. This leads to the following state-dependent
service rate:

nu, 1<n<c
yn:{” (1)

cy, n=>c

For arrival rate of passengers (”"birth” rate), passengers’ potential abandonment of joining the
queue can be described by a function b,, and thus A, = b,A. When there are fewer passengers
than the average number of idle vehicles c, it can be expected that the arriving passenger can
get served instantly, resulting in no abandonment behavior for the passenger, that is, b, = 1.
Otherwise, the system of one block is fully busy with system service rate cy, and the waiting
time can be expected as % for the arriving passenger n. When % < wy, the passengers are still
willing to join, according to the assumed balking behavior mentioned in the last section. When
% > wo (n > wocy = Np), the abandonment emerges and b, = 0. The resulting arrival rate is
summarized in the equation 2:

A n<N,—
A, = by = = Np = oo @)
0, n>N,



so0  To find the steady-state probability p,, we first list flow balance equations below:

Pn =Po | ‘
i=1 (3)

Y pi=1
i=0

32 The upper one in 3 depicts the relationship between py and the probability of any given state,
303 while the lower one limits the summation of the probabilities of all the queueing states to be one.
se  Combining Eq. 1 to 3, the steady-state probability can be obtained as follows, where r = ﬁ and
305 P = C% = 7. For clarity, the detailed derivation process is provided in Appendix B.

Po———> 'y”' 0<n<c
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c"ccly
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Po = c—1 .n c (5)
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6 3.3 Metrics

07 In this part, we first introduce several key system performance metrics, including average queue-
38 ing time, average pick-up time and average total waiting time, based on the model presented in
300 the last section. Afterwards, we utilize an equation to capture the intrinsic relationship between
s10  system service rate and average pick-up time.

su 1) Average queueing time W,

L
312 Wq = (1 — pr) (6)
0+2n c+1( n—c)pn
313 = 7
A1 —=pn,) (7)
314 :L rp IONP C[( P_C)(p_l)_1]+1 (8)
AL =pn,) o (0 — 172
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3) Average total waiting time Wy,
Wiw = Wy + W, (11)

The derivation process for the metrics are summarized in Appendix B. Here, W, represents
the average time spent in queue for a passenger in the given system, which has significant impacts
on different shake-holders. For passengers, it can influence the final arrival time for the trips,
and thus highly correlates to the social welfare for the whole passenger group; for ride-sourcing
platform, the average queueing time is an important factor for passengers’ choices between the
platform and other group of competitors, which can further influence the long-term revenue of
the platform. W, is another significant system performance metrics. It represents the time for
the idle vehicle (or server) to reach its assigned passenger, which captures one major difference
of the ride-sourcing system from classic counter service system, where passengers are always
assumed to get served immediately once they finish queueing. For both platform managers and
passengers, the total waiting time before passengers get picked may be a main concern. To this
end, we utilize Wy, to consider the integrated delay of service, including both queueing time and
pick-up time.

The system performance metrics can also influence some system variables, such as the ser-
vice rate y for vehicles. As discussed in Feng et al. (2020) and Besbes et al. (2021), the pick-up
process can also be treated as part of the service procedure, and we carefully consider this point
via the equation below:

(12)

where t is the average trip time, W), is the average pick-up time, and the combination of the
two involves the whole process for the service. The service rate now becomes an endogenous
variable determined by Eq. 9 and Eq. 12, which increases the complexity of finding steady-
state probabilities. In next section, we develop an efficient solution-finding approach to solve the
problem.

4 Modelling analysis

In this section, we use the developed model to make analysis from both intuitive and theoretic
perspective. We first introduce some parameters setting, and develop an approach to find the
endogenous service rate and the steady-state probability. Afterwards, we draw the plots of
metrics in terms of block size, in order to uncover the impacts of block size on the metrics under
different traffic related parameters. Managerial insights are then provided based on the patterns
shown in the plots. In addition, an in-depth analysis is made for a special phenomenon (which
we call plateau phenomenon as mentioned before) both theoretically and intuitively.
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Figure 2: Studied region and partition

4.1 Case setting and solution finding

We focus on a square region as shown in Fig. 2, which is partitioned into equal-size blocks.
The square grid is also often adopted for region partition in other researches related to demand
management, such as Wang et al. (2019b), Yoshida et al. (2020) and Pan et al. (2019). The side
length of the region, a = VA, is 20 km, and the area of the region is 400 km?, about half of the
New York City. To consider the impacts of different block sizes, we set the block area ranging
from 1 km? to 25 km?. Referring to Vignon et al. (2021), the benchmark unit arrival rate A, is
adjusted to 0.133 per minute per km?, and the vehicle speed is 10 m/s. Similar to Feng et al.
(2020) and Besbes et al. (2021), we mainly consider the case with p < 1, and thus the passengers
are assumed always willing to join the queue when arriving, that is, wp = +oc0. The resulting
modification to Eq. 4 to Eq. 9 is shown below.

n

pOW, 0 <n<c
Pn = ' A (13)
Pog—ccnr €=
c—1 el 7€ .
Po (n:O ) + m) , p< 1 (14)
e
Wi =P gy a—pp 1)
\/Zpo et YL e
Wp = - [n_ n!y”d<c — n) + d(l)m] (16)
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To guarantee p < 1, the benchmark vehicle fleet size is set to 1500. With a common assumption
that the origin and destination of a trip is randomly and equally distributed in the studied square
region, and considering the detour behavior of drivers via a coefficient 1.27 (Yang et al., 2018),
the benchmark average trip time t can be calculated by 1.27 x %2212 — 132335, where 0.521
represents the expected distance between two random points in a unit-size square (Moltchanov,

2012). Similarly, d(1) is set to 0.521, and d(i) is equal to &\2,), following the result by Besbes et al.
(2021).

Based on the benchmark parameters above, we further consider different fleet size, unit
arrival rate and average trip time, in order to depict the impact of block size under different
supply-demand scenarios. The specific settings are listed as follows:

¢ Fleet size: 1500 to 3000 for vehicle fleet size. All the other parameters are set to the bench-
mark ones.

¢ Unit arrival rate: 0.4 to 1.0 times benchmark unit arrival rate. All the other parameters are
set to the benchmark ones.

* Average trip time: 300 s to 1323.3 s for average trip time. All the other parameters are set
to the benchmark ones.

With the definitions above, the following steps are 1) to find the endogenous service rate; 2)
to combine it with other exogenous parameters to obtain system performance metrics as shown
in Eq. 11, 14, and 15. The second step is straightforward, and we only need to focus on the first
step. We first combine Eq. 11 and 15, and obtain a new function F about service rate y below.

e L | VA 1 VA A° 1
F(u) = = —t—2d(c— =41 - .
(‘M) r;_on,‘un [‘M o (C 71)]"1‘[‘,” v ( )] c!‘uc 1_%

A 1

The determination of endogenous service rate under Eq. 11 and 15 now becomes the root
finding for Eq. 16 within the given interval. Based on the parameters defined before, we find that
F(2)-F(}) < 01is always true for the studied cases. Considering F(u) is a continuous function
within the interval, we adopt a bisection method to find the root of F (that is, the endogenous
service rate), which is then utilized to generate the system performance metrics. The logic of

bisection method is shown in Algorithm 1.

4.2 Graphical illustration and insights

Considering the complexity of the system with the endogenous service rate, we graphically
illustrate the pattern of metrics under varying block size and supply-demand scenarios, and
summarize insights for platform managers. In Fig 3, we depict curves of average queueing time
and pick-up time with respect to block size under different fleet size, while similar plots are
generated for different unit arrival rate and average trip time respectively in Fig 4 and Fig. 5.

From Fig. 3a, we observe that the average queueing time gradually decreases with block
size. The reason is that the expansion of block increases the average number of vehicles within
the block, which improves the total service speed and overwhelms the negative influence of more
arriving passengers and larger pick-up distance on the system efficiency. The effect of increasing
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Algorithm 1 Bisection method to determine the service rate

Input: Function F, lower bound %, upper bound %, tolerable error ¢, a small value ¢

X1 =
while x; — xg > e do
if F(xg) - F(x2) < 0 then
X1 = X2
else
Xo = X2

=
<

return xg

block size on reducing queueing time is found more significant for smaller block size. As the
original block size increases, the descending slope of queuing time with respect to block size
becomes smoother. In addition, we also find that the queueing time becomes less sensitive to
the variation of block size under larger vehicle fleet size. This is reasonable because the relative
variation of the number of vehicles within a block become slower when it originally possesses
many vehicles, resulting in a smaller response of the metrics. Moreover, when the block size is
relatively small, the increasing fleet size is found able to reduce queueing time more significantly,
similarly caused by the original degree of vehicle sufficiency. For average pick-up time in Fig. 3b,
an observation is that the pick-up time generally increases as the block size extends, when the
original block size is relatively small. In this case, the maximal pick-up distance and the number
of people in the system both increase with block size, making the new arriving passenger more
difficult to find a close vehicle to match. When the vehicle fleet size is large, the phenomenon
becomes less obvious. Under a large block size, the pick-up time goes into a plateau with a
nearly fixed value regardless of the change in block size. The potential reason is analyzed later
via an approximation of pick-up time. In comparison with queueing time, the pickup time can
be more effectively reduced by enlarging vehicle fleet size under a large block size, instead of a
small one.

Similarly, Fig. 4 shows the impact of different unit arrival rate on the metrics. Generally,
the average queueing time still decreases with the increase of block size, but the trend becomes
less obvious as unit arrival rate declines, due to the more sufficient relative vehicle supply in the
block. In addition, a smaller block size is better for the reduction of queueing time via limiting
unit arrival rate. For pick-up time, its variation with respect to the block size is more significant
under larger arrival rate. When the block size is large, the limitation of arrival rate can more
effectively reduce average pick-up time. From Fig. 5, it is straightforward to find that the general
patterns are highly similar to those in Fig. 4. The increase of average trip time lowers the service
rate and reduces the system efficiency from the supply side, while the similarly negative impact
results from the increase of unit arrival rate from the demand side.

In addition to the average queueing time and pick-up time, we also focus on the average
total waiting time, a comprehensive metrics for the trip delay. The patterns are summarized in
Fig. 6, considering the influence of different fleet size, unit arrival rate and average trip time. In
general, the average total waiting time is decreasing with the extension of block size. When the
block size is small, the curves are close to those of average queueing time. In comparison, under
the range of larger block size, the trends are more similar to those of average pick-up time, where
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Figure 3: Average queueing time and pick-up time under different block sizes and vehicle fleet
size.
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Figure 4: Average queueing time and pick-up time under different block sizes and unit arrival
rate. The value in the label represents the ratio of the studied arrival rate to the benchmark unit
arrival rate.

14



430

431

432

433

434

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

1600 180
— 300.0 — 300.0
1400 | 470.0 160 470.0
. — 640.0 — 640.0
o — 810.0 @ — 810.0
@ 12007 —— 980.0 o 1407 — 9800
.g — 11500 £ — 1150.0
o 1000 1323.3 5 1204 1323.3
c o
£ 3
3 800 § 100
g_ o
o 600 L 804
) 3 /\
§ 400 g o0y ]
<
200 \ 40 4
0 NS T T . - 20 : T . v
1 5 10 15 20 25 1 5 10 15 20 25
Block area (km?) Block area (km?)
(a) (b)

Figure 5: Average queueing time and pick-up time under different block sizes and average trip
time (unit: s).

a plateau emerges for the metrics. The overall insights from these observations are summarized
below, and an in-depth analysis is made in the next section to explain the phenomenon of plateau
from both theoretic and intuitive perspective.

* An increased block size can reduce the average queueing time, and the effect is more sig-
nificant under smaller block size, smaller vehicle fleet size, larger unit arrival rate or larger
average trip time.

* An increased block size can increase the average pick-up time and the effect is more sig-
nificant under smaller block size, smaller vehicle fleet size, larger unit arrival rate or larger
average trip time.

¢ When the block size is fixed, the increase of vehicle fleet size or the limitation of passengers’
arrival rate (via pricing operation, for example) can favor the reduction of average queueing
time and pick-up time. The effect will be more obvious with smaller fixed block size for
average queueing time, and larger block size for average pick-up time.

¢ For managers who aim to reduce average total waiting time for passengers in the block
matching system, an useful method is to increase block size, especially when the original
block size is relatively small. This metrics may become close to a fixed low value within the
range of large block size, where the platform managers can choose their target block size
based on other goals, such as computation speed or the coordination with other operations,
without the need to worry its impact on average total waiting time.

4.3 Analysis for the plateau phenomenon

In this section we analyze the plateau of average total waiting time when block size is relatively
large, where the metrics are basically fixed regardless of the variation of block size. Our analysis
can be divided into two steps: 1) we construct an approximation formula for the average total
waiting time Wy, under large block size, based on which the metrics is shown nearly a constant;
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the studied arrival rate to the benchmark unit arrival rate.
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2) the approximation is further analyzed from an intuitive perspective, in order to explain the
reason for the emergence of the plateau.

From Fig. 3a, 4a and 5a, we find that the average queueing time becomes very small when
the block size is larger than a certain threshold, such as 5 km?. This indicates that the pick-up time
is the major part of total waiting time within this interval of block size (say I for simplicity). To
confirm the point, we depict the ratio of average pickup time to average total waiting time under
different unit arrival rate in Fig. 7. The results show that the average pick-up time dominates
queueing time in I1, and thus leads to the following approximation:

c—1 Np
Wie ~ W, = %[Z(pnd(c WA+ Y pd()VA], Acl (18)
n=0 n=c

The small value of average queueing time in I indicates that the probability for passengers
to wait in queue is low. The inference is confirmed by the curve in Fig. 8, where we select a

certain unit arrival rate and observe the total probability for passengers to wait, ZHNLC pn, under
block size in I;. The probability is found very small for most of the block size, and thus we
can only focus on the steady states without queueing, that is, n = 0.....c — 1. The resulting
approximation is made below:

c—1
Wi ~ W, ~ %[Z(pnd(c — VA +0-d(1)VA] (19)
n=0
c—1
= @ pud(c—n) (20)
v n=0
c—1
_ \/f oy ;1(1) 1)
n=0 AtotalA —n
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d(1) & 1
= L Pn (22)
v [ K
=0 Atotal o %
let G(n) denote ——L—. For simplicity, we pick several value of block size in I, for the
Atotal A

previously selected service rate, and draw their probability distribution of steady states without
queueing in Fig. 9. From the figure we discover two properties of the distribution: 1) The
distribution is highly symmetric around certain point, say s; 2) The majority of the non-zero
probability concentrates within a certain interval, say [s —I,s +I]. The two characteristics and
the resulting transformation of Wy, can be described in the equations below:
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Pn=s+m = Pn=s—m, N € [5 —1l,s+ l] (23)
s+1
2 pn =1 (24)
n=s—I
d( s+1
Wi = W), = v) pnG(n) (25)
n=s—I

Afterwards, we take a closer look at the function G(n). The plots of G(n) are also generated
under different block sizes in Fig. 10. The curves show high linearity, indicating we can approxi-
mate G(n) by some linear approximation en + h (such as first-order Taylor Expansion around s),
with certain coefficients e and h. Combining the linearity of G(n) and the properties in Eq. 22
and 23, we can further transform Wy, as follows:

s+1
Wi = W), ~ d(vl) Y pulen+h) (26)
n=s—1
d(1) l . :
~ o Aps(es +h) + Y [psvile(s +1i) +h) + ps_i(e(s — i) + h)]} (27)
i—1
d(1) L
= 7[ps(es+h) +2Y psyiles +h)] (28)
i—1
B d 1) s+1
== n:ZS:_I pn(es+h) (29)
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In Eq. 31, the non-constant variables are s and A, while % is found always around 2.4

regardless of the variation of block size in I;. Therefore, Wy, nearly becomes a constant in Iy,
resulting in the plateau phenomenon. Based on the approximation, we can also interpret the
reason for plateau in a more intuitive way. We first equivalently transform Eq. 31 into another

form, % . %. In this formula, three parts are directly related to the block size, including
Atotnl A

d(1)VA, ﬁ - A and 5 - A. Considering the parameters d(1), ﬁ and 5 are constants or near
to constants, all the three parts are monotonically increasing with respect to the block size A,
which represent different meanings. The first part represents the physical maximum pick-up
distance within a block, and its extension naturally leads to the increase of average pick-up time.
In comparison, the second part represents the average number of vehicles in the block, whose
growth favors the reduction of average pick-up time under First-Dispatch rule. The reason is
that the platform always assigns the closest idle vehicle to an arriving passenger when there are
more vehicles than passengers in the block. With more vehicles available, it is always possible
to find a closer vehicle for the passenger. For the third part, it is equal to the symmetric point s
for steady state distribution, representing the most possible number of passengers in the block.
When this value increases, more idle vehicles are occupied and the new arriving passenger has
to choose the closest vehicle from a smaller pool of candidate vehicles, which naturally results in
the increase of pick-up time. The effects of the three parts compensate with each other, leading
to a fixed average total waiting time (average pick-up time) when the block size is large.

5 Model validation

5.1 Experiment design

To verify the insights and phenomena in the modelling part, we design a simulation study based
on a realistic agent-based simulator. The simulation settings are similar to the benchmark setting
utilized in section 4.1. The studied region is a square, which is further partitioned into smaller
square blocks. Block size ranges from 1 to 25 km?. The benchmark unit arrival rate is similarly
set to 0.133 per minute per km?. Passengers will not balk before joining the queue. The vehicle
speed is 10 m/s. For trip generation, in the modelling part, we assume the origin and destination
of a trip request by a passenger are both randomly and equally distributed in the studied square
region, with a detour ratio 1.27. The estimation of the average passenger trip time is then 1323.3
s. In the experiment part, we adopt similar settings as in the modelling part. The origin and
destination for a new generated trip are also randomly and independently selected in the studied
region. Thus, the expectation of the passenger trip distance keeps the same. The matching rule
is still First-Dispatch. For faster computation speed, we shrink the side length of the studied
region into 10 km. The total vehicle fleet size is accordingly reduced to 375. Under the setting
above, it is easy to find that the supply and demand related parameters for an individual block
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keep the same as in the modelling section. It is reasonable to utilize the setting above to conduct
simulation study for the validation of modelling results.

Considering the large number of iterations required to reach steady states in the simulation,
we only focus on two scenarios: one with 0.8 times benchmark unit arrival rate, and another with
0.4 times benchmark unit arrival rate. The previous one represents the market with relatively
high demand while the other corresponds to low demand. Under both the scenarios and different
block sizes, the steady-state system performance metrics are documented and compared with
the modelling results. In addition, we also test and collect the standard deviation of passenger
queueing time and pickup time with respect to block size, in order to more deeply consider the
experience of passengers under block matching. Based on the large demand scenario, we further
record and compare the cumulative computation time for matching operation over a long period
(100000 steps of simulation in the steady state of the system) under different block sizes, in order
to show the effect of block size on the computation time.

To conduct simulation, we develop an agent-based simulator with block matching rule,
which is shown in Algorithm 2.

Algorithm 2 Simulator for a ride-sourcing market

1: Initialize states for platform and drivers.

2: for matching time interval t = 0 to T do

3: Block matching: Conduct matching between passenger and idle vehicle queues in each
block respectively, following the First-Dispatch rule.

4: Update matching outcomes: The status of matched vehicles become occupied. The
matched orders and vehicles are removed from the waiting queues of their current block.

5: Request generation: New orders are generated with origin and destination randomly
distributed in the studied region. The new orders are added to the waiting queue of the
block where their origins are located.

6: Update states for next time interval: Update states of drivers and orders in the system
under next time interval. The drivers who finish their trips will join the waiting queues of
idle vehicles of the current blocks.

5.2 Results and analysis

We repeat the simulations until convergence of metrics is reached for each experiment. The
comparison between simulation results and modelling results are shown in Fig. 11 to 13. The
curves generated by the proposed model matches well with the simulation results for all the
three metrics under different arrival rates. The slight differences between the modelling and
simulation results are common in M/M/c model, as discussed in Feng et al. (2020). The reason
is that the drivers in the simulation may not obey the assumption of uniform spatial distribution,
and the service time may not always obey exponential distribution, leading to larger variance of
the whole system and thus the differences in performance metrics. Still, such differences are less
than 10 seconds for most of the block size, which is acceptable for ride-sourcing platforms. The
simulation results show that the average queueing time and total waiting time decreases with
the increase of block size, while the average pick-up time may increase as block size extends
in some interval. The variations of metrics with respect to block size are more obvious under
smaller block size. When the block size is large, the metrics becomes less sensitive, and the
plateau phenomenon emerges in the simulation results, as expected in the modelling analysis. To
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Figure 11: Modelling and experiment results for average queueing time under different unit

arrival rate. The ratio represents jSludiedunitarrivalrate

summarize, the phenomena and insights in the modelling phase are validated by the simulation
results, demonstrating that the proposed model is an useful and reliable tool for analysis of the
ride-sorucing market with block matching system.

Besides, the results for the standard deviation (std) of passenger queueing time and pickup
time are shown in Fig. 14 and Fig. 15. Std of queueing time generally deceases with the increase
of block size. The metrics is obviously larger under higher arrival rate when the block size is
relatively small. When the block size is large, the metrics always becomes close to zero, since the
passenger is always immediately matched with some driver. Compared to queueing time, the
std of pickup time is much smaller and less sensitive to the change of block size. To summarize,
ride-sourcing platforms with block matching system may avoid excessively small block size, to
prevent the emergence of extremely long waiting time for some passengers, which may result in
bad travelling experience.

In addition, the comparison of computation time is shown in Fig. 16. The figure demon-
strates that the computation time for matching operation is increasing with block size extending
(that is, increasing with the number of blocks decreasing), matched with the discussion in the
introduction section. Under 25 km? block area, the computation time for matching increases over
40 %, compared to that under 1 km?. From the perspective of waiting time and computation
time, a proper block area in this case can be 5 km?, where the average total waiting time is in the
plateau (as shown in Fig 13a), and the computation time is lowest compared to the other larger
block size of the plateau. The determination is supported by both theoretical and simulation
results.

6 Conclusion

This paper presents a model to approximate a ride-sourscing system with matching blocks. The
model can be used to determine the proper block size, and investigate the impacts of block size
on three key system performance metrics, including passengers’ average queueing time, average
pick-up time and average total waiting time. The model utilizes a M/M/c queue to depict the
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Figure 16: Comparison of cumulative computation time under different block sizes. The vertical
axis represents the ratio of the cumulative computation time for matching operations under
a certain block area to that under the benchmark block area (1 km?). The value in the label
represents the ratio of the studied arrival rate to the benchmark unit arrival rate.

matching process in each block, where the service rate is treated as an endogenous variable
depending on the average pick-up time. A solution-finding approach is developed to solve for
the endogenous service rate and the corresponding steady-state probabilities. The trends of
the key metrics with respect to the block size are then portrayed and analyzed under different
supply-demand scenarios. It is found that passengers’ total waiting time first decreases and
then keeps unchanged (reaching a plateau) as the block size increases. This indicates that the
platform can almost select any block size in the plateau to guarantee passengers’ total waiting
time is minimized. Furthermore, an in-depth analysis is made for the plateau phenomenon of
total waiting time when block size is large, based on a theoretic approximation and an intuitive
interpretation. By conducting a large-scale simulation study, we validate that the proposed model
can well approximate ride-sourcing systems and verify the observations and insights obtained so
far.

As for future research, the block matching problem in ride-sourcing systems can be further
explored from the following aspects: 1) Bipartite matching can be also implemented in a block-
wise way, requiring new theoretic models to approximate the corresponding system performance
metrics. 2) It is interesting to investigate the joint-decision with other operations (such as pricing
or rewarding), e.g. multiple objectives can be jointly considered for optimizing overall system
performance. 3) The model can be further adjusted to consider the market with ride-splitting ser-
vice. Under spatial heterogeneous scenario (the distributions of demand and supply patterns are
different across the whole area), a simple yet effective potential solution is to partition the whole
area into smaller sub-areas. The historical supply and demand patterns for each block within the
same sub-area should be close to each other. Proper and different block sizes can be set based
on our model for each sub-area, respectively. Still, the detailed adjustment of the current model
under such scenario is worth further exploration. 4) Proper models under changing demand and
supply patterns can be further considered. Under mild changing pattern, one can rely on the
steady-state models. If the pattern changes highly dynamically and shows high heterogeneity,
some dynamic model (like Markov Decision Process) may be used. But such dynamic models
are generally time-costing to find a solution and generate decisions.
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Appendix A

A1l. Discussion of time complexity for block matching

Consider a region with N passenger arriving in order, and a total of K idle vehicles within a
certain time period. Assume N < K because p < 1 is considered in this study, which means
supply can generally satisfy demand. Consider there are k available vehicles when a passenger
arrives. Under First-Dispatch rule, the platform need to find the nearest idle vehicle to the
arriving passenger. The core process can be simplified into finding the minimum from an array
with length k, whose item represents the distance between the passenger and an idle vehicle.
The time complexity for this process is O (k). For simplicity, consider a most simple yet efficient
way to find the minimum: compare item in the array in order. Under the worst case where the
minimum item is always at the end of array, we need k — 1 comparison to find the minimum
for an individual passenger. Thus, the total amount of comparison required for all the arriving
passengers within this time period is Yx_ nk—-1= w — N, representing O((K —
N)N) time complexity. Consider now we partition the region into M blocks. On average, each
block has & arriving passengers and & vehicles, resulting in (’)(M

M2
each block, and O(W) for the whole region. This indicates that the increase of the number

of blocks favors the computation speed for the matching system.

) time complexity for

Appendix B

B1. Derivation of steady-state probability

From classic queueing theory (Shortle et al., 2018), we know that once we obtain the formula of
po, the other probabilities for other states can be easily derived based on Eq. 3. For simplicity,
we only show the derivation of py for p # 1. By integrating the first row of Eq. 3 into the second
row, we can have:

c—1 AN Ny AN 1
Po = s L i) (33)
c—1 n Ny n
r r 1

— o 4
(n:O n! * ,; c”*cc!) (54
= r' re s ' n—cy—1

= (HIOE o ;;C<E) ) (35)
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B2. Derivation of metrics

(36)

(37)

(38)

For simplicity, we still mainly consider the case with p # 1. To obtain W,, we first derive average

queue length by definitions and some simple simplifications:

Np
Ly=0+ Y (n—c)pa
n=c+1
NP 1,.71
rC NP
Y (-
n=c+1
N,—c
_ rCPO ¢ m
! mZ:;l P
_ rppod L p”
c! dp
_ ropo d p(1— ™),
c! dp 1-p
_rppo PNy —0)(p—1) —1] +1
c! (o —1)?

Following Little’s Law (Little, 1961), we can further obtain:

_ L‘i
Al —pn,)
po ' PNy —c)(p—1) -1 +1

W

T A-pn,) o (o —1)2

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Here, we modify the arrival rate from A to A(1 — py,). The reason is that in our scenario, the
passengers may possibly abandon joining the queue if the length of the queue is out of their
tolerance. The probability for this situation is pn,, where N, represents the longest queue length
the passengers can accept. To this end, the actual arrival rate becomes A(1 — py,). For average

pick-up time, the derivation process is also not complex:
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Here, 1Y 1 (pnd(c — n)V/A) represents the average pickup time when the queue length is

smaller than c, that is, there are still idle drivers within the block to serve passengers imme-

diately. In comparison, %szic pnd(1)V/A represents the average pickup time when the queue
length is larger than c, and passengers have to wait in queue for matching.
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