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Abstract12

On-demand matching between waiting passengers and idle drivers is one of the most impor-13

tant components in a ride-sourcing system. A variety of matching mechanisms have been14

developed to meet different needs of ride-sourcing platforms, e.g. mitigating supply-demand15

imbalance, maximizing platform revenue. In this paper, we focus on a block matching sys-16

tem, a special type of matching mechanism, where the region of interest is partitioned into17

blocks, and on-demand matching is separately and simultaneously conducted in each block.18

Block matching can bring many benefits, such as limiting order assignment with long pick-up19

distance, simplifying the process of deployment, etc. However, it still remains a challeng-20

ing yet interesting issue to determine the block size for the matching system, which is a key21

decision variable governing passengers’ waiting time. To solve the problem, we model the22

ride-sourcing system with block matching via a M/M/c queue, in which the service rate is23

endogenous and partially determined by passengers’ average pick-up time. Based on the24

model, we find that the average queueing time of passengers decreases with block size in-25

creasing, while the average pick-up time may increase instead. In addition, the average total26

waiting time (sum of average queueing and pick-up time) become nearly invariant to the27

change of block size when the block size is large, which we call plateau phenomenon. In the28

plateau, ride-sourcing platforms can choose the block size based on other standards while the29

average total waiting time is always maintained at the nearly lowest value. The findings are30

verified via an agent-based simulation study, demonstrating that the proposed model can be31

an effective tool to approximate block matching system.32
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1 Introduction34

Recent years have witnessed a fast popularization of ride-sourcing service. Transportation net-35

work companies (TNCs), such as Uber, Lyft and Didi, are using smart-phone APPs to offer36

on-demand mobility services to passengers around the world, via the broad application of mod-37

ern mobile communication and Global Position System (GPS). Uber, for instance, is now offering38

a variety of services in more than 700 metropolitan areas in 65 countries (Wang and Yang, 2019).39

Didi, the largest ride-sharing company in China, is generating millions of daily ride-hailing de-40

mand in a single city, Beijing (Tong et al., 2017). In New York City, Lyft and Uber cars are even41

estimated to outnumber conventional taxis 4 to 1 (Jiang et al., 2018).42

The rapid development of ride-sourcing services has raised many operational issues, such43

as estimated time of arrival (ETA), on-demand matching, ride-pooling operations, empty vehi-44

cle re-positioning, information sharing and disclosure, and rating mechanism (Wang and Yang,45

2019). Among these issues, on-demand matching is the main footstone for real-time operations,46

and thus has intrigued much attention from researchers. In general, a matching algorithm is47

implemented by ride-sourcing platforms to assign waiting passengers to idle vehicles. There are48

multiple objectives for a matching operation, such as maximization of platform revenue, maxi-49

mization of the number of matched orders, or minimization of passengers’ average waiting time.50

The on-demand matching approaches developed in the literature can be majorly grouped51

into two streams: bipartite matching (Xu et al., 2018; Chen et al., 2019; Shah et al., 2020), and52

queue-based matching (Liao, 2003; Lee et al., 2004; Zhang and Pavone, 2016; Xu et al., 2020b;53

Feng et al., 2020; Besbes et al., 2021). For bipartite matching, waiting passengers and idle drivers54

are respectively collected and grouped in a batch way within a certain time window, and pairs55

are formed between each pair of waiting passenger and idle driver. The matching problem is56

then transformed to finding the best matching on the bipartite graph structure, which can be57

solved by combinatorial optimization algorithms. Bipartite matching may generate some extra58

waiting time for passengers since the platform does not assign vehicles to passengers during the59

time window for order and vehicle accumulation. In comparison, queue-based matching may60

mitigate this problem, where the arriving vehicles are always assigned to waiting passengers61

instantly. When there are multiple waiting passengers and no arriving vehicles, the passengers62

will be formed into a queue, and wait to be served in some pre-defined order, which is often63

described via queueing models. Specially, when passenger queue is served via First-Come-First-64

Serve (FCFS) rule, the fairness is protected for longer-waiting passengers, since they possess65

higher priority for the next matching. In comparison, the bipartite matching usually does not66

differentiate the waiting time of passengers when making matching decision, and thus some67

passengers may keep unmatched for a long period.68

In this paper, we focus on block matching, a special type of queue-based matching that has69

been utilized by some ride-sourcing platforms (Xu et al., 2020b) or bike-sharing platforms (He70

et al., 2021). The core idea of block matching is to partition the whole region (e.g. one city) into71

various small blocks, and the on-demand queue-based matching is separately and simultane-72

ously implemented in each block. This special matching mechanism has several advantages over73

regular queue-based matching without matching blocks: 1) The blocks can help to avoid distant74

matching, since the matching processes are limited within each block. Therefore, the time and75

operational cost led by distant pick-up can be reduced. 2) The setting of blocks potentially makes76

it more flexible and convenient for other operations, such as pricing and idle vehicle reposition-77

ing. For example, He et al. (2021) study a bike-sharing problem where pricing and queue-based78
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matching are implemented within blocks with the same partition. Under some scenarios, the79

price of service within a block is mainly based on the matching process of that individual block,80

and the pricing problem for the whole region can thus be divided into sub-problem for each81

single block, which simplifies the optimal solution seeking process. 3) The length of queue in82

each block is reduced, and thus the computation speed to obtain matching result is improved.83

Take matching under First-Dispatch rule as an example, with First-Dispatch rule, when there are84

fewer passengers than vehicles, the arriving passengers is always dispatched to the nearest idle85

vehicle. When there are more passengers than vehicles, the next idle vehicle is dispatched to the86

longest waiting passenger, which actually follows FCFS rule. The interest of longer waiting pas-87

sengers will be considered, as mentioned before. Under First-Dispatch rule, the time complexity88

for the block matching is found to be negatively related to the number of blocks, as shown in89

Appendix A. This means the increase of the number of blocks can help to reduce computational90

complexity given the same size of inputs in some cases. This is validated from the comparison91

of running time for simulation under different block sizes in Fig. 16.92

To properly design a block matching system, a key problem is to determine the area of each93

block (block size). On one hand, a larger block size may lead to a larger pick-up distance because94

passengers may be matched to some faraway drivers in the block. The system service rate is95

thus decreased and the waiting time for passengers may increase. In addition, a larger block96

size can increase the number of passengers in each block, which will further increase passenger’s97

waiting time. On the other hand, the increasing number of vehicles within a larger block may98

help to reduce waiting time of passengers. These mixed effects make it challenging to decide the99

proper block size. In addition, the proper block size also depends on the specific market-related100

parameters (number of vehicles, average trip time, unit arrival rate). To solve this challenging101

issue, we model the ride-sourcing system with block matching with a M/M/c queue for each102

block, in which the service rate is endogenously interacted with the average pick-up time of the103

system. We also develop an algorithm to find the steady state solution for the system. For system104

performance metrics, we focus on average queueing time, average pickup time, and average105

total waiting time for passengers, which are important measurements of system efficiency and106

passengers’ satisfaction. Based on the developed model, patterns of the metrics in terms of107

block size are depicted and analyzed under different number of vehicles, average trip time,108

passengers’ arrival rate. Significant insights on block size determination are summarized for109

platform managers. Specially, we find a plateau phenomenon of total waiting time, which means110

this metrics almost keeps the same low value within an interval of large block size. The platform111

manager can thus select block size within this interval without worrying the influence on average112

total waiting time of passengers. Via extensive simulation studies, the phenomenon and other113

insights of the modelling analysis are validated under different supply-demand scenarios. In114

summary, this paper makes the following contributions:115

• We develop a theoretical model to delineate a ride-sourcing market under a block match-116

ing mechanism, which is a practical mechanism for ride-sourcing companies but was rarely117

investigated in the literature. Most importantly, we spell out the endogenous relationship118

between the system’s service rate and average pick-up time, by leveraging a M/M/c queu-119

ing model with endogenous pick-up time. Namely, the average pick-up time accounts for120

vehicles’ service time and thus affects the service rate, while the service rate governs idle121

vehicles’ density and in turn influences the average pick-up time.122

• Based on the proposed model, we explore and study the trends of average queuing time,123

average pickup time, and average total waiting time for passengers with respect to block124
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size under different supply-demand scenarios. An interesting phenomenon is that the125

metrics becomes invariant to the block size when it already becomes large. The useful126

insights can be utilized by platform managers for the determination of proper block size127

when adopting block matching mechanism.128

• Simulation studies are conducted to demonstrate that our proposed model can well approx-129

imate the simulated outcome, which is regarded as a proxy for the reality. In the future,130

the proposed model can be also explored in the analysis for other scenarios that potentially131

use block matching, such as food order delivery and freight order matching.132

The remainder of this paper is organized as follows. Section 2 provides a literature review on133

past studies for matching operation and application of queueing theory in ride-sourcing service.134

Section 3 details the model framework for block matching. Section 4 provides the method to find135

the steady-state solution of the model, conduct a graphical analysis and explain the observed136

special phenomenon for block matching. Numerical experiments and discussions are provided137

in Section 5, followed by conclusions in Section 6.138

2 Literature Review139

2.1 Matching operation for ride-sourcing service140

One important task for ride-sourcing service is the matching between waiting passengers and141

idle vehicles. As mentioned above, there are a variety of objectives for the matching operation,142

including minimization of passengers’ average waiting time and other kinds of delay (Wong and143

Bell, 2006; Seow et al., 2009; Alonso-Mora et al., 2017), minimization of the required number of144

vehicles (Vazifeh et al., 2018), maximization of matching quantity (Özkan and Ward, 2020), and145

maximization of drivers’ revenue over a time period (Xu et al., 2018; Tang et al., 2019; Yu et al.,146

2019).147

As mentioned above, there are two types of matching approaches, including bipartite match-148

ing and queue-based matching. For bipartite matching, a current trend of researches is to con-149

sider the effects of current decision on the future state of the system, and integrate reinforcement150

learning technology with bipartite matching to achieve long-term objectives. For example, Xu151

et al. (2018) propose a reinforcement learning method to obtain long-term rewards, which are152

added with the immediate reward in the online bipartite matching model. The long-term reward153

represents the expected value of the next order after he/she completes the current one, while the154

immediate reward reflects a driver’s expected revenue from serving the current order. Chen et al.155

(2019) first shows the intrinsic relationship between matching and pricing, and then optimizes156

the two operations simultaneously. The pricing strategies are learned via a contextual bandit al-157

gorithm and the matching strategies are optimized with the help of temporal difference. Inspired158

by the fact that extending the matching time interval may significantly reduce the average pickup159

time (Yang et al., 2020), Ke et al. (2020) adopts deep reinforcement learning methods to delay the160

bipartite matching of some orders for a potential better matching outcome (with a short pick-up161

time) in the incoming time intervals. Shi et al. (2019) develop a reinforcement learning based162

algorithm to operate a community owned electric vehicle fleet, which provides ride-hailing ser-163

vices to local residents. The goals are to minimize passengers’ waiting time, electricity cost, and164

operational costs of the vehicle, and multiple operations are implemented together via bipartite165

matching.166
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Queue-based matching also attracts a variety of interests from researchers and ride-sourcing167

companies. Wang et al. (2019a) analyze the dynamics of passengers and drivers in a queueing168

model where the platform can control the matching process by setting a threshold on the ex-169

pected pick-up time. Applying fluid approximations, they explore the impacts of the threshold170

on the number of vehicles with different states (idle/pick-up/occupied), based on which a policy171

to adjust the threshold is designed for time-varying demand. Feng et al. (2020) conduct exten-172

sive numerical experiments in two cases with circular road and grid network under queue-based173

matching rules, in order to explore the relationship between system performance metrics and174

the utilization level, which represents the traffic density of the system. The relationship is found175

not monotone, and the phenomenon is further analyzed via a theoretic queuing model for the176

system.177

Still, most previous researches focus more on queue-based matching without region parti-178

tion, while there are only two papers examining queuing systems with matching blocks, i.e. Xu179

et al. (2020b) for ride-hailing systems and He et al. (2021) for bike-sharing systems. Xu et al.180

(2020b) study the supply curve of ride-hailing systems under different market conditions based181

on a double-ended queueing model. The supply curve with finite matching radius is found182

always backward bending, but weaker bend can be gained via adjustment of the radius. In com-183

parison, we focus more on the impact of block size on the system performance metrics, such as184

passengers’ queuing time and pick-up time. We also examine the impacts of a few important185

parameters, such as the number of vehicles and the length of average trip time, on the selection186

of matching block size. In addition, the endogenous relationship between the average pick-up187

time and the service rate is well characterized in our model, and the solution finding procedure188

for the steady state of the system is developed. Moreover, we implement an extensive simulation189

study on a realistic simulator to validate the model and analytical results. Meanwhile, while He190

et al. (2021) try to address the joint design of incentives (via “crowdsourcing”) and spatial capac-191

ity allocations (enabled by “geo-fencing”) based on strategic queues for bike-sharing platforms,192

the attention in this paper is paid to the determination of block size under the block matching193

mechanism.194

2.2 Application of queueing theory for ride-sourcing service195

In addition to matching operation, queueing theoretic models have been adopted for other op-196

eration issues in ride-souring systems. For idle vehicle repositioning (rebalancing), the vehicles197

is guided by the designed algorithm to cruise to some area, where they can get matched under198

a certain queue-based matching rule, in order to balance the supply and demand. There has199

been a rich stream of research on this important issue (Zhang et al., 2018; Yahia et al., 2021; Ma200

et al., 2019; Calafiore et al., 2017; Braverman et al., 2019; Wollenstein-Betech et al., 2020; Zhang201

et al., 2016; Sayarshad and Chow, 2017; Spieser et al., 2016a; Li et al., 2021; Bazan et al., 2018;202

Spieser et al., 2016b). For example, Zhang et al. (2018) model the mobility-on-demand (MoD)203

systems as two coupled closed Jackson networks with passenger loss. They show that the system204

can be approximately balanced by solving two decoupled linear programs and exactly balanced205

through nonlinear optimization, based on which a real-time closed-loop rebalancing policy is206

designed and tested. Ma et al. (2019) focus on the combination of ride-sourcing system and ex-207

isting transit system. Queueing-theoretic algorithms are developed to make joint decision of idle208

vehicle relocation and ride sharing. Braverman et al. (2019) focus on empty-car routing based on209

a closed queueing network model of ridesharing systems. They establish both process-level and210

steady-state convergence of the queueing network to a fluid limit in a large market regime where211
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demand for rides and supply of cars tend to infinity, and use this limit to study a fluid-based212

optimization problem.213

In addition to idle vehicle repositioning, another important operation for the application of214

queueing theory is pricing (Bai et al., 2019; Castillo et al., 2017; Yan et al., 2020; Courcoubetis and215

Dimakis, 2018; Taylor, 2018; Ruch et al., 2019; Waserhole and Jost, 2016; Li et al., 2019; Banerjee216

et al., 2015; Xu et al., 2020a). Among the researches, Bai et al. (2019) consider an on-demand217

service platform using earning-sensitive independent providers with heterogeneous reservation218

price (for work participation) to serve its time and price-sensitive passengers with heterogeneous219

valuation of the service. They include the steady-state waiting time performance based on a220

queueing model in the passenger utility function to characterize the optimal price and wage221

rates that maximize the profit of the platform, and discuss the determination of price and payout222

ratio under different market situation. Castillo et al. (2017) discuss the wild goose chase (WGC)223

phenomenon in ride-sourcing market, where vehicles are dispatched to pick up distant passen-224

gers, wasting drivers’ time and reducing earnings. Based on queueing models for the matching225

process, they suggest to utilize dynamic surge pricing to control the WGC under changing mar-226

ket conditions.227

Moreover, queueing models are also frequently utilized in the pooling/sharing operations228

for ride-sourcing platforms (Yan et al., 2020; Zhang et al., 2018; Ma et al., 2019; Özkan and Ward,229

2020; Braverman et al., 2019; Wang and Honnappa, 2017; Waserhole and Jost, 2016; Jacob and230

Roet-Green, 2021; Banerjee et al., 2015). For instance, Jacob and Roet-Green (2021) develop a231

queueing model to find the ride-sharing platform’s optimal revenue in equilibrium when pas-232

sengers are strategic and drivers are independent agents, with both solo and pooling service233

available. They find that offering both solo and pooled rides is optimal when the distribution of234

passenger-type is not skewed and congestion is not high. Counter intuitively, when congestion235

is high, the platform benefits from offering only one ride choice. Other interesting topics raised236

by ride-sourcing operations with queueing model applied include fleet sizing and capacity plan-237

ning (Besbes et al., 2021; Bazan et al., 2018; Li et al., 2019), service reservation (Yahia et al., 2021),238

curbside stopping (Qiu et al., 2020), system coordination (Ruch et al., 2019). Still, less attention is239

paid to block matching system and the resulting problem of block size determination, which we240

focus on in this study.241

3 Model242

In this section, we first make several simple assumptions about the studied market, and provide243

the nomenclature table as preliminary. The matching process in one block of the studied region244

is then modelled via a M/M/c queue, based on which the steady-state probability of the queue245

length and the corresponding metrics are obtained. Moreover, we also construct a formula to con-246

sider the impact of average pick-up time on the service rate, which completes the mathematical247

description of the system.248

3.1 Preliminary249

To simplify the process of model construction and analysis, we make several simple and common250

assumptions of the ride-sourcing market for the studied region. The drivers’ and passengers’251

spatial distribution are assumed homogeneous, and matching blocks are of the equal size. The252

inter-arrival time for passengers and drivers is assumed to obey exponential distribution, which253
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Symbol Description
Atotal Area for the studied region.
M The number of matching blocks.
A Area for one block. A = Atotal/M.
K Vehicle fleet size for the studied region.
λunit Arrival rate of passengers for unit area.
λ Arrival rate of passengers for area of one block. λ = λunit A.
µ Service rate of vehicles.
c Average number of vehicles in one block. c = K/M.
n The number of passengers in the system for one block.
t Average trip time for passengers in the studied region.
v Average vehicle speed.
w0 Maximal tolerable expected waiting time for passengers when joining the queue.
d(i) Function of a passenger’s average distance to the closest idle vehicle in a unit-size

block with i idle vehicle available for dispatching.
Lq Average queue length of passengers in the steady state of the system.
Wq Average queueing time for passengers in the steady state of the system.
Wp Average pick-up time in the steady state of the system.
Wtw Average total waiting time (including queueing and pick-up time) for passengers

in the steady state of the system.

Table 1: List of main symbols

is a regular assumption for queueing theoretic studies (Feng et al., 2020; Xu et al., 2020b; Besbes254

et al., 2021). In addition, the balking behavior can also be considered in the model, where255

passengers may reject to join the waiting queue of a block if the expected waiting time is longer256

than a threshold. This is practical in reality, since the platforms like Didi show the current queue257

length and expected waiting time before passenger choose to join. For the rule of assignment258

between passenger queues and arriving vehicles, we focus on the First-Dispatch (FD) rule as259

mentioned before, which is extensively utilized and studied in previous researches (Xu et al.,260

2020b; Besbes et al., 2021). Under FD rule, when there are fewer waiting passengers than idle261

vehicles, the arriving passenger is always dispatched to the nearest idle vehicle. When there262

are more passengers than idle vehicles, the next idle vehicle is dispatched to the longest waiting263

passenger.264

Under the assumptions and rules made above, we can efficiently model the matching process265

in an individual block of the region via a M/M/c queueing model specified in the next section.266

The major symbols for the model construction are listed in Table 1.267

3.2 M/M/c model268

M/M/C model is a classic modelling method in queueing theory. The first and second M rep-269

resent that the interarrival time of customers and service time by the system are assumed to be270

exponentially distributed, while C means that the number of servers (e.g. vehicles in our study)271

is larger than one. In a M/M/C model, customers gradually arrive in the system, forming as a272

queue, and get served by the servers in the system, and the equilibrium state of this process can273

be theoretically depicted by the model. The detail of M/M/C queue utilization in this study is274

provided as follows. Suppose the platform have a fleet of K vehicles, and the area of the studied275
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Figure 1: Birth and death process in each single block

region is Atotal . The platform partitions the space into M equal-size matching blocks. Thus, the276

average number of vehicles in each block is c = K/M, the area of one block is A = Atotal/M,277

and the arrival rate of passengers for one block is λ = λunit A. Since we mainly consider the sta-278

tionary equilibrium state of the market and focus on the extraction of general insights, we only279

aggregately consider the average number of vehicles in each block in this study. The impact of280

the changing demand and supply can be explored in the future study. The average service rate of281

an individual vehicle is defined as µ. Considering the similarity in supply and demand situation282

for each block as assumed in the last section, we can focus on the matching process within each283

individual block, which is modelled as a M/M/c queue and described by the birth-death process284

in Fig. 1. The state represents the number of passengers in the block, and the ”birth” rate and285

”death” rate are respectively λn and µn. For rate of completions (or ”deaths”), it depends on the286

number of passengers in the block. If there are c or more passengers, then all c idle vehicles (as287

previously mentioned, there are c idle vehicles in one block on average) must be matched and288

become busy. Otherwise, when there are fewer than c passengers in the system, n < c, only n289

of the c idle vehicles will be matched and occupied. This leads to the following state-dependent290

service rate:291

µn =

{
nµ, 1 ≤ n < c
cµ, n ≥ c

(1)

For arrival rate of passengers (”birth” rate), passengers’ potential abandonment of joining the292

queue can be described by a function bn, and thus λn = bnλ. When there are fewer passengers293

than the average number of idle vehicles c, it can be expected that the arriving passenger can294

get served instantly, resulting in no abandonment behavior for the passenger, that is, bn = 1.295

Otherwise, the system of one block is fully busy with system service rate cµ, and the waiting296

time can be expected as n
cµ for the arriving passenger n. When n

cµ < w0, the passengers are still297

willing to join, according to the assumed balking behavior mentioned in the last section. When298

n
cµ ≥ w0 (n ≥ w0cµ = Np), the abandonment emerges and bn = 0. The resulting arrival rate is299

summarized in the equation 2:300

λn = bnλ =

{
λ, n < Np = cµw0

0, n ≥ Np
(2)
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To find the steady-state probability pn, we first list flow balance equations below:301


pn =p0

n

∏
i=1

λi−1

µi
∞

∑
i=0

pi = 1
(3)

The upper one in 3 depicts the relationship between p0 and the probability of any given state,302

while the lower one limits the summation of the probabilities of all the queueing states to be one.303

Combining Eq. 1 to 3, the steady-state probability can be obtained as follows, where r = λ
µ and304

ρ = λ
cµ = r

c . For clarity, the detailed derivation process is provided in Appendix B.305

pn =


p0

λn

n!µn , 0 ≤ n < c

p0
λn

cn−cc!µn , c ≤ n ≤ Np

0, n > Np

(4)

p0 =


(

c−1

∑
n=0

rn

n!
+

rc

c!
· 1− ρNp−c+1

1− ρ
)−1, ρ 6= 1

[
c−1

∑
n=0

rn

n!
+

rc

c!
(Np − c + 1)]−1, ρ = 1

(5)

3.3 Metrics306

In this part, we first introduce several key system performance metrics, including average queue-307

ing time, average pick-up time and average total waiting time, based on the model presented in308

the last section. Afterwards, we utilize an equation to capture the intrinsic relationship between309

system service rate and average pick-up time.310

1) Average queueing time Wq311

Wq =
Lq

λ(1− pNp)
(6)312

=
0 + ∑

Np
n=c+1(n− c)pn

λ(1− pNp)
(7)313

=
p0

λ(1− pNp)
· rcρ

c!
·

ρNp−c[(Np − c)(ρ− 1)− 1] + 1
(ρ− 1)2 (8)314

315

2) Average pick-up time Wp316

Wp =
1
v
[
c−1

∑
n=0

(pnd(c− n)
√

A) +
Np

∑
n=c

pnd(1)
√

A] (9)317
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=

√
Ap0

v
[
c−1

∑
n=0

λn

n!µn d(c− n) + d(1)
rc

c!
· 1− ρNp−c+1

1− ρ
] (10)318

3) Average total waiting time Wtw319

Wtw = Wq + Wp (11)

The derivation process for the metrics are summarized in Appendix B. Here, Wq represents320

the average time spent in queue for a passenger in the given system, which has significant impacts321

on different shake-holders. For passengers, it can influence the final arrival time for the trips,322

and thus highly correlates to the social welfare for the whole passenger group; for ride-sourcing323

platform, the average queueing time is an important factor for passengers’ choices between the324

platform and other group of competitors, which can further influence the long-term revenue of325

the platform. Wp is another significant system performance metrics. It represents the time for326

the idle vehicle (or server) to reach its assigned passenger, which captures one major difference327

of the ride-sourcing system from classic counter service system, where passengers are always328

assumed to get served immediately once they finish queueing. For both platform managers and329

passengers, the total waiting time before passengers get picked may be a main concern. To this330

end, we utilize Wtw to consider the integrated delay of service, including both queueing time and331

pick-up time.332

The system performance metrics can also influence some system variables, such as the ser-333

vice rate µ for vehicles. As discussed in Feng et al. (2020) and Besbes et al. (2021), the pick-up334

process can also be treated as part of the service procedure, and we carefully consider this point335

via the equation below:336

µ =
1

t + Wp
(12)

where t is the average trip time, Wp is the average pick-up time, and the combination of the337

two involves the whole process for the service. The service rate now becomes an endogenous338

variable determined by Eq. 9 and Eq. 12, which increases the complexity of finding steady-339

state probabilities. In next section, we develop an efficient solution-finding approach to solve the340

problem.341

4 Modelling analysis342

In this section, we use the developed model to make analysis from both intuitive and theoretic343

perspective. We first introduce some parameters setting, and develop an approach to find the344

endogenous service rate and the steady-state probability. Afterwards, we draw the plots of345

metrics in terms of block size, in order to uncover the impacts of block size on the metrics under346

different traffic related parameters. Managerial insights are then provided based on the patterns347

shown in the plots. In addition, an in-depth analysis is made for a special phenomenon (which348

we call plateau phenomenon as mentioned before) both theoretically and intuitively.349
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Figure 2: Studied region and partition

4.1 Case setting and solution finding350

We focus on a square region as shown in Fig. 2, which is partitioned into equal-size blocks.351

The square grid is also often adopted for region partition in other researches related to demand352

management, such as Wang et al. (2019b), Yoshida et al. (2020) and Pan et al. (2019). The side353

length of the region, a =
√

A, is 20 km, and the area of the region is 400 km2, about half of the354

New York City. To consider the impacts of different block sizes, we set the block area ranging355

from 1 km2 to 25 km2. Referring to Vignon et al. (2021), the benchmark unit arrival rate λunit is356

adjusted to 0.133 per minute per km2, and the vehicle speed is 10 m/s. Similar to Feng et al.357

(2020) and Besbes et al. (2021), we mainly consider the case with ρ < 1, and thus the passengers358

are assumed always willing to join the queue when arriving, that is, w0 = +∞. The resulting359

modification to Eq. 4 to Eq. 9 is shown below.360

pn =


p0

λn

n!µn , 0 ≤ n < c

p0
λn

cn−cc!µn , c ≤ n
(13)

p0 = (
c−1

∑
n=0

rn

n!
+

rc

c!(1− ρ)
)−1, ρ < 1 (14)

Wq = p0 ·
rc

c!(cµ)(1− ρ)2 (15)

Wp =

√
Ap0

v
[
c−1

∑
n=0

λn

n!µn d(c− n) + d(1)
rc

c!(1− ρ)
] (16)
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To guarantee ρ < 1, the benchmark vehicle fleet size is set to 1500. With a common assumption361

that the origin and destination of a trip is randomly and equally distributed in the studied square362

region, and considering the detour behavior of drivers via a coefficient 1.27 (Yang et al., 2018),363

the benchmark average trip time t can be calculated by 1.27 × 0.521a
v = 1323.3s, where 0.521364

represents the expected distance between two random points in a unit-size square (Moltchanov,365

2012). Similarly, d(1) is set to 0.521, and d(i) is equal to d(1)√
i

, following the result by Besbes et al.366

(2021).367

Based on the benchmark parameters above, we further consider different fleet size, unit368

arrival rate and average trip time, in order to depict the impact of block size under different369

supply-demand scenarios. The specific settings are listed as follows:370

• Fleet size: 1500 to 3000 for vehicle fleet size. All the other parameters are set to the bench-371

mark ones.372

• Unit arrival rate: 0.4 to 1.0 times benchmark unit arrival rate. All the other parameters are373

set to the benchmark ones.374

• Average trip time: 300 s to 1323.3 s for average trip time. All the other parameters are set375

to the benchmark ones.376

With the definitions above, the following steps are 1) to find the endogenous service rate; 2)377

to combine it with other exogenous parameters to obtain system performance metrics as shown378

in Eq. 11, 14, and 15. The second step is straightforward, and we only need to focus on the first379

step. We first combine Eq. 11 and 15, and obtain a new function F about service rate µ below.380

F(µ) =
c−1

∑
n=0

λn

n!µn · [
1
µ
− t−

√
A

v
d(c− n)] + [

1
µ
− t−

√
A

v
d(1)] · λc

c!µc ·
1

1− λ
cµ

,
λ

c
< µ <

1
t

(17)

The determination of endogenous service rate under Eq. 11 and 15 now becomes the root381

finding for Eq. 16 within the given interval. Based on the parameters defined before, we find that382

F(λ
c ) · F(

1
t ) < 0 is always true for the studied cases. Considering F(µ) is a continuous function383

within the interval, we adopt a bisection method to find the root of F (that is, the endogenous384

service rate), which is then utilized to generate the system performance metrics. The logic of385

bisection method is shown in Algorithm 1.386

4.2 Graphical illustration and insights387

Considering the complexity of the system with the endogenous service rate, we graphically388

illustrate the pattern of metrics under varying block size and supply-demand scenarios, and389

summarize insights for platform managers. In Fig 3, we depict curves of average queueing time390

and pick-up time with respect to block size under different fleet size, while similar plots are391

generated for different unit arrival rate and average trip time respectively in Fig 4 and Fig. 5.392

From Fig. 3a, we observe that the average queueing time gradually decreases with block393

size. The reason is that the expansion of block increases the average number of vehicles within394

the block, which improves the total service speed and overwhelms the negative influence of more395

arriving passengers and larger pick-up distance on the system efficiency. The effect of increasing396
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Algorithm 1 Bisection method to determine the service rate

1: Input: Function F, lower bound λ
c , upper bound 1

t , tolerable error e, a small value ε

2: x0 = λ
c + ε

3: x1 = 1
t

4: while x1 − x0 ≥ e do
5: x2 = x0+x1

2
6: if F(x0) · F(x2) < 0 then
7: x1 = x2
8: else
9: x0 = x2

10: return x0

block size on reducing queueing time is found more significant for smaller block size. As the397

original block size increases, the descending slope of queuing time with respect to block size398

becomes smoother. In addition, we also find that the queueing time becomes less sensitive to399

the variation of block size under larger vehicle fleet size. This is reasonable because the relative400

variation of the number of vehicles within a block become slower when it originally possesses401

many vehicles, resulting in a smaller response of the metrics. Moreover, when the block size is402

relatively small, the increasing fleet size is found able to reduce queueing time more significantly,403

similarly caused by the original degree of vehicle sufficiency. For average pick-up time in Fig. 3b,404

an observation is that the pick-up time generally increases as the block size extends, when the405

original block size is relatively small. In this case, the maximal pick-up distance and the number406

of people in the system both increase with block size, making the new arriving passenger more407

difficult to find a close vehicle to match. When the vehicle fleet size is large, the phenomenon408

becomes less obvious. Under a large block size, the pick-up time goes into a plateau with a409

nearly fixed value regardless of the change in block size. The potential reason is analyzed later410

via an approximation of pick-up time. In comparison with queueing time, the pickup time can411

be more effectively reduced by enlarging vehicle fleet size under a large block size, instead of a412

small one.413

Similarly, Fig. 4 shows the impact of different unit arrival rate on the metrics. Generally,414

the average queueing time still decreases with the increase of block size, but the trend becomes415

less obvious as unit arrival rate declines, due to the more sufficient relative vehicle supply in the416

block. In addition, a smaller block size is better for the reduction of queueing time via limiting417

unit arrival rate. For pick-up time, its variation with respect to the block size is more significant418

under larger arrival rate. When the block size is large, the limitation of arrival rate can more419

effectively reduce average pick-up time. From Fig. 5, it is straightforward to find that the general420

patterns are highly similar to those in Fig. 4. The increase of average trip time lowers the service421

rate and reduces the system efficiency from the supply side, while the similarly negative impact422

results from the increase of unit arrival rate from the demand side.423

In addition to the average queueing time and pick-up time, we also focus on the average424

total waiting time, a comprehensive metrics for the trip delay. The patterns are summarized in425

Fig. 6, considering the influence of different fleet size, unit arrival rate and average trip time. In426

general, the average total waiting time is decreasing with the extension of block size. When the427

block size is small, the curves are close to those of average queueing time. In comparison, under428

the range of larger block size, the trends are more similar to those of average pick-up time, where429
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Figure 3: Average queueing time and pick-up time under different block sizes and vehicle fleet
size.
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Figure 4: Average queueing time and pick-up time under different block sizes and unit arrival
rate. The value in the label represents the ratio of the studied arrival rate to the benchmark unit
arrival rate.
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Figure 5: Average queueing time and pick-up time under different block sizes and average trip
time (unit: s).

a plateau emerges for the metrics. The overall insights from these observations are summarized430

below, and an in-depth analysis is made in the next section to explain the phenomenon of plateau431

from both theoretic and intuitive perspective.432

• An increased block size can reduce the average queueing time, and the effect is more sig-433

nificant under smaller block size, smaller vehicle fleet size, larger unit arrival rate or larger434

average trip time.435

• An increased block size can increase the average pick-up time and the effect is more sig-436

nificant under smaller block size, smaller vehicle fleet size, larger unit arrival rate or larger437

average trip time.438

• When the block size is fixed, the increase of vehicle fleet size or the limitation of passengers’439

arrival rate (via pricing operation, for example) can favor the reduction of average queueing440

time and pick-up time. The effect will be more obvious with smaller fixed block size for441

average queueing time, and larger block size for average pick-up time.442

• For managers who aim to reduce average total waiting time for passengers in the block443

matching system, an useful method is to increase block size, especially when the original444

block size is relatively small. This metrics may become close to a fixed low value within the445

range of large block size, where the platform managers can choose their target block size446

based on other goals, such as computation speed or the coordination with other operations,447

without the need to worry its impact on average total waiting time.448

4.3 Analysis for the plateau phenomenon449

In this section we analyze the plateau of average total waiting time when block size is relatively450

large, where the metrics are basically fixed regardless of the variation of block size. Our analysis451

can be divided into two steps: 1) we construct an approximation formula for the average total452

waiting time Wtw under large block size, based on which the metrics is shown nearly a constant;453
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Figure 6: Average total waiting time under different block sizes and vehicle fleet size (a), unit
arrival rate (b), average trip time (unit: s) (c). The value in the label of (b) represents the ratio of
the studied arrival rate to the benchmark unit arrival rate.
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Figure 7: Ratio of average pickup time to average total waiting time. The value in the label
represents the ratio of the studied arrival rate to the benchmark unit arrival rate.

2) the approximation is further analyzed from an intuitive perspective, in order to explain the454

reason for the emergence of the plateau.455

From Fig. 3a, 4a and 5a, we find that the average queueing time becomes very small when456

the block size is larger than a certain threshold, such as 5 km2. This indicates that the pick-up time457

is the major part of total waiting time within this interval of block size (say IL for simplicity). To458

confirm the point, we depict the ratio of average pickup time to average total waiting time under459

different unit arrival rate in Fig. 7. The results show that the average pick-up time dominates460

queueing time in IL, and thus leads to the following approximation:461

Wtw ≈Wp =
1
v
[
c−1

∑
n=0

(pnd(c− n)
√

A) +
Np

∑
n=c

pnd(1)
√

A], A ∈ IL (18)

The small value of average queueing time in IL indicates that the probability for passengers462

to wait in queue is low. The inference is confirmed by the curve in Fig. 8, where we select a463

certain unit arrival rate and observe the total probability for passengers to wait, ∑
Np
n=c pn, under464

block size in IL. The probability is found very small for most of the block size, and thus we465

can only focus on the steady states without queueing, that is, n = 0......c − 1. The resulting466

approximation is made below:467

Wtw ≈Wp ≈
1
v
[
c−1

∑
n=0

(pnd(c− n)
√

A) + 0 · d(1)
√

A] (19)468

=

√
A

v

c−1

∑
n=0

pnd(c− n) (20)469

=

√
A

v

c−1

∑
n=0

pn
d(1)√
K

Atotal
A− n

(21)470
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Figure 8: Probability for passenger to wait in queue under different average block sizes. The
value in the label represents the ratio of the studied arrival rate to the benchmark unit arrival
rate.
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Figure 9: Probability distributions of steady states without queueing under certain values of
block size and 0.8 times benchmark unit arrival rate. The value in the label represents block size
(unit: km2).

=
d(1)

v

c−1

∑
n=0

pn
1√

K
Atotal
− n

A

(22)471

let G(n) denote 1√
K

Atotal
− n

A

. For simplicity, we pick several value of block size in IL for the472

previously selected service rate, and draw their probability distribution of steady states without473

queueing in Fig. 9. From the figure we discover two properties of the distribution: 1) The474

distribution is highly symmetric around certain point, say s; 2) The majority of the non-zero475

probability concentrates within a certain interval, say [s − l, s + l]. The two characteristics and476

the resulting transformation of Wtw can be described in the equations below:477
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Figure 10: G(n) under certain values of block size and 0.8 times benchmark unit arrival rate. The
value in the label represents block size (unit: km2).

pn=s+m ≈ pn=s−m, n ∈ [s− l, s + l] (23)

s+l

∑
n=s−l

pn ≈ 1 (24)

Wtw ≈Wp ≈
d(1)

v

s+l

∑
n=s−l

pnG(n) (25)

Afterwards, we take a closer look at the function G(n). The plots of G(n) are also generated478

under different block sizes in Fig. 10. The curves show high linearity, indicating we can approxi-479

mate G(n) by some linear approximation en + h (such as first-order Taylor Expansion around s),480

with certain coefficients e and h. Combining the linearity of G(n) and the properties in Eq. 22481

and 23, we can further transform Wtw as follows:482

Wtw ≈Wp ≈
d(1)

v

s+l

∑
n=s−l

pn(en + h) (26)483

≈ d(1)
v
{ps(es + h) +

l

∑
i=1

[ps+i(e(s + i) + h) + ps−i(e(s− i) + h)]} (27)484

=
d(1)

v
[ps(es + h) + 2

l

∑
i=1

ps+i(es + h)] (28)485

=
d(1)

v

s+l

∑
n=s−l

pn(es + h) (29)486
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≈ d(1)
v

(es + h) (30)487

≈ d(1)
v

G(s) (31)488

=
d(1)

v
· 1√

K
Atotal
− s

A

(32)489

In Eq. 31, the non-constant variables are s and A, while s
A is found always around 2.4490

regardless of the variation of block size in IL. Therefore, Wtw nearly becomes a constant in IL,491

resulting in the plateau phenomenon. Based on the approximation, we can also interpret the492

reason for plateau in a more intuitive way. We first equivalently transform Eq. 31 into another493

form, 1
v ·

d(1)
√

A√
K

Atotal
·A− s

A ·A
. In this formula, three parts are directly related to the block size, including494

d(1)
√

A, K
Atotal
· A and s

A · A. Considering the parameters d(1), K
Atotal

and s
A are constants or near495

to constants, all the three parts are monotonically increasing with respect to the block size A,496

which represent different meanings. The first part represents the physical maximum pick-up497

distance within a block, and its extension naturally leads to the increase of average pick-up time.498

In comparison, the second part represents the average number of vehicles in the block, whose499

growth favors the reduction of average pick-up time under First-Dispatch rule. The reason is500

that the platform always assigns the closest idle vehicle to an arriving passenger when there are501

more vehicles than passengers in the block. With more vehicles available, it is always possible502

to find a closer vehicle for the passenger. For the third part, it is equal to the symmetric point s503

for steady state distribution, representing the most possible number of passengers in the block.504

When this value increases, more idle vehicles are occupied and the new arriving passenger has505

to choose the closest vehicle from a smaller pool of candidate vehicles, which naturally results in506

the increase of pick-up time. The effects of the three parts compensate with each other, leading507

to a fixed average total waiting time (average pick-up time) when the block size is large.508

5 Model validation509

5.1 Experiment design510

To verify the insights and phenomena in the modelling part, we design a simulation study based511

on a realistic agent-based simulator. The simulation settings are similar to the benchmark setting512

utilized in section 4.1. The studied region is a square, which is further partitioned into smaller513

square blocks. Block size ranges from 1 to 25 km2. The benchmark unit arrival rate is similarly514

set to 0.133 per minute per km2. Passengers will not balk before joining the queue. The vehicle515

speed is 10 m/s. For trip generation, in the modelling part, we assume the origin and destination516

of a trip request by a passenger are both randomly and equally distributed in the studied square517

region, with a detour ratio 1.27. The estimation of the average passenger trip time is then 1323.3518

s. In the experiment part, we adopt similar settings as in the modelling part. The origin and519

destination for a new generated trip are also randomly and independently selected in the studied520

region. Thus, the expectation of the passenger trip distance keeps the same. The matching rule521

is still First-Dispatch. For faster computation speed, we shrink the side length of the studied522

region into 10 km. The total vehicle fleet size is accordingly reduced to 375. Under the setting523

above, it is easy to find that the supply and demand related parameters for an individual block524
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keep the same as in the modelling section. It is reasonable to utilize the setting above to conduct525

simulation study for the validation of modelling results.526

Considering the large number of iterations required to reach steady states in the simulation,527

we only focus on two scenarios: one with 0.8 times benchmark unit arrival rate, and another with528

0.4 times benchmark unit arrival rate. The previous one represents the market with relatively529

high demand while the other corresponds to low demand. Under both the scenarios and different530

block sizes, the steady-state system performance metrics are documented and compared with531

the modelling results. In addition, we also test and collect the standard deviation of passenger532

queueing time and pickup time with respect to block size, in order to more deeply consider the533

experience of passengers under block matching. Based on the large demand scenario, we further534

record and compare the cumulative computation time for matching operation over a long period535

(100000 steps of simulation in the steady state of the system) under different block sizes, in order536

to show the effect of block size on the computation time.537

To conduct simulation, we develop an agent-based simulator with block matching rule,538

which is shown in Algorithm 2.539

Algorithm 2 Simulator for a ride-sourcing market

1: Initialize states for platform and drivers.
2: for matching time interval t = 0 to T do
3: Block matching: Conduct matching between passenger and idle vehicle queues in each

block respectively, following the First-Dispatch rule.
4: Update matching outcomes: The status of matched vehicles become occupied. The

matched orders and vehicles are removed from the waiting queues of their current block.
5: Request generation: New orders are generated with origin and destination randomly

distributed in the studied region. The new orders are added to the waiting queue of the
block where their origins are located.

6: Update states for next time interval: Update states of drivers and orders in the system
under next time interval. The drivers who finish their trips will join the waiting queues of
idle vehicles of the current blocks.

5.2 Results and analysis540

We repeat the simulations until convergence of metrics is reached for each experiment. The541

comparison between simulation results and modelling results are shown in Fig. 11 to 13. The542

curves generated by the proposed model matches well with the simulation results for all the543

three metrics under different arrival rates. The slight differences between the modelling and544

simulation results are common in M/M/c model, as discussed in Feng et al. (2020). The reason545

is that the drivers in the simulation may not obey the assumption of uniform spatial distribution,546

and the service time may not always obey exponential distribution, leading to larger variance of547

the whole system and thus the differences in performance metrics. Still, such differences are less548

than 10 seconds for most of the block size, which is acceptable for ride-sourcing platforms. The549

simulation results show that the average queueing time and total waiting time decreases with550

the increase of block size, while the average pick-up time may increase as block size extends551

in some interval. The variations of metrics with respect to block size are more obvious under552

smaller block size. When the block size is large, the metrics becomes less sensitive, and the553

plateau phenomenon emerges in the simulation results, as expected in the modelling analysis. To554
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Figure 11: Modelling and experiment results for average queueing time under different unit
arrival rate. The ratio represents studied unit arrival rate

benchmark unit arrival rate .

summarize, the phenomena and insights in the modelling phase are validated by the simulation555

results, demonstrating that the proposed model is an useful and reliable tool for analysis of the556

ride-sorucing market with block matching system.557

Besides, the results for the standard deviation (std) of passenger queueing time and pickup558

time are shown in Fig. 14 and Fig. 15. Std of queueing time generally deceases with the increase559

of block size. The metrics is obviously larger under higher arrival rate when the block size is560

relatively small. When the block size is large, the metrics always becomes close to zero, since the561

passenger is always immediately matched with some driver. Compared to queueing time, the562

std of pickup time is much smaller and less sensitive to the change of block size. To summarize,563

ride-sourcing platforms with block matching system may avoid excessively small block size, to564

prevent the emergence of extremely long waiting time for some passengers, which may result in565

bad travelling experience.566

In addition, the comparison of computation time is shown in Fig. 16. The figure demon-567

strates that the computation time for matching operation is increasing with block size extending568

(that is, increasing with the number of blocks decreasing), matched with the discussion in the569

introduction section. Under 25 km2 block area, the computation time for matching increases over570

40 %, compared to that under 1 km2. From the perspective of waiting time and computation571

time, a proper block area in this case can be 5 km2, where the average total waiting time is in the572

plateau (as shown in Fig 13a), and the computation time is lowest compared to the other larger573

block size of the plateau. The determination is supported by both theoretical and simulation574

results.575

6 Conclusion576

This paper presents a model to approximate a ride-sourscing system with matching blocks. The577

model can be used to determine the proper block size, and investigate the impacts of block size578

on three key system performance metrics, including passengers’ average queueing time, average579

pick-up time and average total waiting time. The model utilizes a M/M/c queue to depict the580
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Figure 12: Modelling and experiment results for average pick-up time under different unit arrival
rate. The ratio represents studied unit arrival rate

benchmark unit arrival rate .
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Figure 13: Modelling and experiment results for average total waiting time under different unit
arrival rate. The ratio represents studied unit arrival rate

benchmark unit arrival rate .
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Figure 14: Experiment results for standard deviation of queueing time under different unit arrival
rate. The ratio represents studied unit arrival rate

benchmark unit arrival rate .
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Figure 15: Experiment results for standard deviation of pickup time under different unit arrival
rate. The ratio represents studied unit arrival rate

benchmark unit arrival rate .
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Figure 16: Comparison of cumulative computation time under different block sizes. The vertical
axis represents the ratio of the cumulative computation time for matching operations under
a certain block area to that under the benchmark block area (1 km2). The value in the label
represents the ratio of the studied arrival rate to the benchmark unit arrival rate.

matching process in each block, where the service rate is treated as an endogenous variable581

depending on the average pick-up time. A solution-finding approach is developed to solve for582

the endogenous service rate and the corresponding steady-state probabilities. The trends of583

the key metrics with respect to the block size are then portrayed and analyzed under different584

supply-demand scenarios. It is found that passengers’ total waiting time first decreases and585

then keeps unchanged (reaching a plateau) as the block size increases. This indicates that the586

platform can almost select any block size in the plateau to guarantee passengers’ total waiting587

time is minimized. Furthermore, an in-depth analysis is made for the plateau phenomenon of588

total waiting time when block size is large, based on a theoretic approximation and an intuitive589

interpretation. By conducting a large-scale simulation study, we validate that the proposed model590

can well approximate ride-sourcing systems and verify the observations and insights obtained so591

far.592

As for future research, the block matching problem in ride-sourcing systems can be further593

explored from the following aspects: 1) Bipartite matching can be also implemented in a block-594

wise way, requiring new theoretic models to approximate the corresponding system performance595

metrics. 2) It is interesting to investigate the joint-decision with other operations (such as pricing596

or rewarding), e.g. multiple objectives can be jointly considered for optimizing overall system597

performance. 3) The model can be further adjusted to consider the market with ride-splitting ser-598

vice. Under spatial heterogeneous scenario (the distributions of demand and supply patterns are599

different across the whole area), a simple yet effective potential solution is to partition the whole600

area into smaller sub-areas. The historical supply and demand patterns for each block within the601

same sub-area should be close to each other. Proper and different block sizes can be set based602

on our model for each sub-area, respectively. Still, the detailed adjustment of the current model603

under such scenario is worth further exploration. 4) Proper models under changing demand and604

supply patterns can be further considered. Under mild changing pattern, one can rely on the605

steady-state models. If the pattern changes highly dynamically and shows high heterogeneity,606

some dynamic model (like Markov Decision Process) may be used. But such dynamic models607

are generally time-costing to find a solution and generate decisions.608
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Appendix A613

A1. Discussion of time complexity for block matching614

Consider a region with N passenger arriving in order, and a total of K idle vehicles within a615

certain time period. Assume N < K because ρ < 1 is considered in this study, which means616

supply can generally satisfy demand. Consider there are k available vehicles when a passenger617

arrives. Under First-Dispatch rule, the platform need to find the nearest idle vehicle to the618

arriving passenger. The core process can be simplified into finding the minimum from an array619

with length k, whose item represents the distance between the passenger and an idle vehicle.620

The time complexity for this process is O(k). For simplicity, consider a most simple yet efficient621

way to find the minimum: compare item in the array in order. Under the worst case where the622

minimum item is always at the end of array, we need k − 1 comparison to find the minimum623

for an individual passenger. Thus, the total amount of comparison required for all the arriving624

passengers within this time period is ∑K
k=K−N+1 k − 1 = (2K−N+1)N

2 − N, representing O((K −625

N)N) time complexity. Consider now we partition the region into M blocks. On average, each626

block has N
M arriving passengers and K

M vehicles, resulting in O( (K−N)N
M2 ) time complexity for627

each block, and O( (K−N)N
M ) for the whole region. This indicates that the increase of the number628

of blocks favors the computation speed for the matching system.629

Appendix B630

B1. Derivation of steady-state probability631

From classic queueing theory (Shortle et al., 2018), we know that once we obtain the formula of632

p0, the other probabilities for other states can be easily derived based on Eq. 3. For simplicity,633

we only show the derivation of p0 for ρ 6= 1. By integrating the first row of Eq. 3 into the second634

row, we can have:635

p0 = (
c−1

∑
n=0

λn

n!µn +
Np

∑
n=c

λn

cn−cc!µn )
−1 (33)636

= (
c−1

∑
n=0

rn

n!
+

Np

∑
n=c

rn

cn−cc!
)−1 (34)637

= (
c−1

∑
n=0

rn

n!
+

rc

c!
·

Np

∑
n=c

(
r
c
)n−c)−1 (35)638
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= (
c−1

∑
n=0

rn

n!
+

rc

c!
·

Np−c

∑
m=0

(
r
c
)m)−1 (36)639

= (
c−1

∑
n=0

rn

n!
+

rc

c!
·

Np−c

∑
m=0

ρm)−1 (37)640

= (
c−1

∑
n=0

rn

n!
+

rc

c!
· 1− ρNp−c+1

1− ρ
)−1 (38)641

B2. Derivation of metrics642

For simplicity, we still mainly consider the case with ρ 6= 1. To obtain Wq, we first derive average643

queue length by definitions and some simple simplifications:644

Lq = 0 +
Np

∑
n=c+1

(n− c)pn (39)645

=
Np

∑
n=c+1

(n− c)
rn

cn−cc!
p0 (40)646

=
rc p0

c!

Np

∑
n=c+1

(n− c)ρn−c (41)647

=
rc p0

c!

Np−c

∑
m=1

mρm (42)648

=
rcρp0

c!
d ∑

Np−c
m=1 ρm

dρ
(43)649

=
rcρp0

c!
d

dρ
[
ρ(1− ρNp−c)

1− ρ
] (44)650

=
rcρp0

c!
·

ρNp−c[(Np − c)(ρ− 1)− 1] + 1
(ρ− 1)2 (45)651

Following Little’s Law (Little, 1961), we can further obtain:652

Wq =
Lq

λ(1− pNp)
(46)653

=
p0

λ(1− pNp)
· rcρ

c!
·

ρNp−c[(Np − c)(ρ− 1)− 1] + 1
(ρ− 1)2 (47)654

Here, we modify the arrival rate from λ to λ(1− pNp). The reason is that in our scenario, the655

passengers may possibly abandon joining the queue if the length of the queue is out of their656

tolerance. The probability for this situation is pNp , where Np represents the longest queue length657

the passengers can accept. To this end, the actual arrival rate becomes λ(1− pNp). For average658

pick-up time, the derivation process is also not complex:659

27



Wp =
1
v
[
c−1

∑
n=0

(pnd(c− n)
√

A) +
Np

∑
n=c

pnd(1)
√

A] (48)660

=

√
A

v
[
c−1

∑
n=0

p0
λn

n!µn d(c− n) + d(1)
Np

∑
n=c

p0
λn

cn−cc!µn ] (49)661

=

√
Ap0

v
[
c−1

∑
n=0

λn

n!µn d(c− n) + d(1)
rc

c!
· 1− ρNp−c+1

1− ρ
] (50)662

Here, 1
v ∑c−1

n=0(pnd(c − n)
√

A) represents the average pickup time when the queue length is663

smaller than c, that is, there are still idle drivers within the block to serve passengers imme-664

diately. In comparison, 1
v ∑

Np
n=c pnd(1)

√
A represents the average pickup time when the queue665

length is larger than c, and passengers have to wait in queue for matching.666
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