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Abstract: This paper studies the position regulation problems of an Autonomous Underwater Vehicle
(AUV) subject to external disturbances that may have abrupt variations due to some events, e.g., water
flow hitting nearby underwater structures. The disturbing forces may frequently exceed the actuator
capacities, necessitating a constrained optimization of control inputs over a future time horizon.
However, the AUV dynamics and the parameters of the disturbance models are unknown. Estimating
the Markovian processes of the disturbances is challenging since it is entangled with uncertainties
from AUV dynamics. As opposed to a single-Markovian description, this paper formulates the
disturbed AUV as an unknown Markovian-Jump Linear System (MJLS) by augmenting the AUV
state with the unknown disturbance state. Based on an observer network and an embedded solver,
this paper proposes a reinforcement learning approach, Disturbance-Attenuation-net (MDA–net), for
attenuating Markovian-jump disturbances and stabilizing the disturbed AUV. MDA–net is trained
based on the sensitivity analysis of the optimality conditions and is able to estimate the disturbance
and its transition dynamics based on observations of AUV states and control inputs online. Extensive
numerical simulations of position regulation problems and preliminary experiments in a tank testbed
have shown that the proposed MDA–net outperforms the existing DOB–net and a classical approach,
Robust Integral of Sign of Error (RISE).

Keywords: autonomous underwater vehicles; disturbance rejection; reinforcement learning; markovian-
jump systems

1. Introduction

Compared to Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehi-
cles (AUVs) may respond faster based on feedback from some perception modules or
positioning systems and can thus enhance their performance in tasks, e.g., exploration,
surveillance, cleaning bridge piles, and placing a heavy cover on a leaking oil well [1,2].
However, AUVs in shallow waters are often disturbed by inevitable strong disturbances.
This research studies the control problem of stabilizing a control-input-saturated AUV
under unknown excessive external disturbances [3–5]. Due to some events, the dynamics
of external disturbances involve abrupt variations, making the transient performance of
AUV unsatisfactory.

Much effort has been devoted to rejecting or attenuating disturbances in control
problems since the 1980s. In particular, robust control [6], H-infinity control [7], adaptive
control [8–10], and high-order sliding mode control [11] have been explored and used in
industrial applications. In [12,13], Disturbance OBservers (DOBs) are used to estimate the
lumped effects of unknown disturbances and uncertain dynamics models based on state
observations and control inputs. From the first appearance of DOBs, many advanced ones
have been studied, such as high-order disturbance observers for time series expansion and
nonlinear systems [14,15].
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Many control methods based on DOBs have since been developed, among which is
the disturbance accommodation control [16–18]. Mismatched disturbance has been studied
in the continuous and finite time regulation problem in [19], and values and multi-order
derivatives of the disturbances are estimated to augment and stabilize the system via
Lyapunov stability theorems.

However, the above-mentioned improvements in feedback controllers might fail to
guarantee stability when the controlled system is subject to control saturation [20]. Small
gain theorem might be explored in this case. However, it requires sufficiently accurate
dynamics models, which are difficult to obtain for AUVs subject to various disturbances.
These DOB-based approaches are effective when the disturbances are bounded and suf-
ficiently small (compared to the actuator capacities) [21]. When the disturbance forces
acting on the AUV frequently exceed the thrusters’ capacities, the AUV can not be easily
stabilized [3,22].

An ideal controller has to consider the (even saturated) controls’ long-term effects on
attenuating future disturbances; therefore, it is better to optimize the performance over a
future time horizon, leading to constrained optimal control problems. Model Predictive
Control (MPC) can deal with control input saturation and is thus an ideal candidate [20,23].
However, MPC usually requires a sufficiently accurate prediction model of the system [24],
which might be unavailable due to the existence of disturbances in dynamics. Continuous-
time MPC with a disturbance observer was proposed for disturbed systems in [25], where
the disturbance estimations are utilized to adjust the prediction of the system output online,
and an accurate AUV model is required. However, the latter is difficult to obtain, and,
in addition, the disturbances are functions of time, which are unknown and difficult to
measure via sensors. Another challenge associated with MPC is the computational burden
of solving constrained optimization problems in real time at each time step.

The unknown dynamics models of AUV and the disturbances inhibit MPC approaches.
These limitations of MPC and DOB-based controllers have led to DOB-nets [22], enabled
by recent advances in Reinforcement Learning (RL). Model-free RL is adopted in this study
since it does not require an explicit system model and can naturally adapt to noises and
uncertainties [26]. Most existing RL methods build the controllers and critics in the domain
of the AUV state space (the pose-velocity space). As a result, such RL can only capture the
dynamics by the mappings between AUV state spaces, while the disturbances are functions
of time and can not be described by mappings between AUV state spaces [27]. The
unmodeled dynamics are treated as noises, which are further assumed to be independent
and identically distributed (i.i.d.). Following this formulation, the noises are quite large
and make the AUV system unstable, as shown in [22].

The key to this issue is to find an appropriate domain to define the dynamics model of
the disturbed AUV and, thus, the controller, leaving the remaining unmodeled effects as
noises of small moments. Many existing works model disturbances as superpositions of
many harmonic oscillations [28]. In [22], model-free RL has been applied to reject excessive
disturbances by modeling the control problems of the disturbed AUV via a set of unknown
Partially Observable Markovian Decision Processes (POMDPs). The transition function
(i.e., disturbed AUV dynamics) of each POMDP is heavily affected by disturbances. The
input domain of the controller is built on the AUV state and the encoding of disturbance
estimations in a future time horizon.

However, the work in [22] assumes that each POMDP has fixed harmonic oscillations,
ignoring the fact that the disturbance dynamics may have abrupt changes. The dynamics
of external disturbances are subject to abrupt changes due to events, e.g., a large vessel
passing by, strong currents hitting underwater structures or oil well eruptions. Therefore,
AUV’s transient performance regarding these abrupt changes is unsatisfactory.

In this paper, it is shown that disturbances with varying characteristics can be modeled
as a Markovian Jump Linear System (MJLS), the study of which has drawn a lot of attention.
MJLS is found in many practical applications, and it aims to describe abrupt system
variations caused by environmental changes. The disturbances are modeled by MJLS for
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multiple disturbances in [29], where the transition matrix is partially known. A disturbance
attenuation controller is constructed to achieve asymptotically stable performance. Singular
Markovian-jump systems have been investigated in [30], where infinitely unobservable
states are treated as unknown inputs. In addition, the approaches in the existing literature
(e.g., [31,32]) do not consider control saturation, which widely exists and becomes an
issue when the controlled objects are subject to excessive disturbances. To the best of the
authors’ knowledge, the stabilization problem of a control-input-saturated system subject
to completely unknown and Markovian-jump disturbances has not been addressed.

Contribution: This study proposes a new RL approach referred to as MDA–net, which
consists of a disturbance-dynamics-characteristics observer network (referred to as observer
network) and an optimal controller network (referred to as controller network). Compared
to DOB–net, MDA–net has three improvements.

(i) Different from the one in DOB-nets, the new observer network aims to learn the
characteristics (i.e., frequencies, phases, and amplitudes) and their transition dynamics
(i.e., properties describing Markovian-jump characteristics). The goal of this observer
network is to provide the feature description of the in situ disturbed AUV system
dynamics to the control network.

(ii) A two-step learning approach (module learning and end-to-end learning) is adopted,
which is regularized by the process of the disturbance prediction built on the distur-
bance harmonic model (the superposition of multiple disturbances). The observer
network outputs a feature representation of the quadratic optimization problem in the
encoding space, which is further referred to as the problem feature in the remainder
of this paper. It is natural to train a solver (a controller network) that receives these
problem features and outputs control signals. However, it is difficult to learn a solver
of optimization problems purely from data. A Quadratic Programming (GP) solver is
embedded in the controller network.

(iii) In this paper, the gradients of the optimization over the problem features are estab-
lished based on the sensitivity analysis of optimization regarding the QP solver and
are then used to train the controller network together with the critics.

In the remainder of this paper, the formulation of the position regulations problems is
given in Section 2, and then the previous work DOB–net is reviewed in Section 3. After that,
Sections 4 and 5 present the MJLS formulation and the proposed MDA–net, respectively.
Section 6 summarizes the implementation details and the results from the numerical
simulation and experiments in lab conditions. The limitations and potential improvements
are discussed in Section 7, followed by conclusions in Section 8.

2. Problem Formulation

The position regulation problem arises from many underwater applications. The
stabilization of AUVs is particularly important to inspection or intervention tasks where
the AUV platform is free-floating and affected by the disturbance. AUV platforms often
have sufficiently large restoring forces and can thus be kept horizontal. Therefore, the
pitch and roll motions are not considered. The desired restoring forces can be achieved
by designing the distance between the buoyancy center and the mass center. The surge,
sway, heave, and yaw motions of the AUV platform are heavily affected by the excessive
disturbances and thus require a proper controller.

Let q ∈ R3 × SO(2) denote the AUV position and heading, and the AUV velocities
and accelerations q̇ and q̈ are in the tangent space R4 of the manifold. It is assumed that
q and q̇ are obtained from the perception system, e.g., Simultaneous Localization And
Mapping (SLAM). In clean water with steady illumination, cameras can be used, while in
other cases, an onboard multi-beam sonar can be used, as reported in [33]. The dynamics
of the disturbed AUV are given as

M(q)q̈ + C(q̇)q̇ + D(q̇)q̇ + g = u + d, (1)
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where M ∈ R4×4 denotes the inertia matrix, C ∈ R4×4 denotes the matrix of the Coriolis
and centripetal terms, D ∈ R4×4 denotes the matrix of the drag force, and g ∈ R4 denotes
the vector of the lumped gravity-buoyancy forces. As pointed out in [34], it is quite difficult
to measure these terms, which depend on the flow density and velocities. Therefore, in this
study, these matrices and vectors are unknown to the controller.

In the studied problems, the disturbances are represented by their equivalent forces
acting on the AUV platform. In the remainder of this paper, “disturbances” and “distur-
bance forces” are used exchangeably, and they are denoted by d ∈ R4. The control u ∈ U
is saturated at bounds ū = max(U ) ∈ R4 and u = min(U ) ∈ R4, where max and min
are dimension-wise operators, and U ⊂ R4 is a compact set of control. For simplicity, the
bounds on each dimension of u are independent of each other. This assumption might not
be true if the total power from all thrusters is restricted by the AUV’s power supply.

Definition 1 (Excessive External Disturbances). The disturbances are called excessive if their
forces d acting on the AUV frequently exceed the control saturation ū and u.

The external disturbances in this study are excessive to the actuators’ capabilities (see
Definition 1). Definition 1 only makes sense if the control inputs and the disturbance forces
enter the AUV system from the same channel. In other cases, a similar definition might
be explored by mapping the control inputs and disturbances into the same channel. In a
real AUV system, the disturbance forces may enter the system from a different channel
as control inputs u. The experimental results have shown the formulation in Equation (1)
is reasonable.

Problem 1 (Optimal Control Problem). Obtain a controller that outputs actions u to the system
(1), such that an objective function is maximized in an episode under disturbances of randomly
generated and abruptly changed characteristics. System (1) is discretized in time, and the objective
function is defined as the discounted sum of the collected rewards,

J =
T−1

∑
τ=0

γτr(xτ), (2)

where r(xt) , −xT
t Rxt, xt is the AUV state at time t, T denotes the number of time steps in an

episode, and γ ∈ [0, 1) is a discount factor that prioritizes the near-term rewards [35].

The optimization of Equation (2) is subject to Equation (1) and control saturations ū
and u. More importantly, the obtained controller should be applicable to Problem 1 with
various randomly generated and abruptly changed disturbances.

3. Previous Work: DOB–net

The control problems of the heavily disturbed AUV cannot be precisely described by
a single POMDP in the AUV state space. Augmented state spaces have been studied to
better describe the dynamics of the disturbed AUV. Based on the assumption that recent
states and actions together encode the transition functions of a POMDP at the visited
states, a history-window control approach has been developed, and it takes in as inputs
a number of most recent states and actions [36]. Similarly, the disturbed AUV dynamic
system has been modeled as a multi-order Markovian chain in [37]. However, it might
be difficult to determine the number of orders. A small number of orders might not
rediscover the POMDP characteristics, while a large number of orders make the training
and generalization of the trained policy challenging.

The DOB–net approach, proposed in [22], is built on the classical actor-critic architec-
ture, as described in Figure 1. DOB–net utilizes hidden states from Gated Recurrent Units
(GRUs) to encode the transition function of the multi-order Markovian chain. DOB–net
consists of an observer network and a controller network, as shown in Figure 1. The
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observer network is built upon GRUs to mimic the dynamics involved in DOBs and the
dynamics of time series prediction. The controller network outputs the control signals and
critic values, as required byA2C. Since the controller is also a function of the AUV state,
state x is aggregated with the hidden state from the observer network.

Observer 
network

Controller network

𝑑𝑑𝑡𝑡

Disturbances
𝑢𝑢𝑡𝑡−1
𝑦𝑦𝑡𝑡−1

𝑦𝑦𝑡𝑡

ℎ𝑡𝑡−1 𝑣𝑣𝑡𝑡

𝑢𝑢𝑡𝑡

Activation
Linear Linear

Observation

Figure 1. Network architecture of DOB–net.

The DOB–net (the observer network and the controller network) is trained in an end-to-
end manner through interactions with the disturbed AUV systems [38–40]. The procedures
of training and testing contain a number of episodes, where each episode contains T time
steps. DOB–net outperforms the existing approach RISE. However, in [22], the disturbances
considered have constant characteristics in each episode. The abrupt changes in these
disturbances are not considered. As a result, the transient performance in abrupt events
is poor.

4. Markovian Jump Linear System

This section shows that by modeling disturbances as the superpositions of multiple
harmonic oscillations, Problem 1 can be modeled as a Markovian Jump Linear System
(MJLS). With this modeling, it is reasonable to embed a QP solver in the controller network.
This layer of the QP solver is different from regular layers (activation layers or hidden
layers); it involves running QP to solve for solutions. The details of this QP layer are
introduced in Section 5.

As pointed out in [41], the harmonic disturbance in the channel of the control input is
given by the exogenous systems,

dt = V[st]ωt,

ωt+1 = ωt + W[st]ωt + G[st]et, (3)

where st is a discrete-time Markovian process, ω is the internal state of the disturbance,
and et is square integrable over time horizon [0, ∞), i.e., et ∈ L2[0, ∞). The integration of
each signal’s L2 norm in the signal set L2[0, ∞) is less than infinite. There is noise, et, from
the perturbations and uncertainties from the exogenous systems. Often, matrix W(s) has
the following form with c > 0, [

0 c
−c 0

]
, (4)

where c is the frequency of the harmonic oscillation. Harmonic disturbances widely
exist in many practical engineering problems, and the frequency is often assumed to be
known while the phase and the amplitude are often estimated online. Many existing
approaches are able to attenuate disturbances under this assumption [41]. However, in the
studied problems, this assumption is invalid due to the complexity of the disturbed AUV
dynamics. Moreover, based on the superposition assumption, the numbers in Equation (3)
are aggregated to describe the disturbance considered in this paper.
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The discrete-time Markovian process st ∈ S is defined as follows. Then, let the
matrix Pr denote the transition probability. The discrete-time systems {st}t=0,1,··· is a time-
homogeneous Markovian chain that takes values from a finite set S = {s1, s2, ..., sS} with
stationary transition probabilities.

pij = Pr(st+1 = sj|st = si), (5)

where pij ≥ 0 is the transition probability from mode i at time t to mode j at time t + 1
and ∑M

j=1 pij = 1. The abrupt changes are, in fact, represented by the transition probability
matrix T. The cardinality of S and elements in S are implicitly learned from the data, as
shown in Section 5.

Substituting Equation (3) into Equation (1) yields

Mq̈ + Cq̇ + Dq̇ + g = u + V[st]ωt. (6)

In addition, M, C, and D are functions of q̇. In order to model the disturbed AUV
dynamics model as a Markovian linear jump system, we have

M = M̄ + M̃

C = C̄ + C̃

D = D̄ + D̃, (7)

where M̄, C̄, D̄ are the dominant and fixed part of the matrices M, C, and D, respectively,
while M̃, C̃, and D̃ are the residuals and are subject to change. By converting Equation (6)
into a discrete-time model, we have

q̇t+1 = q̇t + (−M−1Cq̇−M−1Dq̇−M−1g + M−1u + M−1V[st]ωt)dt

Let z , [qT , q̇T , ωT ]T denote the aggregated system state, Equations (3) and (8) to-
gether yield

z(k + 1) = A[st]z(k) + Bu + E + H[st]e + δ, (8)

where

A[st] ,

I 0 0
0 −M̄−1(C̄ + D̄)dt M̄−1V[st]dt
0 0 W[st]

, (9)

B , [0T , M̄−1dt, 0T ]T , (10)

E , [0T , gTM̄−1dt, 0T ]T , (11)

H[st] , [0T , 0T , G[st]
TM−1dt]T , (12)

and

δ , [−M̃q̈− C̃q̇− D̃q̇]dt (13)

is the lumped uncertainties from the remaining unmodeled dynamics not captured by
other terms. In this paper, δ is treated as Gaussian noise.

It is now shown that Problem 1 can be modeled as an MJLS. Thus, the aggregated space
of the AUV state, the disturbance state, and the disturbance characteristics is a sufficient
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input space for the controller network. This finding is used in Section 5 to design the
MDA–net.

5. MDA–net

MDA–net consists of an observer network and a controller network. The observer
network is designed to estimate the MJLS parameters, i.e., the encodings of A, B, E, and D.
With the parameters of MJLS available; they are converted into an optimization problem,
which is then solved by the QP layer. The obtained optimal “solution” is then mapped to
control inputs to the AUV.

5.1. Observer Network

Based on the fact that the disturbances are harmonic, a new observer network is
designed to learn the disturbance characteristics that vary according to a Markovian chain,
as shown in Figure 2. The harmonic model is integrated into the MDA–net to mimic a
disturbance prediction process. The connected modules in the observer network establish
a pipeline from the estimation of the disturbance state (i.e., the hidden state ht−1) to the
inference of the disturbance characteristics ft−1, and then the Markovian-jump properties
gt−1. Given the current state of disturbances and the parameters of the harmonic model,
the expectation of future disturbances (d̂t) can be predicted.

The design of the observer network is based on the design in [41], where the dis-
turbance state ω and the nonlinear term σ are unknown. In [41], the observer can be
designed as,

d̂t = Viω̂t

ω̂t = vt − Lixt

v̇t = (Wi + LiGiVi)(v− Lixt) + Li(Aixt + Giut) (14)

where, for notational simplicity, A(si) is denoted by Ai, and G(si) and H(si) are denoted
by Gi and Hi, respectively. The observer works when the parameters Vi, Wi, Ai, and Gi
are known.

On the other hand, Gated Recurrent Units (GRUs) are similar to Long Short-Term
Memory (LSTM) but with fewer parameters. A GRU is as follows,

zt = σ(Wz[ht−1, xt, ut] + bz)
rt = σ(Wr[ht−1, xt, ut] + br)
h̃t = tanh(Wh[rt ◦ ht−1, xt, ut] + bh)
ht = (1− zt) ◦ ht−1 + zt ◦ h̃t

(15)

where xt and ut are the inputs, ht is the output vector, zt is the gate vector, rt is the reset
vector, W and b are the weight matrices and bias vectors, ◦ denotes the Hadamard product,
and σ and tanh are the activation functions (sigmoid function and hyperbolic tangent).

Based on the similarity between the observer in [41] and GRU, we propose the observer
network, as shown in Figure 2. The network is able to offer more flexibility and can
deal with superpositioned disturbances. Partially unknown transition probabilities are
investigated in [31]. However, due to underwater environments, it may not be trivial to
have the probability matrix available. Therefore, this paper studies the MJLSs with the
finite set S and probability matrix T are completely unknown and are to be inferred from
the data. In order to capture the fact that the parameters of the harmonic model could jump,
GRU#2 takes d̂t as inputs to estimate the Markovian jumps and reset the hidden state of
GRU#1 and GRU#2 if abrupt events are detected by GRU#3.
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Harmonic 
model𝑢𝑢𝑡𝑡−1 GRU 

#1𝑦𝑦𝑡𝑡−1
ℎ𝑡𝑡−1

𝑓𝑓𝑡𝑡−1

Observer

GRU 
#2

�̂�𝑑𝑡𝑡

GRU 
#3

𝑔𝑔𝑡𝑡−1

Figure 2. Observer network.

5.2. Controller Network

The outputs from the observer network ft−1, ht−1, and gt−1 are also fed into the
controller network, together with the most recent observation yt. When feeding ft−1 into
the harmonic model, it is reshaped and separated to form matrices defined in Equation (9).
The MJLS nature of the disturbed system permits the existence of optimization problems at
each time step. The controller network should be able to solve the optimization problem.
The controller network consists of a transform network module and a QP solver SNOPT, as
shown in Figure 3.

Harmonic 
model𝑢𝑢𝑡𝑡−1 GRU 

#1𝑦𝑦𝑡𝑡−1
ℎ𝑡𝑡−1

𝑓𝑓𝑡𝑡−1

Observer

GRU 
#2

�̂�𝑑𝑡𝑡

GRU 
#3

𝑔𝑔𝑡𝑡−1

�𝑄𝑄
�𝑝𝑝
�̃�𝐴
�𝑏𝑏

Transform

𝑑𝑑𝑡𝑡Disturbance 
generator

pose & velocity QP solver
SNOPT𝑢𝑢𝑡𝑡

𝑉𝑉𝑡𝑡

Controller

�𝐺𝐺
�ℎ

Figure 3. Network Architecture of MDA–net.

It is worth pointing out that the superpositions of disturbances make the formula-
tion of the optimization untrivial. Therefore, optimization problems are not manually
designed but are learned from the learning process. MDA–net consists of a transform
module to convert the parameters of MJLS into the parameters of the constrained quadratic
optimization problems.

Let ξ , [zT
0 , · · · , zT

T−1, uT
0 , · · · , uT

T−1]
T , Equation (2) can be rewritten as the following

convex Quadratic Programming (QP) problem,

ξ∗ = arg min
ξ

1
2

ξTQ̃ξ + p̃Tξ, (16)

subject to

Ãξ = b̃, and, G̃ξ ≤ h̃, (17)

where Q̃, Ã, p̃, and b̃ are transformed from the hidden states f , h, and g, while G̃ and h̃
are constraints.

The QP layer then takes in as inputs the parameters of the constrained quadratic
optimization problems. The constrained convex optimization problem can be solved by
many existing QP tools, such as SNOPT by Gill [42]. The outputs of the QP solver are with
respect to the problem encoded by the hidden layers. A second transform module is used
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to map the outputs of the solver to the control and critic. The critic is used to train the
system in an RL fashion. The implementation details can be found in Section 6.

5.3. Network Training

It is found that the end-to-end training approach failed to train the MDA–net. There-
fore, the supervised learning of the observer network is conducted first, and then the entire
network is trained in Advantage Actor Critic (A2C) fashion [43].

5.3.1. Observer Network Training

GRUs #1 and #2 are designed to estimate the encodings of the disturbances and the
parameters of the harmonic model, respectively. The learning process is regularized by the
harmonic model and the known disturbances during training. The prediction procedure is
described as follows. Given the disturbance transition function and the previous state of
disturbances, Equation (3) is used iteratively N times to produce N-step predictions. The
third GRU #3 detects possible Markovian jumps, and it enforces the hidden state in GRUs
#1 and #2. GRU #3 is able to improve the estimates of the encodings of the disturbances
and the parameters of the harmonic model at transient instants.

The observer network is trained by the targeted disturbance values dt, dt+1, · · · , dt+N−1
at the N future steps, which are available during training (not available during testing), as
shown in Algorithm 1. The trainable parameters in the observer network are denoted as θo.
Then the loss function used in this supervised learning at time t in each episode is given as

L1 =
1
N ∑

1≤τ≤N
‖d̂t−1+τ − dt−1+τ‖, (18)

where ‖ · ‖ denotes the mean square error and t ≤ T − N + 1. The integration of the
harmonic model enforces the hidden state ft−1 and ht−1 to lie in the disturbance parameter
space and the disturbance state space, respectively. Then the Markovian-jump properties
can be estimated by GRU #3.

K-step rollouts of GRUs #1 and #2 are conducted when applying the truncated Back
Propagation Through Time (truncated BPTT). The observer network is then trained by
using a Stochastic Gradient Descent (SDG) approach [44]. The data set is obtained by
numerical simulations, and the control inputs are generated by a PID controller. Each
sample in this data set consists of yt−1, ut−1, {dτ}t≤τ≤N . When the disturbed system
becomes unstable, the simulations are reset with randomly generated initial conditions.

Algorithm 1: Observer-network.
Data acquisition: {yt0 , ut0 , dt0 , · · · , yt, ut, dt}i.
Truncation parameter: K.
Truncation index k reset.
for j ∈ {t0, . . . , t− p} do

if episode ends then
Hidden states ht−1 and ft−1 reset.

end
if k == K then

Truncation index k reset.
Hidden states ht−1 and ft−1 detach from computation graph.

end
Gradient accumulation: dθo ← dθo + ∂L1(j)/∂θo.
k=k+1.

end
Synchronous update : θo using dθo.
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5.3.2. Controller Network Training

While ft might be statistically sufficient to describe the optimal control problem
corresponding to the encountered disturbances, it may require a large network with many
hidden layers and a large amount of data to learn an optimal controller network to deal
with all possible disturbances. In this paper, a solver is added to the controller network.
The training of the controller network is to find a suitable presentation of the optimization
problem (Q̃, Ã, p̃, and b̃) of the estimates of the MJLS.

Recall that the optimization problem has the following form,

ξ∗ = arg min
ξ

1
2

ξTQ̃ξ + p̃Tξ, (19)

subject to

Ãξ = b̃, and, G̃ξ ≤ h̃. (20)

Since the number of harmonic components in Equation (3) is difficult to know a priori,
therefore, a transform network module is used to encode it into a suitable feature space to
enhance the flexibility of the trained MDA–net.

Without loss of generality, active inequality constraints with regard to the current
solution is denoted as G̃ξ = h̃, then the above optimal problem is represented by a linear
optimization problem with the equality constraints, as shown in [45],Q̃ ÃT G̃T

Ã 0 0
G̃ 0 0

ξ∗

λ∗

ν∗

 = −

 p̃
b̃
h̃

, (21)

where λ∗ and ν∗ are the Lagrange multipliers.
In order to use the A2C framework and the backpropagation technique to train the

transform network, the sensitivity analysis of optimization problems is applied in order
to provide more informative updates to learn the controller network. In other words, the
updates have to go through the solver SNOPT. SNOPT is an iterative method, and it is
possible to roll out its iterative steps, and backpropagate gradients are possible, which
are, however, slow. Another approach is to consider the derivatives of the optimal control
regarding the problem parameters (Q̃, Ã, p̃, and b̃).

Then, the derivatives of ξ∗ with respect to Ã are obtained by

OÃξ∗(l) = d∗λ ⊗ ξ∗(l) + λ∗ ⊗ d∗ξ (l), (22)

where ⊗ is an element-wise operator, ξ∗(l) is the lth entry of ξ∗, and d∗ξ and d∗λ are the
solutions of the following linear system,Q̃ ÃT G̃T

Ã 0 0
G̃ 0 0

d∗ξ
d∗λ
d∗ν

 = −

Oξ∗ξ
∗(l)

0
0

. (23)

The gradient OÃξ∗(l) is, in fact, what the controller network should offer during back-
propagation training since the controller network is designed to behave as a constrained
linear quadratic optimal problem solver. Therefore, the gradient OÃξ∗(l) is used to train
the controller network, along with critics (value functions), within the A2C framework.

Running multiple environment instances across threads, A2C utilizes synchronous
gradient descents to learn the controller network, leading to statistically stationary critics
and gradients. Furthermore, the gradients are averaged over multi-step updates. The
parameter updates by A2C are given as

∇θ′ log π
(
ut|xt, ht−1, ft−1, gt−1; θ′

)
A(xt, ut, ht−1, ft−1, gt−1; θ, θv),
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where A(xt, ut, ht−1, ft−1, gt−1; θ, θv) is an estimate of the advantage function given by

k−1

∑
i=0

γirt+i + γkV(xt+k, ut+k−1, ht+k−1; θv)−V(xt, ht−1, ft−1, gt−1; θv), (24)

where k ≤ N can vary from state to state. The purpose of the baseline V(xt, ht−1, ft−1, gt−1; θv)
is to have a smaller variance of the advantage function values and, thus, the gradients.
Note that PyTorch might not allow backpropagating through in-place-modified variables.
The issue is from the “zero_grad” function in Pytorch, and it can be worked around by
manually zeroing the gradients, as shown in Algorithm 2.

Algorithm 2: A2C for a thread T.
Initialize globally shared parameters θu and θv.
Initialize thread-related parameters θTu and θTv .
repeat

if episode ends then
t = 0, Sample new environment.

end
dθu = 0, dθv = 0, θTu = θu, and θTv = θv.
Obtain yt, ht−1, ft−1, gt−1, and ft−1.
repeat

Update control, hidden state, reward, state:
ut, ht = π

(
ut|xt, ht−1, ft−1, gt−1; θi

u
)
.

rt+1, zt+1 = fe(zt, ut), yt+1 = o(zt+1).
t← t + 1.

until episode ends or truncated;

A =

{
0 episode ends
V
(
yt, ht−1, ft−1, gt−1; θTv

)
otherwis

.

for j ∈ {t− 1, . . . , t + M} do
A← rj + γA
Update gradient: dθTu ← dθTu +∇θTu

log π
(
uj|yj, uj−1, hj−1; θTu

)
·
(
A−V

(
yj, uj−1, hj−1; θTv

))
Accumulate gradient: dθTv ← dθTv + ∂

(
A−V

(
yj, uj−1, hj−1; θTv

))2/∂θTv
end
For all T , update θu by dθTu and θv by dθTv .

until Converge;

6. Implemetion and Simulations

This section first describes a simulated position regulation problem arising from field
applications, such as the remediation of a spewing well. Different from the scenario used in
DOB–net [22], the changes in the disturbance characteristics are simulated, including abrupt
changes. Then, an MDA–net with the hand-picked structure parameters is introduced, as
well as the hyperparameters used in training, followed by simulation results.

6.1. Position Regulation

The AUV characteristics, such as mass, control capabilities, disturbance amplitudes,
etc., are proportionally scaled. The AUV mass was set to 1 (kg), and the control saturation
was set to ū = −u = [2, 2, 2]T (N). As discussed in Section 2, the translational and yaw
motions of the AUV platform are considered. The simulated external disturbances are
three-dimensional but do not act through the center of mass of the platform to introduce
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disturbances in heading control. The disturbance force in each axis is harmonic and their
superposition is given as

dt =

Ax sin( π
Tx t + φx)

Ay sin( π
Ty t + φy)

Az sin( π
Tz t + φz)

, (25)

where the parameters at time 0 in each episode is given by

Ax(0), Ay(0), Az(0) ∼ U(1, 3)

Tx(0), Ty(0), Tz(0) ∼ U(2, 4)

φx(0), φy(0), φz(0) ∼ U(−π, π), (26)

and U(a, b) is the uniform distribution over the interval [a, b].
These parameters of the disturbances change according to the following Markovian

chain, where the change rate ρ at each time step is set to 0.1. When abrupt changes occur,
the variations are sampled as follows,

δAx
t , δAy

t , δAz
t ∼ N (0, 1)

δTx
t , δTy

t , δTz
t ∼ N (0, 1)

δφx
t , δφ

y
t , δφz

t ∼ N (0, 1), (27)

where N is a normal distribution, the sampled values are added onto the current dis-
turbance parameters, the results of which are then saturated by the ranges given in
Equation (26). When training the algorithm, in each episode, a small noise (about 5 percent)
was added to the value of the AUV mass. It is because the added mass is a function of
the velocity and geometry of the AUV; this noise can make the controller robust. How-
ever, when the mass changes a lot, the algorithm performs poorly, and retraining must be
conducted using more accurate estimations of the mass.

6.2. MDA–net Implementation

The structural parameters of the proposed MDA–net are summarized in Table 1, where
each GRU only has one recurrent layer. The learning rate in training the observer network
was set to 1 × 10−4, and the training took about 7 h on a 2.5 GHz Intel i5 CPU. Both
learning rates for MDA–net and DOB–net were set to 7× 10−4, with 16 threads running
simultaneously. Their training took about 4.2 and 3.7 h, respectively.

Table 1. Network structure parameters.

GRU Index #1 #2 #3

hidden neurons 32 32 32

Layer of transform #1 #1 #2 #3

(input, output) (1024, 512) (256, 128) (128,128)

Layer of transform #2 #1 #2 #3

(input, output) (32, 32) (32, 16) (16,4)

6.3. Prediction Performance

An example from numerical simulations showing the performance of the disturbance
prediction when an abrupt change occurs is given in Figure 4. The sudden change was
sampled from Equation (26). Multi-step prediction (2.5 (s) into the future) is performed. As
observed in Wang’s work [22], model predictive control over a time horizon of 2.5 (s) is
sufficient for underwater robots under the disturbances described by Equation (26). The
solid curves show the ground truth, and the dashed curves with markers illustrate the
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predictions from the observer network. Notice that the dashed curve segment with the
same and consecutive markers illustrates one 2.5 (s) prediction. This example is showing
five such predictions. The abrupt change occurred around the seventh second, and the
prediction immediately became worse. However, the observer network in MDA–net is able
to quickly infer the changed disturbance characteristics. While the DOB–net cannot deal
with disturbances with Markovian jumps effectively, as shown in Figure 5.

Figure 4. Disturbance prediction example by MDA–net. Solid curves showing ground truth; marked
curves showing 2.5 (s) prediction from three different instants.

Figure 5. Disturbance prediction example by DOB–net. Solid curves showing ground truth; marked
curves showing 2.5 (s) prediction from three different instants.

6.4. Stabilization Performance

In training and testing the controller network, the frequencies, amplitudes, and phrases
of the disturbances are all randomly generated. This section compares the performances
of DOB–net and the proposed MDA–net in solving Problem 1. The training score of the
DOB–net is averaged over episodes and is about −713.3, and the averaged score of the
MDA–net is about −455.6. Both scores are calculated according to Equation (2). The
difference in training scores has shown that the MDA–net outperforms the DOB–net in
dealing with the Markovian-jump disturbances simulated in this paper. As reported in [22],
when dealing with disturbances whose characteristics do not change in an episode, the
training score of the DOB–net could reach about −200.

Since the goal of the platform stabilization is to reach a minimum stabilization range,
the regulation error is defined as the distance between the AUV platform to the targeted
position (assumed the origin in the inertial space), given as

η = ‖q‖. (28)
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Then the stabilization range is defined as the largest error after 5 seconds in an episode,
as follows,

ηm = max
5<t

ηt. (29)

Two trajectory examples are illustrated in Figure 6a and 6b, respectively. In the first
example, the disturbance amplitude exceeds the control saturation by 10 percent, while in
the second example, the disturbance amplitudes are 80 percent of the control saturation. In
both cases, the changes in the disturbances were given by Equation (26). The transparent
spheres in blue and the ones in red indicate the stabilization ranges obtained by the MDA–
net and the DOB–net, respectively. Both examples show that the proposed MDA–net has
a smaller stabilization range than the DOB–net [22] in rejecting excessive disturbances
subject to abrupt changes. The trajectories obtained from RISE were not shown for a clear
illustration; the obtained stabilization ranges were often quite large. The smaller range
indicates less challenge for the onboard manipulators, which is not discussed in this paper.
The limitations of these numerical simulations are discussed in the last section.

2

。

[
E]

N

-1

-2

-2

—

— 2

。 。

X [m] 2 -2 y [m] 

Trajectory: MDA-net

Trajectory: DOB-net 

m
m

Stablization Range      : MDA-net
Stablization Range      : DOB-net 

(a) Trajectory example #1

2

 

。

[
E]

N

-1

2

2

 

＿

＿＿

 

Stablization Range      : MDA-net
Stablization Range      : DOB-net 

Trajectory: MDA-net

Trajectory: DOB-net 2

 

。 。

X [m] 2 -2 Y [m] 

m
m

(b) Trajectory example #2
Figure 6. Examples of the trajectories obtained by MDA–net and DOB–net, respectively. (a) The
stabilization range etam obtained from MDA–net is 0.43 (m) and etam obtained from DOB–net is 0.54
(m); (b) The stabilization range etam obtained from MDA–net is 0.22 (m), and etam obtained from
DOB–net is 0.45 (m).

We have also conducted extensive comparisons between MDA–net, DOB–net, and
RISE in two different groups of scenarios. The amplitudes of the simulated disturbances
in Group #1 could exceed the control saturation levels by 10%, while the amplitudes of
the simulated disturbances in Group #2 could exceed the control saturation levels by 30%
RISE controller [46]. In Figure 7a and Figure 7b, the results have shown that the MDA–net
outperformed DOB–net and RISE in the test cases.
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Figure 7. Comparison among MDA–net, DOB–net, and RISE under disturbances in Groups #1 and #2.
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MDA–net was also tested in a tank, where the water flow was generated by a propeller
fixed on the edge of the tank, as shown in Figure 8a. The direction of this propeller can be
manually adjusted to create various disturbances. In the experiments, the sudden external
impact was from the sudden changes in the disturbance generated by the position-fixed
propeller. Its direction oscillated through manual control. The strength of the propeller
force was adjusted as follows. By connecting the AUV to the frame fixed on the tank via
a force-torque sensor, the forces acted on the AUV by disturbances were measured. The
PWM signals to the propeller motor were adjusted such that the external forces acting on
the AUV reached in [20, 40] N.

Tank Wave Generator Positioning System

(a) Tank setup. (b) AUV with four markers.

Figure 8. Testbed description: tank, wave generator, positioning system, and AUV with markers.

The saturation of the control inputs was confined to 30 N by setting the maximum
value of the PWM signals of AUV thrusters. The AUV mass was about 14.5 kg. When
testing the controller, AUV was detached from the force-torque sensor. Therefore, an
example of the disturbance generated by the position-fixed propeller is given in Figure 9.
The sudden changes were simulated by changing the propeller force and direction abruptly.
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Figure 9. The forces in the x− and y−directions are shown in red and green, respectively. The
disturbance in the z−direction (shown in blue) is negligible.

An underwater positioning system was implemented with 12 cameras that emit blue
lights, as illustrated in Figure 8a. The AUV has four highly reflective markers on top
Figure 8b. In addition, due to the low visibility underwater, the reflective markers are 30
mm wide. The positioning system was calibrated with an L-shaped bar with markers of
known body coordinates. The cameras capture the markers and outputs pose estimates at
60 Hz.

The AUV system was built on BlueRov2 from Blue Robotics, Inc., Torrance, CA, USA
as shown in Figure 8b. BlueRov2 is equipped with six thrusters and can translate in three
directions, roll, and yaw. BlueRov2 communicates with a desktop and receives thruster
commands at 50 Hz. The desktop also receives the pose estimates from the positioning
system. In this AUV testbed, the desktop implements the DMA-net, making the BlueRov2
an AUV. The limitation of this setup is discussed in Section 7.
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The obtained AUV trajectories are shown in Figure 10. The three approaches, MDA–net,
DOB–net, and the RISE controller, were compared. The regulation errors and stabilization
ranges of which are also shown in Figure 11. The limitation of the localization system in
the lab tank will be discussed in Section 7.

(a) MDA–net (b) DOB–net (c) RISE

Figure 10. An example of trajectory and position regulation errors from tank tests. The blue curves
represent the trajectories from three approaches, and the transparent spheres present stabilization
ranges ηm defined in Equation (29).
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Figure 11. Regulation errors η (solid curves) and stabilization ranges ηm (dashed lines) obtained from
MDA–net (in red), DOB–net (in green), and RISE (in blue), respectively.

One example of these experimental tests was shown in Figure 10; the AUVs started
from the position around [1.1, 1.8, 1.2]T . Three trajectories were separately obtained by three
approaches, and they are shown in Figure 10a, 10b, and 10c, respectively. The trajectories
have demonstrated that the MDA–net approach can offer better performance with a smaller
stabilization range, while RISE can hardly keep the AUV near the origin.

7. Discussion and Future Work

The training of the controller does involve a lot of computational loads. When the
trained controller is used online, at each time step, the computational cost is O(nnnl), where
nn is the number of neurons in each layer and nl is the number of layers, while the RISE
approach is about O(1). As observed, the evaluations of a trained controller network on a
low-voltage CPU can achieve 100 Hz, which is sufficient for online applications.

Since the existence of the transform module, it is difficult to interpret the learned
representation of the QP problem. It is, therefore, hard to analyze the stability of the system.
In the future, additional regulations from Lyapunov’s theories should be imposed on the
learning of controller networks.

While using disturbance knowledge in training might be avoided by closing the
supervision from the aggregation of the platform model simulator and regularization on
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the simulator outputs, the platform model is also a module in the network, which could be
extracted from GRU #1.

In addition, the abrupt changes in disturbances are naively made, and they may not
reflect actual field situations. Future work includes testing the proposed approach in more
realistic underwater environments. In addition, future improvements include orthogonal
learning for different environments since MJLS and the sensitivity analysis have already
provided a framework to extract principle components when a deep network is employed.

The limitation of the tank tests arises from the positioning approach since, in the real
world, an auxiliary camera system is not available, and the sonar positioning system is
often too noisy and has low bandwidth. In the future, an onboard underwater multi-band
sonar sensor, camera, and localization system will be investigated.

The laptop receives the pose estimation from the motion capture system, implements
the proposed RL approach, and sends the control signals to the ROV. The whole system
is referred to as the testbed of the “AUV”. The testbed is not equivalent to AUV systems
since the cameras are mounted along tank edges. However, the testbed may be sufficient
to test the proposed control algorithm. We are developing an underwater sonar SLAM
system to provide online state estimation to make the underwater fully autonomous. In the
future, the sonar-based localization approach and the proposed transfer RL algorithm will
be implemented in the updated hardware of the ROV, making it a real AUV.

8. Conclusions

This paper proposes an RL approach, referred to as MDA–net, for stabilizing a
free-floating platform subject to excessive harmonic disturbances and control saturation.
Through modeling the disturbed AUV platform as an MJLS, the harmonic model is in-
tegrated into the network for effective learning of the observer of the MJLS parameters.
Sensitivity analysis of the optimal control problems is used to guide the learning of the
controller network. Preliminary results from numerical simulations and tank tests have
shown that MDA–net outperforms DOB–net when the disturbances have abrupt changes.
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