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Optimal measurement structures for contextuality applications
Yuan Liu1, Ravishankar Ramanathan1✉, Karol Horodecki2,3, Monika Rosicka2 and Paweł Horodecki3,4

The Kochen-Specker (KS) theorem is a cornerstone result in the foundations of quantum mechanics describing the fundamental
difference between quantum theory and classical non-contextual theories. Recently specific substructures termed 01-gadgets were
shown to exist within KS proofs that capture the essential contradiction of the theorem. Here, we show these gadgets and their
generalizations provide an optimal toolbox for contextuality applications including (i) constructing classical channels exhibiting
entanglement-assisted advantage in zero-error communication, (ii) identifying large separations between quantum theory and
binary generalized probabilistic theories, and (iii) finding optimal tests for contextuality-based semi-device-independent
randomness generation. Furthermore, we introduce and study a generalization to definite prediction sets for more general logical
propositions, that we term higher-order gadgets. We pinpoint the role these higher-order gadgets play in KS proofs by identifying
these as induced subgraphs within KS graphs and showing how to construct proofs of state-independent contextuality using
higher-order gadgets as building blocks. The constructions developed here may help in solving some of the remaining open
problems regarding minimal proofs of the Kochen-Specker theorem.
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INTRODUCTION
The Kochen-Specker (KS) theorem1,2 is a cornerstone result in the
foundations of quantum mechanics, which delineates the
differences between quantum theory and a class of hidden-
variable theories obeying the principle of non-contextuality
(NCHVTs). NCHVTs assume that outcomes are pre-assigned to
measurements and independent of the particular contexts in
which the measurements are realized. Informally, the KS theorem
states that for every quantum system belonging to a Hilbert space
of dimension d greater than two, irrespective of its actual state, a
finite set of measurements exists whose results are logically
impossible to be assigned of truth value 0 or 1 in a context-
independent manner, satisfying (i) Exclusivity: two orthogonal
projectors are not allowed to be both assigned 1, and (ii)
Completeness: for each d mutually orthogonal projectors, one of
them must be assigned 1.
KS sets are not the only means to identify the differences

between quantum mechanics and NCHVTs. An interesting class of
statistical state-dependent proofs of contextuality was also
presented by Clifton3, Stairs4, Hardy5 and others6,7. In these
works, a prediction occurs with certainty in every non-contextual
theory (such as the probability of an event being 0 or 1), while this
is not the case in quantum theory. Such statistical proofs provide a
simple and appealing contradiction between quantum and
NCHVTs. Considering each projector in a Hilbert space as an
atomic proposition, sets of the form P ! Q (P being true implies Q
is false) or P→Q (P being true implies Q is true) have been termed
as gadgets7, definite-prediction sets8, bugs or true-implies-false
and true-implies-true sets9.
As a central result in the foundations of quantum mechanics, KS

contextuality has yielded several exciting applications in quantum
information science recently. These applications include
entanglement-assisted advantage in zero-error communication10,
semi-device-independent randomness generation11, device-

independent security12, universal quantum computation via magic
state distillation13, advantage in communication complexity14,
self-testing quantum systems15, etc.
In this paper, we introduce a general class of definite-prediction

sets termed higher-order gadgets that goes beyond the basic
‘true-implies-false’ and ‘true-implies-true’ structures considered
thus far and show how these gadget measurement structures
provide an optimal toolbox for a plethora of applications of
contextuality12–14,16,17. (i) We show how the entanglement-
assisted advantage in zero-error communication, previously
discovered for KS proofs alone, persists for the smaller and
experimentally feasible classical channels corresponding to
gadgets, under a suitable generalization. (ii) We apply gadgets
to provide an experimentally feasible test of a recent result
demonstrating that quantum correlations cannot be reproduced
by fundamentally binary theories. These are a natural class of
alternatives to the set of correlations allowed by quantum theory,
and are defined as general probabilistic theories that posit that on
a fundamental level only measurements with two outcomes exist.
(iii) We point out that gadget-based contextuality tests allow to
certify the maximal amount of log d bits of randomness from d-
dimensional systems, making them ideal candidates for
contextuality-based semi-device-independent randomness gen-
eration. (iv) We also use gadgets to point out a subtle modification
to the famous Cabello-Severini-Winter (CSW) graph-theoretic
framework of contextuality, namely that the classical value of
non-contextuality inequalities does not always equal the weighted
independence number of the corresponding orthogonality graph,
when the KS rules of Exclusivity and Completeness are enforced.
Furthermore, we show the constructions of definite prediction
vector sets corresponding to arbitrary compound propositions, i.e.,
the entire spectrum of Hardy tests of contextuality from basic
‘true-implies-false’ sets to KS sets. We identify how these vector
sets can be found inside general KS proofs, and demonstrate how
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these can be applied as building blocks for constructing KS proofs
as well as general state-independent contextual (SI-C) proofs.
Consequently, since higher-order gadgets form an essential
ingredient in the constructions of KS proofs, minimal construc-
tions of gadgets may be expected to help resolve the long-
standing open questions of minimal KS proofs in a given Hilbert
space dimension.

RESULTS
Our results presented in this work are in two parts. On the one
hand, as the fundamental results, we introduced the order (m, k)
gadgets which play a crucial role in contextuality proofs. On the
other hand, from the practical point of view, we proved that
gadgets serve as the optimal measurement structures for several
contextuality applications.

Order (m, k) gadgets and forbidden value assignments
In this work, we first introduced a general class of state-dependent
contextuality proofs termed order (m, k) gadgets, which go
beyond the known 01-gadgets3–9. An order (m, k) gadget contains
mmutually non-orthogonal vectors with the property that at most
k vectors among them can be assigned value 1 in any valid {0, 1}-
assignment. In Hilbert space of dimension d, under some special
constructions, we showed that when m= d, k= d− 1 an order
(m, k) gadget can be constructed by any set of arbitrary non-
orthogonal vectors f v1j i; ¼ ; vmj ig. With this statement and
construction, the Kochen-Specker (KS) sets as well as the general
state-independent contextuality (SI-C) sets in dimension d can be
constructed with the order (k, k− 1) gadgets as building blocks
(for a fixed value k with 2 ≤ k ≤ d). Apart from this, we also showed
that order (m, k) gadgets form the building blocks of every KS
proof by identifying them as induced subgraphs within any
arbitrary KS proof.
We discussed a class of even more general measurement

structures in which some specific {0, 1}-assignments are forbidden,
a result that may be of independent interest and application. From
this point of view, a 01-gadget is a set of vectors where the
assignment {(1, 1)} is forbidden on two given non-orthogonal
vectors, an order (m, k) gadget is a set of vectors and for a given
mutually non-orthogonal vectors subset I= {v1,…, vm} of it, the
assignments of the form fð1; ¼ ; 1|fflfflfflffl{zfflfflfflffl}

k þ 1

; f ðvkþ2Þ; ¼ ; f ðvmÞÞ ^

permutationsð Þg are forbidden (f is any {0, 1}-assignment function).
And the KS sets are the ones that demonstrate the full forbidden
value assignments {0, 1}∣I∣ on any mutually non-orthogonal vectors
subset I. A natural question then arises - can a gadget be
constructed for every forbidden value assignment set? We
answered this question in the affirmative and demonstrated the
construction process in a concrete step-by-step manner.

Gadgets as optimal measurement structures to contextuality
applications
Zero-error information theory is one of the most important
applications of contextuality. Given a single use of a discrete,
memoryless channel N , the maximum number of (classical)
messages that (a sender) Alice can send to (a receiver) Bob
without causing any error is known as the one-shot zero-error
capacity of N . In groundbreaking work, Cubitt, Leung, Matthews
and Winter10 showed how to use KS proofs (specifically the KS
graphs) to construct channels (confusability graphs) for which
shared entanglement between Alice and Bob can increase the
one-shot zero-error capacity. In analogy with them, we took the
confusability graphs to be the orthogonality graphs of a certain
class of gadgets and we considered a weighted version of the
problem in which we assign weights wi to the input symbols

denoting the desirability of their transmission. It is in such a
weighted version of the zero-error communication problem, we
obtained an enhancement of the one-shot zero-error capacity via
shared entanglement for channels corresponding to specific types
of gadgets, which is a much wider class of graphs than was
previously known.
While Quantum Theory is the most successful theory ever

devised, there is still a huge research effort devoted to under-
standing physical and information-theoretic principles that force
its formalism, one class of them is the Fundamentally Binary
theories, these are no-signaling theories in which measurements
yield many outcomes are constructed by selecting from binary
measurements. Previously, the authors in16,18 showed a Bell-type
inequality to exclude the set of fundamentally binary non-
signaling correlations as an underlying mechanism generating
the set of quantum correlations, however, the proof is experi-
mentally demanding since only small violations of the derived
inequalities are possible, the violation of the derived inequality
requires visibilities of ≈ 91.7% of a suitably prepared two-qutrit
state. We use the 01-gadget structures to derive the inequalities
which are actually the maximum fractional assignments sum of
the distinguished vectors, and from which the genuinely ternary
character of quantum measurements can be certified in the much
simpler single-system contextuality scenario with arbitrarily large
separations between the set of quantum contextual correlations
and the binary consistent correlations.
Contextuality can serve as the basis for randomness (or key)

generation, and importantly one may utilize gadget-based
contextuality tests to certify the optimal amount of randomness
log2d per run which is the maximum randomness that can be
extracted from a system of dimension d. To do that, in general one
needs to derive a rigid contextuality test in dimension d and
identify a suitable measurement x* with fully random outcomes
PA∣X(a∣x*)= 1/d ∀ a ∈ [d] when the maximum quantum value of the
contextuality test is observed. We showed that the general
constructions in7 and the tunability of the overlap between the
distinguished vectors of the gadgets make them ideal candidates
for protocols allowing to certify the maximum amount of log2d
bits of randomness. Specifically, we demonstrated the 01-gadgets
in dimension d= 4 and 5 with the maximum overlaps between
the distinguished vertices being 1ffiffi

d
p (for any orthogonal represen-

tation in Rd), which indicate that one can readily derive
contextuality tests allowing log2d bits optimal randomness
certification from these constructions.

DISCUSSION
In this paper, we have introduced a generalization of gadget
structures to definite prediction sets for arbitrary logical proposi-
tions and shown how gadgets are optimal measurement
structures in many applications of contextuality. A number of
interesting open questions remain. A fundamental question is to
leverage the constructions of gadgets and their utility in building
KS proofs to identify minimal KS proofs in a given dimension. It is
still an open question to identify the minimal KS proof in
dimension 3 while the 18-vector set introduced in19,20 is
conjectured to be minimal in dimension 4. With regard to
applications, it is of interest to construct minimal gadget sets of
measurements giving a contextuality test to certify the optimal
amount of log d bits from a system of dimension d (constructions
were shown for small dimensions here), and to use them in
experimentally feasible contextuality-based randomness genera-
tion protocols. It is also of interest to experimentally test the
separation between quantum mechanics and general binary
consistent theories. In the future, it would be interesting to see
if gadget generalizations can be used to show separations
between quantum correlations and the set of n-ary consistent
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correlations that are defined analogously to the binary theories as
composed from measurements yielding at most n outcomes.

METHODS
Preliminaries
Much of the reasoning involving outcome contextuality has
traditionally been carried out using graph-theoretic representa-
tions of KS sets, we therefore begin by establishing some graph-
theoretic notation.
In this paper, we deal with simple, undirected, finite graphs

G= (VG, EG) where VG and EG denote the vertex and edge set of the
graph respectively. If two vertices vi, vj are connected by an edge,
we say that they are adjacent and denote it by vi ~ vj. A clique C in
the graph G is a subset of vertices C⊂ VG such that every pair of
vertices in C is connected by an edge. A maximal clique is a clique
that is not a subset of a larger clique, while a maximum clique in G
is a clique of maximum size in G, we denote the size of the
maximum clique by ω(G). An independent set in a graph G is a
subset I⊆ VG such that every pair of vertices in I is non-adjacent in
G, the maximum size of an independent set is denoted α(G). A set
of vertices D⊂ VG is said to dominate a clique C if for every v∈ C
there exists a w ∈ D such that {v,w}∈ E, that is every vertex of
clique C has a neighbor in D. The set D is a minimal dominating set
of C if no proper subset of D dominates C.
For any set of vectors V , one can define an orthogonality graph

GV as the graph in which vector vj i 2 V is represented by a vertex
v in GV and two vertices v1, v2 are connected by an edge in GV if
and only if 〈v1∣v2〉= 021. Checking the orthogonality relations
among the vectors from a given set V allows to efficiently
establish its orthogonality graph GV . The problem of {0, 1}-coloring
of a given set of vectors is then equivalently formulated as the
problem of {0, 1}-coloring of its orthogonality graph defined in an
analogous way as:

Definition 1. A {0, 1}-coloring of a graph G is a map f: VG→ {0, 1}
such that (i) for every clique C in G, it holds that ∑v∈Cf(v) ≤ 1, and (ii)
for every clique C in G of size ω(G), there exists exactly one vertex
v∈ C satisfying f(v)= 1.

The converse problem of identifying sets of vectors satisfying
the orthogonality constraints dictated by the edges of a given
graph is the question of finding an orthogonal representation of
a graph.

Definition 2. An orthogonal representation of a graph G in
dimension d is a set of (unit) vectors S from Cd such that there
exists a map f : VG 7!S satisfying the condition that f(v1) and f(v2)
are orthogonal vectors if {v1, v2}∈ EG. The minimal dimension of an
orthogonal representation of G is denoted d(G). A faithful
orthogonal representation of a graph G in dimension d is a set
of (unit) vectors S from Cd such that there exists a map f : VG 7!S
satisfying the condition that f(v1) and f(v2) are orthogonal vectors
if and only if {v1, v2}∈ EG, and furthermore f(u) and f(v) are non-
parallel vectors if u ≠ v. The minimal dimension of a faithful
orthogonal representation of G is denoted d*(G).

We recall here the notion of 01-gadgets formalized in7.

Definition 3. 7 A 01-gadget in dimension d is a {0,1}-colorable set
Sgad � Cd of vectors containing two distinguished non-
orthogonal vectors uj i and vj i that nevertheless satisfy f(u)+
f(v) ≤ 1 in every {0,1}-coloring f of Sgad .

Equivalently, the 01-gadgets may be defined in graph-theoretic
terms as:

Definition 4. 7 A 01-gadget in dimension d is a {0,1}-colorable
graph Ggad with faithful dimension d*(Ggad)=ω(Ggad)= d and with
two distinguished non-adjacent vertices u and v such that
f(u)+ f(v)≤1 in every {0,1}-coloring f of Ggad.

In other words, 01-gadgets are particular definite-prediction
sets with a logical implication of the form P ! Q, i.e., in any logical
assignment of the set of atomic propositions, when one of the two
distinguished propositions is assigned the value True the other is
necessarily assigned value False, even though the distinguished
atomic propositions are not represented by orthogonal vectors
and are therefore not inherently exclusive to each other. In7, it was
shown that 01-gadgets identify the essential contradiction
captured by the Kochen-Specker theorem, in that every KS graph
contains a 01-gadget and from every 01-gadget one can construct
a proof of the Kochen-Specker theorem (see also22,23). Note that
by the famous Erdős-Stone theorem24 of extremal graph theory,
graphs of sufficiently high density necessarily contain subgraphs
isomorphic to 01-gadgets, specifically the maximum number of
edges in a graph (with faithful dimension d) with n vertices not
containing a subgraph isomorphic to a 01-gadget (of dimension d)
is d�2

d�1 þ oð1Þ� �
n
2

� �
. This can be seen by observing that 01-gadgets

in dimension d have chromatic number χ(G)= d, where the
chromatic number of a graph denotes the minimum number of
colors needed to color the vertices such that adjacent vertices are
assigned distinct colors.
From the preceding discussion, we recognize that the

orthogonality graphs of Kochen-Specker vector sets do not admit
a {0, 1}-coloring. The {0, 1}-colorability of a graph can also be
formulated as an SAT instance and solved using a solver such as
MiniSAT (http://minisat.se). To do this, one introduces a variable
for each vertex in the graph. For each edge in the graph, a clause
is added stating that the two incident vertices cannot both have
value 1 (True). For each maximum clique in the graph, a clause is
added stating that not all vertices in the clique have value 0
(False). The Boolean formulas for KS graphs are then seen to be
unsatisfiable. Specifically, for the dimension d= 3 setting, one can
formulate the {0, 1}-colorability of KS graphs as a 1-in-3 SAT
instance. To do this, we complete the bases in the KS set by
adding appropriate (unique) vectors, such that each edge in the
graph belongs to a triangle. The Boolean formula in conjunctive
normal form then has exactly three literals per clause, i.e., the
formula is of the form ^ði1 ;i2;i3Þ2Cliquesðvi1 _ vi2 _ vi3Þ and the {0, 1}-
colorability is equivalent to the 1-in-3 SAT question of determining
whether there exists a truth assignment to the variables so that
each clause has exactly one true literal. Furthermore, one can also
obtain a similar unsatisfiable formula for 01-gadgets with an
added clause stating that the two distinguished non-adjacent
vertices both have value 1. Thus, from the point of view of
satisfiability, 01-gadgets provide a similar (and in many cases,
smaller) unsatisfiable instance. From the point of view of
contextuality, 01-gadgets provide a state-dependent version of
Kochen-Specker contextuality.

Order (m, k) gadgets
Let us now consider generalizations of gadget measurement
structures that go beyond the basic ‘true-implies-false’ and ‘true-
implies-true’ logical implications. Our first generalization is to
gadgets of order (m, k) with k ≤m. Essentially, these are prediction

sets corresponding to the proposition ^k
i¼1Pi ! ^m

j¼kþ1Pj
� 	

^
h

permutationsð Þ� for m mutually non-exclusive atomic propositions
P1,…, Pm. In other words, the gadgets of order (m, k) contain m
mutually non-orthogonal vectors such that at most k vectors can
be assigned value 1 in any {0, 1}-coloring. The 01-gadgets3,7,25–28

then correspond to the special case of gadgets of order (2, 1).
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Definition 5. A gadget of order (m, k) in dimension d is a {0,1}-
assignable set of vectors Sm;k � Cd containing m distinguished
mutually non-orthogonal vectors eSm;k ¼ f v1j i; :::; vmj igSm;k , such
that

● for every subset R � eSm;k of size smaller than or equal to k,
there exists a {0,1}-coloring which attributes 1 to all vectors in
R, and

● for any subset R � eSm;k of size greater than k, no {0, 1}-
coloring exists that attributes 1 to all vectors in R.

One can also give an equivalent definition of the order (m, k)
gadget in graph-theoretic terms:

Definition 6. A gadget of order (m, k) in dimension d is a {0, 1}-
colorable graph G with faithful dimension d*(Ggad)=ω(Ggad)= d and
with a distinguished independent set I of cardinality ∣I∣=m such that

● for every subset I0 � I of cardinality jI0j � k, there exists a
{0, 1}-coloring of G in which all v 2 I0 are assigned value 1, and

● no {0, 1}-coloring of G exists that assigns value 1 to more than
k vertices from I.

We first study the question of whether a higher order (m, k)
gadget can be constructed with any set of arbitrary vectors
f v1j i; ¼ ; vmj ig as the distinguished vectors. While it is possible to
consider every value of k∈ [m− 1], here we focus on the
construction for the special case m= d, k= d− 1. As in the
construction of KS sets, the construction of such general gadgets
is complicated by the fact that even deciding the {0, 1}-colorability
of a general graph is an NP-complete problem29. It is also hard in
general to derive the faithful orthogonal representation of a graph
in a given dimension. As such, there isn’t a systematic method to
derive minimal gadget structures. Nevertheless, we propose specific
graphs G with candidate vertices to play the role of the
distinguished vertices of the gadget. We then construct a
symmetric matrix Gram with entries Grami,j= Gramj,i= 0 corre-
sponding to edges (i, j) in G. The matrix Gram is meant to represent
the Gram matrix of a set of vectors realizing the graph G so that
Grami,j=〈vi∣vj〉. We study the question of finding a positive-
semi-definite matrix completion Gram≥ 0 with a rank-d constraint.
We thus exhibit a graph that serves as an order (d, d− 1) gadget for
arbitrary d, with the d distinguished vectors being
m1j i; m2j i; � � � ; mdj i (details are in the Supplementary Information
Note 1). The feature of this construction is that the distinguished
vectors can be chosen to be arbitrarily close to each other, i.e.,
〈mi∣mj〉→ 1 as the number of repeating units increases.
We now show an application of the higher-order gadgets in

constructing KS proofs as well as general state-independent
contextual (SI-C) proofs and also defer the details of these
contractions to Supplementary Information Note 2.

Construction 1
Order (k, k− 1) gadgets can be used as building blocks to
construct KS proofs in dimension d.
In the construction, we start with k bases B1, B2,…, Bk in

dimension d, then randomly pick one vector in each basis to form

a set Si ¼ vqBp




 En o
with p∈ [k]≔ {1,…, k} and q ∈ [d]. In total, we

have dk such sets Si. Then for each i∈ [dk], we construct an order
(k, k− 1) gadget in dimension d with the vectors in Si being the d
istinguished vectors. Thus, assigning a single value 1 to each of
the bases B1,…, Bk−1 forces all the vectors in the basis Bk to be
assigned value 0 giving a contradiction, so that the union of all
vectors is a KS proof.

Construction 2
Order (k, k− 1) gadgets can be used as building blocks to
construct general SI-C sets in dimension d.

To realize the general SI-C set, we first construct a set of r ⋅ 2n
distinct unit vectors uij i in dimension d satisfyingPr�2n

i¼1 uij i uih j ¼ r�2n
d 1d , where r>max dðk�1Þ

2n ; 4
n o

is an even integer

and n ¼ dlog2 d�1
2 e; d is odd

dlog2 d�2
2 e; d is even

�
. Then any k of these vectors

form a set Si, we first delete all the mutually orthogonal vectors in
the set Si and construct an order (∣Si∣, ∣Si∣− 1) gadget in dimension
d with the vectors in Si being the distinguished vectors. As a result,
in any {0, 1}-assignment f, the sum of assignments of these r ⋅ 2n
vectors is smaller than k. On the other hand, in quantum theory
we obtain the value r�2n

d >k for every state in dimension d, so that
the union of all the vectors gives a proof of state-independent
contextuality. Finally, not only can the higher-order gadgets be
used as building blocks to construct KS proofs, we also show that
specific such gadgets may be found as necessary substructures
(induced subgraphs) in any proof of the KS theorem.

Theorem 1. Every KS set in dimension d contains a gadget of
order (k, k− 1) for some k satisfying 2 ≤ k ≤ d.

The intuition behind the proof is that if no {0, 1}-coloring exists
for a graph G, a brute-force greedy algorithm that attempts to
assign 0s and 1s to its vertices must stop at some point in its
execution, before each maximum clique has a single 1-valued
vertex. Therefore, there must exist some clique C in G such that
each vertex in C is adjacent to some 1-valued vertex at this point
in the execution. Call such a minimal set of adjacent vertices to a
maximum clique as D, then the induced subgraph formed by
D ∪ C constitutes a gadget. Furthermore, such a gadget must be of
order at least (k, k− 1).
Order (m, k) gadgets are thus a natural generalization of ‘True-

implies-False’ sets, where we consider an independent set
I= {v1,…, vm} of vertices (mutually non-orthogonal vectors) with
forbidden value assignments of the form f1; ¼ ; 1|fflfflfflffl{zfflfflfflffl}

kþ1

; f ðvkþ2Þ;

¼ ; f ðvmÞg and permutations thereof, for any {0, 1}-coloring f.
One may consider yet more general structures in which we specify
a general set of forbidden value assignments H � f0; 1gm, we
elaborate on this in Supplementary Information Note 3.

Entanglement-assisted advantage in Zero-error
communication in channels constructed from gadgets
One of the most important and tantalizing applications of
contextuality is in the field of zero-error information theory. In
classical zero-error coding, we consider a discrete, memoryless
channel N connecting a sender Alice and a receiver Bob. Given a
single use of such a channel, the maximum number of classical
messages that Alice can send to Bob under the constraint that
there be no error is known as the one-shot zero-error capacity of
N . In groundbreaking work, Cubitt et al.10 showed how to use KS
proofs to construct channels for which shared entanglement
between Alice and Bob can increase the one-shot zero-error
capacity. Since 01-gadgets are substructures of KS proofs, it is an
interesting question to investigate whether these smaller (and
experimentally more feasible) measurement structures already
exhibit the phenomenon of entanglement-assisted advantage in
zero-error capacity.
The classical channel N has finite inputs X and outputs Y and its

behavior is characterized by the probability distribution N YjXðyjxÞ
of outputs given inputs. Two inputs x are confusable if the
corresponding distributions on outputs overlap. The confusability
graph GðN Þ is constructed with vertex set being the set of input
symbols and two vertices connected by an edge if the
corresponding input symbols are confusable. A zero-error code
is then a set of non-confusable inputs and the one-shot zero-error
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capacity of the channel is the maximum size of such a set. When
Alice and Bob only share correlations which can be obtained using
shared randomness, this number can be readily seen to be the
independence number of the graph GðN Þ, i.e., cSRðN Þ ¼ α GðN Þð Þ
where cSRðN Þ denotes the zero-error capacity when using
correlations obtained using shared randomness as a resource.
On the other hand, Cubitt et al. showed examples of channels for
which sharing entanglement can improve the zero-error capacity
of sending classical messages, i.e., such that cSEðN Þ>cSRðN Þ where
cSEðN Þ denotes the zero-error capacity when using shared
entanglement as a resource. In particular, they showed that such
channels arise naturally from proofs of the Kochen-Specker
theorem, specifically one may take GðN Þ to be the (non-{0, 1}-
colorable) orthogonality graph of some Kochen-Specker
vector set.
We show that one may also take GðN Þ to be the orthogonality

graph of a certain class of gadgets, by a suitable generalization to
a weighted version of the zero-error communication problem. In
the weighted generalization, we assign weights w ¼ fwigjV ji¼1 to
the input symbols (denoting the desirability of their transmission).
The one-shot zero-error capacity is then the maximum total
weight of any set of non-confusable inputs, which corresponds to
the weighted independence number of the confusability graph,
i.e., cSRðN ;wÞ ¼ α GðN Þ;wð Þ.
Consider a gadget in which we complete each of the bases (by

addition of suitable vectors satisfying the orthogonality relations)
such that a clique cover of the graph is possible in which the
vertices of the graph are partitioned into q maximum cliques (of
size ω(G)= d) given as Cm= {vm,1,…, vm,d} for m= 1,…, q (i.e.,
V ¼ ∪ q

m¼1Cm). We remark that a similar completion is required for
the graphs obtained from Kochen-Specker proofs in10, and only
such Kochen-Specker proofs (such as the Peres-Mermin proof30

with 24 vectors partitioned into six cliques in dimension 4) display
the enhancement proven there.
We construct the channel N as having inputs in [q] × [d] with

inputs (m, i) and ðm0; i0Þ being confusable if and only if the
corresponding vectors are orthogonal to each other, i.e., if and
only if hvm;ijvm0 ;i0 i ¼ 0. GðN Þ has an edge between such pairs of
confusable inputs and is exactly the orthogonality graph
corresponding to the (base-completed) gadget. By construction,
the vertices of GðN Þ can be partitioned into q maximum cliques
(of size d). We now consider the weighted version of the zero-error
communication problem with Vdist denoting the set of distin-
guished vertices in the gadget as

wi ¼
w� i 2 Vdist

1 i 2 V n Vdist

�
(1)

for a parameter w*. The one-shot zero-error capacity when only
shared randomness is available is then readily calculated to be
cSR GðN Þð Þ ¼ max α GðN Þð Þ � 1þ w�; α GðN Þð Þ � 3þ 2w�f g. We
choose w* > 1 such that 2w*− 3 <w*− 1, i.e., 1 <w* < 2 giving
cSR GðN Þð Þ ¼ α GðN Þð Þ � 1þ w�<qþ w� � 1.
On the other hand, suppose Alice and Bob share a maximally

entangled state ψdj i ¼ 1ffiffi
d

p
Pd

i¼1 i; ij i. Each message m that Alice

wishes to send corresponds to a maximum clique in the
aforementioned clique partitioning of the graph GðN Þ. To send
m, Alice measures in the bases given by the clique Cm and obtains
an outcome k∈ [d] with probability 1/d. Her input to the channel
is then (m, k). The output of the channel at Bob’s end is one of the
maximum cliques containing the vertex vm,k (not necessarily
belonging to the clique partitioning of the graph). Bob performs a
projective measurement corresponding to his received maximum
clique, and his outcome reveals Alice’s input to the channel. The
one-shot zero-error capacity when shared entanglement is used as
a resource is then calculated to be cSE GðN Þð Þ ¼ 1

d qd � jVdistjþ½
jVdistj � w�� ¼ qþ ðw��1ÞjVdistj

d . We see that cSE GðN Þð Þ> cSR GðN Þð Þ

whenever ∣Vdist∣ > d, i.e., whenever we have a gadget-type graph
with ∣Vdist∣ distinguished vertices of which only one can be
assigned value 1 in any non-contextual {0, 1} value assignment.
We note that such a gadget-type graph does not correspond to

a Kochen-Specker proof since it is {0, 1}-colorable. On the other
hand, one can construct a state-independent non-contextuality
inequality for the graph that is violated by all states in dimension
d, namely

P
vi2Vdist

Pðevi Þ � 1, where P(ei) refers to the probability
of the event evi corresponding to the distinguished vertex vi. Such
graphs may therefore be said to be of the type discovered by Yu
and Oh in31, namely they exhibit state-independent contextuality
despite not corresponding to a Kochen-Specker proof. And as we
have seen, we obtain an enhancement via entanglement of the
one-shot zero-error capacity for all such graphs, a much wider
(and easily constructible following the constructions in7 and
Construction 2 in this work) class of graphs than was
previously known.

Large violations of binary consistent correlations in quantum
theory
In this section, we describe an application of the gadget
constructions to the task of excluding a natural alternative to
quantum theory, namely the so-called “Fundamentally Binary
theories”16,18. While Quantum Theory is the most successful theory
ever devised, there is still a huge research effort devoted to
understanding physical and information-theoretic principles that
force its formalism. Seemingly natural alternatives to the set of
correlations allowed by Quantum Theory exist such as the so-
called ‘Almost Quantum’ correlation set32. Another class of natural
alternatives is given by the Fundamentally Binary theories, these
are no-signaling theories in which measurements yielding many
outcomes are constructed by selecting from binary measure-
ments. In other words, these theories posit that on a fundamental
level only measurements with two outcomes exist, and scenarios
where a measurement has more than two outcomes are achieved
by classical post-processing of one or more two-outcome
measurements. Fundamentally binary correlations are character-
ized as the convex hull of all consistent correlations {P(a∣x)}
obeying the constraint that for all x, it holds that P(a∣x)= 0 for all
but two outcomes a.
In16,18, it was shown that two-party non-locality scenarios exist

such that the corresponding class of fundamentally binary non-
signaling correlations does not fully encompass the set of
quantum correlations. In other words, it was shown that a Bell-
type inequality can be constructed to exclude the set of
fundamentally binary non-signaling correlations as an underlying
mechanism generating the set of quantum correlations. The
authors of16,18 considered the simplest non-trivial polytope of
fundamentally binary non-signaling correlations involving two
parties that perform two measurements with three outcomes
each. They computed the facets of the polytope using Fourier-
Motzkin elimination using the software porta and calculated the
corresponding quantum violations using the NPA semidefinite
programming hierarchy33. While an important foundational result,
the proof in18 is experimentally demanding in that only small
violations of the derived inequalities are possible (the quantum
value being Ia= 2(2/3)3/2 ≈ 1.0887 compared to the value in binary
theories of Ia= 1), the violation of the derived inequality requires
visibilities of ≈ 91.7% of a suitably prepared two-qutrit state. In this
section, we show that the genuinely ternary character of quantum
measurements can be certified in the much simpler single-system
contextuality scenario with arbitrarily large separations between
the set of quantum contextual correlations and the binary
consistent correlations. The price to pay for such large violations
is the assumption, common to all contextuality experiments, that
the same projector is measured in different contexts.
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Consider an orthogonality graph G= (VG, EG) with a set of
maximum cliques (contexts) CG ¼ fA1; ¼ ;Akg where each clique
Ai is of size ω(G)= d. A box B= {P(a∣x)} is a set of conditional
probability distributions with input x∈ {1,…, k} and output
a∈ {1,…, d}. A box is said to be compatible with an orthogonality
graph G if it is a family of (normalized) probability distributions
such that for each c∈ {A1,…, Ak}, there is a corresponding
probability distribution in this family.

Definition 7. For a given orthogonality graph G= (VG, EG) with a
set of contexts CG ¼ fA1; ¼ ;Akg, a box B ¼ fP ajxð g is said to be a
Consistent Box if for all pairs c; c0 2 CG and for sets of vertices
(projectors) Sc;c0 ¼ c \ c0≠;, it holds that

8s 2 Sc;c0 Pða ¼ sjx ¼ cÞ ¼ Pða ¼ sjx ¼ c0Þ: (2)

The set of all consistent boxes B compatible with an orthogonality
graph G is denoted by BcG.

Note that the set of non-signaling boxes is a special case of such
consistent boxes.
Fundamentally binary correlations are a sub-class of consistent

correlations obtained as the convex hull of consistent boxes for
which for each context c in the graph G (maximum clique of size
ω(G)= d) at most two projectors (vertices in the clique) are
assigned non-zero values that sum to unity and the remaining
projectors in the context are assigned value 0, together with any
box obtained by local classical postprocessing of such boxes. Note
that in each extremal binary consistent box, the assignment of
values to the projectors is done in a consistent manner, so that the
value assigned to any projector is independent of the context in
which it is measured. Formally we define binary consistent
correlations as follows.

Definition 8. For a given orthogonality graph G= (VG, EG) with a
set of contexts CG ¼ fA1; ¼ ;Akg, a binary consistent assignment
is a function f: VG→ [0, 1] such that 8c 2 CG, exists v1, v2∈ c such
that f(v1)+ f(v2)= 1 and f(vi)= 0 for all vi 2 c n fv1; v2g. Define the
set of boxes Bbin�cons

G as the convex hull of boxes obtained by
binary consistent assignments, i.e.,

Bbin-consG :¼ conv fPðajxÞg 2 BcG j 8c 2 CG; 9s1; s2 2 c
�

s.t. Pða ¼ s1jx ¼ cÞ þ Pða ¼ s2jx ¼ cÞ ¼ 1g:
(3)

The set of Fundamentally Binary boxes Bbin
G is defined as the set of

boxes that can be obtained by local classical postprocessing from
any B 2 Bbin�cons

G .

We now show that not only does the set of Fundamentally
Binary boxes not encompass the set of quantum contextual
correlations, but that in fact there exist separating inequalities for
which large violations by quantum contextual correlations can be
obtained.

Theorem 2. There exist inequalities bounding the set of
fundamentally binary consistent correlations that admit close to
algebraic violations in quantum theory.

Proof. The proof will make use of the idea of ‘extended 01-
gadgets’ that we introduced in7.

Definition 9. An extended 01-gadget in dimension d is a {0, 1}-
colorable graph Gxgad= (Vxgad, Exgad) with faithful dimension
d*(Gxgad)=ω(Gxgad)= d and with two distinguished non-adjacent
vertices v1≁ v2 such that in any assignment f: Vxgad→ [0, 1], it
holds that f(v1)+ f(v2) < 2.

In other words, an extended 01-gadget is similar to a normal 01-
gadget except that the defining characteristic holds for arbitrary
assignments in [0, 1] rather than only to {0, 1} assignments.
In7, we had proven the following statement that shows a

construction of an extended 01-gadget between any two non-
orthogonal vectors in Cd .

Lemma 1. (Theorem 4 in7). Let v1j i and v2j i be any two distinct
non-orthogonal vectors in Cd with d ≥ 3. Then there exists an
orthogonality graph Gxgad that constitutes an extended 01-gadget
in dimension d with the corresponding vertices v1 and v2 being
the distinguished vertices.

We now show that for any extended 01-gadget, the sum of the
binary consistent (probability) assignments to the two distin-
guished vertices in any box B 2 B bin�cons

G is at most 3/2. To do so,
we recall the notion of the Fractional Stable-Set Polytope
(FSTAB(G)) of a graph G= (VG, Eg) which is defined as

FSTABðGÞ ¼ x!2 RjVGj
þ j xv þ xw � 1 8ðv;wÞ 2 EG

n o
: (4)

We recognize that the fractional stable-set polytope is defined by
similar constraints to the set of binary boxes B bin�cons

G except for the
fact that the defining constraint xv+ xw≤1 in FSTAB(G) is replaced by
the constraint that 8c 2 CG, ∃ v,w∈ c such that xv+ xw= 1 in
Bbin�cons
G . By introducing a slack variable yv,w for each edge

constraint, we rewrite the fractional stable-set polytope as

FSTABðGÞ ¼ ð x!; y!Þ 2 RjVG j
þ ´RjEG j

þ j xv þ xw þ yv;w ¼ 1 8ðv;wÞ 2 EG
n o

:

(5)

Here, every vertex of G indexes an x variable while every edge of G
indexes a slack y variable, so that x and y can be termed vertex
variables and edge variables respectively. A vertex v is said to be k-
valued in the fractional assignment ð x!; y!Þ if the corresponding
vertex variable takes value k, and similarly an edge (v,w) is said to
be j-valued in the assignment if the corresponding edge variable
takes value j. The following theorem by Nemhauser and Trotter34,
following an earlier result by Balinski35 provides a characterization
of the vertices of FSTAB(G).

Theorem 3. (Balinski35, Nemhauser and Trotter34). Let x!2 RjVGj
þ

be a vertex of FSTAB(G). Then for every vertex v∈ VG, it holds that
xv 2 f0; 12 ; 1g, i.e., that every vertex is 0 or 1/2 or 1-valued in x!.

Now, since the set of normalization conditions NORMG :¼
fNORMc

Ggc for the maximum cliques c 2 CG where

NORM c
G :¼ f9v;w 2 c s.t. f ðvÞ þ f ðwÞ ¼ 1g (6)

form supporting hyperplanes of FSTAB(G), we see that the vertices
of FSTAB(G) ∩ NORMG inherit the characterization derived in the
above theorem, i.e., the corresponding edge (slack) variables y
take value 0 for each edge in the graph. We thus obtain

Corollary 1. Let {P(a∣x)} be a vertex of Bbin�cons
G . Then for every

context c 2 CG and for every outcome s∈ [d], it holds that
Pða ¼ sjx ¼ cÞ 2 f0; 12 ; 1g.

It is also worth remarking that classical processing does not change
the above property so that it holds also for the extreme points of the
polytope of Fundamentally Binary boxes Bbin

G . Applying the above
corollary to any orthogonality graph Gxgad that constitutes an
extended 01-gadget, we see that the sum of the binary consistent
assignments to the two distinguished vertices is at most 3/2.
This statement, in conjunction with the constructions of extended

01-gadgets in the lemma for distinguished vectors v1j i; v2j i
satisfying ∣〈v1∣v2〉∣→ 1 shows that the inequality Pða ¼ v1jx ¼
cv1Þ þ Pða ¼ v2jx ¼ cv2Þ � 3=2 forms a supporting inequality
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for Bbin
Gxgad

, where cv1 and cv2 are two contexts containing the vertices
v1 and v2 respectively. On the other hand, measurements of the
contexts on the state vj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þcosθÞ
p ð v1j i þ v2j iÞ with hvijvji ¼

cos θ show that Quantum Theory achieves the value 1þ cos θð Þ !
2 as θ→ 0.
It is worth remarking that separations between the sets of

binary consistent correlations and quantum correlations are not
achieved by considering the inequalities for the usual Kochen-
Specker proofs since both sets achieve the algebraic value for
those inequalities. This shows the importance of the constructions
of gadgets and extended gadgets in deriving such separating
hyperplanes. Furthermore, it is also clear that higher-order
extended gadgets can be constructed in analogy with the
constructions of higher-order gadgets in the rest of this paper.
In the future, it would be interesting to see if these constructions
can be used to show large separations between the set of
quantum contextual correlations and the set of n-ary consistent
correlations that are defined analogously to the binary consistent
correlations as composed from measurements yielding at most n
outcomes.

Optimal semi-device-independent randomness generation
using gadgets
Contextuality can serve as the basis for randomness (or key)
generation, either via stand-alone protocols that test for the
violation of a non-contextuality inequality11 (where one assumes
that the measurements conform to the specific orthogonality
graph), or through the conversion of a single-party contextuality
test into a two-party Bell inequality12 or through the conversion of
a non-contextuality inequality to a prepare-and-measure proto-
col14. A common step in all such protocols36–41 is the identification
of a suitable measurement in the (contextuality) test that yields
the highest possible randomness or key generation rate. It is well-
known that the maximum randomness (quantified by the min-
entropy) per run that can be extracted from a test where the
parties perform projective measurements on a system of
dimension d is log2d. The importance and utility of gadgets for
randomness certification have been commented on previously,
we elaborate on this aspect and focus on their importance for
optimal randomness certification in this section.
The Kochen-Specker theorem shows that it is impossible to

assign classical (deterministic) values to all quantum observables
in a consistent manner, i.e., independent of the context in which
the observables are measured. However, as pointed out in42,43, the
fact that not all quantum observables can be assigned definite
values does not imply that no observable can be assigned a
definite outcome. And in general, proofs of contextuality do not
specify which observables are value-indefinite. Specifically, for a
contextuality test with a set of observables {A1,…, Ak} we want to
solve

max PguessðAi jEÞ
s:t: IðPAjXÞ ¼ I�;

PA;EjX 2 Q;

(7)

where I(PA∣X) is a non-contextuality inequality evaluated on the
observed conditional probability distributions PA∣X, I* ∈ (Ic, Iq] with
classical and quantum values given by Ic and Iq respectively, andQ
denotes the set of conditional distributions (boxes) achievable by
performing measurements (compatible with the test structure on
Alice’s side) on quantum states shared between Alice and
adversary Eve, Pguess(Ai∣E)= ∑eP(e)Pe(a= e∣i) is the guessing prob-
ability of Alice’s outcome by an adversary E. By an optimal rigid
contextuality test in dimension d we mean one in which there
exists a measurement basis x* such that PA∣X(a∣x*)= 1/d for all
outcomes a ∈ [d] when the maximum value Iq is observed. It is an

open question to derive such a rigid class of contextuality tests for
arbitrary dimension d (see for example14 where the guessing
probability was calculated for the well-known 5-cycle non-
contextuality inequality44).
Constructions of gadgets provide a candidate solution to the

problem. Specifically, the extended 01-gadgets from Definition 9
were used in7 as building blocks to construct sets of vectors S0

such that for any [0, 1]-assignment f : S0 ! ½0; 1� it holds that
f ð v1j iÞ; f ð v2j iÞ 2 f0; 1g if and only if f ð v1j iÞ ¼ f ð v2j iÞ ¼ 0. A first
interesting aspect of these gadgets for randomness certification is
that they allow to localize the randomness guaranteed by the KS
theorem (note that a similar theorem with a more complicated
construction was explored in45). In other words, the observation in
the contextuality test of Pð v1j iÞ ¼ 1 guarantees that 0<Pð v2j iÞ<1
for any consistent box P compatible with the measurement
structure of the gadget. Secondly, if one has a rigid construction15

with overlap jhv1jv2ij ¼ 1=
ffiffiffi
d

p
, one can readily derive a contex-

tuality test allowing optimal randomness certification (for example
with a non-contextuality inequality of the form βPð v1j iÞ þ
Pð v2j iÞ � β with β≫ 1, for which the optimal quantum value is
then β+ 1/d). Here, by a rigid construction we mean one for
which there exists a non-contextuality inequality whose maximum
violation certifies a fully random outcome (with uniform
probabilities 1/d) for one of the measurement bases in the
construction. One way to ensure this is if for the construction, the
set of vectors realizing its orthogonality graph G is unique inCωðGÞ

(up to unitaries). For the gadget-within-gadget construction in the
proof of Theorem 4 in7, it was shown that for the k-th iteration in
the construction the maximum overlap of the distinguished
vectors takes the form k

kþ2, so that the construction allows optimal
randomness certification for d= 4 at k= 2. As shown in Fig. 1, the

maximum overlap between the distinguished vectors juð2Þ1 i; juð2Þ8 i
is 1

2, and the orthogonal representation of this gadget is

hvð1Þ1 j ¼ hvð2Þ4 j ¼ ð1; 0; 0Þ, hvð1Þ2 j ¼ ð0;�
ffiffi
3

p
2 ; 12Þ, hvð1Þ3 j ¼ ð0;

ffiffi
3

p
2 ; 12Þ,

hvð1Þ4 j ¼ ð�1;�
ffiffi
2

p
2 ;�

ffiffi
6

p
2 Þ, hvð1Þ5 j ¼ ð�1;�

ffiffi
2

p
2 ;

ffiffi
6

p
2 Þ, hvð1Þ6 j ¼ ð

ffiffi
2

p
3 ;

� 1
6 ;�

ffiffi
3

p
6 Þ, hvð1Þ7 j ¼ ð

ffiffi
2

p
3 ;� 1

6 ;
ffiffi
3

p
6 Þ, hvð1Þ8 j ¼ hvð2Þ5 j ¼ 2

ffiffi
2

p
3 ð

ffiffi
2

p
4 ; 1; 0Þ,

hvð2Þ1 j ¼ ð� 3
2 ;� 3

ffiffi
2

p
4 ; 3

ffiffi
2

p
4 Þ, hvð2Þ2 j ¼ ð0; 1; 1Þ, hvð2Þ3 j ¼ ð� 3

ffiffi
2

p
4 ; 38 ;� 8

9Þ,
hvð2Þ6 j ¼ ð0;�1; 1Þ, hvð2Þ7 j ¼ ð1;�

ffiffi
2

p
4 ;� 3

ffiffi
2

p
4 Þ hvð2Þ8 j ¼ ð ffiffiffi

2
p

; 1; 1Þ.
We give a different construction that allows to certify log2d bits

of randomness in dimension d= 5 here, and pursue the general
question of rigid contextuality tests15,46 certifying log2d bits for
arbitrary d (as well as their monogamy relations47,48 and the
security proofs of the corresponding protocols) for future work.
Consider the orthogonality graph shown in Fig. 2. Without loss

of generality, we consider u1h j ¼ ð1; 0; 0Þ, u13h j ¼ 1ffiffiffiffiffiffiffiffi
1þx2

p ðx; 1; 0Þ.
Parametrizing u2h j ¼ ð0; cos θ1; sin θ1Þ, u3h j ¼ ð0; cos θ2; sin θ2Þ
and u4h j ¼ ð0; cos θ4; sin θ4Þ to ensure orthogonality with u1h j,
we deduce the following (unnormalized) vectors by taking
appropriate cross products u11h j ¼ ð� sin θ1; x sin θ1;�x cos θ1Þ,
u5h j ¼ ð�x;�sin2θ1; ð1=2Þ sin 2θ1Þ, u6h j ¼ ð� cosðθ1 � θ2Þ sin θ1;
x sin θ2;�x cos θ2Þ, u7h j ¼ ð�x;� cosðθ1 � θ2Þ sin θ1 sin θ2;
cosðθ1 � θ2Þ sin θ1 cos θ2Þ, u13h j ¼ ð� sin θ3; x sin θ3;�x cos θ3Þ,
u10h j ¼ ð�x;�sin2θ3; ð1=2Þ sin 2θ3Þ, u9h j ¼ ðcosðθ2 � θ3Þ sin θ3;�
x sin θ2; x cos θ2Þ and u8h j ¼ ðx; cosðθ2 � θ3Þ sin θ2 sin θ3;
� cosðθ2 � θ3Þ cos θ2 sin θ3Þ. We now ask what is the maximum
value of the overlap jhu1ju13ij ¼ xffiffiffiffiffiffiffiffi

1þx2
p under the constraint that

�hu7ju8i ¼ x2 þ cosðθ1 � θ2Þ cosðθ3 � θ2Þ sin θ1 sin θ3 equals 0.
Or equivalently we wish to minimize cosðθ1 � θ2Þ cosðθ2�
θ3Þ sin θ1 sin θ3. Setting the partial derivatives of this expression
with respect to θ1, θ2, θ3 to equal zero, and finding the maximum
overlap over all the solutions gives that θ1=− θ3= π/4 and θ2= 0
with the optimal overlap jhu1ju13ij ¼ 1=

ffiffiffi
5

p
. The addition of two

other vertices u14, u15 that are adjacent to all the vertices of the
graph as well as to each other, gives the natural orthogonal
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representation in dimension 5 with u14h j ¼ ð0; 0; 0; 1; 0Þ and
u15h j ¼ ð0; 0; 0; 0; 1Þ. We have thus constructed an extended 01-
gadget in dimension 5 with the maximum overlap between the
distinguished vertices being 1ffiffi

5
p (for any orthogonal representation

in R5). While not a full self-testing statement, this indicates that
the maximum violation of a non-contextuality inequality could
allow to certify log25 bits for this construction. As stated earlier, we
leave for future work the derivation of rigid contextuality tests
based on gadgets to certify log2d bits for arbitrary dimension d
and the security proofs of the corresponding (semi-device-
independent) contextuality-based randomness generation.

Classical value of non-contextuality inequalities versus the
weighted independence number
An interesting offshoot of the study of gadget structures is to
point out a subtle modification in a famous result by Cabello,
Severini and Winter (CSW) in17,49 when the Kochen-Specker rules
of exclusivity and completeness are enforced. In formulating the
graph-theoretic approach to quantum correlations, CSW had
considered general non-contextuality inequalities S as a positive
linear combination of probabilities of events S= ∑iwiP(ei) with
wi > 0. For instance, the well-known KCBS inequality

corresponding to the 5-cycle exclusivity graph is of the form
SKCBS ¼

P4
i¼0 Pð0; 1ji; i þ 1Þ � 2 with 2 denoting the maximal

value in all non-contextual hidden variable theories. In the CSW
framework, one associates to every such non-contextuality
inequality S a vertex-weighted graph (G,w) (note that a vertex-
weighted graph (G,w) is a graph G with vertex set V and weight
assignment w : V ! Rþ). The events ei appearing in S are
represented by vertices in G, adjacent vertices in G represent
exclusive events (events ei and ej are exclusive if there exist
jointly measurable observables μi and μj that distinguish
between the events), and the vertex weights represent the
coefficients wi of the probabilities P(ei). The graph (G,w) is then
called the exclusivity graph of S. The main result of CSW is the
following theorem showing how the exclusivity graph of S can
be used to calculate the optimal value of the inequality in
classical and quantum theories.

Theorem 4. (Result 1 of CSW17). Given S corresponding to a non-
contextuality inequality, the maximum value of S in classical and
quantum theories is given by

S �NCHV αðG;wÞ �Q θðG;wÞ; (8)

Fig. 1 An example illustrating the construction of a gadget with prescribed maximum overlap between the distinguished vectors
jvð2Þ1 i; jvð2Þ8 i of 1

2 for any real orthogonal representation. The example illustrates the utility of gadgets in deriving contextuality tests that allow
for optimal randomness certification for d= 4.
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where α(G,w) is the independence number of (G,w) and θ(G,w) is
the Lovász-theta number of (G,w).

While it was recognized that θ(G,w) may only provide an upper
bound to the quantum value in some cases - specifically when
further constraints are imposed coming from the physical settings
of the experiment, the statement that the classical value of any
given non-contextuality inequality is given by α(G,w) is ubiquitous
and taken to be true without any qualifications in much of the
literature to this point. Furthermore, it is often also applied in
situations when the Kochen-Specker rule of Completeness is
enforced, namely that every maximum clique has exactly one
vector that is assigned value 1. We now make the observation that
this statement needs to be carefully considered in computing the
classical value of non-contextuality inequalities arising from
gadget-type structures, α(G,w) only provides an upper bound to
the classical value for such inequalities when Completeness is
enforced. Specifically consider a non-contextuality inequality S
arising from a gadget-type exclusivity graph, so that vertex-
weighted graph (G,w) corresponding to S is a gadget-type graph,
meaning that the vertex set V of G can be partitioned into an
independent set of distinguished vertices Vdist ⊂ V and the non-
distinguished vertices V n Vdist. And furthermore, the weights wi in
S are given as

wi ¼
1 i 2 Vdist

0 i 2 V n Vdist

�
(9)

Observation 1
Given S corresponding to a non-contextuality inequality, the
maximum value of S under the KS rules of Exclusivity and
Completeness, in any classical (non-contextual hidden variable)
theory is given by α(G,w) if and only if the vertex-weighted graph
(G,w) is not of gadget-type.

Proof. The proof of the observation is a direct consequence of the
gadget property of the exclusivity graph (G,w). By this gadget
property, it holds that the vertices in the distinguished set Vdist
cannot all be assigned value 1 in any non-contextual assignment
when Completeness is enforced, despite the fact that Vdist is an
independent set. Therefore, for the non-contextuality inequality
S= ∑iwiP(ei) with wi given by Eq. (9), the maximum value in any
non-contextual hidden variable theory is only upper bounded by
and never equal to α(G,w) (note that achieving α(G,w) requires
assigning value 1 to every vertex in the independent set Vdist).
Furthermore, this restriction on the assignment of 1s (arising from
the KS requirement that every measurement returns an outcome)
is exactly the defining feature of gadget-type graphs so that

α(G,w) is not equal to the classical value (under Completeness)
only for the non-contextuality inequalities arising from such
measurement structures.

A generalization of gadgets with other forbidden value
assignments
Thus far, we have generalized the well-known ‘True-implies-False’
sets or 01-gadgets to gadgets of order (m, k). These latter sets
contain m independent vertices (mutually non-orthogonal vec-
tors) of which exactly k may be assigned value 1 in any {0, 1}-
coloring. In other words, given an independent set I= {v1,…, vm}
these consider forbidden value assignments of the form
f1; ¼ ; 1|fflfflfflffl{zfflfflfflffl}

kþ1

; f ðvkþ2Þ; ¼ ; f ðvmÞg and permutations thereof, where

f: V→ {0, 1} is any {0, 1}-coloring of the vertices. One may consider
a yet more general measurement structure in which we specify a
set of forbidden value assignments H � f0; 1gm. The usual ‘True-
implies-False’ sets then correspond to H ¼ fð1; 1Þg for a given
independent set I= {v1, v2} of two vertices.

Definition 10. A {0, 1}-colorable set Sgad 2 Cd is a gadget in
dimension d for a specified forbidden set H � f0; 1gm if it
contains an (ordered) set of mutually non-orthogonal vectors I ¼
f v1j i; ¼ ; vmj ig such that in any {0, 1}-coloring of Sgad it holds that
f ðIÞ 2 f0; 1gm n H.

Equivalently, the generalized gadget for a forbidden assign-
ment H can be defined in graph-theoretic terms as follows.

Definition 11. A {0, 1}-colorable graph G= (V, E) is a gadget in
dimension d for a specified forbidden set H � f0; 1gm, if it has
faithful dimension d*(Ggad)=ω(Ggad)= d and contains an
(ordered) independent set I⊂ V of cardinality ∣I∣=m such that in
any {0, 1}-coloring f: V→ {0, 1} it holds that f ðIÞ 2 f0; 1gm n H.

A natural question then arises - can a gadget be constructed for
every forbidden set H � f0; 1gm for arbitrary m≥2? Note that the
number of such forbidden sets H is 22

m � 1 (i.e., all subsets of
{0, 1}m except the empty set). We answer this question in the
affirmative and demonstrate the precise steps of building such a
gadget in Supplementary Information Note 4. It’s worth noting
that Kochen Specker proofs themselves come under the umbrella
of the generalized gadget structures defined here, with H ¼
f0; 1gm for some independent set in the graph I of size ∣I∣=m and
for arbitrary m≥1. In other words, there is no valid {0, 1}-
assignment to the vertices of the independent set I.

Fig. 2 An example illustrating the construction of a gadget with prescribed maximum overlap between the distinguished vectors
u1j i; u13j i of 1ffiffi

5
p for any real orthogonal representation. The example illustrates the utility of gadgets in deriving contextuality tests that allow

for optimal randomness certification for d= 5.
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