

1 **Self-regulated symmetric breaking enables full-space phototaxis of animate
2 materials**

3

4 Guodong Hou^{1,2,3,4}, Xu Zhang¹, Feihong Du^{1,2,3}, Yadong Wu⁴, Xing Zhang¹, Zhijie Lei^{1,2,3}, Wei
5 Lu^{1,2,3}, Feiyu Zhang^{1,2,3}, Guang Yang³, Huamiao Wang¹, Zhenyu Liu⁴, Jiangping Chen^{1,3}, Guang
6 Meng^{1,2}, Nicholas X. Fang^{5*}, Xiaoshi Qian^{1,2,3*}

7 ¹State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University,
8 Shanghai, China.

9 ²Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering,
10 Shanghai Jiao Tong University, Shanghai, China.

11 ³Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong
12 University, Shanghai, China.

13 ⁴Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong
14 University, Shanghai, China.

15 ⁵Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong
16 Kong, 999077, China

17 *To whom correspondence should be addressed. Email: xsqian@sjtu.edu.cn, nicxfang@hku.hk

18

19 **Abstract**

20 Living organisms in their early forms adopted simple structures and could adapt to different cues
21 from the ambient environment in a highly regulated and efficient manner. However, synthetic
22 systems have achieved less with more human intervention than their natural counterparts. Here,
23 we show that a simple animate material can recognize the directions of constant photonic
24 illumination and follow a path with strong directional regulation inside a constraint-free, fluidic
25 space. By spontaneously breaking the symmetry of multiple surrounding energy fields, the
26 nanostructured stimuli-responsive polymers-based animate material swiftly assumes an optimal
27 pose and creates directional flow around itself, which it follows to achieve robust full-space
28 phototaxis. In addition, this phototaxis enables a series of complex, self-adaptive locomotion
29 underwater. We demonstrate that this versatility is empowered by the fast reconFigurability and
30 synergy of photo-fluidic interactions composing closed-loop self-control. The untethered,
31 ambient-powered animate-material manoeuvres through obstacles agilely, following the cues of
32 constant illumination without any electronics or close-range human intervention.

33

34 Planktonic microbes move hundreds of metres towards the surface each night to feed before
35 retreating back down at dawn^{1,2}. Many of them have developed receptors for directed locomotion,
36 known as phototaxis, gyrotaxis, rheotaxis, and chemotaxis, so they can sense many ambient
37 gradients and move along a preferred direction to acquire food and the chance for reproduction
38 and move away from danger in an adaptive and sustainable manner^{3,4}. This behaviour links the
39 epipelagic and mesopelagic zones, critically contributing to the oceanic biological carbon pump^{5,6}.
40 Inspired by nature, recent years have witnessed extensive pioneering efforts to advance robots in a
41 fluidic environment across a great range of scales⁷⁻¹⁴. However, the controls of the artificial
42 systems still rely on preprogramed electronics and a high level of human attention at close range,

43 *i.e.*, magnetic field manipulation^{15,16}, accurate aiming^{10,17}, flash frequencies of lasers^{8,18}, and preset
44 constraints in space^{17,19}. These prerequisites and special conditions do not exist in nature and
45 hence set obstacles to practical application.

46 Breakthroughs have been achieved in self-regulated materials^{20,21} for autonomous phototropic
47 tracking²² and oscillation¹⁷. The demonstrated photophobic taxis was constrained to a water
48 surface and within a one-dimensional fluidic channel¹⁷. By far, synthetic systems that are capable
49 of omnidirectional, full-space phototaxis without electronics or human intervention remain a
50 highly desirable goal with the aim to design an embodied cognitive material²³⁻²⁵ in free space
51 rather than a reflexive material under many limitations.

52 Here, we develop a monolithic, animate-material system that recognizes and moves in any
53 direction of constant photonic illumination (**Fig. 1**). As shown in **movie S1**, the untethered soft
54 material identifies the direction of irradiation and move towards it, submerged in an aqueous
55 environment. While illuminated, the soft robot harnesses the photonic energy and breaks the
56 symmetry of temperature, flow fields, and morphology. The multi-physical symmetric-breaking
57 allows the animate material to sense the direction of the incidence (**Fig. 1a**), create a phototropic
58 stream that provides propulsion (**Fig. 1b**), and spontaneously assume the optimal posture and gait
59 (**Fig. 1c**) for swift phototactic locomotion.

60 During the symmetric-breaking-induced locomotion, the animate material is capable of
61 self-regulating the photonic energy-input by adaptively enhancing convective heat loss around
62 itself, which provides negative feedback for the correction of deviated traveling direction (**Fig. 1d**,
63 **e**) to implement robust phototactic manoeuvres. The material system employs an
64 ultra-high-sensitivity stimuli-responsive material that recovers at an unprecedented rate to allow a
65 fast response to any new event (**Fig. 1f**), offering a steering finesse of full-space phototaxis that is
66 completely based on the cognition of the material itself (**Fig. 1g**).

67

68 **Spontaneous symmetric breaking and recovery**

69 We adopt a simple geometry similar to a jellyfish with axial symmetry that comprises a
70 hemispherical bell and six vertical tentacles. The monolithic structure of the jellyfish-like
71 phototactic vehicle (JPV) permits facile additive manufacturing technology, such as P μ SL, as well
72 as moulding manufacturing for mass production (**Supplementary Fig. S3**). The bell contains an
73 air bubble as a key component for balancing gravity and breaking the symmetry of the density
74 distribution (**Fig. 1c**). Without directional illumination, the bubble is kept in an up-centre position,
75 providing buoyancy to partially balance gravity and keeping the JPV in an upright position.

76 The universal design of JPVs can be fulfilled with many active materials, *i.e.*, light-active
77 polymers²⁶⁻²⁸ and electroactive polymers²⁹⁻³². Here, we select the stimuli-responsive
78 poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel³³ as an example for its iconic,
79 reconFigurable morphing across its low critical solution temperature (LCST). Similar to the
80 sensory system spread all over the body of a squid³⁴, the hydrogel is homogeneously blended with
81 highly efficient photo-thermal nanoparticles, such as Au nanoparticles (AuNPs) and reduced
82 graphene oxides (r-GO), to ensure omnidirectional sensing of incident photons³⁵ (**Supplementary**
83 **information Section 1**).

84 Once illuminated, three symmetries of the JPV are broken simultaneously: 1. a temperature
85 gradient is established along the direction of the illumination, due to the effective photothermal
86 coupling that heats the illuminated surface (**Fig. 2a** and **Supplementary Fig. S7**); 2. a convective

87 flow field is generated from the heated surface (**Fig. 2b**); 3. when the local temperature is higher
88 than the LCST, the local shrinkage of the gel squeezes the embedded bubble balancer away from
89 its symmetric position in the bell (**Fig 1c, 2c** and **Supplementary Video 2**), introducing a
90 redistribution of density and hence a phototropic tilting towards the light source (**Fig. 2d**). The
91 phototropic behaviour was not observed in the control sample made of thermally inactive
92 poly(acrylamide) (**Supplementary Fig. S12**) with the same amount of photo absorbers. We
93 employ a multi-physics model based on the finite element method (FEM) to investigate the
94 synergy of the multi-energy coupling that governs symmetric breakings (**Supplementary Fig. S7**).
95 The mechanical strain and temperature gradient showed great agreement with the experimental
96 results (**Fig. 2a, d**). As shown in **Fig. 2d**, the off-centred bubble leads to a rapid rearrangement of
97 the JPV's centre of buoyancy (B), causing the metacentre (M) to move below the centre of gravity
98 (O), generating a clockwise torque under illumination from the right. The torque exhibits a
99 self-adaptive lean towards the direction of illumination, offering reduced fluidic drag that favours
100 phototaxis (**Supplementary Fig. S20c**), as the JPV identifies the direction of the incidence and
101 prepares itself for movement. Our theoretical analysis shows that the drag coefficient is reduced
102 by 30% when the tilting angle changes from 90° (upright position) to 50° (**Supplementary Fig.**
103 **S20**).

104 Agile phototactic behaviour demands ultrafast recovery to prevent a time lag resulting from a
105 varying direction of illumination (**Fig. 2e**). However, the re-swelling rate of PNIPAAm-based
106 hydrogels is notoriously slower than their shrinking rate. To restore the chronic symmetry of
107 actuation and recovery, we modify the porous size and porosity of the gel by tightly controlling
108 the chemical and physical processes of fabrication. For quantitative analysis, we tested the rate of
109 phototropic actuation and recovery of the tentacle for different angles of incidence. At an angle of
110 20°, the ice-templated, hybrid-crosslinked hydrogel pillar fully recovers less than a second,
111 which is 30 times faster than the best previously reported values³⁴, under similar pre-conditions
112 (**Fig. 2f, g, and Supplementary Information Section 2**).

113

114 **Photothermal-tactic flow**

115 Planktonic organisms, ranging from bacteria to jellyfish, move around by following the flows,
116 waving or rotating their flagella or lappet, mostly at a low Reynolds number. The JPV is designed
117 to harness the momentum from the ambient light that translate into photothermal-tactic flows.
118 Their tentacles provide functions such as balance keeping and grabbing, rather than providing
119 propulsion. In nature, propulsion efficiency at low Reynolds numbers is low (~1%–3%)³⁶,
120 fundamentally because the thrust is generated by the same mechanism that resists motion: viscous
121 drag. On the other hand, plankton are capable of moving hundreds of metres by adaptively
122 positioning themselves in a favourable current. Hence, generating photothermal tactic flow around
123 the JPV (mostly a passive element) is an important task for achieving long-distance, underwater
124 phototaxis.

125 In the JPV, the momentum is originated from the temperature gradient, which defines the
126 direction of the photothermal flow. Maintaining the symmetric-broken temperature field requires
127 synergy between the photo-thermal environment inside and around the JPV, *e.g.*, the thermal
128 conductivity, photonic penetration length, convection, and characteristic size, *etc*. Therefore, we
129 studied Biot number of the JPV. As most plankons, JPV contains majorly water holding inside
130 polymer chains. The skin of the JPV exhibits high absorption hence the illuminated surface can be

131 treated as a surface heat source. We find that the photothermal-tactic flow induced acceleration of
132 the JPV is scaling insensitive (**Supplementary Fig. S22**) as long as the JPV is larger than a critical
133 size (1 mm in current design) that is capable of maintaining effective symmetry breaking
134 (**Supplementary Fig. S24**). The observation is consistent with the analysis of size-dependent Biot
135 number (Bi). Further reducing thermal conductivity of the JPV body could extend the critical size
136 down to the scale of tens of micrometres (**Fig. 2h**).

137 As schematically shown in **Fig. 2i**, when illuminated from the above, the JPV quickly ascends
138 to the surface (**Fig. 2j**), reminding us of the vertical migration of marine plankton that represents
139 the largest biomass transport on Earth³⁷. Homogeneously distributed photo-thermal nanoparticles
140 efficiently transduce photonic energy from all directions to thermal energy³⁸. The elevated
141 temperature on the illuminated surface creates a convective flow indicating directional
142 information (**Fig. 2k**). To examine the hydrodynamic details, we conducted particle image
143 velocimetry (PIV) to monitor the flow field that carries the JPV. The results are in good agreement
144 with FEM-based computational fluid dynamics (CFD) simulation (**Fig. 2k, l**).

145 The PIV images of the hydrodynamic footprint reveal that the velocity distribution of the
146 surrounding fluid moves as the JPV moves (**Fig. 2m and Supplementary Video 3**). We observe
147 vortices during the phototactic movement of the JPV, which is considered a sign of inertial
148 swimming¹⁰. The convective flow occurring around the JPV can be recognized as laminar flow
149 based on the Reynolds number $Re=uD/v$ (where u refers to the gliding velocity, D is the
150 characteristic size, and v is the kinematic viscosity of the water). The PIV data indicate that the
151 JPV is swimming in the low-Reynolds-number region where its natural counterparts live. During
152 vertical ascendance, the submerged JPV is subjected to gravitational force G , buoyancy force F_B ,
153 drag force F_D , and lift force F_L , and this upwards locomotion away from the bottom occurs as long
154 as $F_B+F_L>F_D+G$ (**Supplementary Fig. S22**). Vertical phototaxis is intensity-cognitive
155 (**Supplementary Video 4 and 5**). The JPV can sense the power density of the photo-illumination,
156 lean, and steer towards the brighter zone when the light field is not evenly distributed in space
157 (**Supplementary Fig. S15 and Video 5 demo1**).

158 The intensity cognition is attributed to the synergy of multiple energy interactions, including
159 photothermal energy transduction, thermochemical phase transition, chemo-mechanical
160 deformation, thermofluidic convection flow, and flow-soft matter interaction. The synergy allows
161 the JPV to maintain exposure and lean towards the brightest irradiation, which results in a high
162 velocity of phototactic movement (**Supplementary Fig. S14a-d**). Constrained by the size of the
163 container, the highest speed of the JPV is 18 mm/s and 1.5 BLs/s (**Supplementary Fig. S14d and**
164 **Video 4**), which is significantly higher than those of many electric powered and tethered
165 underwater robotics (**Supplementary Fig. S14e and table S1**) and comparable to those of many
166 mammalian and non-mammalian organisms in nature that typically move at speeds exceeding 1
167 BL/s³⁹.

168 Compared to vertical phototaxis, phototaxis along any other direction (**Fig. 2n**) is more
169 complicated to achieve due to temperature-induced upwelling. Under horizontal irradiation from
170 the right, the symmetry of the temperature and flow field are broken, producing higher
171 temperature and fluid velocity on the illuminated side (**Fig. 2o**). The temperature gradient near the
172 illuminated surface reflects the directional information of the incidence but is also coupled with
173 the adjacent flow field (**Fig. 2p**). The CFD and PIV results (**Fig. 2q, r**) indicate that the flow field
174 consists of a significant part of the upwards convective flow that carries the JPV upwards and to

175 the right (**Fig. 2r**), resulting in inaccurate horizontal phototaxis. Additional measures should be
176 taken for the JPV to self-regulate the upward flow, *e.g.*, reducing its surface temperature
177 on-demand as negative feedback²⁰, in order to continuously move in the direction of illumination.

178 **Directional self-regulation**

179 As the major provider of the fluidic thrust, the temperature gradient near the illuminated surface is
180 defined by the input photonic heating power and the cooling power output to the ambient. We
181 present two mechanisms to regulate the local temperature, hence enabling the locomotion of the
182 JPV by allowing the JPV to self-manipulate the ambient convective heat transfer during
183 movement.

184 Successful horizontal phototaxis is achieved, as shown in **Fig. 3a** and **Supplementary Video 1**.
185 Under 532-nm laser irradiation, the AuNP-incorporated JPV automatically leaps up and forwards
186 and falls back to the bottom. During each jumping cycle, only the horizontal displacement
187 accumulates via phototaxis. The hopping cycle can be initiated under irradiation lower than 1000
188 W/m² (**Supplementary Fig. S28a, b**). To further investigate the self-regulatory behaviour, we
189 simulated and monitored the speed and the surface temperature of the JPV *in situ* during the
190 phototactic hopping cycles. The *in-situ* monitored correlation between the speed and the local
191 temperature of the JPV is in good agreement with the CFD simulation (**Supplementary Fig. S28c,**
192 **d**). The speed and temperature-correlated convective heat transfer coefficient can be obtained as
193 the mixed Nusselt number ($Nu=(Nu_n^4+Nu_f^4)^{1/4}$)^{40,41}, where Nu_n is the natural convection and is
194 related to the Rayleigh number (Ra), and Nu_f refers to forced convection that is determined by the
195 Reynolds number (Re) (**Supplementary Information Section 3.2**).

196 To study the multi-physical, photo-thermo-fluidic dynamics, we show the time evolutions of
197 scalar quantity of speed (v), local temperature (T), convective heat transfer coefficient (h), input
198 photonic power (P) and convective cooling power (q) near the illuminated bell area for two
199 consecutive hopping cycles. When the JPV is ascending and subsequently moving away from the
200 laser, the temperature saturates, and the speed of the JPV drops to zero, indicating strong photonic
201 regulation. After a short period of inertial ascendance, the JPV falls back and completes the
202 negative feedback cycle. The self-avoidance of light incidence indicates a strong photo-thermal
203 regulation, which is quite similar to the characteristic thermal dance of shovel-snouted lizards
204 (*Meroles anchietae*) to avoid overheating of their feet.

205 Notably, the ascending JPV exposes its photo-responsive tentacles to the laser beam and aligns
206 with the incidence automatically (**Fig. 3a, b**) as the JPV controls its direction of movement. The
207 bent tentacle strengthens the leaning pose, which helps protect against upwards flow, facilitate
208 horizontal motion.

209 Compared to the narrow laser beam, which requires constant human involvement to keep
210 aiming at the JPV, phototaxis towards a wide beam-width incidence may represent a more general
211 case in the natural environment. The challenge is to achieve thermal regulation when the JPV can
212 no longer hide from the light. Surprisingly, we observe similar hopping cycles (**Fig. 3c**) of the JPV
213 illuminated by a spotlight. The speed and thermal analysis (**Fig. 3d**) show that the JPV is diving at
214 a faster speed (2.5-fold) than that corresponding to laser illumination with the same total energy
215 (**Supplementary Fig. S9**). The enhanced speed can be attributed to the continuous illumination of
216 the spotlight that accumulates more momentum than in the case of self-avoiding-induced
217 intermittent illumination. The high-speed JPV encounters ambient cold fluid more rapidly, in **Fig.**
218 **3d**, we show that the time-dependent h is strongly correlated with the time evolution of the

real-time speed, suggesting speed-induced thermal regulation. Nusselt number corresponding to the maximum velocity of photonic and thermal regulation are comparable, however, the Richardson number ($Ri=Gr/Re^2$, representing the importance of natural convection relative to forced convection, where Gr is Grashof number and Re is Reynolds number) of photonic regulation is more than 20 times higher than that of thermal regulation, indicating that they are dominated by natural and joint convection, respectively (**Fig. 3e**). The much-increased convective heat transfer ($hA(T_s - T_f)$) regulates the surface temperature and fulfils a negative feedback loop (**Fig. 3f**). By utilizing effective thermal regulation, full-space and omnidirectional phototaxis is achieved for any 3-D incident angle (**Supplementary Fig. S29 and Video 1 demo2**).

In addition, the JPV offers various hopping frequencies for selection by manipulating its excess gravity against the input photonic power. By reducing the volume of the bubble in the bell, the hopping frequency continues to decrease until an extreme case is reached in which the JPV slides horizontally instead of hopping (**Supplementary Fig. S31 and Video 6**). The tuning of the excess gravity is an effective tool to preset the phototactic behaviour according to the different ambient light, thermal and fluidic conditions in practical field deployment.

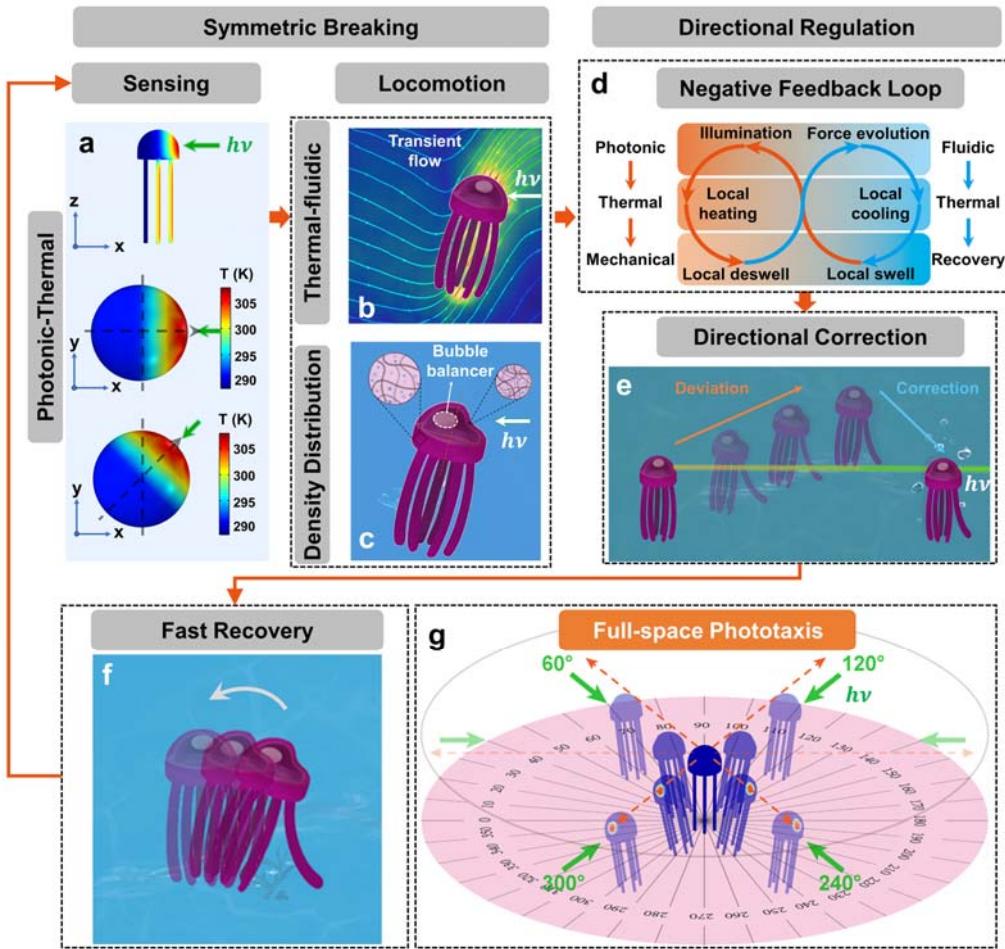
234

235 **Demonstration of complex locomotion**

236 The highly regulated phototaxis of the JPV can be characterized by the distance of the accurate
237 tracking and the angular resolution. Distinguished from acquiring momentum from paddling a
238 single tentacle that can be easily misaligned with the laser beam, the JPV performs robust
239 phototaxis over a long distance without directional deviation (**Fig. 4a, b and Supplementary Fig.**
240 **S33**). Limited by the dimension of the experimental space, the JPV exhibits accurate phototaxis of
241 300 mm compared to 4.3 mm for single-tentacle paddling. In addition, by carefully cascading the
242 strokes by 6 off-centre-positioned tentacles, the JPV adapts to exhibit rotational advance (**Fig. 4c**
243 **and Supplementary Video 7**). The bent tentacle counteracts the overturning moment and hence
244 provides additional balance when the JPV is climbing a ramp, further ensuring the stability of the
245 movement (**Fig. 4d and Supplementary Video 8**). These tentacles can also serve as photonic or
246 thermal sensitive grabbers that can track and grasp a bright or hot object (**Supplementary Fig.**
247 **S13**).

248 Due to the spontaneous symmetric breaking and fast recovery of the polymeric matrix (**Fig. 1g**),
249 the directional response of the JPV is instant. We observe that the JPV is capable of agile
250 manoeuvring with fine directional and positional resolution. Following a constant light source
251 with continuously varying angles, the JPV travels perfectly along with the complex strokes of
252 Chinese calligraphic characters “自然” (**Fig. 4e and Supplementary Video 9**), which means
253 “nature” and is written in the cursive script style (with connected characters). In addition to the
254 capability of fine steering, we further demonstrate long-distance operation of the JPV with a
255 beam-expanded laser placed 10 m away (**Supplementary Fig. S18**).

256 Different from the phototropic taxis when submerged, the JPV shies away from the light once it
257 is floating on the water-air interface (**Fig. 4f**). The photophobic behaviour is induced by
258 Marangoni convection, which is attributed to the symmetric breaking of surface tension on the bell
259 at the water surface. Both phototactic modes are capable of accurately following the paths of the
260 character “SJTU” (**Supplementary Fig. S32c, d**)

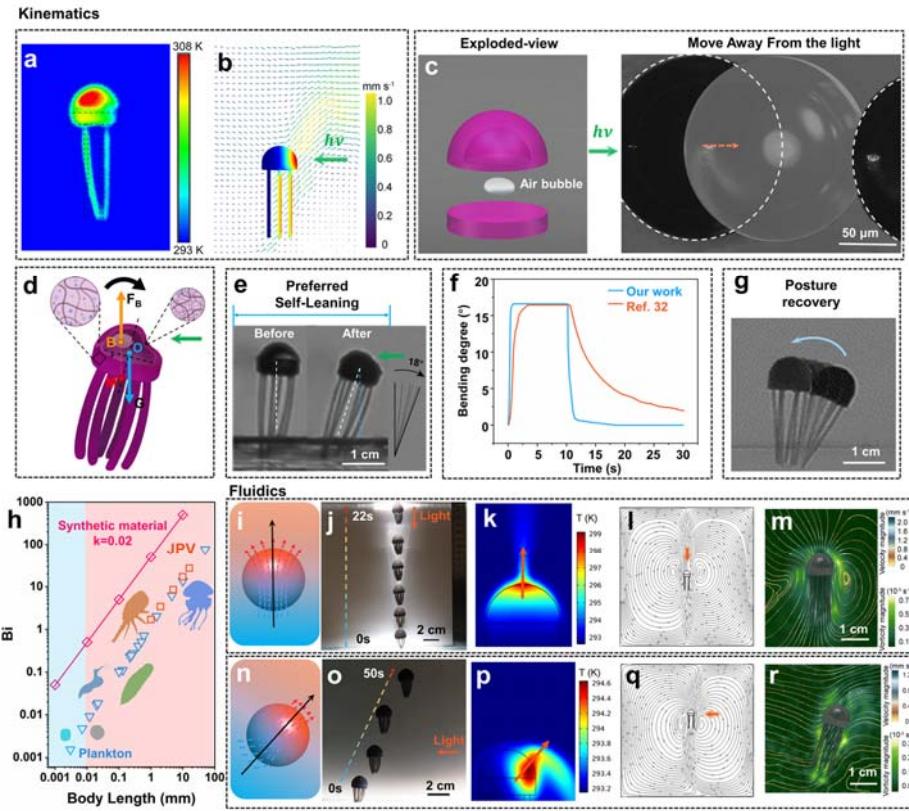

261 Combining the two phototactic behaviours, the JPV can dive up to the water surface and move

262 away from the light to avoid obstacles (**Supplementary Fig. S33 and Video 10**) and then dive
263 back in and move towards the light (**Supplementary Video 11**). The cyclic behaviour is similar to
264 the diurnal vertical migration and cycling of many planktonic biomasses and may offer a synthetic
265 platform to mimic the oceanic carbon cycle. For practical field operation, the JPV can be scaled
266 facilely and serve as a phototactic vehicle carrying other functional parts and electronic devices if
267 necessary. For example, we demonstrate self-supported cycling in a series of
268 microalgae-incorporated JPVs (**Supplementary Fig. S34 and Video 12**), in which the microalgae
269 serves as the photothermal converter and can provide many biological and ecological functions.
270 The animate-material system is also capable of sustainable cycling in a swarm, churning the
271 ambient fluid under the cue of a constant spotlight (**Supplementary Fig. S35 and Video 13**).
272
273

274 **Acknowledgements:** This work was supported by National Key R&D Program of China
275 (2020YFA0711500), and National Natural Science Foundation of China (52076127), Natural Science
276 Foundation of Shanghai (20ZR1471700, 22JC1401800), X.Q. thanks the support by the State Key
277 Laboratory of Mechanical System and Vibration (Grant No. MSVZD202211), the Oceanic
278 Interdisciplinary Program of Shanghai Jiao Tong University (project number SL2020MS009), the
279 Prospective Research Program at Shanghai Jiao Tong University (19X160010008), the Thousand
280 Talent Young Scholar Program, the Student Innovation Center and the Instrumental Analysis Center at
281 Shanghai Jiao Tong University. N.X.F. acknowledges the startup funding provided by the Global
282 STEM professorship scheme sponsored by the Government of the Hong Kong Special Administrative
283 Region.
284

285 **Author contributions:** X.Q. conceived the concept, designed the experiment, and wrote the
286 manuscript. X.Q., G.H. Z.L., F.D., W.L. carried out the material synthesis, characterization and
287 systematic demonstration. G.H., Y.W., G.Y, X.Q., N.X.F. conducted the fluid dynamic experiment and
288 analysis. G.H., X.Z, H.W., X.Q., carried out the numerical simulation. J.C, and G.M. supervised the
289 device modeling. X.Q., and N.X.F supervised the project. All authors analysed and interpreted the
290 data.
291

292 **Author Information:** Reprints and permissions information is available at www.nature.com/reprints.
293 X.Q. is applying for patents related to the described work. The other authors declare no competing
294 financial interests. Correspondence and requests for materials should be addressed to X.Q. (e-mail:
295 xsqian@sjtu.edu.cn).
296 Supplementary Information is available in the online version of this paper at www.nature.com/.
297
298
299


300

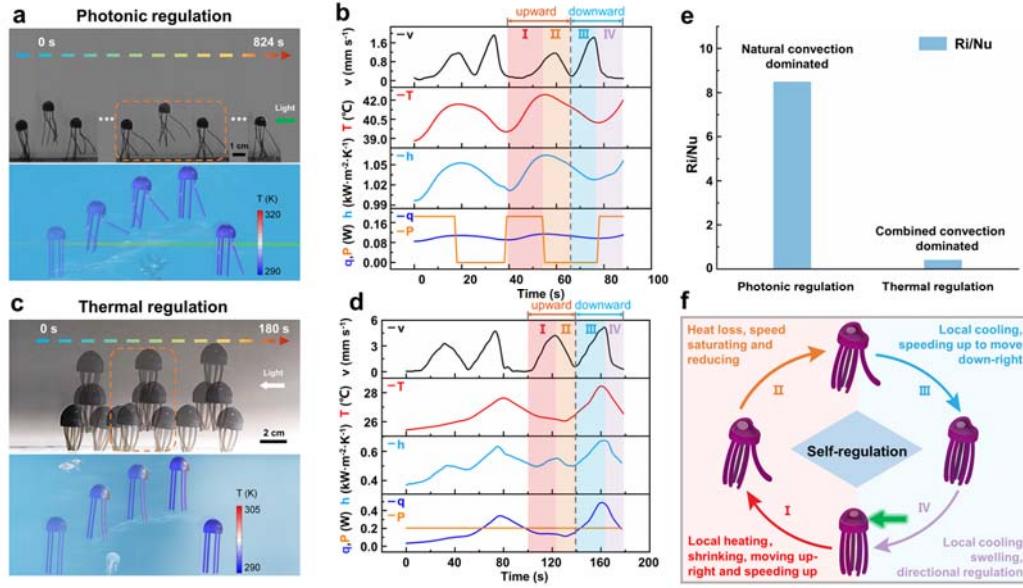
301 **Fig. 1. Schematics of full-space phototaxis enabled by regulated symmetry-breaking.** a,
 302 Simulated temperature gradient of the illuminated animate-material, due to the photo-thermal
 303 coupling. The symmetry-breaking of temperature allows the material to sense, recognize and
 304 move along the direction of photonic incidence. $h\nu$ refers to the photonic incidence, \vec{v} the vector
 305 of temperature gradient and moving direction. b, c, Schematics of the thermally induced fluidic
 306 field (b) and thermo-mechanical coupling induced density redistribution (c), both are the results of
 307 the symmetric breaking. d, Schematics of self-regulated locomotion that enables a negative
 308 feedback loops and resulting e, Directional correction by the material itself. f, Schematics of the
 309 fast recovery of the animate material system that is a key that enables the fast response to the
 310 instantly changing direction of illumination. g, Schematic of the full-space phototaxis.

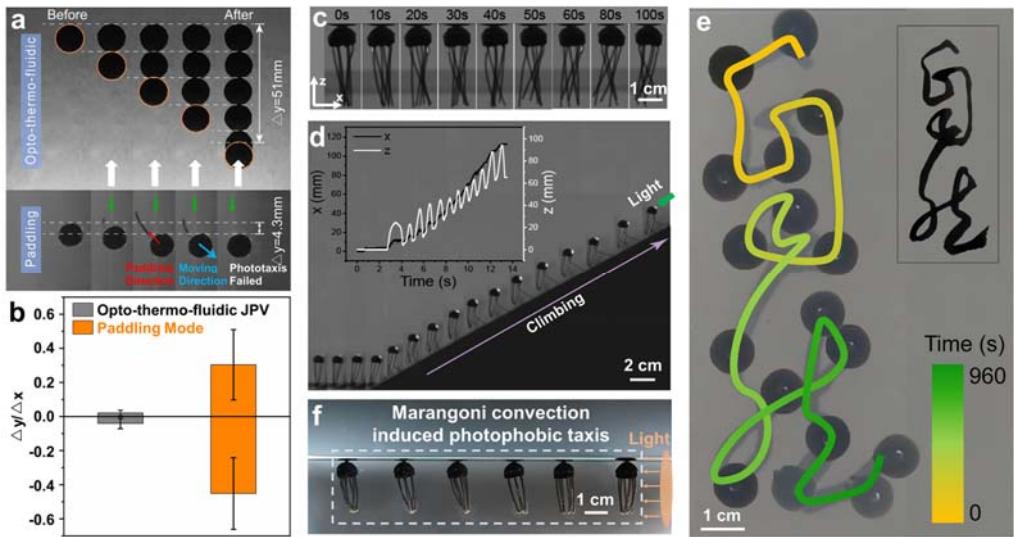
311

312

313

314


315 **Fig. 2. Photothermal-tactic flow-guided movement.** **a**, Infrared image of the JPV under
 316 photonic irradiation. **b**, Snapshot of a PIV image showing the broken symmetry of the flow field,
 317 in which the JPV model is included to highlight the location in the PIV experiment and the
 318 temperature gradient. **c**, Schematic exploded-view and photographic image of the embedded
 319 bubble of the JPV. The bubble in the bell moves away from the irradiation from the left. **d**, Local
 320 shrinkage squeezes the bubble and deviates the center of force to produce overturning moment. **e**,
 321 Self-leaning effect of 18° due to symmetric breaking induced by the relocation of the bubble. **f**,
 322 Actuation and recovery rate (for 20° bending) of the ultrafast hydrogel designed for the JPV and
 323 comparison with previously reported data. **g**, Posture recovery when the symmetries of the JPV
 324 are restored. **h**, Comparison of Biot number of plankton, synthetic material and JPV. **i**, Schematic
 325 illustration of vertical illumination, where the heating of the top brings about an upward fluid
 326 motion. The arrows indicate the direction of the photothermal tactic flow. **j**, Composite image
 327 showing the JPV ascending from the bottom to the water surface under vertical illumination. **k**, **l**,
 328 FEM-simulated temperature gradient (**k**) and flow field (**l**) around the JPV under vertical
 329 illumination. **m**, Magnitude of velocity and vorticity recorded by PIV flow measurement during
 330 vertical illumination. **n**, Schematic illustration of asymmetric illumination, where local heating
 331 generates asymmetric fluid motion. The arrows indicate the direction of photothermal tactic flow.
 332 **o**, Composite image showing the movement of the JPV under horizontal illumination. **p**, **q**,
 333 FEM-simulated temperature gradient (**p**) and flow field (**q**) around the JPV under horizontal
 334 illumination. **r**, Magnitude of velocity and vorticity recorded by PIV flow measurement during
 335 horizontal illumination. Input photonic power density: $2 \text{ mW} \cdot \text{mm}^{-2}$.


336

337 **Fig. 3. Phototaxis of the JPV enabled by self-regulated symmetric breaking.** **a**, Composite
 338 snapshots and FEM analysis of phototactic hopping towards a laser source (532 nm, 200 mW) **b**,
 339 Time evolutions of scalar velocity, temperature, convective heat transfer coefficient, input
 340 photonic power and convective cooling power near the illuminated bell area of the JPV over two
 341 consecutive cycles. **c**, Composite snapshots and FEM analysis of phototactic hopping of the JPV
 342 towards a spotlight (beam diameter of 10 cm, 2 mW \cdot mm $^{-2}$). **d**, Time evolutions of scalar velocity,
 343 temperature, convective heat transfer coefficient, input photonic power and convective cooling
 344 power near the illuminated bell area of the JPV over consecutive cycles. **e**, Comparison of
 345 Richardson number and Nusselt number for photonic and thermal regulation when velocity is at its
 346 peak. **f**, Summarized mechanism of the phototactic locomotion. The JPV's motion automatically
 347 introduces negative feedback loops that regulate photonic and thermal-energy-induced symmetric
 348 breaking.

349

350

352

353 **Fig. 4. Accurate and sophisticated motions of underwater phototactic steering.** **a**, Comparison
 354 of the phototaxis accuracy in the photo-thermal-fluidic mode (top) and tentacle-paddling mode
 355 (bottom). The former achieves travel over at least 51 mm (limited by the size of the container),
 356 whereas the latter exhibits a failure to move after 4.3 mm due to misalignment between the
 357 tentacle and the laser beam. **b**, Analysis of phototactic accuracy by quantifying the deviated
 358 displacement along the y-axis over the travelling distance in the x direction ($\Delta y/\Delta x$). **c**,
 359 Snapshots showing the rotational advancing of the JPV by cascading the strokes of different
 360 tentacles. **d**, Composite snapshots and trajectory curve (inset) depicting the phototactic climbing
 361 of the JPV in x and z directions. **e**, JPV manœuvred with finesse, accurately representing each
 362 stroke of the Chinese calligraphic characters “自然”. **f**, At the water surface, the JPV shies away
 363 from the light due to Marangoni convection.

364

365

366

367

368

369

370

371

372

373

374 **References**

375 1 Stich, H.-B. & Lampert, W. Predator evasion as an explanation of diurnal vertical migration
376 by zooplankton. *Nature* **293**, 396-398 (1981).

377 2 Behrenfeld, M. J. *et al.* Global satellite-observed daily vertical migrations of ocean animals.
378 *Nature* **576**, 257-261 (2019).

379 3 Guasto, J. S., Rusconi, R. & Stocker, R. Fluid mechanics of planktonic microorganisms.
380 *Annual Review of Fluid Mechanics* **44**, 373-400 (2012).

381 4 Oteiza, P., Odstrcil, I., Lauder, G., Portugues, R. & Engert, F. A novel mechanism for
382 mechanosensory-based rheotaxis in larval zebrafish. *Nature* **547**, 445-448,
383 doi:10.1038/nature23014 (2017).

384 5 Boscolo-Galazzo, F. *et al.* Temperature controls carbon cycling and biological evolution in the
385 ocean twilight zone. *Science* **371**, 1148-1152 (2021).

386 6 Guidi, L. *et al.* Plankton networks driving carbon export in the oligotrophic ocean. *Nature* **532**,
387 465-470 (2016).

388 7 Cui, J. *et al.* Nanomagnetic encoding of shape-morphing micromachines. *Nature* **575**, 164-168,
389 doi:10.1038/s41586-019-1713-2 (2019).

390 8 Lee, K. Y. *et al.* An autonomously swimming biohybrid fish designed with human cardiac
391 biophysics. *Science* **375**, 639-647 (2022).

392 9 Yuk, H. *et al.* Hydraulic hydrogel actuators and robots optically and sonically camouflaged in
393 water. *Nature Communications* **8**, 14230, doi:10.1038/ncomms14230 (2017).

394 10 Park, S.-J. *et al.* Phototactic guidance of a tissue-engineered soft-robotic ray. *Science* **353**,
395 158-162 (2016).

396 11 Li, G. *et al.* Self-powered soft robot in the Mariana Trench. *Nature* **591**, 66-71 (2021).

397 12 Picardi, G. *et al.* Bioinspired underwater legged robot for seabed exploration with low
398 environmental disturbance. *Science Robotics* **5**, eaaz1012, doi:10.1126/scirobotics.aaz1012
399 (2020).

400 13 Yang, L. *et al.* Autonomous environment-adaptive microrobot swarm navigation enabled by
401 deep learning-based real-time distribution planning. *Nature Machine Intelligence* **4**, 480-493,
402 doi:10.1038/s42256-022-00482-8 (2022).

403 14 Kim, B. H. *et al.* Three-dimensional electronic microfliers inspired by wind-dispersed seeds.
404 *Nature* **597**, 503-510, doi:10.1038/s41586-021-03847-y (2021).

405 15 Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with
406 multimodal locomotion. *Nature* **554**, 81-85, doi:10.1038/nature25443 (2018).

407 16 Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for
408 untethered fast-transforming soft materials. *Nature* **558**, 274-279,
409 doi:10.1038/s41586-018-0185-0 (2018).

410 17 Zhao, Y. *et al.* Soft phototactic swimmer based on self-sustained hydrogel oscillator. *Science
411 Robotics* **4**, eaax7112, doi:10.1126/scirobotics.aax7112 (2019).

412 18 Palagi, S. *et al.* Structured light enables biomimetic swimming and versatile locomotion of
413 photoresponsive soft microrobots. *Nat Mater* **15**, 647-653, doi:10.1038/nmat4569 (2016).

414 19 Wang, F. *et al.* Light control of droplets on photo-induced charged surfaces. *National Science
415 Review*, nwac164, doi:10.1093/nsr/nwac164 (2022).

416 20 He, X. *et al.* Synthetic homeostatic materials with chemo-mechano-chemical self-regulation.
417 *Nature* **487**, 214-218, doi:10.1038/nature11223 (2012).

418 21 Li, S. *et al.* Self-regulated non-reciprocal motions in single-material microstructures. *Nature* 419 **605**, 76-83, doi:10.1038/s41586-022-04561-z (2022).

420 22 Qian, X. *et al.* Artificial phototropism for omnidirectional tracking and harvesting of light. 421 *Nature Nanotechnology* **14**, 1048-1055, doi:10.1038/s41565-019-0562-3 (2019).

422 23 Ball, P. Animate materials. *MRS Bulletin* **46**, 553-559, doi:10.1557/s43577-021-00141-0 423 (2021).

424 24 Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of 425 intelligent matter. *Nature* **594**, 345-355, doi:10.1038/s41586-021-03453-y (2021).

426 25 Weitz, D. A. Soft materials evolution and revolution. *Nature Materials*, 427 doi:10.1038/s41563-022-01356-5 (2022).

428 26 Camacho-Lopez, M., Finkelmann, H., Palfy-Muhoray, P. & Shelley, M. Fast liquid-crystal 429 elastomer swims into the dark. *Nature Materials* **3**, 307-310, doi:10.1038/nmat1118 (2004).

430 27 Gelebart, A. H. *et al.* Making waves in a photoactive polymer film. *Nature* **546**, 632-636, 431 doi:10.1038/nature22987 (2017).

432 28 Li, C. *et al.* Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. 433 *Nat Mater* **19**, 900-909, doi:10.1038/s41563-020-0707-7 (2020).

434 29 Bar-Cohen, Y. & Zhang, Q. Electroactive polymer actuators and sensors. *Mrs Bulletin* **33**, 435 173-181, doi:10.1557/mrs2008.42 (2008).

436 30 Christianson, C. *et al.* Jellyfish-Inspired Soft Robot Driven by Fluid Electrode Dielectric 437 Organic Robotic Actuators. *Frontiers in Robotics and AI* **6** (2019).

438 31 Chen, X. *et al.* Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at 439 low electric field. *Science* **375**, 1418-1422, doi:10.1126/science.abn0936 (2022).

440 32 Shi, Y. *et al.* A processable, high-performance dielectric elastomer and multilayering process. 441 *Science* **377**, 228-232, doi:10.1126/science.abn0099 (2022).

442 33 Tang, L. *et al.* Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and 443 applications. *Progress in Materials Science* **115**, 100702, 444 doi:<https://doi.org/10.1016/j.pmatsci.2020.100702> (2021).

445 34 Zhao, Y. *et al.* Somatosensory actuator based on stretchable conductive photothermally 446 responsive hydrogel. *Science Robotics* **6**, eabd5483 (2021).

447 35 Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. *Joule* **3**, 448 683-718 (2019).

449 36 Guasto, J. S., Rusconi, R. & Stocker, R. Fluid Mechanics of Planktonic Microorganisms. 450 *Annual Review of Fluid Mechanics* **44**, 373-400, doi:10.1146/annurev-fluid-120710-101156 451 (2011).

452 37 Gliwicz, M. Z. Predation and the evolution of vertical migration in zooplankton. *Nature* **320**, 453 746-748 (1986).

454 38 Gao, M., Zhu, L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for 455 photothermal water vaporization towards clean water and energy production. *Energy & 456 Environmental Science* **12**, 841-864 (2019).

457 39 Shin, B. *et al.* Hyrobot: A self-locomotive ratcheted actuator powered by environmental 458 humidity. *Science Robotics* **3**, eaar2629 (2018).

459 40 Churchill, S. W. A comprehensive correlating equation for laminar, assisting, forced and free 460 convection. *AIChE Journal* **23**, 10-16, doi:<https://doi.org/10.1002/aic.690230103> (1977).

461 41 Wei, L., Lu, Y. & Wei, J. Mixed convection heat transfer from a particle in supercritical water.

