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Integrating spatial and single-cell
transcriptomics data using deep
generative models with SpatialScope

Xiaomeng Wan1,12, Jiashun Xiao2,12, Sindy Sing Ting Tam 3, Mingxuan Cai4,
Ryohichi Sugimura 5, Yang Wang1,6,7, Xiang Wan2, Zhixiang Lin 8 ,
Angela Ruohao Wu 3,9,10,11 & Can Yang 1,6,7

The rapid emergence of spatial transcriptomics (ST) technologies is revolu-
tionizing our understanding of tissue spatial architecture and biology.
Although current ST methods, whether based on next-generation sequencing
(seq-based approaches) or fluorescence in situ hybridization (image-based
approaches), offer valuable insights, they face limitations either in cellular
resolution or transcriptome-wide profiling. To address these limitations, we
present SpatialScope, a unified approach integrating scRNA-seq referencedata
and ST data using deep generative models. With innovation in model and
algorithm designs, SpatialScope not only enhances seq-based ST data to
achieve single-cell resolution, but also accurately infers transcriptome-wide
expression levels for image-based ST data. We demonstrate SpatialScope’s
utility through simulation studies and real data analysis from both seq-based
and image-based ST approaches. SpatialScope provides spatial characteriza-
tion of tissue structures at transcriptome-wide single-cell resolution, facil-
itating downstream analysis, including detecting cellular communication
through ligand-receptor interactions, localizing cellular subtypes, and identi-
fying spatially differentially expressed genes.

Single-cell RNA sequencing (scRNA-seq) characterizes the whole
transcriptome of individual cells within a given organ, providing
remarkable opportunities for broad and deep biological investigations
of diverse cellular behaviors1–3. However, scRNA-seq does not capture
the spatial distributionof cells due to samples having toundergo tissue
dissociation4. As spatial information is so critical to understanding

communication between cells, many scientific questions related to
cellular communication cannot be fully addressed by scRNA-seq
alone5.

Current ST approaches are predominantly based on either next-
generation sequencing (seq-based) or fluorescence in situ hybridiza-
tion (image-based). Seq-based approaches, such as 10x Visium6, Slide-
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seq7 and Stereo-seq8, can detect transcriptome-wide gene expression
within spatial spots. Among them, the Visium technology has gained
considerable maturity over the years, becoming a well-established
commercially available method in the field of ST. According to the
database collected by the museum of spatial transcriptomic project9,
more than half of studies in the past year still utilized the Visium
technology to quantify gene expression in space, accumulating a
substantial amount of data9. However, considering the larger spot size
of 55 μm, a Visium spot often contains multiple cells, which limits its
usage in resolving detailed tissue structure and in characterizing cel-
lular communications (e.g., identifying ligand-receptor interactions10).

Image-based approaches such as seqFISH11 and MERFISH12 are
designed to measure thousands of genes with single-cell resolution,
but they often lack whole-transcriptome coverage, resulting in only a
few hundred genes in real applications. Users of these image-based
methods need to have well-defined biological hypotheses to design an
appropriate and useful gene panel, and it is unlikely to generate inci-
dental discoveries in this scenario.

Ideally, the integration of single-cell and ST data should allow us
to characterize the spatial distribution of the whole transcriptome at
single-cell resolution, by combining their complementary information.
However, existing integrationmethods are far from satisfactory in real
data analysis13. There are now several cell-type deconvolutionmethods
for ST data, including RCTD14, Cell2location15, CARD16 and
spatialDWLS17. When these deconvolutionmethods are applied to seq-
based ST data, they only estimate the proportions of cell types in each
spatial spot but cannot achieve single-cell resolution. Therefore, the
aforementioned limitations of not having single-cell resolution remain
unresolved. For image-based ST data, methods developed to infer
unmeasured gene expressions, such as Tangram18, gimVI19 and SpaGE20

are not sufficiently accurate, especially when ST expression data are
sparse13. Therefore, there remains a need for accurate statistical and
computational methods for integrating single-cell and ST datasets4.

Herein we introduce SpatialScope, a unified approach to inte-
grating scRNA-seq reference data and ST data generated from various
experimental platforms, applicable to both seq-basedSTdata (e.g., 10x
Visium and Slide-seq) and image-based data (e.g., MERFISH). By
leveraging deep generativemodels, SpatialScope can resolve the spot-
level data composedofmultiple cells to single-cell resolutionwhen it is
applied to seq-based ST data. There are two key features of Spatial-
Scope. First, it can greatly improve cell type identification by exploit-
ing spatial information of cells through Potts model and properly
correcting for batch effect between ST and scRNA-seq reference data.
Second, unlike alignment-based methods such as Tangram18 and
CytoSPACE21 that assign existing cells from scRNA-seq data to spatial
spots, SpatialScope can generate the gene expressions of pseudo-cells
using the learned deep generative model to match the observed spot-
level gene expression in space. Consequently, SpatialScope can
decompose the observed gene expression at each spot into the single-
cell level gene expression accurately. In addition, for image-based ST
data, SpatialScope can learn the distribution of gene expressions from
the scRNA-seq data and then infer transcriptome-wide expression of
the unmeasured genes in the sample, conditioned on the observed
tens to hundreds of genes in that sample. With the above features,
SpatialScope allows more in-depth and informative downstream ana-
lyses at single-cell resolution. Using ST data generated from various
experimental platforms, such as 10x Visium, Slide-seq and MERFISH
data,we show that the results of SpatialScope enable spatially resolved
cellular communicationsmediatedby ligand-receptor interactions and
spatially differentially expressed genes expression, highlighting Spa-
tialScope’s utility in elucidating underlying biological processes. By
applying SpatialScope to human heart data, ligand and receptor pairs
that are essential in vascular proliferation and differentiation are
detected using higher resolution ST data generated by SpatialScope.
Some meaningful genes absent in MERFISH data are detected as DE

genes through the imputation of SpatialScope. Very recently, Spatial-
Scope hasbeen applied to enhance the resolutionof STdata generated
from human embryonic hematopoietic organoids, producing single-
cell resolution STdatawhichwas then used to detect spatially resolved
cell-cell interactions and co-localization of different cell types22. This
single-cell resolutiondecompositionof theoriginal datahasallowedus
to identify additional biological findings that were not possible at
spot-level.

Results
Overview of the SpatialScope method
By leveraging the deep generative model, SpatialScope enables the
characterization of spatial patterns of the whole transcriptome at
single-cell resolution for ST data generated from various experimental
platforms. We begin our formulation with gene expression decom-
position of seq-based ST data from the spot level to the single-cell
level. Let y 2 RG be the expression levels ofG genes (after batch effect
corrections) at a spot in seq-based data. While it is important to note
that each spot in ST data may contain multiple single cells with
aggregated expression levels, for the sake of illustration, we consider a
spot containing two cells (although our method is applicable to spots
with multiple cells). To elucidate our key concept, let us assume that
we already know that the spot-level gene expression y comes from two
cells of different types, y = x1 + x2 + ε, where x1 and x2 are the true gene
expression levels of cells 1 and 2whose cell types are denoted as k1 and
k2, respectively, and the independent random noise ε is assumed to be
N 0,σ2

ε I
� �

for convenience.We aim to decompose y into x1 and x2, and
thus obtain the single-cell resolution gene expression at the given spot.
To achieve this, we use a deep generative model23–25 to learn the
expression distributions of cell types k1 and k2 from the scRNA-seq
reference data, denoted as p x1jk1

� �
and p x2jk2

� �
. Based on Langevin

dynamics24, 26, we can obtain the decomposition by sampling
X= x1;x2

� �
from the posterior distribution p Xjy, k1, k2

� �
,
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Where εðtÞ ∼N ð0, IÞ and η >0 is the step size, t = 1,…,∞. By Bayes
rule, we have logpðXðtÞjy, k1, k2Þ = logpðyjXðtÞ, k1, k2Þ + logpðxðtÞ1 jk1Þ+
logpðxðtÞ2 jk2Þ � logpðyjk1, k2Þ

Noting that ∇X logp yjk1, k2
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=0, this makes it easy to obtain

posterior samples from the Langevin dynamics as
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where pðyjXðtÞ, k1, k2Þ=N ðyjxðtÞ1 +xðtÞ2 ,σ2
ε IÞ;∇x1

logpðxðtÞ1 jk1Þ and
∇x2

logpðxðtÞ2 jk2Þ are known as the score function which can be learned
from the scRNA-seq reference data. The samples from the posterior
distribution pðXðtÞjy, k1, k2Þ recover gene expression levels of the two
cells, achieving single-cell resolution.

To implement the key idea formulated above, SpatialScope
comprises three steps of real data analysis (Fig. 1): (i) Nucleus seg-
mentation; (ii) cell type identification; and (iii) gene expression
decomposition with a score-based generative model. Specifically, we
first perform nucleus segmentation on the hematoxylin and eosin
(H&E)-stained histological image to count the number of cells at each
spot. Second, for cell type identification (i.e., k1, and k2) at each spot,
we develop a fast and accurate method by integrating scRNA-seq and
ST data. Third, we learn the conditional score generative model (i.e.,
∇x1

logpðxðtÞ1 jk1Þ and ∇x2
logpðxðtÞ2 jk2Þ) in a coherent neural network to

approximate the expression distribution of different cell types from
scRNA-seq data (Supplementary Fig. 20), and then use the learned
model to decomposegene expression from the spot level to the single-
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cell level, as outlined above. Based on the samemodeling principle, we
generalize SpatialScope to infer the unmeasured gene expression for
image-based ST data, conditional on the observed gene expression
levels. We introduce the details of SpatialScope in themethod section.

A benchmarking study on cell type identification and gene
expression decomposition
To evaluate the performance of SpatialScope in the cell type identifi-
cation and gene expression decomposition steps, we conducted a
benchmarking study using six simulated datasets (Supplementary
Fig. 4). We compared SpatialScope with twelve existing methods,
including Tangram18, CytoSPACE21, RCTD14, SpatialDWLS17,
Cell2location15, CARD16, SpaOTsc27, novoSpaRc28, DestVI29, STRIDE30,
SPOTlight31, and DSTG32. Additionally, we included an alternative
method called StarDist+RCTD (Supplementary Note section 2.9.3,
Supplementary Fig. 43 and 44), which discretizes the results of RCTD
and assigns the average expression of cell types to individual cells, as a
baseline for comparison. Following the approach described in a pre-
vious benchmarking study13, we generated simulation datasets by
gridding and aggregating cells on uniform grids to create simulated
spots (Fig. 2a, Supplementary Fig. 1). More details of simulated data-
sets in the benchmarking study can be found in Supplementary Note
section 2.9.1.

To evaluate the cell type identification performance, we con-
ducted two analyses. In Case (a), we compared the performance of
SpatialScope, Tangram, CytoSPACE, and StarDist+RCTD, which are
capable of inferring cell type labels at the single-cell level. We assessed
their cell type identification accuracy at the single-cell resolution by
calculating the misclassification error rate, which represents the

proportion of cells with misclassified cell type labels. In Case (b), we
considered methods that provide cell type proportions at the spot
level. For these methods, we aggregated the results of SpatialScope
from the single-cell level to the spot level and compared them to other
methods using the Pearson correlation coefficient (PCC) and root-
mean-square error (RMSE) metrics. These metrics quantified the cor-
relation and deviation between the estimated cell type proportions
obtained by each method and the ground truth values.

In Case (a), we applied SpatialScope, Tangram, CytoSPACE, and
StarDist+RCTD to four single-slice datasets (Fig. 2a, b). SpatialScope
consistently outperformed all other cell type identification methods,
exhibiting a 50.3%, 20.6%, and 6.3% reduction in error rate compared
to Tangram, CytoSPACE, and StarDist+RCTD, respectively, across all
four single-slice datasets (Fig. 2c). The same trend was observed when
these methods were applied to the two multiple-slice datasets (Sup-
plementary Fig. 14a). SpatialScope remained the most accurate
method for inferring cell type labels at the single-cell level, achieving a
22.9–50.0% reduction in error rate for Dataset 5 and a 4.6–48.3%
reduction in error rate for Dataset 6. In Case (b), we compared Spa-
tialScope to existing deconvolution methods that provide cell type
proportions only at the spot level, usingmetrics such as PCC andRMSE
(Fig. 2d, Supplementary Fig. 14b and Figs. 5–13). SpatialScope con-
sistently outperformed or achieved comparable performance to other
methods across all datasets in terms of PCC. It demonstrated sub-
stantial improvements in PCC, ranging from 9.4% to 157.5%, compared
to Tangram, CytoSPACE, SpaOTsc, novoSpaRc, STRIDE, and SPOTlight
across the six datasets. Additionally, SpatialScope exhibited a max-
imum improvement of 51.4% over RCTD, SpatialDWLS, Cell2location,
CARD, DestVI, and DSTG for the same datasets. In terms of RMSE,

Fig. 1 | Overview of SpatialScope. SpatialScope is designed to infer spatially
resolved single-cell transcriptomes by harnessing the capabilities of deep gen-
erativemodels to learn distributions from scRNA-seq reference data. The workflow
of SpatialScope begins by quantifying the number of cells within each spot in low-
resolution STdata, such asVisium. Subsequently, it identifies the cell type labels for

individual cells within the spot. Finally, by conditioning on the inferred cell type
labels, SpatialScope performs gene expression decomposition, transforming the
spot-level gene expression profile into single-cell resolution. This decomposition
enables more comprehensive and informative downstream analyses at the single-
cell level.
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Fig. 2 | A benchmarking study on cell type identification and gene expression
decomposition at single-cell resolution. a Dataset 1 in the benchmarking data-
sets. A spatial scatter plot displays the cell types at the single-cell resolution. Red
dashed lines indicate the grids used for aggregating cells into spots. After aggre-
gation, a scatter plot shows the simulated spots and the number of cells per spot.
b Datasets 2-4 in the benchmarking datasets. c Bar plots showing the error rate of
each method in inferring cell type labels at the single-cell level for the four single-
slice benchmarking datasets (Dataset 1-4). d Bar plots showing the Pearson

correlationcoefficient (PCC) and root-mean-square error (RMSE) of eachmethod in
inferring cell type proportions at the spot level for the four single-slice bench-
marking datasets (Dataset 1-4). Data are presented asmean values ± 95%confidence
intervals; n = 599, 1753, 901, 1359 is the number of spots for Dataset1, Dataset2,
Dataset3 and Dataset4 respectivaly. e Bar plots showing the cosine similarity of
each method in inferring transcriptome-wide expression levels for each single cell
in the four single-slice benchmarking datasets (Dataset 1-4) at different simulated
capture rates. Source data are provided as a Source Data file.
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SpatialScope consistently achieved the highest deconvolution accu-
racy across all datasets, with improvements ranging from 25.3% to
89.7% compared to all other methods. The main reason for these
improvements lies in the smoothness constraint incorporated in the
cell type identification step of SpatialScope. We provide more evi-
dence to demonstrate the role of smoothness constraint in Supple-
mentary Note section 2.9.4.

To assess the robustness of SpatialScope in cell type identification
and gene expression decomposition, we conducted evaluations using
simulated spots with different grid sizes and total UMI counts per spot
(Supplementary Figs. 2 and 3, Supplementary Note section 2.9.11).
Specifically, we considered the configuration with a grid size of
34 × 30μm and a total UMI count per spot of 260, and the results are
presented in Supplementary Fig. 15a. SpatialScope consistently pro-
duced more accurate results compared to Tangram and CytoSPACE.
Tangram missed many cells due to its inability to utilize the actual
number of nuclei in the histological image to determine the output cell
number. CytoSPACE exhibited inaccuracies in assigning cell type
labels, particularly in the L5 IT layer. This observation is further sup-
ported by the confusion matrix, which shows a lower on-diagonal
correlation for Tangram and noise with inappropriate off-diagonal
correlation for CytoSPACE (Supplementary Fig. 15b). Furthermore,
when the reference dataset contained missing cell types, we demon-
strated that SpatialScope exhibited the highest robustness among the
compared methods by predicting the cells as the most tran-
scriptionally similar cell type in the reference (Supplementary Note
section 2.9.5, Supplementary Fig. 52). Additionally, SpatialScope
demonstrated computational efficiency, with the construction of
spatial maps of cell types at the single-cell resolution taking only 1.5
minutes, faster than most other methods (Supplementary Fig. 15c).

Next, we assessed the performance of SpatialScope in single-cell
gene expression inference. The objective was to decompose mixed
reads within each spot and generate gene expression profiles at the
single-cell resolution, overcoming the limitation of low-resolution
spatial transcriptomics (ST) data. To illustrate this, we present an
example in Supplementary Fig. 16a, where SpatialScope decomposes
spot-level gene expressionprofiles, which are amixtureof signals from
two single cells, into cell-level gene expression profiles using Dataset 1.
SpatialScope accurately recovers the gene expression of the two
individual cells, with a mean cosine similarity as high as 0.90, mea-
suredbetween the estimatedgene expression and theunderlying truth
for each single cell. In contrast, the inferred cells generated using
Tangram (purple dots) and CytoSPACE (orange dots), both of which
employ alignment-based methods, exhibit greater dissimilarity to the
ground truth, with mean cosine similarities of 0.44 and 0.57, respec-
tively. By accurately decomposing gene expression, SpatialScope
recaptures the higher spatial resolution offered by the original MER-
FISH data, which is lost in the simulated ST data (Supplementary
Fig. 16b).

To systematically assess SpatialScope’s ability to infer expression
levels at the single-cell level, we conducted a benchmark study using
four single-slice datasets. We compared SpatialScope with Tangram,
CytoSPACE, and StarDist+RCTD, which are among the few methods
capable of inferring expression levels at this resolution. In order to
assess the robustnessof thesemethods to variations in data quality, we
manipulated the unique molecular identifier (UMI) counts by down-
sampling, simulating different capture rates of spatial transcriptomics
(ST) data. To quantify the accuracy of gene expression decomposition,
we computed the cosine similarity between the estimated gene
expression and the ground truth for each individual cell.

Across all four datasets in the benchmarking study, SpatialScope
consistently outperformed other methods in inferring transcripts at
the single-cell level. It achieved significant improvements in terms of
cosine similarity compared to Tangram, CytoSPACE, and StarDist
+RCTD, with improvements of 64.6%, 32.1%, and 11.4% respectively,

across all settings and datasets (Fig. 2e). The superior performance of
SpatialScope in gene expression decomposition can be attributed to
its fundamental differences from other methods. Unlike alignment-
based methods such as Tangram and CytoSPACE, which assign exist-
ing cells from scRNA-seq data to spatial spots, ormethods like StarDist
+RCTD that assign average gene expressions of cell types, Spatial-
Scope has the unique ability to generate pseudo-cell gene expressions
using its learned deep generative model. This generation process
enables SpatialScope to better match the observed spot-level gene
expression in space, resulting in more accurate results.

We also examined the gene expression accuracy of different
methods at distinct simulated capture rate levels of the datasets.
SpatialScope exhibits a consistent pattern where the accuracy increa-
ses with higher capture rates (Fig. 2e), indicating its ability to fully
leverage data quality. This pattern is not observed or not evident in the
results of other methods, suggesting that they are unable to fully
leverage the information contained in the data.

In real-world scenarios, generating paired scRNA-seq data for
each ST profiling experiment may not be feasible due to budget con-
straints or sample availability. To address this, we conducted simula-
tions on Dataset 1 to evaluate the accuracy and robustness of different
tools in generating single-cell gene expression decomposition from ST
data using either paired scRNA-seq data or an independently gener-
ated scRNA-seq reference of the same tissue type. SpatialScope con-
sistently achieved significantly higher accuracy regardless of whether
paired or unpaired single-cell reference data was used (Supplementary
Fig. 16c). However, the performance of alignment-based methods,
Tangram and CytoSPACE, notably declined when the reference data
was generated from the same tissue type but different biological
samples. Furthermore, considering that thenucleus segmentation step
may miss some cells with weak signals, we also evaluated the perfor-
mance of SpatialScope and the compared methods when the esti-
mated cell number in the spots did not match the ground truth cell
number (see Supplementary Note section 2.9.6). We observed that
SpatialScope demonstrated robustness in handling inconsistent cell
numbers and was able to accurately identify the remaining ground
truth cells with highly matched transcriptional profiles (Supplemen-
tary Figs. 53–55). By investigating the gene expression performance in
scenarios where there is significant variation in the proportions of
different cell types within single-cell reference data and imbalanced
cell numbers within spots, we conducted further analysis to validate
the robustness of SpatialScope in handling unbalanced cell types
within single-cell reference data and uneven cell numbers within spots
(Methods, Supplementary Note section 2.9.9, 2.9.10).

SpatialScope enables the integration of multiple slices and
interpretation of cell-cell interactions by leveraging single-cell
resolution gene expression profiles
Recently, ST data with multiple parallel slices in tissue from one or
more samples has become more widely available and is being gener-
ated at an accelerated pace. Effectively capitalizing on the information
present in neighboring slices and integrating information from multi-
ple slices is crucial for enhancing the performance of ST data analysis
toolswhen applied to STdatawithmultiple slices. SpatialScopeutilizes
spatial information by encouraging neighboring cells to belong to the
same cell type either within a single slice or across slices (Supple-
mentary Fig. 15d).When STdata havemultiple slices, leveraging spatial
location information enables SpatialScope to integrate information
from multiple slices.

We benchmarked its performance on two multiple-slice datasets
(Supplementary Note section 2.9.1, Supplementary Fig. 4, Dataset 5-6)
and compared it with Tangram, CytoSPACE, and StarDist+RCTD. We
prepared two settings for applying the four methods to multiple-slice
datasets. In setting (i), we applied themethods to each single slice one
by one in the dataset (Supplementary Fig. 14, Single slice). In setting
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(ii), we applied the methods to all slices at once in the dataset (Sup-
plementary Fig. 14, Multiple slices), where all slices were aligned in the
xy-axis and evenly spaced in the z-axis (Supplementary Fig. 4e, f). If a
method has the ability to integrate the information across slices, the
cell type identification accuracy should improve in setting (ii) com-
pared to setting (i). This pattern was observed for SpatialScope, where
the error rate decreased under setting (ii) compared to setting (i) in all
multiple-slice datasets. However, the same pattern was not observed
for the error rate of other methods. For example, the error rate of
Tangramdecreasedunder setting (ii) compared to setting (i) inDataset
5 but increased in Dataset 6 (Supplementary Fig. 14a). The accuracy
improvement of SpatialScope when applied to multiple-slice data

benefits from incorporating spatial information in the model design.
When measuring PCC and RMSE at spot level, PCC and RMSE did not
show significant improvement when integrating multiple slices com-
pared to using only single-slice (Supplementary Fig. 14b). This pattern
differs from the improvement observed when measuring the error
rate. The reason behind this is that PCC and RMSE aremeasured at the
spot level, which is a coarse resolution that cannot capture the
improvement gained from borrowing information across slices. The
improvement can only be observed at a higher resolution by measur-
ing the error rate at the single-cell level.

To further illustrate how SpatialScope is applied to multi-slices
data and improves the accuracy of cell type identification by

Fig. 3 | SpatialScope enables the integration of multiple slices and interpreta-
tion of cell-cell interactions in mouse brain cortex data. a H& E staining his-
tology of two adjacent slices of mouse brain cortex from 10x Visium (left). White
polygons indicate the region of interest. Alignment results using PASTE34 of the
two slices (right). b The SpatialScope identified cell type labels for the stacked 3D
ST data constructed by two slices. c Comparison of cell type identification results
(left: slice 1 of mouse brain cortex; right: slice 2 of mouse brain cortex) between
SpatialScope using multiple-slice neighboring information (top) and StarDist
+RCTD (bottom). Polygons indicate the region of the corresponding cell type
layer, and the color represents cell types. d Top: spatial cell locations identified as

L4, L5 IT, L6b/L6 CT/L6 IT, Oligo, and VLMC by SpatialScope usingmultiple slices.
Middle: spot-level expression levels of the corresponding cell-type-specific mar-
ker genes in the original Visium data. Bottom: refined single-cell resolution
expression levels of the corresponding marker genes by SpatialScope.
e Visualization of some representative molecular interactions detected in the 3D
aligned single-cell resolution spatially resolved transcriptomic data produced by
SpatialScope. The scatter plot shows the expression level of ligand-receptor pairs
in corresponding cell type pairs. The expression of ligands and receptors is
colored orange and green, respectively. L cell type that expresses ligand genes, R
cell type that expresses receptor genes.
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leveraging spatial neighboring information, we considered a real two-
slice dataset of spot-levelmouse brain cortex data (Fig. 3a). Both of the
two slices are from 10x Visium and they are adjacent slices from the
mouse brain cortex, and these two-slices data serve as the spatial data.
Separately, we used a published mouse brain scRNA-seq data (Smart-
seq2)33 as the single-cell reference, which is comprised of 14,249 cells
across 23 cell types (Supplementary Fig. 17). We first segmented single
cells independently in the two corresponding H&E-stained histological
images from the same tissue sections and located 3777 and 3,034 cells
within 812 and 794 spots from the brain cortex of slice 1 and slice 2,
respectively. Using PASTE34 to align multiple adjacent tissue slices, we
then successfully constructed a 3D aligned ST data for themouse brain
cortex tissue (Fig. 3a). We applied SpatialScope to the 3D-aligned ST
data for cell type identification. We evaluated the accuracy of the
inferred cell type labels basedon the known spatial organizationof cell
types in the brain cortex: Themouse brain cortex consists of fourmain
layers of glutamatergic neurons (L2/3, L4, L5 and L6), and cell type
labels identified by SpatialScope accurately reconstructed thesemulti-
layer structures in both slices of mouse brain cortex (Fig. 3b, Supple-
mentary Fig. 18). Alignment-based and deconvolution methods can
only handle one slice at a time, and as a result, the tissue layer structure
can be misidentified (Supplementary Fig. 19). By incorporating 3D
spatial structure and borrowing information from adjacent slices,
SpatialScope reduces cell mis-identification compared to StarDist
+RCTD by taking into account neighboring cell types (Fig. 3c). For
example, StarDist+RCTDmisidentifies L4 and L6 IT cells in other layers
for both slices due to a lack of spatial smoothness constraint, while
SpatialScope accurately identifies them within their corresponding
layers.

After inferring the cell type labels at the single-cell level formouse
brain cortex data,weutilized SpatialScope to infer transcriptome-wide
expression levels of individual cells through gene expression decom-
position. This step enabled us to conduct more detailed and infor-
mative analyses of cell-cell interactions at the single-cell resolution. By
decomposing gene expressions from the spot-level to the single-cell
level, we refined the spatial transcriptomic landscape of the mouse
brain cortex while preserving accurate spatial patterns of gene
expressions (Fig. 3d). In contrast, Tangram and CytoSPACE were
unable to reconstruct the expected spatial expression patterns of
certain marker genes at the single-cell resolution (Supplementary
Fig. 19d). Furthermore, we demonstrate that the spatially resolved
transcriptomic data at single-cell resolution, generated by Spatial-
Scopewith the aidof 3D alignment, allowedus to infer reliable spatially
proximal cell-cell communications (Fig. 3e, Supplementary Fig. 21a).
Compared to the limited ligand-receptor signaling detected in a single
slice alone, we observed widespread proximity interactions between
Parvalbumin-positive neurons (Pvalb) and Oligodendrocytes (Oligo)
when analyzing the 3D aligned STdata (Supplementary Fig. 21d, e). The
identified ligand and receptor pairs exhibited strong enrichment in
multiple biological processes/pathways crucial for neuronal develop-
ment in the cortex, including synapse organization and assembly,
oligodendrocyte differentiation, and regulation of gliogenesis (Sup-
plementary Fig. 21b)35. For instance, the cell-cell communication
mediated by the interaction between Nrg1 and Erbb4 is well-docu-
mented, with Neuregulin ligands playing a role in the proliferation,
survival, and maturation of oligodendrocytes through the Erbb4
pathways36. Another example is the suggested communication and
migration between oligodendrocytes andmicroglia mediated by Spp1-
Itgav37; our analysis indicates that this molecular interaction may also
occur between Pvalb neurons and oligodendrocytes, providing a
potential direction for further investigation. Additionally, we detected
extensive cellular communications between neuronal subtypes, such
as Adcyap1-Adcyap1r1 between L2/3 IT and L5 IT, Efna5-Epha5 between
L5 IT and Lamp5, and Sema6d-Plxna1between L5 IT and L6CT (Fig. 3e).
These molecular interactions have been reported to be critical for

cortical development in the brain38, 39. The interacting cell types iden-
tified by SpatialScope provide a more comprehensive understanding
of cellular and molecular interactions in the cortex.

SpatialScope enables high resolution identification of cell types
and candidate pathways for cellular communication in human
heart tissue
The human heart is a highly functionally coordinated organ, and dif-
ferent cell typeswithin the same tissuemust act in concert with precise
feedback and control. Previous single-cell profiling of the humanheart
identified cellular subtypes with high levels of specialization in their
gene expression, corresponding to their roles in regeneration/renewal
or as fully differentiated cells that participate in blood circulation and
pacing40. With spatial transcriptomics, there is an additional oppor-
tunity to understand these cellular specializations in the context of the
complex architecture of the human heart. We applied SpatialScope to
a real spatial transcriptomics (ST) dataset of adult heart tissue profiled
at the spot-level41 and demonstrated that decomposed single-cell
transcriptomes enable the localization of cellular subtypes at a high
resolution. Furthermore, the assessment of ligand-receptor co-
expression in neighboring cells reveals candidate pathways that facil-
itate cellular communication in a given tissue region.

First, we segmented single cells in the corresponding H&E stained
image and located 10,734 cells within 3813 spots in the whole slice
(Fig. 4a, Supplementary Fig. 22). As the paired single-cell reference
(produced from the same sample as the ST data) is not available, we
used as reference another humanheart snRNA-seq atlas40 consisting of
10 major cell types, including cardiomyocytes to less common adi-
pocytes and neuronal cells (Supplementary Fig. 23). SpatialScope
learned the distribution of the gene expression in each cell type from
this atlas via a deep generative model. The “pseudo-cells" generated
using this learned model are indistinguishable from existing real cells
in the reference data (Fig. 4c), laying the foundation for SpatialScope
to accurately resolve spot-level ST data containing multiple cells to
single-cell resolution. The overall cell-type composition across all
spots identified by SpatialScope was highly consistent with that of the
snRNA-seq reference from the same tissue type (the heart left ven-
tricle) (Fig. 4b). These results further validate the performance of
SpatialScope on real data beyond the simulated dataset. Alignment-
based methods, on the other hand, did not provide satisfactory esti-
mations of cell-type composition. Tangrammis-identifiedmany cells in
the left ventricle as atrial cardiomyocytes, and CytoSPACE could not
identify pericytes, a major cell type in human heart tissue. The Spa-
tialScope estimatedcell-type compositions remainedhighly consistent
even when using different non-paired human heart snRNA-seq atlases
as reference (Supplementary Fig. 24), suggesting that it is robust to the
choice of reference data in real data analyses, which is important
during practical implementation.

That SpatialScope can construct pseudo-cells with inferred gene
expressions offers a unique advantage over other methods: through
deep learningwe recover additional information fromeach spot that is
missing in the original ST data due to dropouts of low expression
genes, and this enables statistically meaningful analysis of relative
expressionbetween cells (Fig. 4e). To illustrate this feature, we focused
on a region of interest (ROI) that shows a spatial pattern characterized
by vascular cells. Figure 4d shows that the SpatialScope inferred
smooth muscle cells (SMC) accurately reside in the areas containing
vascular structures, as marked by the pan-SMC marker geneMYH11 in
the original ST data and by the H&E staining in the histological image
(Fig. 4d, e). In comparison, alignment-based methods Tangram and
CytoSPACE were unable to identify SMCs in this region (Supplemen-
taryFig. 25a). Cell typedeconvolutionmethodsRCTDand spatialDWLS
performed better and correctly identified SMCs, while CARD and
Cell2location incorrectly identified many endothelial cells (EC) and
atrial cardiomyocytes, respectively (Supplementary Fig. 25b). The
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SpatialScope inferred results also indicate that this region has a much
higher expression level of TAGLN than LGR6 (Fig. 4e). In both brain42

and cardiac vasculature40, TAGLN was previously found to be highly
expressed in arteriole SMCs while much lower in venous SMCs, and
high LGR6 expression was found to be associated with venous SMC42.
Based on these previous atlas studies, which labeled TAGLN-high/
LGR6-low SMCs as arterial, our result classifies this region as being
arterial rather than venous. It is worth noting that the same conclusion

could also be drawn from the raw ST data as their expression patterns
were highly similar (Fig. 4e), but the single-cell resolution ST generated
by SpatialScope allowed us to significantly increase the confidence of
the conclusion. To see this, we projected the inferred single-cell level
gene expression profiles of SMCs in this region onto the UMAP of all
SMCs and ECs in the snRNA-seq reference, obtaining a global view of
SMCs identified by SpatialScope. This reveals that the global gene
expression of inferred SMCs are clusteredwith real arterial SMC rather
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than venous ones (Fig. 4f), indicating that SpatialScope accurately
identified the arterial SMC. Othermethods could not distinguish these
subtypes (Supplementary Fig. 25c).

Spatially resolved single-cell expression profiles inferred by Spa-
tialScope can further facilitate downstream analysis, for example in
exploring cell-cell communication between ECs and SMCs in arteries
(Fig. 4h). We applied Giotto10 to identify statistically significant ligand-
receptor (LR) interactions between these two cell types when in close
proximity (Fig. 4g) and found LR expression patterns that are con-
sistent with previous studies40. Spatial co-expression patterns of these
LR pairs was also verified by visual inspection (Fig. 4i, Supplementary
Fig. 26). We further noted that the interacting ECs are arterial, marked
by SEMA3G expression (Fig. 4e), which is concordantwith our previous
observation that these SMC are the arterial subtype. Among the LR-
pairs we identified as significant, Notch receptor-ligand interactions
(e.g., JAG1-NOTCH3, DLL4-NOTCH3) are known to be essential for reg-
ulating vascular smooth muscle proliferation and differentiation43, 44,
and SERPINE2-LRP1 has been reported to act as a protector of vascular
cells against protease activity45, 46. RTN4-LINGO1 is commonly detected
in brain tissue due to its importance in regulating neuronal
development47. With the inferred gene expression profiles with single-
cell resolution, here our results indicate that RTN4-LINGO1 has a spa-
tially strong co-expression pattern in the human heart vascular region
(Fig. 4i). The RTN family of genes is also known by another name, the
Nogo family, and RTN4 protein products arewidely expressed inmany
cell types but most highly expressed on the surface of glial cells. Both
RTN4 and LINGO1 are found to be expressed in multiple cell types,
including smooth muscle cells and endothelial cells48. Literature has
reported the interaction of this ligand-receptor in the brain47, 49, 50, and
the Nogo-B isoform was found to be important in regulating vascular
homeostasis and remodeling in mouse models51. Further research is
needed to uncover the tissue-specific mechanisms and roles of the
RTN4-LINGO1 pair in the human heart.

SpatialScope enables accurate correction of dropouts in spot-
level ST data
Various spatial technologies differ in their resolution; as an example,
Slide-seqV2 can achieve a higher spatial resolution than the Visium
technology but the trade-off is a lower transcript capture rate52. For
example, in a cerebellum Slide-seq V2 dataset with 10,975 cells within
8952 spots (Fig. 5a), 98.55% entries of the gene expression matrix are
zero and the median UMI counts per spot is about 30014. In this
dataset, some marker genes exhibit unusual sparsity (Fig. 5d, Supple-
mentary Fig. 27), with total UMIs across all spots as low as 25 in some
cases (Klf2). We can also leverage SpatialScope to correct the low-
detection in situ transcripts, inferring the missing signals using the
gene expression distribution learned from the single-cell reference
(Supplementary Fig. 28). As shown in Fig. 5a, SpatialScope correctly
assigned cell type labels and captured the three-layer architecture
(molecular layer, Purkinje cell layer and granular layer) of the
cerebellum53, 54; these high resolution single-cell level results are con-
sistent with spot-level RCTD results14. Other methods produced noisy

results and even incorrectly estimated cell type proportions: Cell2lo-
cation missed most Astrocytes; SpatialDWLS wrongly detected a large
number of Fibroblasts in the Purkinje cell layer; alignment-based
methods Tangram and CytoSPACE could not reconstruct the granular
layer, suggesting that alignment-based methods are not robust to low
capture rate data (Supplementary Fig. 29).

To evaluate the performance of dropouts correction for Spatial-
Scope, we randomly subsampled the UMIs of existing marker genes
with high-capture rates to mimic the technical dropouts, and then
applied SpatialScope to check if we could accurately recover the spa-
tial expressionpatterns of thesemarker genes (Fig. 5b). Specifically, we
selected 22 marker genes with high-capture rates, where the median
UMIs is about 3600 across all spots, and then subsampled their UMIs
to 50, 100, 200. Notably, SpatialScope showed the best performance
of the dropout correction in all settings in terms of mean absolute
error (MAE) and PCC (Fig. 5c, Supplementary Fig. 30). As the sub-
sampled UMIs increased, SpatialScope further improved the correc-
tion accuracy but the performance of Tangram plateaued. We then
used SpatialScope to correct low-capture genes in Slide-seq data. A
close inspection of the corrected sparse marker genes showed clear
expression patterns concordant with spatial cell type organization,
indicating that SpatialScope can effectively address the dropout issue
in Slide-seq ST data (Fig. 5d, Supplementary Fig. 27).

Low capture rates mean that many ligand and receptor pairs are
also sparsely captured, making it difficult to perform relevant down-
stream analyses. The SpatialScope-corrected Slide-seq data imputes
genes with low-capture rates, enabling further calculation of cell-cell
communications. For example, the cellular communication mediated
by Psap andGpr37l1betweenmolecular layer interneuron type 1 (MLI1)
cells and astrocytes was only detected in the corrected data (Fig. 5g).
Astrocytes are reported to have neuroprotective effects on neurons
through the Gpr37l1 pathway55, 56, supporting the cell-cell interactions
we identified in the corrected data; In contrast, raw Slide-seq data was
too sparse to detect this (Fig. 5h-i). We detected many cellular inter-
actions that are concordant with existing literature (Fig. 5e). For
example, basket cells (e.g.,MLI1 andMLI2) in themolecular layer of the
cerebellum is known to have a powerful inhibitory effect on Purkinje
cells53, and we indeed found the Apoe-Sorl1 interaction between these
two cell types (Fig. 5f). Notably, both Apoe and Sorl1 are genes asso-
ciated with Alzheimer’s disease risk, and play roles in regulating the
clearance of amyloid protein β57; the interacting cell types detected by
SpatialScope may help to elucidate the underlying genetic etiology
behind Alzheimer’s disease.

SpatialScope accurately imputes unmeasured genes on single
molecule imaging-based ST dataset to enable global differential
gene expression analysis
Finally, we investigated how SpatialScope could leverage deep gen-
erative models to impute unmeasured genes in image-based spatial
transcriptomics data that only measures a panel of selected genes. We
analyzed a MERFISH dataset, where the expression profiles for 254
genes were measured in 5,551 single cells in a mouse brain slice from

Fig. 4 | Analysis of vascular region in spot-based human heart ST data. a Cell
type identification result at single-cell resolution for whole slice 10x Visium data of
human heart using SpatialScope. The background is H& E staining of human heart.
The black dotted line indicates ROI. b Inferred cell type compositions across the
whole slice by SpatialScope, Tangram and CytoSPACE. c UMAP of scRNA-seq
reference data (blue dots) and the pseudo cells (red dots) generated by the deep
generative model. d Top, cell type identification result at single-cell resolution in
ROI. Bottom, H& E staining of the heart ROI. The red dotted line indicates vascular
location. e Expression of SMC and EC marker genes in raw Visium data (top) and
single-cell transcriptomes generated by SpatialScope (bottom). f The UMAP plot of
SMCs in refined single-cell resolution spatial data generated by SpatialScope and
cells from all subgroups of SMC and EC in snRNA-seq reference. The red circle

highlights the overlap of inferred SMCs with real arterial SMCs rather than venous
ones. g Dot plot of ligand-receptor pairs that exhibit spatially resolved cell-cell
communications inferred from SpatialScope generated single-cell resolution spa-
tial data. SMC smooth muscle cells, EC endothelial cells, FB Fibroblast, VC ven-
tricular cardiomyocyte. p values were calculated under the null condition in the
permuted data with the two-sided test. h Schematic of the vascular cells and
inferred cell-cell interactions between SMC and EC in the arteries. i Visualization of
molecular interactions between EC and SMC, SMC and FB using single-cell reso-
lution gene expression profiles generated by SpatialScope. The scatter plot shows
the expression level of ligand-receptor pairs. Source data are provided as a Source
Data file.
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the primary motor cortex (MOp)58. To perform cell type identification
and learn the distribution of single-cell gene expression, we used a
paired droplet-based snRNA-seq profiles from mouse MOp as the
reference dataset (Fig. 6b)18. SpatialScope successfully learned the
gene expression distribution of the single cell reference data (Sup-
plementary Fig. 31), laying the groundwork for inferring the expres-
sions of unmeasured genes. Using the 252 genes that were targeted by
MERFISH and that overlapwith snRNA-seq reference data, we assigned

cell type labels for each cell on the slice. SpatialScope successfully
reconstructed the known spatial organization of cell types in the MOp
of the brain cortex (Fig. 6a). Specifically, glutamatergic neuronal cells
showed distinct cortical layer patterns, while GABAergic neurons and
most non-neuronal cells were granularly distributed.

We compared the performance of gene expression imputation
using SpatialScope with seven existing methods: Tangram18, gimVI19,
SpaGE20, SpaOTsc27, novoSpaRc28, stPlus59, and Seurat60. We selected

Fig. 5 | Application of SpatialScope to Slide-seq V2 cerebellum data. a Cell type
identification results of Slide-seq V2 cerebellum data by SpatialScope. bCorrection
of two simulated low-quality spatial measurement genes. Slide-seq V2 measure-
ments (first column), simulated low-quality spatial measurements after processing
subsampling (second column), SpatialScope-corrected gene expression level (third
column), and Tangram-corrected gene expression levels (Fourth column)).
c Accuracy of dropouts correction on simulated low expression genes under dif-
ferent subsampling levels. Two different metrics are used to evaluate correction
accuracy regarding the similarity between the corrected expression and true
expression: Pearson’s correlation (PCC) and Mean Absolute Error (MAE). Data are
presented asmean values ± 95% confidence intervals; n = 22 selectedmarker genes.
d Correction of low-quality spatial measurements on real data. Slide-seqmeasured
(top), and SpatialScope corrected genes (bottom). e A Dot plot of ligand-receptor

pairs that exhibit spatially resolved cell-cell communications inferred from cor-
rected gene expression profiles by SpatialScope. The red frame indicates ligand-
receptor pairs further visualized in f. Purple frame indicates ligand-receptor pairs
that are newly found after dropouts correction by SpatialScope and further
visualized in g. p values were calculated under the null condition in the permuted
data with the two-sided test. g Visualization of ligand-receptor expression in both
corrected Slide-seq data by SpatialScope (first row) and raw Slide-seq data (second
row). The expression of ligands and receptors is colored orange and green,
respectively. h Comparison of gene expression level for ligand/receptor between
raw Slide-seq data and corrected Slide-seq data by SpatialScope, displayed by
density plots. iComparisonof cell counts between rawSlide-seqdata andcorrected
Slide-seq data by SpatialScope for each cell type. Source data are provided as a
Source Data file.
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cortical layer-specificmarkers (Cux2, Otof, Rorb, Rspo1, Sulf2, Fezf2, and
Osr1) as testing genes to visualize the predicted spatial gene expres-
sion patterns. Thesemarkerswere then removed from the dataset, and
the remaining genes were used as training genes, serving as input for
the eight methods to predict the spatial expression pattern of the left-
out marker genes. We evaluated the imputation performance by
computing the mean absolute error (MAE) between the real mea-
surements and the predicted gene expression of the testing genes. The
results demonstrate a significant improvement in performance for

SpatialScope compared to Tangram, gimVI, SpaOTsc, and novoSpaRc,
with improvements of 33.6%, 34.3%, 43.4%, and 53.6%, respectively.
SpatialScope performs comparably to state-of-the-artmethods SpaGE,
stPlus, and Seurat in terms of predicting spatial gene expression of the
seven cortical layer-specific markers (Fig. 6b, c, Supplemen-
tary Fig. 32).

Let’s consider a marker gene, Rspo1, of the L5 IT layer as an
example. The spatial gene expression of Rspo1 imputed by Spatial-
Scope is in accordance with the real measurement specific to the L5
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layer. In contrast, Tangram, SpaGE, SpaOTsc, and novoSpaRc over-
estimated the expression ofRspo1outside the L5 layer,while gimVI and
stPlus incorrectly expressed the gene in the positions of Oligo and
Astro cell types. Next, we used all overlapping genes between the
MERFISH data and the single-cell reference data as training genes and
evaluated the imputation performance of non-MERFISH genes. Since
ground truth data for these non-MERFISH genes is unavailable, we
utilized the Allen ISH dataset61 for validation purposes. We found that
other methods tended to overestimate the spatial expression of some
layer-specific marker genes (e.g., Cdh4, Prkg1) (Fig. 6d, Supplementary
Fig. 33). SpatialScope also shows high robustness when imputing low-
abundance or variable genes, and even non-brain tissue markers (see
Supplementary Note sections 2.9.12, 2.9.13). It can predict expressions
that are consistent with the gene expression signatures in the snRNA-
seq reference, even when the expression levels measured in the
MERFISH data are very low and have little spatial pattern (Supple-
mentary Figs. 63–70). Additionally, it can predict spatial expression
patterns that are consistent with the Allen ISH dataset when predicting
kidney, bone, and lung marker genes (Supplementary Figs. 71–73).

SpatialScope increases the gene throughput ofMERFISH from254
to thousands of genes, enabling us to conduct wide-ranging down-
stream analysis such as detection of spatially differentially expressed
(DE) genes. We first applied a recently developed tool, C-SIDE62, to
detect cell-type specific spatially DE genes on the imputed MERFISH
dataset. As expected, compared to 63 cell-type specific spatially DE
genes detected in MERFISH genes under an FDR of 1% (Fig. 6e), the
number of significant genes with FDR < 1% increases to 293 by incor-
porating the imputed Non-MERFISH genes (Fig. 6f, Supplementary
Fig. 34b). For example, Ryr3 encodes a calcium release channel that
affects cardiac contraction, insulin secretion, and neurodegeneration
by altering the levels of intracellularCa2+63. The expressionofRyr3 in L6
CT shows a spatial pattern that coincides with the L6b cell boundary
(Fig. 6g and Supplementary Fig. 34a), suggesting the potential com-
munication between L6 CT and L6b through Ryr3. Interestingly, the
expression signature of Ryr3 in the single-cell reference data also
suggests its diverse expression in L6 CT and L6b (Fig. 6h), and the
transition region between these two cell types in single-cell reference
shows higher expression, which is perfectly concordant with what we
observed in the imputed spatial expression patternof Ryr3 inMERFISH
data. This concordance highlights the value of SpatialScope in inte-
grating the merits of both single cell reference and lower throughput
high precision spatial transcriptomic data such as MERFISH. Next, we
considered the spatially DE genes across the entire MERFISH data
instead of restricting to specific cell types. We applied SPARK-X64 and
identified 243 genes that exhibit spatially DE patterns in a global per-
spective, which was 2.3 times more than the number of DE genes
detected inMERFISHgenes (Supplementary Fig. 34c). Visualizing a few
representative non-MERFISHDE genes clearly shows their significantly
spatially distinct expression patterns (Supplementary Fig. 34d). For

example, Lingo2 encodes a transmembrane protein that positively
regulates synapse assembly65, and the genetic variants of Lingo2 have
been reported to be linked to Parkinson’s disease (PD) and essential
tremor (ET)66, 67. The spatial expression pattern of Lingo2, highly
expressed in the upper cortical layer, imputed by SpatialScope may
shed light on the genetic etiology of PD/ET in brain MOp.

Discussion
Fine-grained cell gradients are critical for understanding cellular
communication within tissues, which requires that ST technologies
achieve the detection of the whole transcriptome at single-cell reso-
lution. However, existing ST technologies often have limitations either
in spatial resolution, capture rate of the genes, or the number of genes
that can be profiled in one experiment. Here we developed a unified
framework SpatialScope to address these limitations.

SpatialScope is applicable to different ST technologies and can
achieve several important functions. First, SpatialScope recovers
single-cell resolution data from seq-based technologies (e.g. 10X Vis-
ium) that do not have single-cell resolution. Consequently, single-cell
resolution ST data produced by SpatialScope enables the detection of
spatially resolved cellular communication, which is almost impossible
for ST data that does not have cellular resolution. Spatially resolved
cell-cell communications between each paired cellmediated by ligand-
receptor interactions can be robustly inferred and visualized, leading
to decoding spatial inter-cellular dynamics in tissues. Second, Spa-
tialScope improves the power and precision of molecular interaction
by correcting for genes that has low capture rate in higher-resolution
spatial data, such as Slide-seq. Some signals missing in the raw ST data
can be detected after the correction for dropouts by SpatialScope.
Third, SpatialScope imputes unmeasured genes for image-based ST
technology that cannot measure the whole transcriptome, such as
MERFISH, allowing the discovery of more biologically meaningful
signals. Fourth, SpatialScope can integrate multiple slices of ST data,
which enables better cell type identification and the detection of cell-
cell communication by increasing the effective sample size.

SpatialScope’s ability to accurately and robustly resolve the spot-
level data towards higher resolution and expand from signature to
transcriptome-wide scale expression comes from the fact that Spa-
tialScope leverages the deep generative model to approximate the
distribution of gene expressions accurately from the scRNA-seq
reference data. Rather than directly applying learned distribution
from single-cell referencedata, SpatialScope accounts for the platform
effects between single-cell reference and ST data. Cell type identifi-
cation and gene expression decomposition results would not be
satisfactory if the platform effects are not appropriately corrected.
With these innovations in its model design, SpatialScope serves as a
unified framework which is applicable to ST data from various plat-
forms. In the step of cell type identification, SpatialScope leverages
spatial information to improve the accuracy of cell type identification

Fig. 6 | Application of SpatialScope to MERFISH data. a Cell type identification
results of MERFISH MOp data by SpatialScope. Cell type identification results in
each of the three major categories are shown on the right. b Bar plots showing the
overall mean absolute error (MAE) (first column) and MAE of seven cortical layer-
specific marker genes (second to eighth columns) for each method in predicting
unmeasured spatial gene expression patterns. c Measured and imputed expres-
sions of known spatially patterned genes in the MERFISH dataset. Each row cor-
responds to a single gene. The first column from the left shows the measured
spatial gene expression in the MERFISH dataset, while the second to fifth columns
show the corresponding imputed expression patterns by SpatialScope, Tangram,
gimVI, and SpaGE. The marker gene expression signatures in the snRNA-seq
reference are displayed with a heatmap plot (sixth column). d Measured and
imputed expressions of Non-MERFISH genes. Each row corresponds to a single
gene. The first column from the left shows the ISH images from the Allen Brain
Atlas, while the second to fifth columns show the corresponding imputed

expression patterns by SpatialScope, Tangram, gimVI, and SpaGE. The gene
expression signatures in the snRNA-seq reference are displayed with a heatmap
plot (sixth column). e Volcano plot of C-SIDE cell-type-specific spatial differential
expression (DE) results for the MERFISH dataset, considering a total of 252 genes.
Color represents cell types, a subset of significant genes is labeled, and dotted lines
represent a 1.5-fold change cutoff. f Volcano plot of C-SIDE spatial DE results for the
imputed MERFISH dataset by SpatialScope, considering a total of 1,938 genes
including genes in the original MERFISH dataset and imputed Non-MERFISH genes
by SpatialScope.p values in e and fwerecalculatedby z-statisticswith the two-sided
z-test. Benjamini-Hochberg procedure was used to control FDR in the context of
multiple testing. g Spatial visualization ofRyr3, identified byC-SIDE as differentially
expressed in L6 CT. Color shows the expression change of Ryr3 across L6CT.h The
expression profile of Ryr3 in the single-cell reference data. The expression level
change of Ryr3 in L6 CT cell type is outlined in the red circle. Source data are
provided as a Source Data file.
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for each single cell. The inclusion of spatial information also allows
straightforward extrapolation of SpatialScope to data with multiple
slices, where 3D spatial information across slices is well exploited.

SpatialScope incorporates a spatial smoothness constraint
imposed by the Potts model, and has demonstrated its effectiveness
through simulation studies and real data analysis (SupplementaryNote
section 2.9.4, Supplementary Fig. 3c). However, the assumption that
neighboring cells belong to the same cell typemay not always be valid.
A more effective approach involves enabling the model to adaptively
learn from the data and assess the similarity of cell types among
neighboring cells. This can be achieved by incorporating spatial loca-
tion information as a key input within the Deep Graph Infomax (DGI)
framework68, 69, or by employing GCN with attention mechanism to
adaptively learn the similarity of neighboring spots/cells70, 71. We leave
this direction for future work.

Although several widely adopted ST technologies, such as Visium,
Stereoseq, and Slide-lock, presently offer paired histological images, it
is anticipated that the availability of such paired images will expand in
the future as these techniques become more accessible and cost-
effective. However, circumstancesmay arisewherehistological images
are unavailable, and alternative types of image data, such as single-
channel nuclear image data (e.g., DAPI image), are provided instead.
Noted that Step 1, Nucleus segmentation serves as a building block to
quantify the cell count at each spot. Consequently, it is possible to
utilize other types of images alongside histological images, leveraging
segmentationmethods such as Baysor and DeepCell, to determine the
cell count within each spot. In situations where image data is unavail-
able due to experimental failure or other factors, the initial step of
nucleus segmentation can be substituted with singlet/doublet classi-
fication for Slide-seqdata, basedon the assumption that amaximumof
two cells coexist within a spot. For other lower-resolution ST data, it is
feasible to develop alternativemethods for estimating cell numbers by
incorporating information of both cell type compositions and the total
number of UMIs within the spots. Spots exhibiting higher UMIs and
more diverse cell type compositions aremore likely to contain a larger
number of cells. These alternative strategies enable the estimation of
cell numbers within spots, even when paired images are not available.
By leveraging information about cell type compositions and UMIs,
valuable insights can be gained regarding cell counts within ST
datasets.

While SpatialScope has shown its superior performance, it can be
time-consuming to train a generative model to approximate the dis-
tribution from single-cell reference data. In our real data analysis, the
training time of the deep generative models is measured in hours or
days. Although the generative model can be pre-trained using single-
cell atlas data sets andwe only need to train eachdataset once, ST data
analysis can still benefit a lot from more computationally efficient
methods that reduce the computational complexity for learning deep
generative models72.

While our work focused on the analysis of cell-cell communica-
tions and spatially DE genes detection, we anticipate that refined
single-cell resolution spatial transcriptomic data generated by Spa-
tialScope can be very useful in many other downstream applications.
Examples include unraveling spatiotemporal patterns of cells73, ana-
lysis of cellular interactions between tumor and immune cells in dis-
easeor cancer tissue, and inferenceof differentiation trajectories74.We
believe that SpatialScope can serve as a very useful tool in providing
single-cell resolution ST data, facilitating detailed downstream cellular
analysis, and generating biological insights.

Methods
To characterize spatially-resolved transcriptome-wide gene expres-
sion at single-cell resolution, we introduce SpatialScope as a unified
framework to integrate single-cell and ST data. For 10x Visium ST data,
the SpatialScope method comprises of three steps: nucleus

segmentation, cell type identification, and gene expression decom-
position. SpatialScope can also be applied to dropout correction for
Slide-seq data and transcriptome-wide gene expression imputation for
image-based ST data, such as MERFISH data.

Nucleus segmentation
Accurate segmentation of nuclei/cells in microscopy images is an
important step to locate cells and count the number of cells within a
spot. Considering the widespread use of 10 Visium data with H&E
images, we conducted a comprehensive evaluation of several seg-
mentation methods: StarDist75, Cellpose76, Baysor77, and DeepCell78,
specifically for H&E-stained images (Supplementary Note section 2.1).
Our comprehensive analysis reveals that StarDist outperforms the
other methods, making it the most effective tool for nucleus seg-
mentation in HE-stained histological images (Supplementary
Figs. 35–37). On the other hand, Baysor and DeepCell exhibit inferior
performance, likely due to their lack of specific design forH&E images.
StarDist’s exceptional performance, as evidenced by high DICE and AJI
scores, underscores its robustness and reliability in accurately seg-
menting nuclei in H&E images. Therefore, we employ StarDist as the
default tool for nucleus segmentation on H&E-stained histological
images. After segmentation, we denote Mi as the number of detected
cells at the i-th spot, i = 1,…, I, where I is the total number of spots.

Cell type identification
Suppose we have K cell types in a single-cell reference data. The
expression counts of G genes have been measured to capture the
whole transcriptome in the scRNA-seq data. Let ki,m∈ {1, 2,…,K} be the
cell typeof them-th cell at spot i, wherem = 1,…,Mi. Our goal is to infer
the cell type vector ki = {ki,m} at spot i by integrating scRNA-seq and
ST data.

As inspired by RCTD14, we consider the following probabilistic
model for cell type identification in ST data by incorporating scRNA-
seq reference data,

yi, g jλi, g ∼Poisson Niλi, g
� �

, log λi, g
� �

=αi + log
1
Mi

XMi

m= 1

μki,m , g

 !
+ γg + εi, g

ð3Þ
where yi,g is the observed gene expression counts of gene g at spot i,Ni

is the total number of uniquemolecular identifiers (UMIs) of spot i, λi,g
is the relative expression level of gene g at spot i, Mi is the number of
cells in spot i inferred from the last step, εi, g ∼N 0,σ2

ε I
� �

is a random
effect to account for additional noise, and μk,g represents the mean
expression level of cell type k and gene g, which can be estimated from
annotated single-cell reference data. Both γg and αi are designed to
address the batch effect between single-cell reference and ST data.
More specifically, γg ∼N ð0, σ2

γIÞ represents a gene-specific random
effect to account for expressiondifferences of a gene gbetween single-
cell and ST platforms, and αi is the spot-specific effect to account for
differences of a gene set across platforms.

Recall that the RCTD model is given as logðλi, g Þ=
αi + logðPK

k = 1 βi, kμk, g Þ+ γg + εi, g , where βi,k is the proportion of cell
type k at spot i. Our model differs from RCTD in the term
1
Mi

PMi
m= 1 μkim , g

, which is the average of themean expression level of cell
types corresponding to theMi cells at spot i. In other words, ourmodel
can be viewed as a discrete version of RCTD which was developed to
estimate the continuous cell type proportions. The benefits of our
discrete version are two-fold. First, given the accurate number of
detected cells from image segmentation, it allows us to achieve cell
type identification at single-cell resolution. Second, it also enables the
incorporation of spatial smoothness constraints to improve the
accuracy of cell type identification. In contrast, RCTD can only impose
the simplex constraint (i.e.,

PK
k = 1 βi, k = 1 and βi,k ≥0) when estimating

βi,k, leading to suboptimal results. To incorporate spatial smoothness
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in the distribution of the cell types, we assume a prior given by the
Potts model for cell types K= ki,m

	 

,

p kimjk�fi,mg
� �

=
1
Z
expf�UðKÞg, ð4Þ

where UðKÞ=Pfi,mg i0 ,m0f g2N i,mf ν 1� I ki,m = ki0 ,m0
� �� �

, Ið�Þ is the indi-
cator function which equals to 1 when ki,m = ki0 ,m0 and 0 otherwise, Z is
a normalizationconstant,N i,m is the set ofneighbors of them-th cell in
spot i and − {i,m} denote all the cells other than (i,m) cell. Parameter ν
controls the smoothness of cell type labels. The larger the ν, the
smoother the cell type labels.

Now we develop an iterative algorithm to identify cell type label
ki,m based onmaximum a posterior (MAP) estimate, where i = 1, 2,…, I,
and m = 1, 2,…,Mi. Meanwhile, we are also interested in γg which will
used to correct gene-level batch effects between different platforms.
First, weestimateμk,gby calculatingmeanexpressionof gene g and cell
type k from single-cell reference data. Next, we follow RCTD’s strategy
to accurately approximate γgby viewing STdata as a bulkRNA-seqdata
using the convenient property of Poisson distribution14. Other para-
meters, including αi, can be obtained accordingly (Supplementary
Methods). Then we iteratively find MAP estimate of {ki,m} and the
estimate of σε. The derivation of the MAP estimate for {ki,m} is as fol-
lows. Let θ̂c = fμ̂k, g , γ̂g , α̂i, σ̂εg be the collectionof these estimates in the
above cell type identification model, where k = 1, 2,…,K, g = 1, 2,…,G,
and i = 1, 2,…, I. Given θ̂c, we can obtain the MAP estimate for K:

K̂= argmax
K

logp KjY, θ̂c

� �
= argmax

K
logp YjK, θ̂c

� �
+ logp Kð Þ,

ð5Þ

where Y = {yi,g} represents all observed gene expression counts. The
term logpðYjK, θ̂cÞ is the likelihood term in Equation (3) and logp Kð Þ is
the prior term given by Potts model (Equation (4)). Notably, this MAP
estimate forK in Bayesian analysis represents the value thatmaximizes
the combined influence of observed data (likelihood term) and prior
beliefs (prior term), allowing for the incorporation of prior knowledge
into the estimation process. For computational efficiency and scal-
ability, we adopt iterative-conditional-mode-based scheme79 to inferK
by updating two labels ki,m, ki, ~m at a time. Then the distribution
becomes,

max
K

logpððki,m, ki, ~mjyi, θ̂cÞÞ= max
K

XG
g = 1

logp yi, g jkim, ki ~m, k�fði,mÞ, ði, ~mÞg
� �

+ logp kim, ki ~mjk�fði,mÞ, ði, ~mÞg
� �

:

ð6Þ

By finding the MAP estimate, we not only use information from gene
expression levels yi,g to determine the cell type labels ki,m, but also
incorporate information from its neighbors.

Gene expression decomposition
We first learn a score-based generative model to approximate the
expression distribution of different cell types from the single-cell
reference data. Then we use the learned model to decompose gene
expression from the spot level to the single-cell level, while accounting
for the batch effect between single-cell reference and ST data.

Learning conditional score-based generative models from single-
cell reference data. There are twomajor challenges in learning score-
based generative models for the scRNA-seq data. First, while score-
based generative models23, 24, 80–82 can accurately approximate the
distribution of images, the nature of the scRNA-seq count data, such as
sparsity in the expression matrix, may hinder the capacity of score-

based generative models. Second, as given in Equation (2), we need to
learn a conditional score function ∇x logpðxjkÞ rather than an uncon-
ditional score function ∇x logpðxÞ, where k represents the cell type.
The reason for learning a conditional score function has been
demonstrated in the Supplementary Note section 2.9.8. It largely
remains unknown how to learn the conditional score function across
different cell types using a coherent neural network. Let’s begin with
the key idea of learning the unconditional score function and then
showhow to learn a conditional score function based on the single-cell
reference data.

Consider the vanilla score matching problem which aims to
find a neural network sθ(x) to approximate ∇x logpðxÞ :
minθ EpðxÞ sθðxÞ � ∇x logpðxÞ

�� ��2
2

h i
, where θ represents the parameter

set of the neural network. The challenge of vanilla score matching
comes from the fact that high dimensional data x often tends to
concentrate on a low dimensional manifold embedded of the entire
ambient space. For data points not on the low-dimensional manifold,
they would have zero probability, the log of which is undefined.
Moreover, the score function can not be estimated accurately in the
low density region. Fortunately, these challenges can be addressed by
adding multiple levels of Gaussian noise to data. The perturbed data
with Gaussian noise will not concentrate on the low-dimensional
manifold, and themultiple levels of noisewill increase training samples
in the low-density region. Specifically, a sequence of data distributions
perturbed by L levels of Gaussian noise is given as
pσl

xðlÞ
� �

=
R
pðxÞN xðlÞjx, σ2

l I
� �

dx, where x(l) represents a sample per-
turbed by the noise level σ2

l , σL > σL�1> � � �> σ1≈0. To learn the score
function sθ x, σl

� �
, we consider the following problem,

min
θ

XL
l = 1

λlEpðxÞExðlÞ ∼N xðlÞ jx, σ2
l
Ið Þ sθ xðlÞ,σl

� �
� ∇xðlÞ logpσl

xðlÞjx
� ���� ���2

2

� 

,

ð7Þ
where λl = σ

2
l is the weight for noise level l and

∇xðlÞ logpσl
xðlÞjx� �

= � xðlÞ�x
σ2
l
. Based on Equation (7), the score function

can be estimated by stochastic gradient methods. Let x(l, t) be the t-
sample at level l. We run Langevin dynamics in Equation (8) from l = L
to l = 1 with initialization x(l, t=1) = x(l+1, t=T). In the meanwhile, we pro-
gressive reduce of noise level σl and decrease the step size η:

xðl, t + 1Þ =xðl, tÞ + ηsθ xðl, tÞ,σl

� �
+

ffiffiffiffiffiffi
2η

p
εðl, tÞ, ð8Þ

where εðl, tÞ ∼N ð0, IÞ. Then the obtained samples x(l, t) at level l = 1,
t = 1,…, T, will approximately follow the target distribution p(x)
because σ1 ≈0.

Now we consider learning our score function conditional on cell
types based on scRNA-seq data. For computational stability, we
transform the count data to its log scale and remove the mean
expression level of each cell type. Specifically, let xcount

n be the gene
expression counts corresponding to cell n of cell type k. The trans-
formation is given as xn  log xcount

n + 1
� �� μk , where μk 2 RG is the

mean expression level of cell type k. Later on, we will learn the con-
ditional score function based on the transformed expression level. To
incorporate cell type information, we consider the following optimi-
zation problem:

min
θ

XL
l = 1

λlEpðkÞEpðxjkÞExðlÞ ∼N xðlÞ jx, σ2
l
Ið Þ

sθ xðlÞ,σl , k
� �

� ∇xðlÞ logpσl
xðlÞjx, k
� ���� ���2

2

� 

,

ð9Þ

where the score function sθ xðlÞ, σl , k
� �

explicitly takes cell type
k∈ {1, 2,…, K} as its input. In principle, the score function sθ xðlÞ,σl , k

� �
can be estimated by solving the optimization problem given in
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Equation (9). In practice, however, the learning process often tends to
largely ignore the cell type information because the neural network
will naturally focus on xðlÞ 2 RG rather than the scalar k. To success-
fully incorporate cell type information, our key idea is to embed cell
type information in a vector whose dimension is comparable to x(l).
Therefore, we propose to learn the score function sθ xðlÞ, σl ,μk

� �
which takes the mean expression level of cell type k as input. The
benefits are two-fold. First, μk provides precise information about cell
type k. Second, μk 2 RG has the samedimension of x(l) such that it will
not be ignored. With this key idea, we can design a novel network
architecture for learning the score function sθ xðlÞ,σl ,μk

� �
. The details

of the learning procedure are provided in Supplementary Methods.
The learned score function sθ xðlÞ,σl ,μk

� �
is then used in Gene

expression decomposition step (next section).

Decomposition with a conditional score-based generative model.
Nowwe showhowweobtain gene expressiondecomposition at single-
cell resolution by leveraging the learned score-based generative
model. One of the pertinent challenges for decomposition is the batch
effects between single-cell reference and ST data. If the batch effects
are not appropriately corrected, the decomposition results will not be
satisfactory. Therefore, we adjust the batch effects between ST and
single-cell reference data before we perform gene expression
decomposition. Our batch effect correction includes two steps. Spe-
cifically, in the first step, we adjust for the gene-specific cross-platform
effects using yi = ½yi, 1= expðγ̂1Þ, . . . , yi,G= expðγ̂GÞ� 2 RG, where yi,g are
the observed expression counts of gene g at spot i and γ̂g is the batch
effect of gene g estimated under Equation (3). In the second step, we
account for the difference in sequencing depth by normalizing the
total count of yi to themean of the total transcript counts of individual
cells from single-cell reference data. Next, we showhow to decompose
the normalized yi, which is corrected for batch effect, into single-cell
resolution. Let Xi = xi, 1; . . . ,xi,Mi

h i
be the expression level in the log

scale, where xi,m is the expression level of them-th cell in spot i, andMi

is the number of cells in spot i inferred in the nucleus segmentation
step. Our goal is to decompose gene expression from the spot-level yi
to the single-cell level xi,m.

Let p xjki,m

� �
be the gene expression distribution of cell type ki,m,

where the cell type labels for the cells in spot i, ki = ki, 1, . . . , ki,Mi

n o
are

inferred as in the Cell type identification step. As outlined in the
methods overview, we consider the following probabilistic model for
gene expression decomposition,

yijxi, 1, . . . ,xi,Mi
∼N f xi, 1, . . . ,xi,Mi

� �
, σ2

yI
� �

, xi,m ∼p xijki,m

� �
m= 1, . . . ,Mi

ð10Þ

where f xi, 1, . . . ,xi,Mi

� �
=
PMi

m= 1 exp xi,m +μki,m

� �
� 1

� �
transforms the

log-scale expression level to the count scale. To obtain the decom-
position, we use Langevin dynamics to get samples from the posterior
p Xijyi,ki

� �
,

Xðt + 1Þi =XðtÞi +η∇Xi
logp XðtÞi jyi,ki

� �
+

ffiffiffiffiffiffi
2η

p
εðtÞ,

=XðtÞi +η ∇Xi
logp yijXðtÞi

� �
+∇Xi

logp XðtÞi jki

� �h i
+

ffiffiffiffiffiffi
2η

p
εðtÞ,

ð11Þ

where ∇Xi
logpðyijXðtÞi Þ=∇Xi

ð 1
2σ2

yl
jyi � f ðxðtÞi, 1, . . . ,x

ðtÞ
i,Mi
Þj2Þ and

∇Xi
logpðXðtÞi jkiÞ is given by the learned score function sθ xðlÞ,σl ,μk

� �
.

Similar to Equation (8), we progressively reduce noise level σl
(from l = L to l = 1) and initialize later stage with samples from the

previous stage X(l, t=1) =X(l+1, t=T),

Xðl, t + 1Þ =Xðl, tÞ +η ∇Xi
logp yijXðl, tÞi

� �
+

sθ xðl, tÞi, 1 ,σl ,μki, 1

� �
..
.

sθ xðl, tÞi,Mi
,σl ,μki,Mi

� �

2
66664

3
77775

2
66664

3
77775+

ffiffiffiffiffiffi
2η

p
εðl, tÞ,

ð12Þ

where εðl, tÞ ∼N ð0, IÞ. The obtained samplesX(l, t) at level l = 1, t = 1,…, T,
will be posterior samples from p Xijyi,ki

� �
. By averaging samples from

Langevin dynamics (Equation (12)), we use the posterior means as the
decomposed gene expression levels at single-cell resolution. The
posterior sampling process is summarized in Algorithm 1.

Algorithm 1. Annealed Langevin dynamics for gene expression
decomposition

Require: fσlgLl = 1, fσylgLl = 1,η0,T ,R:
Initialize X(0) =0, Xsum =0
for rep = 1, 2,…, R do

for l = L, L − 1,…, 1 do
η=η0 � σ2

l =σ
2
1 .

for t = 1, 2,…, T do
Draw εðl, tÞ ∼N 0, Ið Þ,

Xðl, tÞ =Xðl, tÞ +η ∇Xi
logp yijXðl, tÞi

� �
+

sθ xðl, tÞi, 1 , σl ,μki, 1

� �
..
.

sθ xðl, tÞi,Mi
,σl ,μki,Mi

� �

2
66664

3
77775

2
66664

3
77775+

ffiffiffiffiffiffi
2η

p
εðl, tÞ,

where∇Xi
logp yijXðtÞi

� �
=∇Xi

1
2σ2

yl

yi � f xðtÞi, 1, . . . ,x
ðtÞ
i,Mi

� ���� ���2
 !

,

f xi, 1, . . . ,xi,Mi

� �
=
XMi

m= 1

exp xi,m +μki,m

� �
� 1

� �
,

end for
X(0) =X(T).

end for
Xsum =Xsum +X(0)

end for
returnXsum/R

SpatialScope for ST data from other platforms
As a unified framework, SpatialScope not only can handle low-
resolution ST data with histological images (e.g., 10x Visium), but
also can serve as efficient analytical tools for spatial data from other
experimental platforms. In this section, we demonstrate that Spa-
tialScope can be applied to perform dropout correction for genes
with low-detection rates in Slide-seq data, and imputation for
unmeasured genes in MERFISH data or other in-situ hybridization-
based ST data.

Sparse genes dropout correction for Slide-seq data. As a high-
resolution approach, the pixel size of Slide-seq can achieve single cell
level (10 μm83) but it may still contain themRNA frommultiple cells14.
Slide-seq data can be highly sparse. About 99.46% entries are zero for
Slide-seq V1 data and 98.35% for Slide-seq V2 data, compared to
about 90% zero counts for 10x Visium data64. The framework of
SpatialScope can also be applied to correct dropouts in Slide-seq
data and recover transcriptome-wide gene expressions at single-cell
resolution.

Because of the high resolution of Slide-seq data and lack of his-
tological images, nucleus segmentation step in dealingwith 10xVisium
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data is not practicable for Slide-seq data. Although the spot size of
Slide-seq (10 μm) already matches the size of a single cell, one spot
may contain fractions of several cells due to the technique limitation.
To demonstrate this, we estimated the number of cell types per Slide-
seq V2 cerebellum spot using the cell type deconvolution results
(Supplementary Fig. 38). In total, 22.0% and 1.6% of spots were pre-
dicted to contain two and three cell types, respectively, consistentwith
previous estimates14. Simply assuming that there is only one cell in
these spots may not be appropriate in this case. Consequently, to
enhance the flexibility of ourmodel andmitigate the risk of overfitting
with regard to cell number estimation, we replace thefirst step nucleus
segmentation by singlet/doublet classification, which assumes that at
most two cell types co-exist within a Slide-seq spot. With this flexible
assumption, we are able to yield amore elucidated and comprehensive
depiction of tissue structures in real data analysis (Supplemen-
tary Fig. 39).

Next, the steps of cell type identification and gene expression
decomposition can be applied similarly as those for 10x Visium data.
The correction of dropout for genes with low detection rate is
achieved in gene expression decomposition based on the same pro-
cedure. Let’s consider the case where a pixel i contains two cells, i.e.,
Mi = 2. In this case, yi is the aggregated gene expression profiles from
two cells, in which the expression levels of some genes are nearly zero.
By the samemodeling principle as that in Equation (10),we canassume
that

yijxi, 1,xi, 2 ∼N f xi, 1,xi, 2

� �
,σ2

yI
� �

,

where f xi, 1,xi, 2

� �
=
Pm= 2

m= 1 exp xi,m +μki,m

� �
� 1

� �
. Because Spatial-

Scope first learns the distribution of gene expressions from the single-
cell reference data, it can output the posterior means of xi,1 and xi,2 by
running Algorithm 1. We then use the posterior means of xi,1 and xi,2 as
the de-noised data, where the dropouts are corrected.

Imputation for in-situ hybridization based ST data. In-situ hybridi-
zation-based ST data can provide localizations of gene expressions at
the cellular level, resulting in single-cell resolution spatial tran-
scriptomics. However, because of the limitation of the indexing
scheme11, 58, 84, the detected spatial transcriptomics by in-situ hybridi-
zation methods tend to have limited throughput in the number of
genes (e.g., tens to hundreds of genes captured by MERFISH58).
Therefore, researchers begin to integrate in-situ hybridization-based
ST data with single-cell reference data to impute the unmeasured
genes, providing more complete spatial transcriptome information
and cellular structures18–20. By learning the distribution of gene
expressions from the single-cell reference data using a score-based
generative model, SpatialScope can achieve accurate gene imputation
as follows.

Suppose that the expression levels of G genes and G0 genes are
measured in the single-cell reference and ST data, respectively. We
assume that the set of G0 genes measured in ST data is a subset of G
genes in the scRNA-seq data. Let yi 2 RG0 be the measured gene
expression counts in ST data after batch effect correction, and xcount

i 2
RG be the true expression at location i, respectively. Without loss of
generality, we assume that the first G0 genes in xcount

i are measured.
Then we have

yi = Imaskx
count
i + ε,

where Imask = IG0
,0

h i
2 RG0 ×G, IG0

is the G0 ×G0 identity matrix, and
ε 2 N 0,σ2

ε I
� �

is the measurement noise. As the score function is esti-
mated in the log scale, we denote xi = log xcount

i + 1
� �� μki

as the log
scale expression, where μki

is the mean expression level of cell type ki.
Now we have yijxi ∼N Imask exp xi +μki

� �
� 1

� �
, σ2

ε I
� �

and
xi ∼p xijki

� �
. To obtain the imputed expression, we can take samples

from posterior p xijyi

� �
based on the Langevin dynamics,

xðt + 1Þi =xðtÞi + η∇xi
logp xijyi

� �
+

ffiffiffiffiffiffi
2η

p
εðtÞ

=xðtÞi + η ∇xi
logp yijxðtÞi

� �
+∇xi

logp xðtÞi jki

� �h i
+

ffiffiffiffiffiffi
2η

p
εðtÞ,

ð13Þ

where ∇xi
logp yijxðtÞi

� �
= 1

σ2
ε
exp xi +μki

� �
� ITmask Imask exp xi +

����
μki
Þ � 1ÞÞÞ and⊙ is element-wise product. Using the learned score

function sθ x, σl ,μk

� �
given by Equation (9), we begin with random

initialization and then run the Langevin dynamics by progressively
reducing noise level σl,

xðl, t + 1Þi =xðl, tÞi + η ∇xi
logp yijxðl, tÞi

� �
+ sθ xðl, tÞi ,σl ,μki

� �h i
+

ffiffiffiffiffiffi
2η

p
εðl, tÞ,

ð14Þ
where the initial point at the later stage is given by the sample from the
previous stage, i.e., x(l, t=1) = x(l+1, t=T). The obtained samples X(l, t) at level
l = 1, t = 1,…, T, will be posterior samples from p xijyi, ki

� �
. By averaging

samples of Langevin dynamics in Equation (14), we use the posterior
mean as the imputed gene expression.

Spatial smoothness constraint
To better demonstrate the effectiveness of spatial smoothness con-
straint imposed by the Potts model, we performed simulations to
assess the performance of cell type identification on six benchmarking
datasets (Supplementary Fig. 4, Dataset 1-6).We varied theparameter ν
in Equation (4) and compared the results with the baseline methods
RCTD and StarDist+RCTD by measuring error rate at single-level or
PCC and RMSE at spot-level (Supplementary Note section 2.9.4).
Notably, by incorporating spatial information within the ν = 10 ~ 50
range, SpatialScope demonstrated substantial improvement in accu-
rately identifying the cell types at each location (Supplementary Fig. 45
and 49). Therefore, we use the hyperparameter ν = 10 as the default
setting. The details of the optimization process are given in Supple-
mentary Methods.

Comparison between SpatialScope and RCTD
Although Step 2: Cell type identification can be considered an
extension of the discrete RCTDmodel, the primary advantage of our
extended discrete model lies in incorporating a spatial smoothness
constraint imposed by the Potts model. This constraint enhances
the accuracy and robustness of cell type identification by con-
sidering the spatial context. Furthermore, Step 3: gene expression
decomposition plays a crucial role in obtaining a spatially resolved
cellular transcriptomic landscape by integrating ST data and single-
cell reference data using deep generative models. These gene
expression profiles are the foundation for understanding and
exploring the underlying cellular processes and interactions.We can
facilitate the interpretation of cellular downstream analyses,
such as cell-cell interactions, localization, and spatial trajectories,
only after obtaining gene expression profiles at the cellular level.
Overall, SpatialScope and RCTD are quite different methods to
analyze ST data, and we provide a detailed between SpatialScope
and RCTD in terms of method utility, model, algorithm and down-
stream applications in supplementary (Table S2, Supplementary
Note section 2.8).

Robustness of unbalanced cell types in single-cell reference data
and unbalanced cell numbers within spots
In practical applications, it is a common situation that there is a large
variation in the proportions of different cell types within single-cell
reference data, as well as imbalanced cell numbers within spots. For
instance, the number of cells can range from tens to thousands across
different cell types. In tissues with high cell density, the cell counts
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within spots may range from a few to a dozen. To evaluate the
robustness of SpatialScope in handling unbalanced cell types within
single-cell reference data, we conducted a comparative analysis of
gene expression decomposition performance across different cell
types using Dataset 1. Our results demonstrate that SpatialScope
exhibits robust decomposition performance despite unbalanced cell
types (SupplementaryNote section2.9.9, Supplementary Fig. 60a).We
also found that the decomposition accuracy is more related to the
heterogeneity within a cell type rather than cell type proportion in the
single cell reference data (Supplementary Fig. 60b, c). Subsequently,
we quantitatively assessed gene expression decomposition perfor-
mance by separately evaluating spots with different cell numbers and
comparing SpatialScope with Tangram and CytoSPACE (Supplemen-
tary Note section 2.9.10, Supplementary Figs. 61, 62). As anticipated,
the performance of all compared methods, as measured by cosine
similarity, declined with an increasing number of cells. This can be
attributed to introducing more components in a spot, which intro-
duces greater uncertainty in the decomposition process. However, it is
crucial to highlight that our method, SpatialScope, consistently
achieved the highest performance across various scenarios of cell
numbers, UMI subsample rates, and whether the reference data was
paired or not, in the construction of simulated spots.

Hyperparameters sensitivity analysis
One of the unique features and strengths of SpatialScope lies in its
utilization of a score-based generative model to accurately approx-
imate the distribution of gene expressions from the scRNA-seq refer-
ence data. Then SpatialScope ran the Langevin dynamics to perform
posterior sampling for gene expression decomposition at each spot.
We tested several key hyperparameters in Step 3: Gene expression
decomposition, including the hyperparameters epoch, L, T, and σyl
(Supplementary Note section 2.9.7).We use the score function at 7500
training epoch for all data analysis in themain text.We also investigate
the performance of SpatialScope under score-based generative mod-
els with different training epochs and recommend that the number of
epochs ranges from 5000 to 10,000 due to the trade-off between the
performance and the time cost (Supplementary Fig. 56). The para-
meter L represent the number of noise level (Equation (7)), T is the
number of sampling steps per noise scale (Equation (8)), and σyl
(Equation (11)) is related to the distribution we assign to the count-
scale spot level gene expression profile y∣x1, x2,…, xM at each noise
level, where xm,m = 1, 2,…,M represents the true count-scale gene
expression levels of cells in the spot, and M is the number of cells in
that spot. Intuitively, themore extensive the grid of noise levels fσlgLl = 1,
the better for learning (i.e., the larger L, the better). For the sampling
step T, similarly, the larger T, the better. However, the larger L and T
mean more expensive computational resources. There is a trade-off
between the performance and computational cost. We have deter-
mined that SpatialScope is robust to a wide range of parameter set-
tings (Supplementary Figs. 57 and 58). Therefore, we suggested the
default setting of SpatialScope as L = 232, T = 5 according to the
dimension of single-cell gene expression profiles, and we use the
default setting σyl =

ffiffiffiffiffi
σl
p

for all real data analysis.

Real data analysis
In this study, we evaluated our SpatialScope on five publicly available
spatial transcriptomics datasets.

Visium human heart dataset. The human heart sample was from
BioIVT Asterand and profiled by 10x Visium that measured the whole
transcriptome within 55 μm diameter spots. After removing spots
that did not map to the tissue region or with total UMI counts less
than 100, 3813 spots were left for subsequent analysis. We then
focused on an ROI of 331 spots that shows a spatial pattern char-
acterized by vascular cells. Through the matched H&E image, we

annotated the main vascular structure in the center of ROI that
covers 18 tissue spots. For cell type identification, we used a paired
human heart snRNA-seq atlas that consists of 10 major cell types,
ranging from widespread cardiomyocytes to less common adipo-
cytes and neuronal cells40. Following the standard pre-processing
procedure, we normalized total counts per cell with median tran-
script count, then performed log(1 + x) transformation and selected
the top 1000most highly variable genes and 50 topmarker genes for
each cell type as training genes. For gene expression decomposition,
we first included an additional 876 ligands/receptors provided by
Giotto10 into the training genes for the detection of cellular com-
munication in the downstream analysis. Then we applied the deep
generative model to learn the expression distribution of the training
genes in the snRNA-seq reference data. Finally, by leveraging the
learned single-cell gene expression distribution, we performed the
gene expression decomposition for the low-resolution Visium data
and generated the single-cell resolved spatial transcriptomics for
human heart.

Visiummousebrain cortexdataset. The twoadjacent sagittal slices of
mousebrain anterior tissuewere fromBioIVTAsterand andprofiled by
10x Visium. After removing spots that did notmap to the tissue region,
2695 and 2825 spatial spots from the two slices were left for sub-
sequent analysis. We first filtered out spatial locations that have less
than 100 total read counts. Then, using the matched H&E-stained
histological images, we segmented the cerebral cortex regions,
resulting in 812 and 794 cortex spots left in slice 1 and slice 2,
respectively. Finally, we used the recently developed tool, PASTE34, to
compute a pairwise slice alignment between these two segmented
cortex slices, which allowed us to construct an aligned 3Dmouse brain
cortex ST data. We used mouse brain cortical scRNA-seq data as a
reference33. This dataset was collected from the mouse Primary visual
(VISp) area using the Smart-seq2 technology and contains 14,249 cells
across 23 cell types. Similarly, we first performed total counts nor-
malization and logð1 + xÞ transformation, and then selected the top
1000 most highly variable genes and 50 top marker genes from each
cell type as training genes. In cell type identification, we incorporated
the spatial information in 3D space and thus canproducemore reliable
spatial priors. Next, in the gene expression decomposition task, we
included ligands/receptors and decomposed the gene expressions
from the spot-level into the single-cell level using the learned gene
expression distribution.

Slide-seq v2 mouse cerebellum dataset. The mouse cerebellum
dataset was profiled by Slide-seq V2 and measured with the whole
transcriptome within 10 μmdiameter spots14. This dataset consists of
gene expression measurements for 23,096 genes and 11,626 spatial
spots. We filtered out genes that have zero counts across all spots
and filtered out spots with total UMI counts less than 100, leading to
20,141 genes and 8952 spots for subsequent analysis. As the paired
histological images are not available for Slide-seq data, we replaced
the first step, Nucleus segmentation, with Singlet/Doublet classifi-
cation inspired by RCTD, which assumes that there are at most two
cells per spot as the spot size (10 μm) almost matches the single cell
size. Overall, we detected 10975 cells, including 6929 spots con-
taining one cell and 2023 spots containing two cells. Following RCTD,
we used a paired mouse cerebellum snRNA-seq data as the
reference85. This dataset contains 24,387 genes and 15,609 cells from
19 cell types. Similarly, we first performed total counts normalization
and logð1 + xÞ transformation, and then selected the top 1000 most
highly variable genes and 50 topmarker genes from each cell type as
training genes in the cell type identification task. Finally, we gener-
ated the corrected high-throughput single-cell resolution Slide-seq
data by leveraging the gene expression distribution learned from the
snRNA-seq reference.
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MERFISHMOpdataset. Themouse brainMOpdatasetwasprofiled by
the image-based ST approach, MERFISH, with single-cell resolution.
This dataset comprised of 254 genes and about 300,000 single cells
located in 64mouse brain MOp slices from 12 different samples58. As a
concrete example demonstrated in MERFISH paper, we used the slice,
mouse1_slice180, from mouse1_sample4 to evaluate the imputation
performance of SpatialScope and the compared methods. We used a
paired droplet-based snRNA-seq profiles collected from mouse MOp
as the reference, which measures the expression of 26,431 cells across
20 cell types18. Following the standard pre-processing procedure, we
normalized total counts per cell with median transcript count and
performed and log(1 + x) transformation. Using the 252 genes that
overlapped with snRNA-seq reference data as training genes, we first
identified the cell type label for each cell in theMERFISH dataset. Then
we applied the deep generativemodel to learn the distribution of gene
expressions in the snRNA-seq reference data. Finally, using the learned
high-throughput gene expressions distribution, we imputed the gene
expressions of unmeasured genes inMERFISH dataset by conditioning
on the observed expressions of 252 overlapped genes.

Downstream analysis
Cell-cell interactions. Although ST is believed to be the best suited
technology to elucidate cellular/molecular interactions52, current ST
dataset is still limited by either low resolution or low capture rate.
Fortunately, the efficient in silico generation of single-cell resolution
and high throughput spatially resolved transcriptomics by Spatial-
Scope perfectly solved this issue. As a recently developed tool for
detecting cellular communications mediated by ligand-receptor
interactions, Giotto was applied on SpatialScope outputs following
the protocol (https://rubd.github.io/Giotto_site/articles/tut14_giotto_
signaling.html). Specifically, Giotto first ran pre-processing to remove
low-quality genes/cells and create a spatial network connecting single
cells using Delaunay triangulation, then ran ’spatCellCellcom’ function
to analyze the ligand-receptor signaling with spatial_network_name
parameters being Delaunay_network. Finally, we selected top and
reliable ligand-receptor signaling with the following threshold:
p.adj < 0.25, abs(log2fc) > 0.1, lig_nr > 10, rec_nr > 10, lig_expr > 0.5 &
rec_expr > 0.5. For rawSlide-seqdata, wedetected cell-cell interactions
by simply assuming each spot is a single cell whose cell type is deter-
mined by the majority proportion. Then the following ligand-receptor
signaling analysis by Giotto is identical.

Cell-type specific spatially DE genes. We ran C-SIDE to detect cell-
type specific spatiallyDE genes on theMERFISHdataset using function:
run.CSIDE.nonparametric. We followed the guidelines (https://raw.
githack.com/dmcable/spacexr/master/vignettes/merfish_
nonparametric.html) with parameters: gene_threshold = .001, cell_ty-
pe_threshold = 10, and fdr = 0.2.

Spatially DE genes. Compared to C-SIDE, SPARK-X was developed to
consider genes that exhibit spatiallyDEpatterns in a global perspective
instead of restricting to specific cell types. We applied SPARK-X to
MERFISH dataset using the default parameters following the instruc-
tion (https://xzhoulab.github.io/SPARK/03_experiments/). As sug-
gested by SPARK-X, we treated cell type labels as covariates to exclude
the spatially DE genes explained by spatial distribution of cell types.

Compared methods
For cell type identification task, we compared SpatialScope with three
single-cell alignment (Tangram, CytoSPACE and StarDist+RCTD) and
ten deconvolution (SpatialDWLS, RCTD, Cell2location, CARD,
SpaOTsc, novoSpaRc, DestVI, STRIDE, SPOTlight, and DSTG)methods.

Tangram. We followed the instructions of Tangram: https://tangram-
sc.readthedocs.io/en/latest. In order to constrain the number of

mapped single cell profiles, we set the mode parameters as con-
strained, target_count=the total number of segmented cells, and den-
sity_prior=fraction of cells per spot.

CytoSPACE.We followed theguidelines onGitHub repository: https://
github.com/digitalcytometry/cytospace.Wefirst usedSeurat to obtain
an overall cell type composition across all spatial spots, then the
estimated fractional composition of each cell type was used as input
for alignment.

StarDist+RCTD. We proposed a discrete version of RCTD model,
StarDist+RCTD, as a baseline method in the comparison. StarDist
+RCTD first uses StarDist to detect the cell number in each spot, the
same as SpatialScope. Then using the information from StarDist, it
directly discretizes the cell type proportion produced by RCTD to get
the distribution of single-cell cell type label (see Supplementary Note
section 2.9.3).

SpatialDWLS. We followed the instructions on the SpatialDWLS web-
site: https://rubd.github.io/Giotto_site/articles/tut7_giotto_
enrichment.html. We set the parameter as n_cell = 20.

RCTD. We followed the guidelines on the RCTD GitHub repository:
https://github.com/dmcable/spacexr. We set the doublet_mode para-
meter being full.

Cell2location. We followed the guidelines on the Cell2locationGithub
repository: https://github.com/BayraktarLab/cell2location. The single-
cell regression model was trained with parameters max_epochs = 250,
batch_size=2500, and lr = 0.002. The cell2location model was trained
with parameters max_epochs = 30,000.

CARD.We followed the guidelines and used the recommendeddefault
parameter settingon theCARDGitHub repository: https://github.com/
YingMa0107/CARD.

SpaOTsc. We followed the guidelines on the SpaOTsc GitHub repo-
sitory: https://github.com/zcang/SpaOTsc. We set alpha=0, rho=1.0,
epsilon=1.0.

novoSpaRc. We followed the guidelines and used the recommended
default parameter setting on the novoSpaRc GitHub repository:
https://github.com/rajewsky-lab/novosparc.

DestVI. We followed the guidelines on the DestVI GitHub repository:
https://github.com/scverse/scvi-tools. We set max_epochs=250,
lr=0.0001.

STRIDE. We followed the guidelines on the STRIDE GitHub repository:
https://github.com/DongqingSun96/STRIDE. We set –gene-use=All,
–st-scale-factor=300, –sc-scale-factor=300.

SPOTlight. We followed the guidelines and used the recommended
default parameter setting on the SPOTlight GitHub repository: https://
github.com/MarcElosua/SPOTlight.

DSTG. We followed the guidelines and used the recommended default
parameter setting on theDSTGGitHub repository: https://github.com/
Su-informatics-lab/DSTG.

For gene expression decomposition task, we only compared
SpatialScope with the three single-cell alignment methods.

Tangram. According to the instructions, Tangram only provides a
prediction of spot-level gene expression using the mapped single cell
profiles through the function project_genes. To make it comparable
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with our SpatialScope in the task of gene expression decomposition,
we provided a script that takes the Tangram output as input and
generates the single-cell resolution spatial transcriptomics data. Spe-
cifically, with the single cells to spatial spotsmappingmatrix output by
Tangram,wefirst obtained themost probable spot that each single cell
belongs to. Then we removed the noise cells withmapping probability
less than 0.5, and grouped the remaining cells by spot ids. Finally, for
each spot, we regarded the grouped cells aremapped single cells from
scRNA-seq reference and used their gene expressions as the decom-
posed single-cell level gene expression profiles.

CytoSPACE. CytoSPACE provides the mapped single cell ids from
scRNA-seq reference for each spatial spot, we therefore directly used
the mapped single cell’s gene expressions as the decomposed gene
expression profiles.

StarDist+RCTD. RCTDuses themean expression level of each cell type
for cell type deconvolution. Therefore, we used the mean gene
expression corresponding to the identified cell type as the decom-
posed single-cell expression for each individual cell. For example, if a
cell is identified as cell type A by StarDist+RCTD, thenwe use themean
expression level of cell type A in the scRNA-seq reference as the
decomposed single-cell expression for this cell.

For gene expression imputation task, we compared SpatialScope
with Tangram, gimVI, SpaGE, SpaOTsc, novoSpaRc, stPlus and Seurat.

Tangram. We followed the instructions of Tangram: https://tangram-
sc.readthedocs.io/en/latest. We used the function project_genes to
generate the new spatial data with the whole transcriptome using the
mapped single cell.

gimVI. We followed the guidelines on the gimVI website: https://docs.
scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html. We
used the model.get_imputed_values function with parameter normal-
ized = False to impute the unmeasured gene expressions.

SpaGE. We followed the instructions on the GitHub repository of
SpaGE: https://github.com/tabdelaal/SpaGE. We set the parameter
n_pv = Ngene/2 if the number of genes used for integration was greater
than 50.

SpaOTsc. We followed the guidelines on the SpaOTsc GitHub repo-
sitory: https://github.com/zcang/SpaOTsc. We used the gamma_map-
ping mapping matrix to multiply the scRNA-seq gene expression
matrix to obtain the imputed unmeasured gene expressions.

novoSpaRc. We followed the guidelines and used the recommended
default parameter setting on the novoSpaRc GitHub repository:
https://github.com/rajewsky-lab/novosparc.

stPlus.We followed the guidelines andused the recommendeddefault
parameter setting on the stPlusGitHub repository: https://github.com/
xy-chen16/stPlus.

Seurat. We followed the instructions of Seurat: https://satijalab.org/
seurat/articles/get_started.html. We used the function, TransferData,
to generate the new spatial data with the whole transcriptome using
thescRNA-seq as reference.

Statistics and reproducibility
R (version 4.1.1) and Python 3.9 were used for all statistical analyses.
No statistical method was used to predetermine sample size, Spa-
tialScope was evaluated across four publicly available spatially
resolved transcriptomics datasets in real data applications using as
many samples as possible in these datasets, including human heart

(spot sample size = 3813) and mouse brain cortex data (spot sample
size = 1606) from 10x Visium datasets, mouse cerebellum data from
Slide-seq dataset (spot sample size = 8952), mouse MOp data from
MERFISH dataset (spot sample size = 5551). Following standard
quality control practice, we retained genes with non-zero expression
level on at least 10 spots and retained spots with non-zero expression
for at least 50 genes for analysis, in order to avoid false positives. All
data are publicly available and we do not perform any randomized
controlled trial, so randomization and blinding are not relevant to
this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For the benchmarking datasets, the MERFISH MOp data were down-
loaded from the brain image library (https://doi.org/10.35077/g.8), the
MERFISH Mouse brain data were downloaded from the project page
(https://cellxgene.cziscience.com/collections/31937775-0602-4e52-
a799-b6acdd2bac2e), the STARmap PLUS Hippocampus data were
downloaded from the single cell portal project (https://singlecell.
broadinstitute.org/single_cell/study/SCP1375). For real data analysis,
the 10x human heart and mouse brain cortex datasets were down-
loaded from the 10x official website (https://www.10xgenomics.com/
resources/datasets), and the paired human heart and mouse brain
cortex scRNA-seq reference are available from the project page
(https://www.heartcellatlas.org/v1.html) and (https://celltypes.brain-
map.org/rnaseq/mouse/v1-alm), respectively. Both Mouse cere-
bellum Slide-seq V2 dataset and the paired scRNA-seq reference were
downloaded from the single cell portal project (https://singlecell.
broadinstitute.org/single_cell/study/SCP948). Source data are pro-
vided with this paper.

Code availability
The SpatialScope software package and source code are available in
Github (https://github.com/YangLabHKUST/SpatialScope)86. We also
uploaded all scripts and materials to reproduce all the analyses at the
same website.

References
1. Wu, A. R. et al. Quantitative assessment of single-cell rna-sequen-

cing methods. Nat. Methods 11, 41–46 (2014).
2. Ezran, C. et al. Tabula microcebus: A transcriptomic cell atlas of

mouse lemur, an emerging primate model organism. Preprint at
https://www.biorxiv.org/content/10.1101/2021.12.12.469460v1 (2021).

3. Ezran, C. et al. Mouse lemur transcriptomic atlas elucidates primate
genes, physiology, disease, and evolution. Preprint at https://www.
biorxiv.org/content/10.1101/2022.08.06.503035v1 (2022).

4. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-
cell and spatial transcriptomics to elucidate intercellular tissue
dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

5. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue archi-
tecture using spatial transcriptomics. Nature 596, 211–220 (2021).

6. Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved tran-
scriptomics adds a new dimension to genomics. Nat. Methods 18,
15–18 (2021).

7. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-
cellular resolution with slide-seqv2. Nat. Biotechnol. 39,
313–319 (2021).

8. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse
organogenesis using dna nanoball-patterned arrays. Cell 185,
1777–1792 (2022).

9. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat.
Methods 19, 534–546 (2022).

Article https://doi.org/10.1038/s41467-023-43629-w

Nature Communications |         (2023) 14:7848 19

https://tangram-sc.readthedocs.io/en/latest
https://tangram-sc.readthedocs.io/en/latest
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://github.com/tabdelaal/SpaGE
https://github.com/zcang/SpaOTsc
https://github.com/rajewsky-lab/novosparc
https://github.com/xy-chen16/stPlus
https://github.com/xy-chen16/stPlus
https://satijalab.org/seurat/articles/get_started.html
https://satijalab.org/seurat/articles/get_started.html
https://doi.org/10.35077/g.8
https://cellxgene.cziscience.com/collections/31937775-0602-4e52-a799-b6acdd2bac2e
https://cellxgene.cziscience.com/collections/31937775-0602-4e52-a799-b6acdd2bac2e
https://singlecell.broadinstitute.org/single_cell/study/SCP1375
https://singlecell.broadinstitute.org/single_cell/study/SCP1375
https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
https://www.heartcellatlas.org/v1.html
https://celltypes.brain-map.org/rnaseq/mouse/v1-alm
https://celltypes.brain-map.org/rnaseq/mouse/v1-alm
https://singlecell.broadinstitute.org/single_cell/study/SCP948
https://singlecell.broadinstitute.org/single_cell/study/SCP948
https://github.com/YangLabHKUST/SpatialScope
https://www.biorxiv.org/content/10.1101/2021.12.12.469460v1
https://www.biorxiv.org/content/10.1101/2022.08.06.503035v1
https://www.biorxiv.org/content/10.1101/2022.08.06.503035v1


10. Dries, R. et al. Giotto: a toolbox for integrative analysis and
visualization of spatial expression data. Genome Biol. 22,
1–31 (2021).

11. Shah, S. et al. Dynamics and spatial genomics of the nascent tran-
scriptome by intron seqfish. Cell 174, 363–376 (2018).

12. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell
profiling of the hypothalamic preoptic region. Science 362,
eaau5324 (2018).

13. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662–670 (2022).

14. Cable, D. M. et al. Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

15. Kleshchevnikov, V. et al. Cell2locationmaps fine-grained cell types
in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

16. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for
spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022).

17. Dong, R. & Yuan, Guo-Cheng Spatialdwls: accurate deconvolution
of spatial transcriptomic data. Genome Biol. 22, 1–10 (2021).

18. Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomes with tangram. Nat. Methods 18,
1352–1362 (2021).

19. Lopez, Romain et al. A joint model of unpaired data from scrna-seq
and spatial transcriptomics for imputing missing gene expression
measurements. arXiv preprint arXiv:1905.02269, (2019).

20. Abdelaal, T., Mourragui, S., Mahfouz, A. & Reinders, MarcelJ. T.
Spage: spatial gene enhancement using scrna-seq. Nucleic Acids
Res. 48, e107–e107 (2020).

21. Vahid, Milad R et al. High-resolution alignment of single-cell and
spatial transcriptomes with cytospace. Nat. Biotechnol. 41,
1543–1548 (2023).

22. Chao, Y. et al. Organoid-based single-cell spatiotemporal gene
expression landscape of human embryonic development and
hematopoiesis. Signal Transduct Target Ther 8, 230 (2023).

23. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilisticmodels.
Adv. Neural Inform. Process. Syst. 33, 6840–6851 (2020).

24. Song, Y., & Ermon, S. Generative modeling by estimating gradients
of the data distribution. Adv. Neural Inform. Process. Syst. 33,
11895–11907 (2019).

25. Chen, N., et al. Wavegrad: Estimating gradients for waveform
generation. arXiv preprint arXiv:2009.00713, (2020).

26. Welling, M., & Teh, YeeW. Bayesian learning via stochastic gradient
langevin dynamics. In Proceedings of the 28th international con-
ference on machine learning (ICML-11), 681–688. (Citeseer, 2011).

27. Cang, Z. & Nie, Q. Inferring spatial and signaling relationships
between cells from single cell transcriptomic data. Nat. Commun.
11, 2084 (2020).

28. Moriel, N. et al. Novosparc: flexible spatial reconstruction of single-
cell gene expression with optimal transport. Nat. Protoc. 16,
4177–4200 (2021).

29. Lopez, R. et al. Destvi identifies continuums of cell types in spatial
transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

30. Sun, D., Liu, Z., Li, T., Wu, Q. & Wang, C. Stride: accurately
decomposing and integrating spatial transcriptomics using single-
cell rna sequencing. Nucleic Acids Res. 50, e42–e42 (2022).

31. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. Spotlight:
seeded nmf regression to deconvolute spatial transcriptomics
spots with single-cell transcriptomes. Nucleic Acids Res. 49,
e50–e50 (2021).

32. Song, Q. & Su, J. Dstg: deconvoluting spatial transcriptomics data
through graph-based artificial intelligence. Brief. Bioinform. 22,
bbaa414 (2021).

33. Tasic, B. et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563, 72–78 (2018).

34. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and
integration of spatial transcriptomics data. Nat. Methods 19,
567–575 (2022).

35. Zhou, Y. et al. Metascape provides a biologist-oriented resource for
the analysis of systems-level datasets. Nat. Commun. 10,
1–10 (2019).

36. Mei, L. & Nave, Klaus-Armin Neuregulin-erbb signaling in the ner-
vous system and neuropsychiatric diseases. Neuron 83,
27–49 (2014).

37. Luan, W. et al. Microglia impede oligodendrocyte generation in
aged brain. J. Inflamm. Res. 14, 6813 (2021).

38. Johnson, G. C., Parsons, R., May, V. & Hammack, S. E. The role of
pituitary adenylate cyclase-activating polypeptide (pacap) signal-
ing in the hippocampal dentate gyrus. Front. Cell. Neurosci. 14,
111 (2020).

39. Gerstmann, K., & Zimmer, G. The role of the eph/ephrin family
during cortical development and cerebral malformations. Med.
Res. Arch. 6, 3 (2018).

40. Litviňuková, M. et al. Cells of the adult human heart. Nature 588,
466–472 (2020).

41. Genomics, 10x. 10xGennomics Visium.HumanHeart. https://www.
10xgenomics.com/resources/datasets/human-heart-1-standard-1-
1-0. Accessed: 2022-02-25.

42. Vanlandewijck, M. et al. Amolecular atlas of cell types and zonation
in the brain vasculature. Nature 554, 475–480 (2018).

43. Sweeney, M. & Foldes, G. It takes two: endothelial-perivascular cell
cross-talk in vascular development and disease. Front. Cardiovasc.
Med. 5, 154 (2018).

44. Manderfield, L. J. et al. Notch activation of jagged1 contributes to
the assembly of the arterial wall. Circulation 125, 314–323 (2012).

45. Madjene, C., Boutigny, A., Bouton, Marie-Christine, Arocas, V. &
Richard, B. Protease nexin-1 in the cardiovascular system: Where-
fore art thou? Front. Cardiovasc. Med. 8, 652852 (2021).

46. Bouton, Marie-Christine et al. Emerging role of serpine2/protease
nexin-1 in hemostasis and vascular biology. Blood 119,
2452–2457 (2012).

47. Wang, J. et al. Rtn4/nogo-receptor binding to bai adhesion-gpcrs
regulates neuronal development. Cell 184, 5869–5885 (2021).

48. Karlsson, M. et al. A single–cell type transcriptomicsmap of human
tissues. Sci. Adv. 7, eabh2169 (2021).

49. Mi, S. et al. Lingo-1 is a component of the nogo-66 receptor/
p75 signaling complex. Nat. Neurosci. 7, 221–228 (2004).

50. Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. P75
interactswith the nogo receptor as a co-receptor for nogo,magand
omgp. Nature 420, 74–78 (2002).

51. Acevedo, L. et al. A new role for nogo as a regulator of vascular
remodeling. Nat. Med. 10, 382–388 (2004).

52. Tian, L., Chen, F.,Macosko, & Evan Z. The expanding vistas of spatial
transcriptomics. Nat. Biotechnol. 41, 773–782 (2023).

53. Prestori, F., Mapelli, L. & D’Angelo, E. Diverse neuron properties and
complex network dynamics in the cerebellar cortical inhibitory
circuit. Front. Mol. Neurosci. 12, 267 (2019).

54. Brown, A. M. et al. Molecular layer interneurons shape the spike
activity of cerebellar purkinje cells. Sci. Rep. 9, 1–19 (2019).

55. Liu, B. et al. Glio-andneuro-protection by prosaposin ismediatedby
orphan g-protein coupled receptors gpr37l1 and gpr37. Glia 66,
2414–2426 (2018).

56. Taniguchi, M. et al. The expression of prosaposin and its receptors,
grp37 and gpr37l1, are increased in the developing dorsal root
ganglion. Plos One 16, e0255958 (2021).

57. Lee, H., Pan, C., Goberdhan, S., Young, J. E. & Young-Pearse, T.
Elucidating the role of sorl1 as an apoe receptor using ipsc-derived
astrocytes: Molecular and cell biology/stem cells, ips cells. Alz-
heimer’s & Dementia 16, e043860 (2020).

Article https://doi.org/10.1038/s41467-023-43629-w

Nature Communications |         (2023) 14:7848 20

https://www.10xgenomics.com/resources/datasets/human-heart-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/human-heart-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/human-heart-1-standard-1-1-0


58. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary
motor cortex by merfish. Nature 598, 137–143 (2021).

59. Shengquan, C., Boheng, Z., Xiaoyang, C., Xuegong, Z. & Rui, J.
stplus: a reference-basedmethod for the accurate enhancement of
spatial transcriptomics. Bioinformatics 37, i299–i307 (2021).

60. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902 (2019).

61. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult
mouse brain. Nature 445, 168–176 (2007).

62. Cable, D. M. et al. Cell type-specific inference of differential
expression in spatial transcriptomics. Nat. Methods 19,
1076–1087 (2022).

63. Gong, S. et al. Polymorphisms within ryr3 gene are associated with
risk and age at onset of hypertension, diabetes, and alzheimer’s
disease. Am. J. Hypertens. 31, 818–826 (2018).

64. Zhu, J., Sun, S. & Zhou, X. Spark-x: non-parametric modeling
enables scalable and robust detection of spatial expression pat-
terns for large spatial transcriptomic studies. Genome Biol. 22,
1–25 (2021).

65. Sternberg, P. W. et al. Harmonizing model organism data in the
alliance of genome resources. Genetics 220, iyac022 (2022).

66. Wu, Yi-Wen et al. Lingo2 variants associated with essential tremor
and parkinson’s disease. Hum. Genet. 129, 611–615 (2011).

67. Lo, Min-Tzu et al. Modeling prior information of common genetic
variants improvesgenediscovery for neuroticism.Hum.Mol.Genet.
26, 4530–4539 (2017).

68. Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, Hong-Bin Cell clustering for
spatial transcriptomics data with graph neural networks. Nat.
Comput. Sci. 2, 399–408 (2022).

69. Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular
spatiotemporal organization of cells with spaceflow.Nat. Commun.
13, 4076 (2022).

70. Dong, K. & Zhang, S. Deciphering spatial domains from spatially
resolved transcriptomics with an adaptive graph attention auto-
encoder. Nat. Commun. 13, 1739 (2022).

71. Zhou, X., Dong, K., & Zhang, S. Integrating spatial transcriptomics
data across different conditions, technologies, and developmental
stages. Nat. Comput. Sci. 3, 894–906 (2023).

72. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., &Ommer, B. High-
resolution image synthesis with latent diffusion models. IEEE/CVF
Conference on Computer Vision and Pattern Recognition(CVPR),
New Orleans, LA, USA, 10684–10695 (2022).

73. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J.
Diffusion pseudotime robustly reconstructs lineage branching.Nat.
Methods 13, 845–848 (2016).

74. Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with
trajectory inference through a topology preserving map of single
cells. Genome Biol. 20, 1–9 (2019).

75. Schmidt, U., Weigert, M., Broaddus, Co., & Myers, G. Cell detection
with star-convex polygons. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. 265–273.
(Springer, 2018).

76. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a
generalist algorithm for cellular segmentation. Nat. Methods 18,
100–106 (2021).

77. Petukhov, V. et al. Cell segmentation in imaging-based spatial
transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

78. Bannon, D. et al. Deepcell kiosk: scaling deep learning–enabled
cellular image analysis with kubernetes. Nat. Methods 18,
43–45 (2021).

79. Yang, Y. et al. Sc-meb: spatial clustering with hidden markov ran-
dom field using empirical bayes. Brief. Bioinform. 23,
bbab466 (2022).

80. Dhariwal, P. & Nichol, A. Diffusion models beat gans on image
synthesis. Adv. Neural Inform. Process. Syst. 34, 8780–8794 (2021).

81. Song, Y. & Ermon, S. Improved techniques for training score-based
generative models. Adv. Neural Inform. Process. Syst. 33,
12438–12448 (2020).

82. Nichol, Alexander Q., & Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on Machine
Learning. 8162–8171. (PMLR, 2021).

83. Rodriques, S. G. et al. Slide-seq: A scalable technology for mea-
suring genome-wide expression at high spatial resolution. Science
363, 1463–1467 (2019).

84. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-
cell transcriptional states. Science 361, eaat5691 (2018).

85. Kozareva, V. et al. A transcriptomic atlas ofmouse cerebellar cortex
comprehensively defines cell types. Nature 598, 214–219 (2021).

86. Wan, Xiaomeng et al. SpatialScope: Integrating spatial and
single-cell transcriptomics data using deep generative models
with SpatialScope. Zenodo, https://zenodo.org/record/
8437148 (2023).

Acknowledgements
We acknowledge the following grants: Hong Kong Research Grant
Council grants nos. 16301419, 16308120, 16307221 and 16307322, Hong
Kong University of Science and Technology Startup Grants R9405 and
Z0428 from the Big Data Institute, Guangdong-Hong Kong-Macao Joint
Laboratory grant no. 2020B1212030001 and the RGC Collaborative
Research Fund grant no. C6021-19EF to C.Y.; Shenzhen Science and
Technology Program JCYJ20220818103001002), and the Guangdong
Provincial Key Laboratoryof BigDataComputing, TheChineseUniversity
ofHongKong, Shenzhen toXiangW.; ShenzhenResearch Institute of Big
Data Internal Project J00220230008 to J.X.; Chinese University of Hong
Kong startup grant (4930181), the Chinese University of Hong Kong
Science Faculty’s Collaborative Research Impact Matching Scheme
(CRIMS 4620033), and Hong Kong Research Grant Council (24301419,
14301120) to Z.L.; Hong Kong Research Grant Council grant no.
16209820, the Innovation and Technology Commission (ITCPD/17-9), Lo
Ka Chung Foundation through the Hong Kong Epigenomics Project,
Chau Hoi Shuen Foundation, the SpatioTemporal Omics Consortium
(STOC) and the STOmics Grant Program to A.R.W.

Author contributions
XiaomengW. and J.X. conceived and designed the study. XiaomengW.,
J.X., Z.L. and C.Y. developed the algorithm of SpatialScope. S.S.T.T
interpreted the resultswith support fromA.R.W.; XiaomengW., J.X., Z.L.,
A.R.W. andC.Ywrote themanuscript.M.C., R.S., Y.W., XiangW.provided
critical feedback during the study and helped revise the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43629-w.

Correspondence and requests for materials should be addressed to
Zhixiang Lin, Angela Ruohao Wu or Can Yang.

Peer review information Nature Communications thanks Qinghua Jiang
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-43629-w

Nature Communications |         (2023) 14:7848 21

https://zenodo.org/record/8437148
https://zenodo.org/record/8437148
https://doi.org/10.1038/s41467-023-43629-w
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43629-w

Nature Communications |         (2023) 14:7848 22

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Integrating spatial and single-cell transcriptomics�data using deep generative�models with SpatialScope
	Results
	Overview of the SpatialScope�method
	A benchmarking study on cell type identification and gene expression decomposition
	SpatialScope enables the integration of multiple slices and interpretation of cell-cell interactions by leveraging single-cell resolution gene expression profiles
	SpatialScope enables high resolution identification of cell types and candidate pathways for cellular communication in human heart�tissue
	SpatialScope enables accurate correction of dropouts in spot-level ST�data
	SpatialScope accurately imputes unmeasured genes on single molecule imaging-based ST dataset to enable global differential gene expression analysis

	Discussion
	Methods
	Nucleus segmentation
	Cell type identification
	Gene expression decomposition
	Learning conditional score-based generative models from single-cell reference�data
	Decomposition with a conditional score-based generative�model
	SpatialScope for ST data from other platforms
	Sparse genes dropout correction for Slide-seq�data
	Imputation for in-situ hybridization based ST�data
	Spatial smoothness constraint
	Comparison between SpatialScope and�RCTD
	Robustness of unbalanced cell types in single-cell reference data and unbalanced cell numbers within�spots
	Hyperparameters sensitivity analysis
	Real data analysis
	Visium human heart dataset
	Visium mouse brain cortex dataset
	Slide-seq v2 mouse cerebellum dataset
	MERFISH MOp dataset
	Downstream analysis
	Cell-cell interactions
	Cell-type specific spatially DE�genes
	Spatially DE�genes
	Compared methods
	Tangram
	CytoSPACE
	StarDist+RCTD
	SpatialDWLS
	RCTD
	Cell2location
	CARD
	SpaOTsc
	novoSpaRc
	DestVI
	STRIDE
	SPOTlight
	DSTG
	Tangram
	CytoSPACE
	StarDist+RCTD
	Tangram
	gimVI
	SpaGE
	SpaOTsc
	novoSpaRc
	stPlus
	Seurat
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




