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Abstract—Tensor rank learning for canonical polyadic decom-
position (CPD) has long been deemed as an essential yet chal-
lenging problem. In particular, since the tensor rank controls the
complexity of the CPD model, its inaccurate learning would cause
overfitting to noise or underfitting to the signal sources, and even
destroy the interpretability of model parameters. However, the
optimal determination of a tensor rank is known to be a non-
deterministic polynomial-time hard (NP-hard) task. Rather than
exhaustively searching for the best tensor rank via trial-and-error
experiments, Bayesian inference under the Gaussian-gamma prior
was introduced in the context of probabilistic CPD modeling, and
it was shown to be an effective strategy for automatic tensor
rank determination. This triggered flourishing research on other
structured tensor CPDs with automatic tensor rank learning. On
the other side of the coin, these research works also reveal that
the Gaussian-gamma model does not perform well for high-rank
tensors and/or low signal-to-noise ratios (SNRs). To overcome these
drawbacks, in this paper, we introduce a more advanced general-
ized hyperbolic (GH) prior to the probabilistic CPD model, which
not only includes the Gaussian-gamma model as a special case, but
also is more flexible to adapt to different levels of sparsity. Based on
this novel probabilistic model, an algorithm is developed under the
framework of variational inference, where each update is obtained
in a closed-form. Extensive numerical results, using synthetic data
and real-world datasets, demonstrate the significantly improved
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performance of the proposed method in learning both low as well
as high tensor ranks even for low SNR cases.

Index Terms—Automatic tensor rank learning, tensor CPD,
generalized hyperbolic distribution, Bayesian learning, variational
inference.

I. INTRODUCTION

IN THE Big Data era, tensor decomposition has become one
of the most important tools in both theoretical studies of

machine learning [1], [2] and a variety of real-world applica-
tions [3]–[10]. Among all the tensor decompositions, canonical
polyadic decomposition (CPD) is the most fundamental format.
It not only provides a faithful representation of a lot of real-world
multidimensional data, see, e.g., [14]–[17], but it also allows a
unique factor matrix recovery up to trivial scaling and permuta-
tion ambiguities [11]. This uniqueness bolsters the uncovering
of the interpretable knowledge from the tensor data, which
endows tensor CPD an advantage over other learning approaches
(e.g., deep models), in various data analytic tasks including
social group mining [14], drug discovery [15], biomedical data
analytics [16] and functional Magnetic Resonance Imaging
(fMRI) [17].

In tensor CPD, given an N dimensional (N-D) data tensor
Y ∈ R

J1×···×JN , a set of factor matrices {U (n) ∈ RJn×R} are
sought via solving the following problem [11]:

min
{U(n)}N

n=1

‖ Y −
R∑

r=1

U (1)
:,r ◦U (2)

:,r ◦ · · · ◦U (N)
:,r︸ ︷︷ ︸

�[[U(1),U(2),...,U(N)]]

‖2F , (1)

where the symbol ◦ denotes vector outer product and the
shorthand notation [[· · · ]] is termed as the Kruskal operator. As
illustrated in Fig. 1, the tensor CPD aims at decomposing an
N-D tensor into a summation of R rank-1 tensors, with the
rth component constructed as the vector outer product of the
rth columns from all the factor matrices, i.e., {U (n)

:,r }Nn=1. In
problem (1), the number of columnsR of each factor matrix, also
known as tensor rank [11], determines the number of unknown
model parameters and equivalently the model complexity. In
practice, it needs to be carefully selected to achieve the best
performance in both recovering the noise-free signals (e.g.,
image denoising [12]) and unveiling the underlying components
(e.g., social group clustering [14]).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0097-0547
https://orcid.org/0000-0003-0507-9080
https://orcid.org/0000-0002-2738-0387
https://orcid.org/0000-0001-5040-161X
mailto:lei_cheng@zju.edu.cn
mailto:ztchen@connect.hku.hk
mailto:ycwu@eee.hku.hk
mailto:shiqj@tongji.edu.cn
mailto:stheodor@di.uoa.gr
mailto:stheodor@di.uoa.gr
https://doi.org/10.1109/TSP.2022.3164200


CHENG et al.: TOWARDS FLEXIBLE SPARSITY-AWARE MODELING: AUTOMATIC TENSOR RANK LEARNING USING THE GH PRIOR 1835

Fig. 1. Illustration of tensor CPD.

If the value of the tensor rank is known, problem (1) can
be solved via nonlinear programming methods [18]. In partic-
ular, it has been found that problem (1) enjoys a nice block
multi-convexity property, in the sense that after fixing all but
one factor matrix, the problem is convex with respect to that
matrix. This property motivates the use of block coordinate
descent (BCD) methods (or alternating optimization methods)
to devise fast and accurate algorithms for tensor CPD and its
structured variants [19]–[21]. From a nonlinear programming
perspective, these solutions need the knowledge of the tensor
rank R, which, however, is unknown and, in general, it is non-
deterministic polynomial-time hard (NP-hard) to obtain [11].
To acquire the optimal tensor rank (or equivalently the optimal
model complexity), trial-and-error parameter tuning has been
employed in previous works [12]–[16], which, unfortuantely, is
computationally costly.

To tackle the challenge of automatic tensor rank learning,
a novel heuristic test method based on the core consistency
diagnostic was proposed in [24], [25] and later efficiently im-
plemented in [26], which, however, still needs to compute CPD
multiple times. Recently, relying on a regularization scheme,
model selection for block-term tensor decomposition, which
includes CPD as its special case, was investigated in [27], in
which hyper-parameter tuning is inevitable.

A breakthrough to the challenge of automatic tensor rank
learning has been achieved under the framework of Bayesian
modeling and inference. In the early work [28], sparsity-
promoting priors (including Gaussian-gamma prior and Lapla-
cian prior) were adopted, based on which the Tucker/CPD
model parameters were estimated via the maximum-a-posterior
(MAP) approach (also called “poor-man” Bayesian inference).
Fully Bayesian treatments for probabilistic tensor CPD have
been achieved in [29], [38] using sampling schemes, and the
variational inference (VI) framework [22], [30], [31], which is
more scalable to massive data [50]–[53].

Unlike [30], [31] which focus on count data, continuous tensor
data was considered in [22] and the follow-up works [23], [32]–
[37]. These two data types result in different likelihood functions
(or cost functions) and prior distribution design principles. In
particular, the likelihood functions in [30], [31] are poisson and
binomial distributions, respectively, while [22], [23], [32]–[37]
adopt Gaussian distributions (and its variants) as likelihood
functions.

Since the inception of [22], the development of VI-based
structured continuous-valued tensor decompositions with au-
tomatic tensor rank learning [23], [32]–[37] has been flour-
ishing. Among these works, the key idea lies in the adoption
of sparsity-promoting Gaussian-gamma prior and its variants
for modeling the powers of columns in all the factor matrices,
so that most columns in the factor matrices will be driven to

Fig. 2. Tensor rank learning results from probabilistic tensor CPD with
Gaussian-gamma prior [22]. The vertical bars show the mean and the error
bars indicate the standard derivation of tensor rank estimates. The black dashed
lines show the true tensor rank.

zero during inference. Then, the number of remaining non-zero
columns in each factor matrix is used to estimate the tensor
rank. Extensive numerical studies using both synthetic data and
real-world datasets have demonstrated the effectiveness of these
methods [22], [23], [32]–[37].

In addition to learning the tensor rank of basic CPD, the
Gaussian-gamma prior has recently become an important part in
the probabilistic modeling of several advanced tensor models.
For example, it was utilized as the cornerstone in [39] to infer
the tensor tubal rank and multi-rank of tensor SVD, and clev-
erly integrated with the spike-and-slab prior in [40] to achieve
simultaneous view-wise and feature-wise sparsity learning for
multi-view tensor factorization, in which multiple tensors are
jointly decomposed with shared latent factors.

While it may seem that tensor rank learning in CPD is solved,
a closer inspection on the numerical results reveals that the
performance of tensor rank learning deteriorates significantly
when the noise power is large, and/or the true tensor rank is
close to the dimension of the tensor data. As an illustration,
consider three dimensional (3D) signal tensors1 with dimension
30× 30× 30 and the tensor ranks belonging to {6, 12, 24}. The
observation tensor data are obtained by corrupting the signal
tensors using additive white gaussian noises (AWGNs), with the
noise power characterized by signal-to-noise ratio (SNR). With
the tensor rank upper bound being 30, the probabilistic tensor
CPD algorithm [22] was run on the observation tensor data. The
tensor rank learning results from 100 Monte-Carlo trials are
shown in Fig. 2. It is clear that when the SNR is 0 dB, the proba-
bilistic tensor CPD algorithm with Gaussian-gamma model [22]
either over-estimates or under-estimates the tensor rank. At a
high SNR (i.e., 10 dB), although the method [22] estimates the
correct rank value for low tensor ranks {6, 12}, it fails to recover
the high tensor rank 24. In practice, over-estimation of a tensor
rank will either lead to overfitting of the noise components or
to generating uninterpretable “ghost” components. On the other
hand, if the tensor rank is under-estimated, it is prone to missing
important signal components. Therefore, there is a need for

1Each signal tensor is generated viaX = [[U (1),U (2),U (3)]]∈ R
30×30×30,

where each element in the factor matrices {U (n)}3n=1 is independently drawn
from N (0, 1).



1836 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

further improving the accuracy of automatic tensor rank learning
in CPD.

To achieve this goal via a principled approach, it is worth-
while to trace back the development of the Gaussian-gamma
prior and the Bayesian framework from the early work of
Mackay [41] and Tipping [42] on Bayesian neural networks
and relevance vector machines (RVMs), in which important
variables are automatically identified in the associated models.
This hints us that further inspiration can be drawn from the
early works [41], [42] and beyond [43]–[47]. In particular, to
adapt to different levels of sparsity, which is measured by the
ratio of zero-valued parameters to the total number of parame-
ters, advanced sparsity-promoting priors including generalized-t
distribution [43], normal-exponential gamma distribution [44],
horseshoe distribution [45] and generalized hyperbolic distribu-
tion [46], [47] could be employed. Since these advanced priors
are much more flexible in their functional forms compared to
the Gaussian-gamma prior (and some of them even include
the Gaussian-gamma model as their special cases), improved
performance of variable selection was witnessed in linear re-
gression models. We conjecture that this group of advanced
sparsity-promoting priors would improve CPD rank selection
compared to the Gaussian-gamma model.

In this paper, we take the first step towards developing “Flex-
ible Sparsity-Aware Modeling” by introducing the generalized
hyperbolic (GH) prior [46] into the research of probabilistic
tensor CPD. The reason for choosing this prior is that not only it
includes the widely-used Gaussian-gamma prior and Laplacian
prior as its special cases, but also its mathematical form allows
for an efficient expectation computation. Furthermore, the GH
prior can be interpreted as a Gaussian scale mixture where the
mixing distribution is the generalized inverse Gaussian (GIG)
distribution [48]. This interpretation allows for a hierarchical
construction of the probabilistic model with the conjugacy prop-
erty within the exponential distribution family, based on which
efficient variational inference (VI) algorithms [50]–[53] can be
devised with closed-form update expressions.

By making full use of these advantages, we design a novel
probabilistic tensor CPD model and the corresponding infer-
ence algorithm. Since the GH prior provides a more flexible
sparsity-aware modeling than the Gaussian-gamma prior, and
all the latent variables are updated during the learning process,
the GH prior in essence has the potential to act as a better
regularizer against the noise corruption, and to adapt to a wider
range of sparsity levels. Numerical studies using both synthetic
data and real-world datasets have demonstrated the improved
performance of the proposed method over the Gaussian-gamma
CPD in terms of tensor rank learning and factor matrix recov-
ery, especially in the challenging high-rank and/or low-SNR
regimes.

Note that the principle followed in this paper is a parametric
way to seek flexible sparsity-aware modeling in the context
of tensor CPD (specifically, investigating the advanced prior
in the Gaussian scale mixture family). In parallel to this path,
the pioneering work [38] proposed a non-parametric Bayesian
CPD modeling based on a multiplicative gamma process (MGP)
prior. Employing a Gibbs sampling method, the inference algo-
rithm of [38] can deal with both continuous and binary tensor
data. Due to the decaying effects of the length scales learnt
through MGP [38], the inference algorithm is capable of learning
low tensor rank, but it has the tendency to under-estimate the
tensor rank when the ground-truth rank is high (as validated

in Section V), making it not very flexible in the high-rank
regime.

The major contributions of this paper are summarized as
follows:
� Improved tensor rank learning capability: This paper

makes the first attempt to tackle the difficulty of tensor
rank learning in high-rank and/or low-SNR regimes, un-
der which previous works (especially those relying on
Gaussian-gamma prior) do not achieve satisfactory per-
formance. Therefore, this paper represents the first step
to show that tensor rank learning performance can be
further improved by employing a more advanced sparsity-
promoting prior in the Gaussian scale mixture family.

� Principled new prior design: This paper exemplifies a
principled design of a new parametric prior for tensor CPD,
which can benefit future research of other Bayesian tensor
decomposition formats. In particular, this paper clarifies
why the GH prior should be chosen, and how this prior,
which was originally devised for modeling scalars or vec-
tors, can be adopted to model the rank-1 components of
a tensor, thereby providing enhanced tensor rank learning
capability.

� Non-trivial inference algorithm derivation: Given a new
prior, the derivation of inference algorithm under VI frame-
work is non-trivial, due to the complicated tensor algebra
involved and the newly introduced nonlinearities from the
GH prior. The derivations could be used as the reference
or basis results for future related VI algorithm derivations.

The remainder of this paper is organized as follows. In Sec-
tion II, the probabilistic tensor CPD using Gaussian-gamma
prior is briefly reviewed. By leveraging the GH prior, we propose
a new probabilistic model for tensor CPD in Section III. In
Section IV, the framework of variational inference is utilized
to derive an inference algorithm with closed-form update equa-
tions. In Sections V and VI, numerical results are presented to
demonstrate the superior performance of the proposed method.
Finally, conclusions and future directions are presented in Sec-
tion VII.

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are writ-
ten as calligraphic letters. E[ · ] denotes the expectation of its
argument. Superscript T denotes transpose, and the operator
Tr(A) denotes the trace of matrix A. ‖ · ‖F represents the
Frobenius norm of the argument. N (x|u,R) stands for the
probability density function (pdf) of a Gaussian vector x with
mean u and covariance matrix R. The N ×N diagonal ma-
trix with diagonal elements a1 through aN is represented as
diag{a1, a2, . . ., aN}, while IM represents theM ×M identity
matrix. The (i, j)th element, the ith row, and the jth column of
a matrix A are represented by Ai,j , Ai,: and A:,j , respectively.
For easy reference, a table of symbol notations is also given in
Appendix A.

II. REVIEW OF THE GAUSSIAN-GAMMA MODEL FOR CPD

In tensor CPD, as illustrated in Fig. 1, the lth columns in all
the factor matrices ({U (n)

:,l }Nn=1) constitute the building block
of the model. Given an upper bound value L of the tensor rank,
for each factor matrix, since there are L−R columns being
all zero, sparsity-promoting priors should be imposed on the
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columns of each factor matrix to encode the information of over-
parameterization.2 In the pioneering works [22], [28], assuming
statistical independence among the columns in {U (n)

:,l , ∀n, l}, a
Gaussian-gamma prior was utilized to model them as

p(
{
U (n)

}N

n=1
|{γl}Ll=1) =

L∏
l=1

p(
{
U

(n)
:,l

}N

n=1
|γl)

=

L∏
l=1

N∏
n=1

N
(
U

(n)
:,l |0Jn×1, γ

−1
l IJn

)
, (2)

p({γl}Ll=1|{c0l , d0l }Ll=1) =

L∏
l=1

p(γl|c0l , d0l )

=

L∏
l=1

gamma(γl|c0l , d0l ), (3)

where γl is the precision (i.e., the inverse of variance) of the lth

columns {U (n)
:,l }Nn=1, and {c0l , d0l } are pre-determined hyper-

parameters.
To see the sparsity-promoting property of the above Gaussian-

gamma prior, we marginalize the precisions {γl}Ll=1 to obtain
the marginal probability density function (pdf) p({U (n)}Nn=1)
as follows:

p

({
U (n)

}N

n=1

)
=

L∏
l=1

p({U (n)
:,l }Nn=1)

=

L∏
l=1

∫
p(

{
U

(n)
:,l

}N

n=1
|γl)p(γl|c0l , d0l )dγl

=

L∏
l=1

(
1

π

)∑N

n=1
Jn

2 Γ
(
c0l +

∑N
n=1

Jn

2

)
2d0l

−c0l Γ(c0l )

×
(
2d0l+ ‖ vec

({
U

(n)
:,l

}N

n=1

)
‖22

)−c0l −
∑N

n=1
Jn
2

, (4)

where Γ(·) denotes the gamma function and vec(·) denotes
the vectorization3 of its argument. Equation (4) characterizes
a multivariate student’s t distribution with hyper-parameters
{c0l , d0l }Ll=1. To get insights from this marginal distribution,
we illustrate its univariate case in Fig. 3 with different hyper-
parameters. It is clear that each student’s t pdf is strongly peaked
at zero and with heavy tails. The prior with such features is
known as sparsity-promoting prior, since the peak at zeros will
inform the learning process to look for values around “zeros”
while the heavy tails still allow the learning process to obtain
components with large values [53].

The probabilistic CPD model is completed by specifying the
likelihood function of Y:

p
(
Y | {U (n)}Nn=1, β

)
2The sparsity level of over-parameterized CPD model can be measured by

L−R
L .
3The operation vec({U (n)

:,l
}Nn=1) simply stacks all these columns into a long

vector, i.e., vec({U (n)
:,l

}Nn=1) = [U
(1)
:,l

;U
(2)
:,l

; · · · ;U (N)
:,l

] ∈ R
Z×1, withZ =∑N

n=1
Jn.

Fig. 3. Univariate marginal probability density function in (4) with different
values of hyper-parameters.
s

Fig. 4. Probabilistic CPD model with Gaussian-gamma prior.

∝ exp

(
−β

2
‖ Y − [[U (1),U (2), . . .,U (N)]]‖2F

)
. (5)

Equation (5) assumes that the signal tensor
[[U (1),U (2), . . .,U (N)]] is corrupted by AWGN tensor W
with each element having power β−1. This is consistent with
the least-squares (LS) problem in (1) if the AWGN power β−1 is
known. However, in Bayesian modeling,β is modeled as another
random variable. Since we have no prior information about the
noise power, a non-informative prior p(β) = gamma(β|ε, ε)
with a very small ε (e.g., 10−6) is usually employed.

By using the introduced prior distributions and likelihood
function, a probabilistic model for tensor CPD was constructed,
as illustrated in Fig. 4. Based on this model, a VI based algorithm
was derived in [22] that can automatically drive most of the
columns in each factor matrix to zero, by which the tensor
rank is revealed. Inspired by the vanilla probabilistic CPD us-
ing the Gaussian-gamma prior, other structured and large-scale
tensor CPDs with automatic tensor rank learning were further
developed [23], [32]–[37] in recent years. The success of the
previous works on automatic tensor rank learning [22], [23],
[32]–[37] comes from the adoption of the sparsity-promoting
Gaussian-gamma prior, while their performances are also lim-
ited by the rigid central and tail behaviors in modeling different
levels of the sparsity. More specifically, Gaussian-gamma prior
is effective only if the sparsity pattern of data matches well with
that of Gaussian-gamma model. For example, when the tensor
rank R is low, previous results have shown that a relatively
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large upper bound value L (e.g., the maximal value of tensor
dimensions [22], [23]) can give accurate tensor rank estimation.
However, for a high tensor rank R, the upper bound value L
selected for the low-rank case would be too small to render a
sparsity pattern of columns, and thus it leads to performance
degradation. Even though we can increase the value of L to
large numbers, as it will be shown in Fig. 8(b)–(c), tensor
rank learning accuracy using Gaussian-gamma prior is still not
satisfactory, showing its lack of flexibility to adapt to different
sparsity levels. Therefore, to further enhance the tensor rank
learning capability, we explore the use of sparsity-promoting
priors with more flexible central and tail behaviors.

III. NOVEL PROBABILISTIC MODELING: WHEN TENSOR CPD
MEETS GENERALIZED HYPERBOLIC DISTRIBUTION

In particular, we focus on the GH prior, since it not only in-
cludes the Gaussian-gamma prior as a special case, but also it can
be treated as the generalization of other widely-used sparsity-
promoting distributions including the Laplacian distribution,
normal-inverse chi-squared distribution, normal-inverse gamma
distribution, variance-gamma distribution and Mckay’s Bessel
distribution [46]. Therefore, it is expected that the functional
flexibility of GH prior could lead to more flexibility in modeling
different sparsity levels and thus more accurate learning for
tensor rank.

Recall that the model building block is the lth column group
{U (n)

:,l }Nn=1. With the GH prior on each column group, we have
a new prior distribution for factor matrices:

p({U (n)}Nn=1) =

L∏
l=1

GH({U (n)
:,l }Nn=1|a0l , b0l , λ0

l )

=

L∏
l=1

(a0l )

∑N

n=1
Jn

4

(2π)

∑N

n=1
Jn

2

(b0l )
−λ0

l
2

Kλ0
l

(√
a0l b

0
l

)

×
K

λ0
l −

∑N

n=1
Jn

2

(√
a0l

(
b0l+ ‖ vec

(
{U (n)

:,l }Nn=1

)
‖22

))
(
b0l+ ‖ vec

(
{U (n)

:,l }Nn=1

)
‖22

) ,

(6)

where K·(·) is the modified Bessel function of the second kind,
and GH({U (n)

:,l }Nn=1|a0l , b0l , λ0
l ) denotes the GH prior on the

lth column group {U (n)
:,l }Nn=1, in which the hyper-parameters

{a0l , b0l , λ0
l } control the shape of the distribution. By setting

{a0l , b0l , λ0
l } to specific values, the GH prior (6) reduces to other

prevalent sparsity-promoting priors. Details on how GH prior
reduces to student-t and Laplacian distributions are given in
Appendix B.

To visualize the GH distribution and its special cases, the uni-
variate GH pdfs with different hyper-parameters are illustrated in
Fig. 5. It can be observed that the blue line is with a similar shape
to those of the student’t distributions in Fig. 3, while the orange
one resembles the shapes of Laplacian distributions [46], [47].
For other lines, they exhibit a wide range of the central and tail
behaviors of the pdfs. This reveals the great functional flexibility
of the GH prior in modeling different levels of sparsity.

Fig. 5. Univariate marginal probability density function in (6) with different
values of hyper-parameters.

Fig. 6. Hierarchical construction of GH distribution.

On the other hand, the GH prior (6) can be expressed as a
Gaussian scale mixture formulation [46], [47]:

p({U (n)}Nn=1) =

L∏
l=1

GH({U (n)
:,l }Nn=1|a0l , b0l , λ0

l )

=

L∏
l=1

∫
N

(
vec

(
{U (n)

:,l }Nn=1

)
|0∑N

n=1 Jn×1, zlI
∑N

n=1 Jn

)
× GIG(zl|a0l , b0l , λ0

l )dzl, (7)

where zl denotes the variance of the Gaussian distribution, and
GIG(zl|a0l , b0l , λ0

l ) represents the generalized inverse Gaussian
(GIG) pdf:

GIG(zl|a0l , b0l , λ0
l )

=

(
a0
l

b0l

) λ0
l
2

2Kλ0
l

(√
a0l b

0
l

)zλ0
l −1

l exp

(
−1

2

(
a0l zl + b0l z

−1
l

))
. (8)

This Gaussian scale mixture formulation suggests that each GH
distribution GH({U (n)

:,l }Nn=1|a0l , b0l , λ0
l ) can be regarded as an

infinite mixture of Gaussians with the mixing distribution being
a GIG distribution. Besides revealing its inherent structure, the
formulation (7) allows a hierarchical construction of each GH
prior by introducing the latent variable zl, as illustrated in Fig. 6.
This gives us the following important conjugacy property [46].
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Fig. 7. The probabilistic tensor CPD model with GH prior.

Property 1: For probability density functions (pdfs)

p

({
U

(n)
:,l

}N

n=1
|zl

)

= N
(

vec
(
{U (n)

:,l }Nn=1

)
|0∑N

n=1 Jn×1, zlI
∑N

n=1 Jn

)
, (9)

p(zl) = GIG(zl|a0l , b0l , λ0
l ), (10)

pdf p(zl) is conjugate4 to p({U (n)
:,l }Nn=1|zl).

As will be seen later, the conjugacy property greatly facilitates
the derivation of the Bayesian inference algorithm.

Finally, together with the likelihood function in (5), we pro-
pose a novel probabilistic model for tensor CPD using the hierar-
chical construction of the GH prior, as shown in Fig. 7. Denoting
the model parameter set Θ = {{U (n)}Nn=1, {zl}Ll=1, β}, the
proposed probabilistic tensor CPD model can be fully described
by the joint pdf p(Y,Θ) as

p(Y,Θ) = p
(
Y | {U (n)}Nn=1, β

)
p
(
{U (n)}Nn=1|{zl}Ll=1

)
× p

({zl}Ll=1

)
p(β)

∝ exp

{∏N
n=1 Jn
2

lnβ − β

2
‖ Y − [[U (1),U (2), . . .,U (N)]]‖2F

+

N∑
n=1

[
Jn
2

L∑
l=1

ln z−1
l − 1

2
Tr

(
U (n)Z−1U (n)T

)]

+

L∑
l=1

[
λ0
l

2
ln

a0l
b0l

− ln

[
2Kλ0

l

(√
a0l b

0
l

)]
+ (λ0

l − 1) ln zl

− 1

2

(
a0l zl + b0l z

−1
l

)]
+ (ε− 1) lnβ − εβ

}
, (11)

where Z = diag{z1, z2, . . . , zL}.

IV. INFERENCE ALGORITHM

A. General Philosophy of the Variational Inference

Given the probabilistic modelp(Y,Θ), the next task is to learn
the model parameters in Θ from the tensor data Y , in which the

4In Bayesian theory, a probability density function (pdf) p(x) is said to be
conjugate to a conditional pdf p(y|x) if the resulting posterior pdf p(x|y) is in
the same distribution family as p(x).

posterior distribution p(Θ|Y) is to be sought. However, for such
a complicated probabilistic model (11), the multiple integrations
in computing the posterior distribution p(Θ|Y) is not tractable.
Fortunately, this challenge is not new, and similar obstacles have
been faced in inferring other complicated Bayesian machine
learning models such as Bayesian neural networks [54], [55],
Bayesian structured matrix factorization [56], latent dirichlet
allocation [57], and Gaussian mixture model [58]. It has been
widely agreed that variational inference (VI), due to its efficiency
in computations and the theoretical guarantee of convergence,
is the major driving force for inferring complicated probabilis-
tic models [52]. Rather than manipulating a huge number of
samples from the probabilistic model, VI recasts the originally
intractable multiple integration problem into the following func-
tional optimization problem:

min
Q(Θ)

KL (Q (Θ) ‖ p (Θ | Y))

� −EQ(Θ)

{
ln

p (Θ | Y)

Q (Θ)

}
s.t. Q(Θ) ∈ F , (12)

where KL(·||·) denotes the Kullback-Leibler (KL) divergence
between two arguments, and F is a pre-selected family of pdfs.
Its philosophy is to seek a tractable variational pdf Q(Θ) in F
that is the closest to the true posterior distribution p(Θ|Y) in
terms of the KL divergence. Therefore, the art is to determine
the family F to balance the tractability of the algorithm and the
accuracy of the posterior distribution learning. In this paper, we
adopt the mean-field family due to its prevalence in Bayesian
tensor research [22], [23], [32]–[37]. Other advanced choices
could be found in [52].

Using the mean-field family, which restricts Q(Θ) =∏K
k=1 Q(Θk)whereΘ is partitioned into mutually disjoint non-

empty subsetsΘk (i.e.,Θk is a part ofΘwith∪K
k=1Θk = Θ and

∩K
k=1Θk = Oslash;), the KL divergence minimization problem

(12) becomes

min
{Q(Θk)}Kk=1

−E{Q(Θk)}Kk=1

{
ln

p (Θ | Y)∏K
k=1 Q(Θk)

}
. (13)

The factorable structure in (13) inspires the idea of block min-
imization in optimization theory [18]. In particular, after fixing
variational pdfs {Q(Θj)}j 	=k other than Q(Θk), the remaining
problem is

min
Q(Θk)

∫
Q(Θk)(−E

∏
j 	=k Q(Θj) [ln p(Θ,Y)]+lnQ(Θk))dΘk,

(14)

and it has been shown that the optimal solution is [50], [53]:

Q∗ (Θk) =
exp

(
E
∏

j 	=k Q(Θj) [ln p (Θ,Y)]
)

∫
exp

(
E
∏

j 	=k Q(Θj) [ln p (Θ,Y)]
)
dΘk

. (15)

More discussions on the mean-field VI are provided in Appendix
M.

B. Deriving Optimal Variational Pdfs

The optimal variational pdfs {Q∗(Θk)}Kk=1 can be obtained
by substituting (11) into (15). Although straightforward as it may
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TABLE I
OPTIMAL VARIATIONAL DENSITY FUNCTIONS

seem, the involvement of tensor algebras in (11) and the multiple
integrations in the denominator of (15) make the derivation a
challenge. On the other hand, since the proposed probabilistic
model employs the GH prior, and is different from previous
works using Gaussian-gamma prior [22], [23], [32]–[37], each
optimal variational pdf Q∗(Θk) needs to be derived from first
principles. To keep the main body of this paper concise, the
lengthy derivations are moved to Appendix C, and we only
present the optimal variational pdfs in Table I at the top of this
page.

In particular, the optimal variational pdf Q∗(U (k))
was derived to be a matrix normal distribution [59]
MN (U (k)|M (k), IJn

,Σ(k)) with the covariance matrix

Σ(k) =

[
E [β]E

[(
N�

n=1,n	=k
U (n)

)T

×
(

N�
n=1,n	=k

U (n)

)]
+ E

[
Z−1

] ]−1

, (16)

and mean matrix

M (k) = Y(k)E [β]

(
N�

n=1,n	=k
E

[
U (n)

])
Σ(k). (17)

In (16) and (17), Y(k) is a matrix obtained by unfold-
ing the tensor Y along its kth dimension, and the multi-
ple Khatri-Rao products �N

n=1,n	=k A
(n) = A(N) �A(N−1) �

· · · �A(k+1) �A(k−1) � · · · �A(1). The expectations are
taken with respect to the corresponding variational pdfs of the
arguments. For the optimal variational pdf Q(zl), by using the
conjugacy result in Property 1, it can be derived to be a GIG
distribution GIG(zl|al, bl, λl) with parameters

al = a0l , (18)

bl = b0l +
N∑

n=1

E

[[
U

(n)
:,l

]T
U

(n)
:,l

]
, (19)

λl = λ0
l −

1

2

N∑
n=1

Jn. (20)

Finally, the optimal variational pdf Q(β) was derived to be a
gamma distribution gamma(β|e, f) with parameters

e = ε+
1

2

N∏
n=1

Jn, (21)

f = ε+
1

2
E

[
‖ Y − [[U (1), . . . ,U (N)]]‖2F

]
. (22)

In (16)–(22), there are several expectations to be computed.
They can be obtained either from the statistic literatures [59] or
similar results in related works [22], [23], [32]–[37]. For easy
reference, we listed the expectation results needed for (16)–(22)
in Table II, where �N

n=1,n	=k A
(n) = A(N) �A(N−1) � · · ·�

A(k+1) �A(k−1) � · · ·�A(1) is the multiple Hadamard prod-
ucts.

C. Setting the Hyper-Parameters

From Table I, it can be found that the variational pdf Q(U (k))
and {Q(zl)}Ll=1 forms a more complicated Gaussian-GIG pdf
pair than that in Property 1. Therefore, the shape of the vari-
ational pdf Q(U (k)), which determines both the factor matrix
recovery and tensor rank learning, is affected by the variational
pdf {Q(zl)}Ll=1. For each Q(zl), as seen in (18)–(20), its shape
relies on the pre-selected hyper-parameters {a0l , b0l , λ0

l }. In prac-
tice, we usually have no prior knowledge about the sparsity level
before assessing the data, and a widely adopted approach is to
make the prior non-informative.

In previous works using Gaussian-gamma prior [22], [23],
[32]–[37], hyper-parameters are set equal to very small values
in order to approach a non-informative prior. Although nearly
zero hyper-parameters lead to an improper prior, the derived
variational pdf is still proper since these parameters are up-
dated using information from observations [22], [23], [32]–[37].
Therefore, in these works, the strategy of using non-informative
prior is valid. On the other hand, for the employed GH prior,
non-informative prior requires {a0l , b0l , λ0

l } all go to zero, which
however would lead to an improper variational pdf Q(zl), since
its parameter al = a0l is fixed (as seen in (18)). This makes
the expectation computation E[zl] in Table II problematic. To
tackle this issue, another viable approach is to optimize these
hyper-parameters {a0l , b0l , λ0

l } so that they can be adapted during
the procedure of model learning. However, as seen in (11), these
three parameters are coupled together via the nonlinear modified
Bessel function, and thus optimizing them jointly is prohibitively
difficult. Therefore, in this paper, we propose to only optimize
the most critical one, i.e., a0l , since it directly determines the
shape ofQ(zl) and will not be updated in the learning procedure.
For the other two parameters {b0l , λ0

l }, as seen in (19) and
(20), since they are updated with model learning results or
tensor dimension, according to the Bayesian theory [49], their
effect on the posterior distribution would become negligible
when the observation tensor is large enough. This justifies the
optimization of a0l while not {b0l , λ0

l }.
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TABLE II
COMPUTATION RESULTS OF EXPECTATIONS

For optimizing a0l , following related works [50], [61], we
introduce a conjugate hyper-prior p(a0l ) = gamma(a0l |κa1

, κa2
)

to ensure the positiveness of a0l during the optimization. To
bypass the nonlinearity from the modified Bessel function, we
set b0l → 0 so that Kλ0

l
(
√
a0l b

0
l ) becomes a constant. In the

framework of VI, after fixing other variables, it has been derived
in Appendix C that the hyper-parameter a0l is updated via

a0l =
κa1

+
λ0
l

2 − 1

κa2
+ E[zl]

2

. (23)

Notice that it requires κa1
> 1− λ0

l /2 and κa2
≥ 0 to ensure

the positiveness of a0l .

D. Algorithm Summary and Insights

From (16)–(23), it can be seen that the statistics of each vari-
ational pdf rely on other variational pdfs. Therefore, they need
to be updated in an alternating fashion, giving rise to an iterative
algorithm summarized in Algorithm 1. To gain more insights
from the proposed algorithm, discussions on its convergence
property, computational complexity, and automatic tensor rank
learning are presented in the following.

1) Convergence Property: While the proposed algorithm is
devised with the novel probabilistic tensor CPD model using GH
prior, its derivation follows the mean-field VI framework [50]–
[53]. In particular, in each iteration, after fixing other variational
pdfs, the problem that optimizes a single variational pdf has been
shown to be convex and has a unique solution [50]–[53]. By
treating each update step in mean-field VI as a block coordinate
descent (BCD) step over the functional space, the limit point
generated by the VI algorithm is at least a stationary point of the
KL divergence [50]–[53].

2) Automatic Tensor Rank Learning: During the iterations,
the mean of parameter z−1

l (denoted by m[z−1
l ]) will be learnt

using the updated parameters of other variational pdfs as seen
in (26)–(29). Due to the sparsity-promoting nature of the GH
prior, some of m[z−1

l ] will take very large values, e.g., in the
order of 106. Since the inverse of {m[z−1

l ]}Ll=1 contribute to the
covariance matrix of each factor matrix (as seen in (24)) and then

rescale the columns in each factor matrix (as seen in (25)), a very
large m[z−1

l ] will shrink the lth column of each factor matrix to
all zero. Then, by enumerating how many non-zero columns in
each factor matrix, the tensor rank can be automatically learnt.

In practice, to accelerate the learning algorithm, on-the-fly
pruning is widely employed in Bayesian tensor research. In
particular, in each iteration, if some of the columns in each
factor matrix are found to be indistinguishable from all zeros, it
indicates that these columns play no role in interpreting the data,
and thus they can be safely pruned. This pruning procedure will
not affect the convergence behavior of the algorithm, since each
pruning is equivalent to restarting the algorithm for a reduced
probabilistic model with the current variational pdfs acting as
the initializations. More discussions on the pruning issue are
provided in Appendix N.

3) Computational Complexity: For the proposed algorithm,
in each iteration, the computational complexity is dominated
by updating the factor matrices, costing O(N

∏N
n=1 JnL

2 +

L3
∑N

n=1 Jn). Therefore, the computational complexity of the
proposed algorithm is O(q(N

∏N
n=1 JnL

2 + L3
∑N

n=1 Jn))
where q is the iteration number at convergence. The complexity
is comparable to that of the inference algorithm using Gaussian-
gamma prior [22].

V. NUMERICAL RESULTS ON SYNTHETIC DATA

In this and the next section, extensive numerical results are
presented to assess the performance of the proposed algorithm
using synthetic data and real-world datasets, respectively. For
the proposed algorithm, its initialization follows the suggestions
given in Appendix D unless stated otherwise. All experiments
were conducted in Matlab R2015b with an Intel Core i7 CPU at
2.2 GHz.

A. Simulation Setup

We consider three-dimensional tensors X =
[[A(1),A(2),A(3)]]∈ R

30×30×30 with different tensor ranks.
Each element in the factor matrices {A(n)}3n=1 is independently
drawn from a zero-mean Gaussian distribution with unit
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Algorithm 1: Probabilistic Tensor CPD Using The GH Prior.
Initializations: Choose L > R and initial values
{[M (n)]0, [Σ(n)]0}Nn=1, {m[z−1l ]0, a0l , b

0
l ,λ

0
l }Ll=1, e0, f0.

Choose κa1 > −λ0l /2 and κa2 ≥ 0.
Iterations:
For the iteration t+ 1 (t ≥ 0),
For k = 1, . . . , N , update the parameters of Q(U (k))t+1:

[
Σ(k)

]t+1
=

[
ct

dt
N
�

n=1,n 	=k

[([
M (n)

]s)T [
M (n)

]s

+ Jn

[
Σ(n)

]s ]
+ diag

{
m[z−11 ]t,m[z−12 ]t, . . .,m[z−1L ]t

}]−1
,

(24)[
M (k)

]t+1
=Y(k)

ct

dt

(
N�

n=1,n 	=k

[
M (n)

]s)[
Σ(n)

]t+1
,

(25)

where s denotes the most recent update index, i.e., s = t+ 1
when n < k, and s = t otherwise.
Update the parameters of Q(zl)

t+1:

at+1
l = [a0l ]

t, (26)

bt+1
l = b0l +

N∑
n=1

[([
M

(n)
:,l

]t+1
)T [

M
(n)
:,r

]t+1

+ Jn

[
Σ

(n)
l,l

]t+1
]
, (27)

[λl]
t+1 = λ0l −

1

2

N∑
n=1

Jn, (28)

m[z−1l ]t+1 =

(
bt+1
l

at+1
l

)− 1
2 K[λl]

t+1−1

(√
at+1
l bt+1

l

)
K[λl]

t+1

(√
at+1
l bt+1

l

) ,

(29)

m[zl]
t+1 =

(
bt+1
l

at+1
l

) 1
2 K[λl]

t+1+1

(√
at+1
l bt+1

l

)
K[λl]

t+1

(√
at+1
l bt+1

l

) . (30)

Update the parameters of Q(β)t+1:

et+1 = ε+

∏N
n=1 Jn

2
, (31)

f t+1 = ε+
ft+1

2
, (32)

where ft+1 is computed using the result in the last row of
Table II with {M (n),Σ(n)} being replaced by
{[M (n)]t+1, [Σ(n)]t+1},∀n.

Update the hyper-parameter [a0l ]
t+1:

[a0l ]
t+1 =

κa1 +
λ0
l
2 − 1

κa2 +
m[zl]t+1

2

. (33)

Until Convergence

power. The observation model Y = X +W , where each
element of the noise tensor W is independently drawn from a
zero-mean Gaussian distribution with variance σ2

w. This data
generation process follows that of [22]. The SNR is defined as
10 log10(var(X )/σ2

w) [22], [23], where var(X ) is the variance5

of the noise-free tensor X . All simulation results in this section
are obtained by averaging 100 Monte-Carlo runs unless stated
otherwise.

B. PCPD-GH versus PCPD-GG

Since the principle of this paper follows a parametric way of
Bayesian modeling, we first compare the proposed algorithm
using GH prior (labeled as PCPD-GH) with the benchmarking
algorithm [22] (labeled as PCPD-GG).

1) Tensor Rank Learning: The performance of tensor rank
learning is firstly evaluated. We regard the tensors as low-rank
tensors when their ranks are smaller than or equal to half of
the maximal tensor dimension, i.e., R ≤ max{Jn}Nn=1/2. Sim-
ilarly, high-rank tensors are those with R > max{Jn}Nn=1/2.
In particular, in Fig. 8, we assess the tensor rank learn-
ing performances of the two algorithms for low-rank tensors
with R = {3, 6, 9, 12, 15} and high-rank tensors with R =
{18, 21, 24, 27} under SNR = 10 dB. In Fig. 8(a), the two algo-
rithms are both with the tensor rank upper bound max{Jn}Nn=1.
It can be seen that the PCPD-GH algorithm and the PCPD-
GG algorithm achieve comparable performances in learning
low tensor ranks. More specifically, the PCPD-GH algorithm
achieves higher learning accuracies when R = {3, 6} while the
PCPD-GG method performs better when R = {9, 15}. How-
ever, when tackling high-rank tensors with R > 15, as seen
in Fig. 8(a), both algorithms with tensor rank upper bound
max{Jn}Nn=1 fail to work properly. The reason is that the upper
bound value max{Jn}Nn=1 results in too small sparsity level
L−R
L to leverage the power of the sparsity-promoting priors in

tensor rank learning. Therefore, the upper bound value should
be set larger in case that the tensor rank is high. An immediate
choice is f ×max{Jn}Nn=1 where f = 1, 2, 3, . . .. In Fig. 8(b)
and (c), we assess the performances of tensor rank learning for
the two methods using the upper bound 2max{Jn}Nn=1 and
5max{Jn}Nn=1, respectively. It can be seen that the PCPD-GG
algorithm is very sensitive to the rank upper bound value, in
the sense that its performance deteriorates significantly for low-
rank tensors after employing the larger upper bounds. While
PCPD-GG has an improved performance for high-rank tensors
after adopting a larger upper bound, the chance of getting the
correct rank is still very low. In contrast, the performance of
the proposed PCPD-GH algorithm is stable for all cases and it
achieves nearly 100% accuracies of tensor rank learning in a
wide range of scenarios, showing its flexibility in adapting to
different levels of sparsity. In Appendix L, further numerical
results on the tensor rank learning accuracies versus different
sparsity levels are presented, which show the better performance
of the proposed algorithm in a wide range of sparsity levels.

To assess the tensor rank learning performance under different
SNRs, in Fig. 9, the percentages of accurate tensor rank learning
from the two methods are presented. We consider two scenarios:
1) low-rank tensor with R = 6 shown in Fig. 9(a) and 2) high-
rank tensor with R = 24 shown in Fig. 9(b). For the proposed

5It means the empirical variance computed by treating all entries of the tensor
as independent realizations of a same scalar random variable.
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Fig. 8. Performance of tensor rank learning when the rank upper bound is (a) max{Jn}Nn=1, (b) 2max{Jn}Nn=1 and (c) 5max{Jn}Nn=1.

Fig. 9. Performance of tensor rank learning versus different SNRs: (a) low-
rank tensors and (b) high-rank tensors.

PCPD-GH algorithm, due to its robustness to different rank
upper bounds, 2max{Jn}Nn=1 is adopted as the upper bound
value (labeled as PCPD-GH-2max(DimY)). For the PCPD-
GG algorithm, both the upper bound value max{{Jn}Nn=1}
and 2max{Jn}Nn=1 are considered (labeled as PCPD-GG-
max(DimY) and PCPD-GH-2max(DimY) respectively). From
Fig. 9, it is clear that the performance of the PCPD-GG method,
for all cases, highly relies on the choice of the rank upper
bound value. In particular, when adopting 2max{Jn}Nn=1, its
performance in tensor rank learning is not good (i.e., below than
50%) for both the low-rank tensor and the high-rank tensor cases.
In contrast, when adopting max{{Jn}Nn=1}, its performance
becomes much better for the low-rank cases. In Fig. 9(a), when
SNR is larger than 5 dB, the PCPD-GG with upper bound value
max{{Jn}Nn=1} achieves nearly 100% accuracy, which is very

close to the accuracies of the PCPD-GH method. However, when
the SNR is smaller than 5 dB, although the PCPD-GH method
still achieves nearly 100% accuracies in tensor rank learning,
the accuracies of the PCPD-GG method fall below 50%. For
the high-rank case, as seen in Fig. 9(b), both the PCPD-GH and
the PCPD-GG methods fail to recover the true tensor rank when
SNR is smaller than 0 dB. However, when the SNR is larger
than 0 dB, the accuracies of the PCPD-GH method are near
100% while those of the PCPD-GG at most achieve about 50%
accuracy. Consequently, it can be concluded from Fig. 9 that the
proposed PCPD-GH method achieves more stable and accurate
tensor rank learning.

In summary, Figs. 8 and 9 show that the proposed method
finds the correct tensor rank even if the initial tensor rank is
exceedingly over-estimated, which is a practically useful feature
since the rank is unknown in real-life cases.

2) Insights From Learnt Length Scales: To clearly show the
substantial difference between the GG and GH prior, we com-
pare the two algorithms (PCPD-GG and PCPD-GH) in terms
of their learnt length scales. The length scale powers of GG
and GH prior are denoted by {γ−1

l }l and {zl}l respectively. To
assess the patterns of learnt length scales, we turn off the pruning
procedure and let the two algorithms directly output {γ−1

l }l
and {zl}l after convergence. Since in the different Monte-Carlo
trial, the learnt length scale powers are possibly of different
sparsity patterns, averaging them over Monte-Carlo trials is not
informative. Instead, we present the learnt values of {γ−1

l }l and
{zl}l in a single trial.

In particular, Fig. 10 shows the result for a typical low SNR
and low rank case (SNR=−5 dB, R= 6) with rank upper bound
being 60. From this figure, it can be seen that the learnt length
scales of the two algorithms substantially differ from each other,
in the sense that the number of learnt length scales (and the asso-
ciated components) with non-negligible magnitudes are differ-
ent. For example, in Fig. 10, PCPD-GG recovers 7 components
with non-negligible magnitudes6 (the smallest one has value
4.3 � 0), while PCPD-GH recovers 6 components. Note that
the ground-truth rank is 6, and PCPD-GG produces a “ghost”
component with magnitude much larger than zero. Additional
simulation runs, and results of other simulation settings (e.g.,
high SNR and high rank case: SNR= 5 dB, R= 21) are included
in Appendix P, from which similar conclusions can be drawn.

3) Insights on Noise Precision Learning: The learning of the
noise precision β is crucial for reliable inference, since incorrect

6The magnitude of the l-th component is defined as (
∑3

n=1
[A

(n)
:,l

]TA
(n)
:,l

)
1
2

[22].
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Fig. 10. (a) The powers of learnt length scales (i.e., {γ−1
l

}l) for PCPD-GG;
(b) The powers of learnt length scales (i.e., {zl}l) for PCPD-GH. It can be seen
that PCPD-GG recovers 7 components with non-negligible magnitudes, while
PCPD-GH recovers 6 components. The two algorithms are with the same upper
bound value: 60.

Fig. 11. Tensor rank estimates of PCPD-GH versus iteration number (averaged
over 100 Monte-Caro runs) with different noise precision learning speeds.

estimates will cause over-/under-regularization. To examine how
the speed of noise learning affects the tensor rank (sparsity)
learning when SNR is low (SNR = −5 dB), we turn on the
pruning and present the rank learning results over iterations
in three cases: i) Case I: update β every iteration; ii) Case II:
update β every 10-th iteration; iii) Case III: update β every
20-th iteration. In Fig. 11, the rank estimates are averaged over

TABLE III
PERFORMANCE OF TENSOR RANK LEARNING UNDER DIFFERENT RANK UPPER

BOUND VALUES. ALGORITHM: PCPD-MGP; SNR = 10 dB. THE SIMULATION

SETTINGS ARE THE SAME AS THOSE OF FIG. 8

100 Monte-Carlo runs. It can be seen that updating the noise
precision β at earlier iterations will help will help the learning
process to unveil the sparsity pattern more quickly.

Then, we investigate under which scenario slowing the noise
precision learning will be helpful. We consider a very low SNR
case, that is, SNR= -10 dB, and then evaluate the percentages of
accurate rank learning over 100 Monte-Carlo runs. The results
are: i) Case I: 76%; ii) Case II: 100 %; iii) Case III: 100 %.
In other words, when the noise power is very large (e.g., SNR
= -10 dB), slowing the noise precision learning will make the
algorithm more robust to the noises.

Finally, if we fix the noise precision β and do not allow
its update, PCPD-GH fails to identify the underlying sparsity
pattern (tensor rank), see Figure Q1 in Appendix Q. Particularly,
a small value of β (e.g., 0.01) leads to over-regularization, thus
causing under-estimation of non-zero components; a large value
of β (e.g., 100) causes under-regularization, thus inducing over-
estimation of non-zero components. This shows the importance
of modeling and updating of noise precision.

4) Other Performance Metrics: Additional results and dis-
cussions on the run time, tensor recovery root mean square error
(RMSE), algorithm performance under factor matrix correla-
tion, convergence behavior of the proposed algorithm in terms
of evidence lower bound (ELBO) [51], and hyper-parameter
learning of PCPD-GG are included in Appendix E, F, and G,
J, R, respectively. The key messages of these simulation results
are given as follows: i) PCPD-GH generally costs more run time
than PCPD-GG; ii) Incorrect estimation of tensor rank degrades
the tensor signal recovery; iii) PCPD-GH performs well under
factor matrix correlation; iv) PCPD-GH monotonically increases
the ELBO; v) The update of hyper-parameter of PCPD-GH does
not help too much in improving rank estimation in the low SNR
regime.

C. Comparisons With Nonparametric PCPD-MGP

After comparing to the parametric PCPD-GG, further com-
parisons are performed with the non-parametric Bayesian tensor
CPD using MGP prior (labeled as PCPD-MGP).7 We implement
PCPD-MGP in the variational inference framework. The initial-
izations and hyper-parameters follow those used in [38].

1) Tensor Rank Learning: We first assess the performance of
tensor rank learning over 100 Monte-Carlo trials, to facilitate the
comparisons among the three algorithms (PCPD-MGP, PCPD-
GG, PCPD-GH). The simulation settings follow those of Figs. 8
and 9.

In Table III, the percentages of accurate tensor rank estimates
of PCPD-MGP under different rank upper bound values are
presented. Comparing to Fig. 8, we can draw the following
conclusions. i) When the tensor rank is low (e.g., R = 3, 6, 9)

7We appreciate Prof. Piyush Rai for sharing the code and data with us.



CHENG et al.: TOWARDS FLEXIBLE SPARSITY-AWARE MODELING: AUTOMATIC TENSOR RANK LEARNING USING THE GH PRIOR 1845

TABLE IV
PERFORMANCE OF TENSOR RANK LEARNING UNDER DIFFERENT SNRS.
ALGORITHM: PCPD-MGP; UPPER BOUND VALUE: 2MAX(DIMY). THE

SIMULATION SETTINGS ARE THE SAME AS THOSE OF FIG. 9

and the SNR is high (e.g., SNR = 10 dB), PCPD-MGP correctly
learns the tensor rank over 100 Monte-Carlo trials under different
rank upper bound values. Its performance is insensitive to the
selection of the rank upper bound values, due to the decaying
effects of the learnt length scales [38]. Therefore, in the low-rank
and high-SNR scenario, the rank learning performance of PCPD-
MGP is comparable to that of PCPD-GH, and much better than
PCPD-GG (see Fig. 8). ii) When the tensor rank is high (e.g., R
= 18, 21, 24, 27), PCPD-MGP fails to learn the correct tensor
rank under different rank upper bound values, since the decaying
effects of learnt length scales tend to under-estimate the tensor
rank. On the contrary, the PCPD-GH method always accurately
estimates the high tensor ranks (see Fig. 8).

In Table IV, we present the rank estimation performance of
PCPD-MGP under different SNRs, with the same settings as
those of Fig. 9. It can be seen that when the tensor rank is low
(e.g., R = 6), PCPD-MGP shows good performance when SNR
is larger than −5 dB. It outperforms the PCPD-GG method, but
it is still not as good as the proposed PCPD-GH. At SNR =
−10 dB, PCPD-MGP fails to correctly estimate the tensor rank,
while PCPD-GH shows good performance in a wider range of
SNRs (from -10 dB to 20 dB). Furthermore, when the tensor
rank becomes large (e.g., R = 24), PCPD-MGP fails to learn
the underlying true tensor rank, making it inferior to PCPD-GH
(and even PCPD-GG) in the high-rank regime.

2) Insights From Learnt Length Scales: To reveal more in-
sights, we present the learnt length scales (without pruning) of
PCPD-MPG. Following the notations in [38], the learnt length
scale powers of PCPD-MGP are denoted by {τ−1

l }l.
Two typical cases are considered: i) Case I: SNR = 5 dB, R

= 21, corresponding to high rank and high SNR; ii) Case II:
SNR = -10 dB, R = 6, corresponding to very low SNR and
low rank. For each case, we present the learnt length scales in a
single trial in Figs. 12 and 13 respectively. From these figures, we
have the following observations. i) Due to the decaying effect
of the MGP prior, the learnt length scale power τ−1

l quickly
decreases as l becomes larger. This drives PCPD-MGP to fail
to recover the sparsity-pattern of the high-rank CPD (e.g., R =
21), in which a large number of length scale powers should be
much larger than zero, see Fig. 12(a). In contrast, without the
decaying effect, the proposed PCPD-GH successfully identifies
the 21 non-negligible components, as seen in Fig. 12(b). ii)
When the SNR is very low (e.g., SNR = -10 dB) and the rank is
low (e.g., R = 6), the sparsity pattern of length scales learnt by
PCPD-MGP is not as accurate as that obtained by PCPD-GH
(see Fig. 13). Additional simulation runs, and results of more
simulation settings are included in Appendix S, from which
similar conclusions can be drawn.

VI. (SEMI-) REAL-WORLD DATASET EXPERIMENTS

In this section, experimental results on several (semi-) real-
world datasets are presented. Since the scope of this paper is to

Fig. 12. (a) The powers of learnt length scales (i.e., {τ−1
l

}l) for PCPD-MGP;
(b) The powers of learnt length scales (i.e., {zl}l) for PCPD-GH. It can be
seen that PCPD-MGP recovers 15 components with non-negligible magnitudes,
while PCPD-GH recovers 21 components. The two algorithms are with the same
upper bound value: 60. SNR = 5 dB, R = 21.

TABLE V
FIT VALUES AND ESTIMATED TENSOR RANKS OF FLUORESCENCE DATA UNDER

DIFFERENT SNRS (WITH RANK UPPER BOUND max{Jn}Nn=1)

investigate flexible sparsity-aware modeling for tensor CPD in
the parametric Gaussian scale mixture family, the comparisons
are performed between PCPD-GG and PCPD-GH.

A. Semi-Real Experiment: Fluorescence Data Analytics

Tensor CPD is an important tool in fluorescence data ana-
lytics, with the aim to reveal the underlying signal components.
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TABLE VI
TENSOR RANK LEARNING FOR CPD OF TONGUE DATASET AND ENRON EMAIL DATASET

Fig. 13. (a) The powers of learnt length scales (i.e., {τ−1
l

}l) for PCPD-MGP;
(b) The powers of learnt length scales (i.e., {zl}l) for PCPD-GH. It can be seen
that PCPD-MGP recovers 5 components with non-negligible magnitudes, while
PCPD-GH recovers 6 components. The two algorithms are with the same upper
bound value: 60. SNR = -10 dB, R = 6.

TABLE VII
SNR OUTPUTS AND ESTIMATED TENSOR RANKS OF HSI DATA UNDER

DIFFERENT RANK UPPER BOUNDS

We consider the popular amino acids fluorescence data8 X with
size 5× 201× 61 [24], which consists of five laboratory-made
samples. Each sample contains different amounts of tyrosine,

8http://www.models.life.ku.dk

tryptophan and phenylalanine dissolved in phosphate buffered
water. Since there are three different types of amino acid, when
adopting the CPD model, the optimal tensor rank should be 3.
In particular, with the optimal tensor rank 3, the clean spectra
for the three types of amino acid, which are recovered by the the
alternative least-squares (ALS) algorithm [24], are presented in
Figure H1 (in Appendix H) as the benchmark.

In practice, it is impossible to know how many components are
present in the data in advance, and this calls for automatic tensor
rank learning. In this subsection, we assess both the rank learning
performance and the noise mitigation performance for the two al-
gorithms (i.e., PCPD-GH and PCPD-GG) under different levels
of noise sources. In particular, the Fit value [10], which is defined

as (1− ||X̂−X ||F
||X ||F )× 100%, is adopted, where X̂ represents the

reconstructed fluorescence tensor data from the algorithm. In
Table V and H1 (see Appendix H), the performances of the
two algorithms are presented assuming different upper bound
values of tensor rank. It can be observed that with different
upper bound values, the proposed PCPD-GH algorithm always
gives the correct tensor rank estimates, even when the SNR is
smaller than 0 dB. On the other hand, the PCPD-GG method
is quite sensitive to the choice of the upper bound value. Its
performance with upper bound 2max{Jn}Nn=1 becomes much
worse than that with max{Jn}Nn=1 in tensor rank learning. Even
with the upper bound being equal to max{Jn}Nn=1, PCD-GG
fails to recover the optimal tensor rank 3 in the low SNR
region (i.e., SNR ≤ 5 dB). With the over-estimated tensor
rank, the reconstructed fluorescence tensor data X̂ will be
overfitted to the noise sources, leading to lower Fit values. As
a result, the Fit values of the proposed method are generally
higher than those of the PCPD-GG method under different
SNRs.

In this application, since the tensor rank denotes the number of
underlying components inside the data, its incorrect estimation
will not only lead to overfitting to the noise, but also will cause
“ghost” components that cannot be interpreted. The figures for
recovered spectra and the “ghost” component under incorrect
rank estimation are given in Appendix H. In particular, in Figure
H3 (of Appendix H), we present the learnt length scale powers
and the associated component magnitudes from PCPD-GG and
PCPD-GH. It can be seen that PCPD-GG recovers four compo-
nents with non-negligible magnitudes. The smallest magnitude
of the learnt four components is 10.6, which is much larger
than zero. In practical data analysis, disregarding a learnt latent
component with magnitude 10.6 is not reasonable. Since the
“ghost” component has a relatively large magnitude, it degrades
the performance of the tensor signal recovery. From Table V,
when the SNR is low (e.g., -10 dB), the Fit value of PCPD-GH
is higher by 0.8, compared to PCPD-GG. Note that in the high
SNR regime (no “ghost” component), their Fit value difference is
about 0.001. Therefore, the “ghost” component largely degrades
the tensor signal recovery.



CHENG et al.: TOWARDS FLEXIBLE SPARSITY-AWARE MODELING: AUTOMATIC TENSOR RANK LEARNING USING THE GH PRIOR 1847

B. Real-World Dataset Experiments

In this subsection, four real-world datasets, namely the EN-
RON Email dataset,9 the Tongue dataset [63], the Salinas-A
hyperspectral image (HSI) dataset,10 and the Indian Pines HSI
dataset11 are used for evaluation. The ENRON Email dataset
(with size 184× 184× 44) contains e-mail communication
records between 184 people within 44 months, and the Tongue
dataset (with size 5× 10× 13) was obtained from X-rays of
five different speakers during their pronunciation of the vowels.
The Salinas-A dataset (with size 83× 86× 204) was collected
by the AVIRIS12 sensor over Salinas Valley, California; and the
Indian Pines dataset (with size 145× 145× 200) was collected
by AVIRIS sensor over the Indian Pines test site in North-western
Indiana.

For the ENRON Email dataset and the Tongue dataset, it
was reported in previous research, see, e.g., [14], [63], that
interpretable decomposition results can be obtained in the con-
text of each data analysis task, when the tensor rank is 5 and
2, respectively. In particular, rank-5 tensor CPD can give inter-
pretable clustering results for the ENRON Email dataset [14];
and rank-2 tensor CPD is good for extracting the two underlying
components from the Tongue dataset [63]. Using these as bench-
marking tensor ranks, the performance of the PCPD-GH method
and the PCPD-GG method was reported in Table VI, from which
it can be observed that the proposed PCPD-GH method is more
robust to different tensor rank upper bounds, and outperforms the
PCPD-GG method, in the sense that the estimated tensor ranks of
PCPD-GH match benchmarking results in more scenarios than
PCPD-GG.

On the other hand, since hyperspectral image (HSI) data are
naturally three dimensional (two spatial dimensions and one
spectral dimension), tensor CPD is a good tool to analyze such
data. However, due to the radiometric noise, photon effects
and calibration errors, it is crucial to mitigate these corruptions
before putting the HSI data into use. Since each HSI is rich
in details, previous works using searching-based methods [12],
[13] revealed that the tensor rank in HSI data is usually larger
than half of the maximal tensor dimension. This corresponds to
the high tensor rank scenario considered in this paper. In these
two real-world datasets, different bands of HSIs were corrupted
by different levels of noises. Some of the HSIs are quite clean
while some of them are quite noisy. For such types of real-world
data, since no ground-truth is available, a no-reference quality
assessment score is usually adopted [12], [13]. Following [12],
the SNR output, which is defined as10 log10 ||X̂ ||2F /||X − X̂ ||2F
is utilized as the denoising performance measure, where X̂
is the restored tensor data and X is the original HSI data. In
Table VII, the SNR outputs of the two methods using different
rank upper bound values are presented, from which it can be seen
that the proposed PCPD-GH method gives higher SNR outputs
than PCPD-GG. Samples of denoised HSIs are depicted in
Appendix I.

Remark: In HSI denoising, the state-of-the-art performance13

is usually achieved via the integration of a tensor method and

9The original source of the data is from [62], and we greatly appreciate Prof.
Vagelis Papalexakis for sharing the data with us.

10http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes#Salinas-A_scene.

11http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing
_Scenes#Indian_Pines.

12An acronym for the Airborne Visible InfraRed Imaging Spectrometer.
13https://paperswithcode.com/task/hyperspectral-image-classification.

deep learning. In this work, we never claim that the proposed
method gives the best performance in this specific task, but
provides a more advanced solution for the CPD, which can be
utilized as a building component for future HSI machine learning
model design.

VII. CONCLUSION

In this paper, we investigated the automatic tensor rank
learning problem for canonical polyadic decomposition (CPD)
models under the framework of parametric Bayesian modeling
and variational inference. By noticing that the performance of
tensor rank learning is related to the flexibility of the prior
distribution, we introduced the generalized hyperbolic (GH)
prior to the probabilistic modeling of the CPD problem, based
on which an inference algorithm is further developed. Ex-
tensive numerical results on synthetic data showed that the
proposed method exhibits excellent performance in learning
both low and high tensor ranks, even when the noise power
is large. This advantage is further evidenced by real-world data
analysis.

This paper exemplified how tensor rank learning performance
can be enhanced via employing more advanced prior distribu-
tions in the Gaussian scale mixture family. Besides GH prior,
there are many other advanced priors (including generalized-t
distribution [43], normal-exponential gamma distribution [44])
worth investigating. Besides exploiting the variants of the GH
prior, informative structures such as non-negativeness [37] and
orthogonality [35] can also be incorporated into the newly
proposed probabilistic CPD model. Finally, recent deep mod-
els utilize tensor decomposition formats to represent its multi-
dimensional parameters [64]–[66], and thus there is a surging
need to automatically learn the ranks of these decompositions for
overfitting avoidance. Early attempts based on Gaussian-gamma
prior were reported in [66]. Given that the GH model performs
better than the Gaussian-gamma prior model, it is viable to
extend these related works [64]–[66] by using the prior model
proposed in this paper. In the nonparametric front, replacing
the gamma distribution of MGP [38] by a more advanced
scale distribution in Gaussian scale mixture family might fur-
ther improve its flexibility in sparsity modeling and learning.
More discussions on future theoretical research are provided in
Appendix O.
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