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Asynchronous Activity Detection for Cell-Free
Massive MIMO: From Centralized to Distributed

Algorithms
Yang Li, Qingfeng Lin, Ya-Feng Liu, Bo Ai, and Yik-Chung Wu

Abstract—Device activity detection in the emerging cell-free
massive multiple-input multiple-output (MIMO) systems has
been recognized as a crucial task in machine-type communi-
cations, in which multiple access points (APs) jointly identify
the active devices from a large number of potential devices
based on the received signals. Most of the existing works
addressing this problem rely on the impractical assumption that
different active devices transmit signals synchronously. However,
in practice, synchronization cannot be guaranteed due to the
low-cost oscillators, which brings additional discontinuous and
nonconvex constraints to the detection problem. To address this
challenge, this paper reveals an equivalent reformulation to
the asynchronous activity detection problem, which facilitates
the development of a centralized algorithm and a distributed
algorithm that satisfy the highly nonconvex constraints in a
gentle fashion as the iteration number increases, so that the
sequence generated by the proposed algorithms can get around
bad stationary points. To reduce the capacity requirements
of the fronthauls, we further design a communication-efficient
accelerated distributed algorithm. Simulation results demonstrate
that the proposed centralized and distributed algorithms outper-
form state-of-the-art approaches, and the proposed accelerated
distributed algorithm achieves a close detection performance to
that of the centralized algorithm but with a much smaller number
of bits to be transmitted on the fronthaul links.

Index Terms—Asynchronous activity detection, cell-free mas-
sive multiple-input multiple-output (MIMO), grant-free random
access, Internet-of-Things (IoT), machine-type communications
(MTC), nonsmooth and nonconvex optimization.

I. INTRODUCTION

As a new paradigm in the fifth-generation and beyond wire-
less systems, machine-type communications (MTC) provide
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efficient random access for a large number of Internet-of-
Things (IoT) devices, of which only a small portion are active
at any given time due to the sporadic traffics [1]. To meet
the low-latency requirement in MTC, a grant-free random
access scheme was advocated in [2], [3], where the devices
transmit signals without the permissions from the access points
(APs). A crucial task during the random access phase is device
activity detection, in which each active device transmits a
unique signature sequence so that the APs could identify the
active devices from the received signals [4], [5].

However, due to the large number of devices but limited co-
herence time, the signature sequences have to be nonorthogo-
nal, and hence the interference among different devices makes
device activity detection challenging. Moreover, since the IoT
devices are commonly equipped with low-cost oscillators, the
transmissions of different active devices cannot be perfectly
synchronized, which brings an additional challenge to the task
of device activity detection.

While asynchronous transmissions are common for IoT
devices, the existing studies on device activity detection focus
more on the synchronous case [6]–[31], which can be roughly
divided into two lines of research. In the first line of re-
search, by exploiting the sporadic traffics, compressed sensing
(CS) based methods have been widely studied [6]–[20]. In
particular, approximate message passing (AMP) was applied
to jointly estimate the activity status and the instantaneous
channels in [6]–[9], and was further extended to include data
detection in [10]–[14]. Besides, Bayesian sparse recovery [15]
and sparse optimization [16]–[20] have also been investigated
in the literature. Instead of performing joint activity detection
and channel estimation, another line of research called covari-
ance approach identifies the active devices without estimating
the instantaneous channel [21]–[26]. This approach exploits
the statistical properties of the channel based on the sample
covariance matrix. Compared with the CS based methods,
analytical results have shown that the covariance approach can
achieve a better detection performance with a much shorter
signature sequence length [27], [28].

Recently, cell-free massive multiple-input multiple-output
(MIMO) has been recognized as an efficient architecture for
providing uniformly high data rates, in which all the APs are
connected to a central processing unit (CPU) via fronthaul
links for joint signal processing. Cell-free massive MIMO
has no “cell boundaries”, and hence overcomes the inter-
cell interference. As compared to the traditional network
architecture, recent studies have shown that cell-free massive



2

MIMO can provide a better activity detection performance
for MTC using the CS based method [29] or the covariance
approach [30], [31].

While the above existing works exemplify the possibility of
device activity detection, they are designed under the perfect
synchronization assumption. However, in practice, due to low-
cost oscillators in IoT devices, synchronous transmissions
among different devices cannot be guaranteed [32]. Even
though network synchronization algorithms [33], [34] can be
executed before activity detection, synchronization errors still
exist. This makes the received signature sequences in actual
scenarios largely different from those assumed in existing
works. Consequently, the above activity detection method-
s based on the synchronous assumption suffer significant
degradation when applied in asynchronous activity detection.
To address this issue, the work [35] introduced ℓ0-norm
constraints into the covariance based optimization problem,
equivalently making each active device transmit only one
effective signature sequence from different possible delays in
each transmission. To tackle the ℓ0-norm constrained prob-
lem, [35] further proposed a block coordinate descent (BCD)
algorithm, which shows significant performance improvement
compared with a CS based method [36].

Unfortunately, the current solution in [35] faces a major
challenge, which comes from the fact that enforcing these
discontinuous and nonconvex ℓ0-norm constraints within each
iteration of the BCD algorithm may cause the solution to get
stuck at bad stationary points [37], [38], which will degrade
the detection performance. To tackle this challenge, this paper
proposes a novel equivalent penalized reformulation for the
original asynchronous activity detection problem. We prove
that these two problems are equivalent in the sense that their
global optimal solutions are identical under mild conditions.
We further propose an efficient centralized detection algorithm
to solve the reformulated problem to a stationary point, which
is also proved to be a stationary point of the original problem1.
Instead of enforcing the highly nonconvex ℓ0-norm constraints
within each iteration, the proposed centralized algorithm guar-
antees these constraints to be satisfied progressively as the
iteration number increases. Therefore, the sequence generated
by the proposed algorithms will not get stuck at bad stationary
points caused by the highly nonconvex ℓ0-norm constraints.
Simulation results show that the detection performance of the
proposed centralized algorithm is much better than that of
state-of-the-art approaches [35].

While the proposed centralized algorithm outperforms the
existing approaches, it is totally executed at the CPU based
on the received signals collected from all APs. Thus, the
computational burden would be heavy especially when the
network size becomes large. To reduce the computational
cost at the CPU, it is more appealing to design a distributed
algorithm in which part of the computations can be performed
at the APs [40], [41]. Going towards this direction, we further
propose a distributed detection algorithm, which is executed
at both the APs and the CPU. Specifically, each AP performs

1In this paper, the stationary point of a problem with nonconvex ℓ0-norm
constraints is more rigorously a B-stationary point, at which the directional
derivatives along any direction within its tangent cone are non-negative [39].

a local detection for the devices and then sends its detection
results to the CPU for further processing. In this way, the
computations are balanced on various parts of the network.
Moreover, the proposed distributed algorithm is also proved to
converge to a stationary point with the same solution quality
to that of the centralized algorithm.

Notice that both the centralized and distributed algorithms
require communication overheads for exchanging information
between the APs and the CPU. Since the fronthauls are
capacity-limited, the exchanged contents have to be com-
pressed before being transmitted [42], [43]. However, the com-
pression error will in turn degrade the detection performance.
Therefore, it is desirable to design a communication-efficient
algorithm that can reduce the capacity requirements of the
fronthauls while still achieving satisfactory detection perfor-
mance. To this end, we further propose a heuristic scheme
to modify the distributed algorithm such that the convergence
is accelerated and the exchanged variables appear in a much
smaller dynamic range. Simulation results demonstrate that
the accelerated distributed algorithm achieves a close detection
performance to that of the centralized algorithm with only 1
iteration, and its required number of bits transmitted on the
fronthaul links is also much smaller than that of the centralized
algorithm.

The remainder of this paper is organized as follows. System
model and problem formulation are presented in Section II. A
centralized algorithm and a distributed algorithm are proposed
under perfect fronthaul links in Section III and Section IV,
respectively. A communication-efficient scheme is presented
for practical capacity-limited fronthaul links in Section V.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Consider an uplink cell-free massive MIMO system with

M APs and K IoT devices arbitrarily and independently
distributed in the network. Each AP is equipped with N
antennas and each device is equipped with a single antenna.
All the M APs are connected to a CPU via fronthaul links,
so that the received signal from each AP can be collected and
jointly processed at the CPU. We adopt a quasi-static block-
fading channel model, where the channels between devices
and APs remain constant within each coherence block, but
may vary among different coherence blocks. Let √gk,mhk,m

denote the channel from the k-th device to the m-th AP, where√
gk,m and hk,m ∈ CN are the large-scale and small-scale

fading components, respectively. In many practical deploy-
ment scenarios, the devices are stationary, so their large-scale
fading channels are fixed and can be obtained in advance using
conventional channel estimation methods [44], [45]. In this
paper, the large-scale fading channels are assumed to be known
as in [10], [24], [25], [31]. Moreover, we consider that there
are many objects in the environment that scatter the signal
before arriving at each AP, so each entry in hk,m can be well-
modeled by CN (0, 1) [46]. Due to the sporadic traffics of
MTC, only a small portion of the K devices are active in
each coherence block. If the k-th device is active, the activity
status is denoted as ak = 1 (otherwise, ak = 0).
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To detect the activities of the IoT devices, we assign each
device a unique signature sequence s̄k ∈ CL,∀k = 1, . . . ,K,
where L is the length of the signature sequence2. The signature
sequences of all the K devices are assumed to be known.
Since the devices are commonly equipped with low-cost local
oscillators, the signature sequences of different devices may
not be transmitted synchronously. In particular, we assume
that the k-th device transmits its signature sequence with an
unknown delay of tk ∈ {0, . . . , T} symbols, where the max-
imum delay T is known3. With the k-th device transmitting
its signature sequence at the (tk + 1)-th symbol duration, its
effective signature sequence can be expressed as

sk,tk =
[
0, . . . , 0︸ ︷︷ ︸

tk

, s̄Tk , 0, . . . , 0︸ ︷︷ ︸
T−tk

]T ∈ CL+T , ∀k = 1, . . . ,K.

(1)
Consequently, the received signal over the L + T symbol
durations at each AP can be written as

Ym =

K∑
k=1

ak
√
pkgk,msk,tkh

T
k,m +Wm, ∀m = 1, . . . ,M,

(2)
where pk is the transmit power of the k-th device and the
elements of Wm ∈ C(L+T )×N are independent and identically
distributed (i.i.d.) Gaussian noise at the m-th AP following
CN

(
0, σ2

m

)
with σ2

m being the noise variance. In (2), the
transmit power pk of each device can be different [47]. In
order to reduce the channel gain variations among different
devices, pk can be controlled based on the large-scale fading
component to its dominant AP, which is the AP with the largest
channel gain [10], [31].

To express the received signal in (2) more compactly, we
denote an indicator of the device activity and delay for each
device as

bk,t =

{
1, if ak = 1 and t = tk,

0, otherwise,
∀k = 1, . . . ,K, ∀t = 0, . . . , T, (3)

which means that bk,t = 1 if and only if device k is active
with a delay of t symbol durations. Since there is at most one
possible delay for each device in each transmission, we have

ak =
T∑

t=0
bk,t ∈ {0, 1}, ∀k = 1, . . . ,K. Thus, the received

signal in (2) can be rewritten as

Ym =
K∑

k=1

T∑
t=0

bk,t
√
pkgk,msk,th

T
k,m +Wm

=
K∑

k=1

SkBkG
1
2

k,mHk,m +Wm, ∀m = 1, . . . ,M,

2The length of the signature sequence L is usually fixed within a deploy-
ment period of the network. The value of L realizes a trade-off between
the detection performance and the computational complexity. A larger L will
improve the detection performance but increase the computational complexity
of the detection algorithms.

3The maximum delay T depends on the symbol duration and the oscillators
equipped on the device. For instance, when the symbol duration is 5 µs (when
the signal bandwidth is 200 kHz), and the oscillators result in a maximum
delay of 20 µs, the value of T is 4 symbols. In the simulations of [35],
[36], T is set as 4 and 5 symbols, respectively. To compare the detection
performance under different T , we vary it from 0 to 8 in Section VI.

(4)

where Sk , [sk,0, . . . , sk,T ] ∈ C(L+T )×(T+1) is the effective
signature matrix of device k, Bk , diag {bk,0, . . . , bk,T },
Gk,m , diag

{
pkgk,m, . . . , pkgk,m︸ ︷︷ ︸

T+1

}
, and Hk,m ,

[
hk,m, . . . ,hk,m︸ ︷︷ ︸

T+1

]T ∈ C(T+1)×N .

B. Problem Formulation

Mathematically, the asynchronous activity detection is e-
quivalent to detecting each bk,t ∈ {0, 1}, which includes both
the information of the device activity and its transmission
delay (if it is active). Specifically, if bk,t is detected as 1,
we believe that the k-th device should be active with a delay
of t symbol durations.

For this purpose, we treat {Sk}Kk=1, {Bk}Kk=1,
{Gk,m}k=K,m=M

k=1,m=1 in (4) as deterministic, and treat the
small-scale fading channel matrices {Hk,m}k=K,m=M

k=1,m=1

and the noise {Wm}Mm=1 as complex Gaussian random
variables. Consequently, being a linear combination of
{Hk,m}k=K,m=M

k=1,m=1 and {Wm}Mm=1, the received signal Ym

in (4) is also complex Gaussian distributed. In particular,
with ym,n denoting the n-th column of Ym, we have
ym,n ∼ CN (0,Cm), where

Cm = E
[
ym,ny

H
m,n

]
=

K∑
k=1

SkBkG
1
2

k,mEG
1
2

k,mBkS
H
k + σ2

mIL+T

=
K∑

k=1

T∑
t=0

bk,tpkgk,msk,ts
H
k,t + σ2

mIL+T ,

∀m = 1, . . . ,M. (5)

In (5), E = E
[
hk,m,nh

H
k,m,n

]
is an all-one matrix, where

hk,m,n denotes the n-th column of Hk,m. The last equality
in (5) holds since there is at most one non-zero entry in each
diagonal matrix Bk. With bk , [bk,0, . . . , bk,T ]

T denoting
the diagonal entries of Bk and b ,

[
bT
1 , . . . ,b

T
K

]T
, we can

estimate b by maximizing the likelihood function

p
(
{Ym}Mm=1 ;b

)
=

M∏
m=1

N∏
n=1

p (ym,n;b)

=
M∏

m=1

1

|πCm|N
exp

(
−Tr

(
C−1

m YmYH
m

))
. (6)

Further considering the constraints of b, the optimization
problem is given by

min
b

M∑
m=1

(
log |Cm|+ 1

N
Tr
(
C−1

m YmYH
m

))
, (7a)

s.t. b ∈ [0, 1]
K(T+1)

, (7b)

∥bk∥0 ≤ 1, ∀k = 1, . . . ,K, (7c)
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where (7b) is a continuous relaxation of the binary constraint
b ∈ {0, 1}K(T+1), and (7c) is due to at most one possible

delay for each device in each transmission, i.e.,
T∑

t=0
bk,t ∈

{0, 1}.

Remark 1: The constraint (7b) is a reasonable relaxation
due to three aspects. Firstly, the constraint (7c) already guar-
antees that there is at most 1 non-zero entry in each bk,
which means that at least KT entries in b are guaranteed
to locate at the boundary 0. Secondly, minimizing the first
term of (7a),

∑M
m=1 log |

∑K
k=1

∑T
t=0 bk,tpkgk,msk,ts

H
k,t +

σ2
mIL+T |, has the effect of minimizing the rank of∑K
k=1

∑T
t=0 bk,tpkgk,msk,ts

H
k,t [48], which will enforce most

of bk to be all-zero vectors as demonstrated by the simulations
in [21], [22]. Thirdly, after solving problem (7), for the very
few entries bk,t that are not at the boundary of [0, 1], we
adopt a threshold γ ∈ [0, 1] to recover the binary variable
as b̂k,t = I(bk,t > γ). By varying the threshold γ in [0, 1],
we can achieve a good trade-off between the probability of
missed detection and the probability of false alarm as shown
in Section VI.

Remark 2: When the devices are equipped with multiple
antennas, the signature sequence of each device can be trans-
mitted with the help of beamforming. Specifically, let Nr ≥ 1
and Nt ≥ 1 denote the numbers of antennas at each AP
and each device, respectively. Let H̃m,k ∈ CNr×Nt denote
the small-scale Rayleigh fading channel from the k-th device
to the m-th AP. Let wk ∈ CNt with ∥wk∥2 = 1 denote
the beamforming vector at the k-th device. Consequently,
an effective channel from the k-th device to the m-th AP
can be written as h̃m,k = H̃m,kwk. Since ∥wk∥2 = 1
and each column of H̃m,k follows i.i.d. CN (0, INr), we also
have h̃m,k ∼ CN (0, INr), which has the same probability
distribution as that of the small-scale channel hm,k for Nt = 1.
Therefore, with h̃m,k replacing hm,k, the detection problem
for Nt > 1 can still be formulated as problem (7), and hence
can be solved by the proposed algorithms in the following
sections.

C. Penalized Reformulation of Problem (7)

Problem (7) is challenging to solve due to the discontinuous
and nonconvex ℓ0-norm constraints in (7c) caused by the asyn-
chronous transmissions. Recently, the work [35] proposed a
BCD algorithm for single-cell asynchronous activity detection.
This algorithm enforces the ℓ0-norm constraints within the
optimization process, which can guarantee its feasibility to
(7c). However, since ℓ0-norm is highly nonconvex, enforcing
these hard constraints during the iterations may make it easily
get stuck at bad stationary points, and hence degrades the
detection performance.

Instead of explicitly enforcing the ℓ0-norm constraints in
(7c), we transform problem (7) into:

min
b∈[0,1]K(T+1)

M∑
m=1

(
log |Cm|+ 1

N
Tr
(
C−1

m YmYH
m

))

+ρ
K∑

k=1

(
T∑

t=0

bk,t − max
t∈{0,...,T}

bk,t

)
, (8)

where ρ > 0 is a penalty parameter to penalize the violation
of (7c). The following theorem establishes the equivalence
between the original problem (7) and the penalized problem
(8).

Theorem 1. The two problems (7) and (8) are equivalent in
the sense that there exists a finite ρ∗ < ∞ such that for any
ρ > ρ∗:

1) any stationary point of problem (8) must be a stationary
point of problem (7);

2) the global optimal solutions of the two problems are
identical.

Proof: See Appendix A.

The equivalence implies that the solution of the original
problem (7) can be accomplished via solving the penalized
problem (8), which is easier to handle since problem (8)
has only simple box constraints. In contrast to the original
problem (7), which is very likely to get stuck at bad stationary
points, problem (8) has a larger feasible set than that of
problem (7) after removing the ℓ0-norm constraints, making an
iterative algorithm easier to get around bad stationary points.
More importantly, this benefit comes without sacrificing the
solution quality. In particular, theorem 1 shows that when ρ
is sufficiently large, as long as we solve problem (8) to a
stationary point, it must also be a stationary point (and thus
a feasible point) of problem (7). This means that an efficient
algorithm for solving problem (8) can satisfy (7c) in a gentle
fashion when approaching a better stationary point.

III. CENTRALIZED ALGORITHM FOR ASYNCHRONOUS
ACTIVITY DETECTION

In this section, we propose an efficient algorithm for solving
problem (8) to a stationary point, which is also a stationary
point of problem (7). This proposed algorithm is executed
at the CPU for centralized detection, which also provides a
performance reference under ideal fronthauls.

Notice that the penalized problem (8) is a nonsmooth prob-
lem, where the cost function is in the form of a differentiable

part plus a non-differentiable part, i.e., −ρ
K∑

k=1

max
t∈{0,...,T}

bk,t.

This type of nonsmooth problem can be tackled by the
proximal gradient method [49]. To solve problem (8), the
proximal gradient method adopts the following update at the
i-th iteration:

b(i) = arg min
b∈[0,1]K(T+1)

1

2ηi

∥∥∥b−
(
b(i−1) − ηid

(i−1)
)∥∥∥2

2

−ρ
K∑

k=1

max
t∈{0,...,T}

bk,t, (9)

where ηi is the step size and d(i−1) is the gradient of the
differentiable part of problem (8) with respect to b at b(i−1).
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Algorithm 1 Proposed Centralized Algorithm for Solving
Problem (8)

1: Initialize b(0);
2: repeat (i = 1, 2, . . .)
3: Calculate the gradient d(i−1) at b(i−1);
4: α

(i)
k,t = b

(i−1)
k,t − ηid

(i−1)
k,t , ∀k = 1, . . . ,K,∀t = 0, . . . , T ;

5: Take any τ(k) ∈ arg max
t∈{0,...,T}

α
(i)
k,t, ∀k = 1, . . . ,K;

6: b
(i)
k,t =

Π[0,1]

(
α
(i)
k,t + ηiρ

)
, if t = τ(k)

Π[0,1]

(
α
(i)
k,t

)
, otherwise

, ∀k = 1, . . . ,K;

7: until convergence

In particular, the differentiable part of problem (8) is

G0(b) ,
M∑

m=1

(
log |Cm|+ 1

N
Tr
(
C−1

m YmYH
m

))

+ρ
K∑

k=1

T∑
t=0

bk,t, (10)

and the (k, t)-th element of d(i−1) can be written as

d
(i−1)
k,t = ρ+

M∑
m=1

(
sHk,t

(
C(i−1)

m

)−1

sk,t

− 1

N
sHk,t

(
C(i−1)

m

)−1

YmYH
m

(
C(i−1)

m

)−1

sk,t

)
.

(11)

While the update in (9) still involves a nonsmooth and noncon-
vex problem, the following proposition shows that its global
optimal solution can be derived in a closed form.

Proposition 1. The update in (9) can be simplified in a closed
form:

b
(i)
k,t =

Π[0,1]

(
α
(i)
k,t + ηiρ

)
, if t = τ(k),

Π[0,1]

(
α
(i)
k,t

)
, otherwise,

∀k = 1, . . . ,K, ∀t = 0, . . . , T, (12)

where α
(i)
k,t , b

(i−1)
k,t −ηid

(i−1)
k,t , τ(k) ∈ arg max

t∈{0,...,T}
α
(i)
k,t, and

Π[0,1](·) is the projection onto [0, 1].

Proof: See Appendix B.

By iteratively updating b(i) using (12), the proposed al-
gorithm for solving problem (8) is shown in Algorithm 1.
While problem (8) is nonsmooth and nonconvex, the following
theorem shows that Algorithm 1 is guaranteed to converge to
a stationary point.

Theorem 2. When ηi < 1/Ld, with Ld denoting the Lipschitz
constant of the gradient of G0(b), any limit point of the
sequence generated by Algorithm 1 is a stationary point of
problem (8).

Proof: See Appendix C.

Combining Theorem 1 and Theorem 2, Algorithm 1 is not
only guaranteed to converge to a stationary point problem (8),
but also a stationary point of the original problem (7). More-
over, we can see from Algorithm 1 that b(i) at each iteration

is not enforced to satisfy the discontinuous nonconvex ℓ0-
norm constraints in (7c), but rather these hard constraints are
gradually satisfied to reach a stationary point of problem (7).
Therefore, the sequence generated by the proposed algorithms
will probably not get stuck at bad stationary points caused
by the highly nonconvex ℓ0-norm. The performance gain over
the ℓ0-norm constrained BCD algorithm [35] will be shown
through simulations in Section VI.

The computational complexity of Algorithm 1 is dominated
by line 3, where the gradient is calculated in (11). Using the
rank-1 update for the matrix inverse in (11), the computational
complexity of line 3 is O

(
MK(T + 1)(L+ T )2

)
. Thus, with

I denoting the iteration number, the overall computational
complexity of Algorithm 1 is O

(
IMK(T + 1)(L+ T )2

)
.

IV. DISTRIBUTED ALGORITHM FOR ASYNCHRONOUS
ACTIVITY DETECTION

In this section, to reduce the computational burden at the
CPU, we further propose a distributed algorithm for asyn-
chronous activity detection. Different from the centralized
detection algorithm that is totally performed at the CPU, the
proposed distributed algorithm is executed iteratively at both
the APs and the CPU. At each iteration, each AP performs a
local detection for the devices and then sends the detection
results to the CPU for further processing. The combined
result is then forwarded to the APs for the next iteration’s
computation.

First, we transform problem (8) into an equivalent consensus
form:

min
{xm}M

m=1,b∈[0,1]K(T+1)
ρ

K∑
k=1

(
T∑

t=0

bk,t − max
t∈{0,...,T}

bk,t

)

+
M∑

m=1

fm (xm) , (13a)

s.t. xm = b, ∀m = 1, . . . ,M, (13b)

where fm (xm) , log |C̃m|+Tr
(
C̃−1

m YmYH
m

)
/N , and C̃m

is in the form of Cm but with xm replacing b in (5). Notice
that fm(·) is a local function for the m-th AP and depends
only on its own received signal Ym. This makes problem (13)
become a local problem when handling xm with a fixed b.

To solve problem (13) in a distributed manner, we write its
augmented Lagrangian function:

L
(
{xm}Mm=1 ,b; {λm}Mm=1

)
=

M∑
m=1

fm (xm) + ρ
K∑

k=1

(
T∑

t=0

bk,t − max
t∈{0,...,T}

bk,t

)

+

M∑
m=1

λT
m (xm − b) +

µ

2

M∑
m=1

∥xm − b∥22 , (14)

where each λm ∈ RK(T+1) is a dual variable corresponding to
the equality constraint xm = b, and µ > 0 is a penalty param-
eter to penalize the violation of all the constraints in (13b). The
appearance of (13) might suggest to use the classical ADMM
algorithm [50], which minimizes the augmented Lagrangian
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function (14) over b and {xm}Mm=1 alternatingly. However,

since the term ρ
K∑

k=1

max
t∈{0,...,T}

bk,t in (14) is nonsmooth and

nonconvex, the classical ADMM algorithm cannot guarantee
its convergence.

To guarantee the convergence, we add an additional proxi-
mal term δ/2

∥∥b− b(i−1)
∥∥2
2

to (14), making the subproblem
with respect to b at the i-th iteration appear as

min
b∈[0,1]K(T+1)

ρ

K∑
k=1

(
T∑

t=0

bk,t − max
t∈{0,...,T}

bk,t

)

+
M∑

m=1

(
λ(i−1)
m

)T (
x(i−1)
m − b

)
+
µ

2

M∑
m=1

∥∥∥x(i−1)
m − b

∥∥∥2
2
+

δ

2

∥∥∥b− b(i−1)
∥∥∥2
2
,

(15)

where δ > 0 is a parameter for controlling the convergence.
Although subproblem (15) is still nonsmooth and nonconvex,
the following proposition shows that its global optimal solution
can be derived in a closed form, which can be proved using
the same argument as in Appendix B.

Proposition 2. The closed-form solution of subproblem (15)
is given by

b
(i)
k,t =

Π[0,1]

(
β
(i)
k,t +

ρ
δ+Mµ

)
, if t = υ(k),

Π[0,1]

(
β
(i)
k,t

)
, otherwise,

∀k = 1, . . . ,K, ∀t = 0, . . . , T, (16)

where β
(i)
k,t ,

(
δb

(i−1)
k,t +

∑M
m=1

(
µx

(i−1)
m,k,t + λ

(i−1)
m,k,t

)
− ρ
)

/ (δ +Mµ) and υ(k) ∈ arg max
t∈{0,...,T}

β
(i)
k,t.

On the other hand, the subproblem with respect to
{xm}Mm=1 at the i-th iteration can be decomposed into M
parallel subproblems, with each written as

min
xm

fm (xm)+
(
λ(i−1)
m

)T (
xm − b(i)

)
+

µ

2

∥∥∥xm − b(i)
∥∥∥2
2
.

(17)
Compared to the single-cell device activity detection problem
[21]–[23], subproblem (17) only differs in the additional linear
and quadratic terms. Therefore, subproblem (17) can be solved
in a similar way to [21]–[23] by updating each coordinate
of xm sequentially with the coordinate descent algorithm. In
particular, with other coordinates fixed, xm,k,t is updated by
solving

min
xm,k,t

log (1 + ξ1xm,k,t)−
ξ2xm,k,t

1 + ξ1xm,k,t

+λ
(i−1)
m,k,t

(
xm,k,t − b

(i)
k,t

)
+

µ

2

(
xm,k,t − b

(i)
k,t

)2
,

(18)

where ξ1 , pkgk,msHk,tD
−1
m,k,tsk,t, ξ2 ,

pkgk,m/NsHk,tD
−1
m,k,tYmYH

mD−1
m,k,tsk,t, and Dm,k,t ,∑

(k̄,t̄) ̸=(k,t)

xm,k̄,t̄pk̄gk̄,msk̄,t̄s
H
k̄,t̄

+σ2
mIL+T . Notice that ξ1 and

Algorithm 2 Proposed Distributed Algorithm for Solving
Problem (13)

1: Initialize b(0),
{
x
(0)
m

}M

m=1
, and

{
λ
(0)
m

}M

m=1
;

2: repeat (i = 1, 2, . . .)
3: Each AP m sends µx

(i−1)
m +λ

(i−1)
m to the CPU, ∀m = 1, . . . ,M ;

4: The CPU updates b(i) with (16);
5: The CPU broadcasts b(i) to each AP m, ∀m = 1, . . . ,M ;
6: Each AP m updates x(i)

m by solving problem (17) with the coordinate
descent algorithm, ∀m = 1, . . . ,M ;

7: Each AP m updates λ
(i)
m with (20), ∀m = 1, . . . ,M ;

8: until convergence

ξ2 depend on (m, k, t). For notational simplicity, the (m, k, t)
dependence is not explicitly stated. Setting the gradient of
(18) to zero yields

(1 + ξ1xm,k,t) ξ1 − ξ2 + λ
(i−1)
m,k,t (1 + ξ1xm,k,t)

2

+µ
(
xm,k,t − b

(i)
k,t

)
(1 + ξ1xm,k,t)

2
= 0, (19)

whose roots can be expressed using the cubic formula. Conse-
quently, the optimal solution of (18) is obtained by selecting
the root with the minimum cost function value.

After updating b and {xm}Mm=1, the dual variables are
updated by a dual ascent step:

λ(i)
m = λ(i−1)

m + µ
(
x(i)
m − b(i)

)
, ∀m = 1, . . . ,M. (20)

By iteratively updating the primal and dual variables, the
proposed distributed algorithm for solving problem (13) is
summarized in Algorithm 2. The following theorem shows that
Algorithm 2 is guaranteed to converge to a stationary point of
problem (13).

Theorem 3. When µ > 2Lm, with Lm denoting the Lipschitz
constant of ∇fm (xm), any limit point of the sequence gener-
ated by Algorithm 2 is a stationary point of problem (13).

Proof: See Appendix D.

Notice that problem (13) is an equivalent reformulation
of problem (8), which is also equivalent to the original
problem (7) (see Theorem 1). Therefore, we can conclude
that Algorithm 2 is also guaranteed to converge to a stationary
point of problem (7).

The computational complexity of Algorithm 2 is dom-
inated by line 6, where the coordinate descent algorith-
m is applied to solve (17) with computational complexity
O
(
K(T + 1)(L+ T )2

)
at each AP [22]. Due to the multi-AP

parallel computation, with I denoting the iteration number, the
time complexity of Algorithm 2 is O

(
IK(T + 1)(L+ T )2

)
.

V. COMMUNICATION-EFFICIENT ENHANCEMENT FOR
ALGORITHM 2

In Algorithm 1 and Algorithm 2, we assume that the
received signals or the local detection results can be accurately
collected at the CPU. In practice, the APs and the CPU
are connected by capacity-limited fronthaul links. Therefore,
the exchanged contents have to be compressed before being
transmitted. In Algorithm 1, the received signals forwarded to
the CPU are in a large dynamic range due to the randomness of
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the activities, delays, and channels. Thus, the required number
of bits for compression could be very large in order to maintain
a high fidelity. If the compression error is large, it inevitably
degrades the detection performance. On the other hand, in
Algorithm 2, we can see that instead of sending the received
signals, each AP only requires to forward the local detection
results to the CPU. However, as a distributed algorithm,
Algorithm 2 requires communications between the APs and
the CPU at each iteration. Therefore, the communication
overheads of Algorithm 2 are affected by its required iteration
number for convergence. This brings a difficult dilemma of
reducing the capacity requirements of the fronthaul links while
still achieving a satisfactory detection performance.

In this section, we resolve this dilemma by modifying
Algorithm 2 such that the convergence is accelerated and the
exchanged variables appear in a much smaller dynamic range,
which reduces the required number of bits for compression
without sacrificing the detection performance. In particular,
we observe that at each iteration of Algorithm 2, the CPU
updates b by solving the subproblem (15), where the variable
b is optimized to minimize the Euclidean distance to the local
detection result x(i−1)

m at each AP. However, from the original
problem (7), we can see that b is actually optimized through
the covariance matrix Cm by minimizing a distance defined
using the likelihood function. Based on this observation, we
replace the terms with respect to the Euclidean distance (i.e.,
third and fourth terms) in subproblem (15) with the form of
(7) and drop the term with respect to the dual variables to
further reduce the communication overheads. Consequently,
subproblem (15) is modified as

min
b∈[0,1]K(T+1)

M∑
m=1

(
log |Cm|+ Tr

(
C−1

m C̃(i−1)
m

))
+ρ

K∑
k=1

(
T∑

t=0

bk,t − max
t∈{0,...,T}

bk,t

)
,(21)

where C̃
(i−1)
m is in the form of Cm but with x

(i−1)
m replacing

b in (5). Since problem (21) is in the same form of problem
(8), we can adopt a similar algorithm to Algorithm 1 to solve it
(simply replace YmYH

m/N with C̃
(i−1)
m in Algorithm 1). After

replacing line 3 by the above updating procedure, Algorithm 2
requires much fewer iterations, which will be verified via
simulations.

We can interpret the benefit of the above modification from
(15) to (21) as follows. In problem (15), b is estimated by
minimizing the Euclidean distance to each x

(i−1)
m . Neverthe-

less, due to the diverse distances of each device from different
APs, the detection accuracy of each device from different
APs can be substantially different. In particular, the detection
results of a device obtained from its nearby APs are more
reliable than those from distant APs. However, the information
on this detection reliability is not captured and modeled in
problem (15). In contrast, problem (21) adopts C̃

(i−1)
m based

on x
(i−1)
m as well as the corresponding large-scale fading

components, which successfully capture and use this detection
reliability information. In this sense, problem (21) can provide
a better formulation for the approximation of b, making the

Algorithm 3 Communication-Efficient Enhancement for Al-
gorithm 2

1: Initialize b(0),
{
x
(0)
m

}M

m=1
, and

{
λ
(0)
m

}M

m=1
;

2: repeat (i = 1, 2, . . .)
3: Each AP m sends Q

(
x
(i−1)
m

)
to the CPU, ∀m = 1, . . . ,M ;

4: The CPU updates b(i) by solving (21) with a similar algorithm to
Algorithm 1;

5: The CPU broadcasts Q
(
b(i)

)
to each AP m, ∀m = 1, . . . ,M ;

6: Each AP m updates x(i)
m by solving problem (17) with the coordinate

descent algorithm, ∀m = 1, . . . ,M ;
7: Each AP m updates λ

(i)
m with (20), ∀m = 1, . . . ,M ;

8: until convergence

convergence of the iterative algorithm much faster.
Using the modification in (21), we summarize the resulting

algorithm as Algorithm 3. In line 3 and line 5, Q(·) is a
function to compress xm and b. For instance, a simple Q(·)
that we can adopt is the uniform scalar quantizer for each
element of the vectors. Due to the small dynamic range [0, 1]
of xm and b, the required number of quantization bits for
compression can be much smaller than that in the centralized
detection. Furthermore, since most of the entries in xm and
b are zeros due to the sparse activities, we can also adopt
the variable-length compression scheme such as Huffman
coding to further reduce the required number of bits, making
Algorithm 3 more communication-efficient. The enhancement
on the communication efficiency of Algorithm 3 will be shown
through simulations in Section VI. On the other hand, similar
to Algorithm 2, the computational complexity of Algorithm 3
is also dominated by line 6 with O

(
K(T + 1)(L+ T )2

)
,

and its time complexity is O
(
IK(T + 1)(L+ T )2

)
, where

I denotes the iteration number.

VI. SIMULATION RESULTS

In this section, we present the performance of the pro-
posed centralized and distributed algorithms via simulations
in terms of the probability of missed detection (PM), i.e., the
probability that an active device is detected as inactive or its
delay is incorrectly detected, and the probability of false alarm
(PF), i.e., the probability that an inactive device is detected as
active [35]. Specifically, the indicator of the device activity
and delay is recovered by b̂k,t = I(bk,t > γ), where bk,t is the
optimization result returned by the proposed algorithms and γ
is a threshold that varies in [0, 1] to realize a trade-off between
PM and PF.

A. Simulation Setting

We consider a 1 × 1 square kilometers area with wrap-
around at the boundary. There are M APs and K = 100 IoT
devices uniformly distributed in this square area, where the
ratio of the active devices to the total devices is 0.1. The sig-
nature sequence of each device is an independently generated
complex Gaussian distributed vector with i.i.d. elements and
each element is with zero mean and unit variance. The large-
scale fading component follows the micro-cell propagation
model [51], i.e., gk,m = −30.5 − 36.7 log10 Dk,m + Ψk,m
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in dB, where Dk,m is the distance in meters between the k-
th device and the m-th AP. To reflect the effect of blockage,
the large-scale fading component includes a shadow fading
component Ψk,m, which is complex Gaussian distributed with
mean 0 and variance 4 [51]. The maximum transmit power
of each device is 23 dBm and the background Gaussian
noise power is −104 dBm. In order to reduce the channel
gain differences among different devices, the transmit power
of each device is controlled based on the large-scale fading
components such that the SNR at its dominant AP (which
is the AP with the largest channel gain) is fixed to a target
value that can be achieved by 95% of the active devices [31].
All the simulation results are obtained by averaging over 1000
trials, with independent APs’ and devices’ locations, channels,
signature sequences, device activity patterns, delays, and noise
realizations in each trial.

In Algorithm 1, we set the penalty parameter ρ as 0.16,
and choose an adaptive step size ηi as the inverse of the
local estimation of the Lipschitz constant of the gradient [30].
Moreover, b(0) is initialized as a zero vector. In Algorithm 2
and Algorithm 3, we set µ as 0.08, and initialize b(0) and λ(0)

m

as zero vectors. To achieve fast convergence, x(0)
m is initialized

by a local detection at each AP: min
xm∈[0,1]K(T+1)

fm (xm), which

can be solved with the coordinate descent algorithm for single-
cell device activity detection [21]–[23].

B. Proposed Centralized Algorithm Versus State-of-the-Art
Approaches

First, we demonstrate the performance of the proposed
centralized Algorithm 1. For comparison, we also show the
detection performance of two benchmarks, i.e., CD-E and
BCD in [22], [35]. While these two approaches are designed
for single-cell asynchronous activity detection, we extend them
to solve problem (7) for cell-free massive MIMO as follows.

• CD-E first drops the ℓ0-norm constraints in (7c) and then
solves the relaxed problem with the coordinate descent
algorithm. After the optimization process, (7c) is re-
enforced by an additional constraint enforcement step.

• BCD enforces (7c) within the optimization process.
Specifically, the variable b is decomposed into K blocks,
where each block bk is sequentially updated with other
blocks fixed. Each subproblem is solved by comparing the
solutions of T + 1 one-dimensional subproblems within
the feasible set of (7c) and then selecting the one with
the minimum cost function value.

We compare the performance of different approaches in
terms of PM and PF in Fig. 1, where the numbers of APs and
antennas at each AP, the length of the signature sequences,
and the maximum delay are set as M = N = 8, L = 9,
and T = 1, respectively. We can see that both the proposed
Algorithm 1 and BCD outperform CD-E, since they both
solve the original problem (7) to stationary points. However,
Algorithm 1 achieves a much better PM-PF trade-off than
that of BCD. In particular, the PM of Algorithm 1 is over
10 times lower than that of BCD under the same PF. This
is because in Algorithm 1, the highly nonconvex ℓ0-norm
constraints in (7c) are gradually satisfied in a gentle fashion

10-3 10-2 10-1 100

PM

10-5

10-4

10-3

10-2

10-1

100

P
F

Fig. 1. PM-PF trade-offs achieved by different centralized algorithms.

as the iteration number increases, which is helpful in getting
around bad stationary points of problem (7).

We further compare these centralized algorithms under
different maximum delays and different numbers of APs. Due
to the trade-off between PM and PF, we show the probability
of error when PF = PM by appropriately setting the threshold
γ. The probability of error versus the maximum delay T is
shown in Fig. 2(a), where the numbers of APs and antennas at
each AP are set as M = N = 8 and the length of the effective
signature sequences is fixed as L + T = 10. In particular,
(L = 10, T = 0) represents ideal synchronous transmissions
with no delay. It can be seen that while all the approaches
result in higher PM as T increases up to 8, Algorithm 1
always performs the best, which demonstrates the superiority
of Algorithm 1 under asynchronous transmissions.

On the other hand, the probability of error versus the number
of APs M is shown in Fig. 2(b), where the length of the
signature sequences and the maximum delay are set as L = 9
and T = 1, respectively. The total number of antennas at all the
APs is fixed as MN = 64. It can be seen that as M increases
from 1 to 16, the detection performance of all the approaches
becomes better. This performance improvement comes from
the fact that when there are more APs in the area, the distance
between each device and each AP becomes shorter, resulting
in a higher SNR at each AP. On the other hand, when M
further increases, the antenna number at each AP N becomes
much smaller. The significant decrease in the spatial resolution
makes the detection performance worse. Nevertheless, we can
see that Algorithm 1 always performs better than the other
two approaches in the whole range of M .

To demonstrate the superiority of massive MIMO, we
further show the performance comparison under different
numbers of antennas in Fig. 2(c). We fix the number of APs
as M = 8 and vary the number of antennas at each AP
such that the total number of antennas increases from 32 to
96. It can be seen that while the detection performance of
all the approaches becomes better as the number of antennas
increases, the proposed Algorithm 1 always achieves the best
performance. Due to the superiority of Algorithm 1, we adopt
it as a baseline for the proposed distributed algorithms in the
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(c) Probability of error versus total number of antennas.

Fig. 2. Performance comparison of centralized algorithms.

rest of simulations.

C. Proposed Distributed Algorithms Versus Centralized Algo-
rithm

Next, we show the detection performance of the proposed
distributed Algorithm 2 and Algorithm 3, and compare them
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(a) Probability of error versus iteration number I .
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(b) Probability of error versus T .

Fig. 3. Performance comparison of distributed algorithms.

to that of the centralized algorithm. The probability of error
versus the iteration number of the distributed algorithms is
shown in Fig. 3(a), where M = N = 8, L = 9, and T = 1. For
fair comparison, all these algorithms are executed under ideal
fronthauls. It can be seen that both Algorithm 2 and Algorith-
m 3 achieve fast convergence (within 8 iterations) to the result
of Algorithm 1. Furthermore, Fig. 3(b) shows that pretty fast
convergence can be achieved under different T . This means
that Algorithm 2 or Algorithm 3 can replace Algorithm 1
without changing the performance. On the other hand, since
Algorithm 3 is judiciously designed based on Algorithm 2,
we can see that Algorithm 3 achieves an impressively fast
convergence within only 2 to 3 iterations. As Algorithm 3
achieves the same performance to that of Algorithm 2 but with
much faster convergence, we only show the performance of
Algorithm 3 under capacity-limited fronthauls in the following
simulations.

D. Performance Under Capacity-Limited Fronthauls

Next, we show how many quantization bits are needed to
approach the results under ideal fronthauls. For the illustration
purpose, we adopt a uniform scalar quantizer in Algorithm 1
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and Algorithm 3, respectively. The probability of error versus
T is shown in Fig. 4(a), where M = N = 8 and L+T = 10.
It can be seen that under different T , Algorithm 3 always
performs very close to Algorithm 1. However, Algorithm 1
requires at least 16 quantization bits per real-valued scalar
to approach the performance under ideal fronthauls. When
14 quantization bits are used, Algorithm 1 performs even
worse than Algorithm 3 with only 4 quantization bits and
I = 1 iteration. In Fig. 4(b), we show the probability of
error versus M , where L = 9, T = 1, and MN = 64.
Similar to Fig. 4(a), we can see that under different M ,
Algorithm 3 always requires much fewer quantization bits per
real-valued scalar to approach the detection performance under
ideal fronthauls.

To clearly see the overall communication overheads, we an-
alyze the number of bits required to be transmitted in Algorith-
m 1 and Algorithm 3 as follows. In Algorithm 1, the received
signal Ym is used via YmYH

m/N , which is a Hermitian matrix
with (L+ T )2 real-valued scalars. Thus, when L+ T ≤ 2N ,
each AP m can quantize and send YmYH

m/N instead of
Ym (with 2(L + T )N real-valued scalars) to the CPU. With
Q1 denoting the number of quantization bits per real-valued
scalar, the overall number of bits required by Algorithm 1
is MQ1(L + T )2 when L + T ≤ 2N or 2MQ1(L + T )N
otherwise. On the other hand, in Algorithm 3, each AP m
sends its quantized local detection result to the CPU at each
iteration. With Q2 denoting the number of quantization bits
per real-valued scalar, the number of bits sent from each AP
m to the CPU is Q2K(T+1). Similarly, after the CPU updates
b(i), the number of bits sent from the CPU to each AP m is
also Q2K(T +1). Since Algorithm 3 can stop before sending
b(I) to the APs at the last iteration, the overall number of
bits required by Algorithm 3 is (2I − 1)MKQ2(T + 1). For
example, when M = N = 8, L = 9, T = 1, I = 1, Q1 = 14,
and Q2 = 4, Algorithm 1 and Algorithm 3 require 11200
and 6400 quantization bits, respectively. This shows that even
under the uniform scalar quantization, Algorithm 3 reduces
the number of bits transmitted significantly.

Since most of the local detection results are zero, the actual
number of bits to be transmitted can be further reduced by
using various data compression schemes. As a demonstration,
we compare the total number of bits required by Algorith-
m 1 and Algorithm 3 using Huffman coding. In particular,
Huffman coding is applied to the quantized contents for both
Algorithm 1 and Algorithm 3. Figure 5 shows the simulation
results for M = N = 8, L = 9, and T = 1. For
Algorithm 1, we consider different quantization levels 211,
214, and 216, whereas for Algorithm 3, the quantization level
is fixed as 24 and each AP transmits the local detection results
of 50, 70, 80, and 100 devices with the largest large-scale
fading coefficients. We can see that while Huffman coding
is effective in reducing the overall number of bits for both
Algorithm 1 and Algorithm 3, the compression ratio is higher
in Algorithm 3 due to the sparse local detection results. For
example, before using Huffman coding, the number of bits
required by Algorithm 3 is almost 2 times smaller than that of
Algorithm 1, whereas after using Huffman coding, the number
of bits required by Algorithm 3 is at least 3 times smaller than
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Fig. 4. Performance comparison between Algorithm 1 and Algorithm 3 using
the simple uniform scalar quantization.
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Fig. 5. Probability of error versus overall number of bits after Huffman
coding compression.

that of Algorithm 1.
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VII. CONCLUSIONS

This paper studied asynchronous activity detection methods
for cell-free massive MIMO. To tackle the discontinuous
and nonconvex ℓ0-norm constraints due to the asynchronous
transmissions, an equivalent reformulation of the original prob-
lem was established. A centralized algorithm and a distribut-
ed algorithm were proposed, with both being theoretically
guaranteed to converge to a stationary point of the original
asynchronous activity detection problem. Since the proposed
algorithms address the ℓ0-norm constraints in a gentle fashion
as the iteration number increases, the sequence generated by
the proposed algorithms can get around bad stationary points
caused by the highly nonconvex ℓ0-norm. To reduce the capac-
ity requirements of the fronthauls in cell-free massive MIMO,
a communication-efficient accelerated distributed algorithm
was further designed. Simulation results demonstrated that
the proposed centralized and distributed algorithms outperform
state-of-the-art approaches, whereas the proposed accelerated
distributed algorithm achieves a close detection performance
to that of the centralized algorithm but with a much smaller
number of bits to be transmitted on the fronthaul links.

APPENDIX A
PROOF OF THEOREM 1

We first prove that there exists a finite ρ∗ < ∞ such that
for any ρ > ρ∗, the stationary point of problem (8) is also
a feasible point of problem (7). Let b∗ denote a stationary
point of problem (8), which satisfies the following first-order
optimality condition [39]:

−ρ
K∑

k=1

lim
τ→0+

max
t∈{0,...,T}

(
b∗k,t + τ d̃k,t

)
− max

t∈{0,...,T}
b∗k,t

τ

+

M∑
m=1

∇fm (b∗)
T
d̃+ ρ

K∑
k=1

T∑
t=0

d̃k,t ≥ 0,

∀d̃ ∈ T (b∗) , (A.1)

where fm (b) , log |Cm| + Tr
(
C−1

m YmYH
m

)
/N and

T (b∗) is the tangent cone of the feasible set of prob-
lem (8) at b∗. Denoting W(k) , arg max

t∈{0,...,T}
b∗k,t,

we have max
t∈{0,...,T}

(
b∗k,t + τ d̃k,t

)
= max

t∈{0,...,T}
b∗k,t +

τ max
t∈W(k)

d̃k,t, ∀τ → 0+. Using this equation and taking any

ω(k) ∈ arg max
t∈W(k)

d̃k,t we can simplify (A.1) as

M∑
m=1

∇fm (b∗)
T
d̃+ ρ

K∑
k=1

(
T∑

t=0

d̃k,t − d̃k,ω(k)

)
≥ 0,

∀d̃ ∈ T (b∗) . (A.2)

Notice that the first term of (A.2) can be upper bounded as

M∑
m=1

∇fm (b∗)
T
d̃ ≤

∥∥∥∥∥
M∑

m=1

∇fm (b∗)

∥∥∥∥∥
∞

∥∥∥d̃∥∥∥
1
, ρ∗

∥∥∥d̃∥∥∥
1
,

(A.3)

where ρ∗ < ∞ since b∗ is bounded in [0, 1]K(T+1). Substi-
tuting (A.3) into (A.2), we obtain

ρ∗
∥∥∥d̃∥∥∥

1
+ ρ

K∑
k=1

(
T∑

t=0

d̃k,t − d̃k,ω(k)

)
≥ 0, ∀d̃ ∈ T (b∗) .

(A.4)
Based on (A.4), we prove that when ρ > ρ∗, b∗ must satisfy

(7c) by contradiction. Suppose that (7c) does not hold, i.e.,
there exits k̄ ∈ {1, . . . ,K} such that

∥∥b∗
k̄

∥∥
0
> 1. Moreover,

since b∗ ∈ [0, 1]K(T+1) in problem (8), there must exist one
ϕ(k̄) ̸= ω(k̄) satisfying b∗

k̄,ϕ(k̄)
> 0. On the other hand, notice

that any d̃ ∈ T (b∗) should satisfy
d̃k,t ≥ 0, if b∗k,t = 0,

d̃k,t ∈ R, if b∗k,t ∈ (0, 1),

d̃k,t ≤ 0, if b∗k,t = 1,

∀k = 1, . . . ,K, ∀t = 0, . . . , T.

(A.5)
Consequently, there exists one d̃ ∈ T (b∗) satisfying
d̃k̄,ϕ(k̄) = −1 and d̃k,t = 0, ∀(k, t) ̸= (k̄, ϕ(k̄)). Substituting
this d̃ into (A.4), we obtain ρ∗−ρ ≥ 0, which is contradictory
to ρ > ρ∗. Therefore, when ρ > ρ∗, b∗ must satisfy
(7c). Together with the fact that (7b) is already satisfied in
problem (8), we can conclude that b∗ is a feasible point of
problem (7).

Next, we prove that b∗ must also be a stationary point
problem (7) when ρ > ρ∗. Since b∗ has been proved to be
feasible to problem (7), we have ∥b∗

k∥0 ≤ 1. Moreover, with
P (b∗) denoting the tangent cone of the feasible set of problem
(7) at b∗, for any d̃ ∈ P (b∗), we have

∥∥∥b∗
k + τ d̃k

∥∥∥
0
≤

1, ∀τ → 0+, ∀k = 1, . . . ,K. Consequently, we have
T∑

t=0

(
b∗k,t + τ d̃k,t

)
= max

t∈{0,...,T}

(
b∗k,t + τ d̃k,t

)
, ∀τ → 0+. If

∥b∗
k∥0 = 0, it reduces to

T∑
t=0

d̃k,t = d̃k,ω(k). If ∥b∗
k∥0 = 1,

from
∥∥∥b∗

k + τ d̃k

∥∥∥
0
≤ 1, we have d̃k,t = 0, ∀t ̸= ω(k). Thus,

it also follows that
T∑

t=0
d̃k,t = d̃k,ω(k). On the other hand, since

the feasible set of (7) is a subset of the feasible set of (8), we

have P (b∗) ⊆ T (b∗). Substituting
T∑

t=0
d̃k,t = d̃k,ω(k) into

(A.2) and focusing on d̃ ∈ P (b∗) give

M∑
m=1

∇fm (b∗)
T
d̃ ≥ 0, ∀d̃ ∈ P (b∗) , (A.6)

which means that b∗ is also a stationary point of problem (7).
Finally, we prove that the global optimal solutions of

the two problems are identical. Let b∗ denote the global
optimal solution of problem (8). Let F (·) and b⋆ denote
the cost function and the optimal solution of problem (7),
respectively. Since both b∗ and b⋆ are feasible to problem (7),
we have ∥b∗

k∥0 ≤ 1 and ∥b⋆
k∥0 ≤ 1. Consequently, we

have
T∑

t=0
b∗k,t = max

t∈{0,...,T}
b∗k,t and

T∑
t=0

b⋆k,t = max
t∈{0,...,T}

b⋆k,t.

With G(·) denoting the cost function of problem (8), by
substituting the above two equalities into G (b∗) and G (b⋆),
we have F (b∗) = G (b∗) and G (b⋆) = F (b⋆). Moreover,
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since b∗ is the optimal solution of problem (8), we have
F (b∗) = G (b∗) ≤ G (b⋆) = F (b⋆). On the other hand,
since b∗ is a feasible point of problem (7), we also have
F (b∗) ≥ F (b⋆). Combining the above two inequalities, we
finally have F (b∗) = G (b∗) = G (b⋆) = F (b⋆), which
means that optimal solutions of problems (7) and (8) are
identical.

APPENDIX B
PROOF OF PROPOSITION 1

Problem (9) can be decomposed into K subproblems, with
each written as

b
(i)
k = arg min

bk∈[0,1]T+1

T∑
t=0

(
bk,t − α

(i)
k,t

)2
−2ηiρ max

t∈{0,...,T}
bk,t,

(B.1)
where α

(i)
k,t , b

(i−1)
k,t − ηid

(i−1)
k,t . Taking any ω(k) ∈

arg max
t∈{0,...,T}

b
(i)
k,t, problem (B.1) can be equivalently written

as

b
(i)
k,t =


arg min

bk,t∈[0,1]

(
bk,t − α

(i)
k,t

)2
− 2ηiρbk,t, if t = ω(k),

arg min
bk,t∈[0,1]

(
bk,t − α

(i)
k,t

)2
, otherwise,

(B.2)
which can be simplified as

b
(i)
k,t =

Π[0,1]

(
α
(i)
k,t + ηiρ

)
, if t = ω(k),

Π[0,1]

(
α
(i)
k,t

)
, otherwise.

(B.3)

However, since ω(k) is defined based on the solution
b
(i)
k itself, (B.3) cannot be directly used as the closed-

form solution. Next, we prove that ω(k) can be replaced by
τ(k) ∈ arg max

t∈{0,...,T}
α
(i)
k,t. According to the definition of τ(k),

we have α
(i)
k,τ(k) ≥ α

(i)
k,t, ∀t = 0, . . . , T . Since ηiρ > 0 and

Π[0,1] (·) is a monotonically non-decreasing function, we have

Π[0,1]

(
α
(i)
k,τ(k) + ηiρ

)
≥ Π[0,1]

(
α
(i)
k,t

)
, ∀t = 0, . . . , T.

(B.4)
On the other hand, from (B.3), we also have

b
(i)
k,ω(k) = Π[0,1]

(
α
(i)
k,ω(k) + ηiρ

)
≥ Π[0,1]

(
α
(i)
k,t

)
= b

(i)
k,t,

∀t = 0, . . . , T. (B.5)

Comparing (B.4) and (B.5), we can conclude that ω(k) in
(B.3) can be replaced by τ(k), and the optimal solution of (9)
is given by (12).

APPENDIX C
PROOF OF THEOREM 2

Denote the cost function of problems (8) and (9) as

G (b) = G0 (b)−ρ
K∑

k=1

max
t∈{0,...,T}

bk,t and U (b), respectively.

Taking the second-order Taylor expansion to G0 (b) at b(i−1),
we have (C.1), where d(i−1) , ∇G0

(
b(i−1)

)
, Ld is the

Lipschitz constant of ∇G0 (b), and C
(i−1)
0 , G0

(
b(i−1)

)
−

ηi
∥∥d(i−1)

∥∥2
2
/2. The first inequality in (C.1) is due to the fact

that ∇G0(b) is Lipschitz continuous with constant Ld and the
second inequality comes from ηi < 1/Ld. Consequently, we
have

G
(
b(i−1)

)
−G

(
b(i)

)
≥ G

(
b(i−1)

)
− U1

(
b(i)

)
= U2

(
b(i−1)

)
− U1

(
b(i)

)
≥ U2

(
b(i)

)
− U1

(
b(i)

)
=

(
1

2ηi
− Ld

2

)∥∥∥b(i) − b(i−1)
∥∥∥2
2
≥ 0, (C.2)

where the second inequality is because b(i) is the optimal
solution of problem (9) and hence also the minimizer of
U2 (b). Summing (C.2) over i yields

∞∑
i=1

(
1

2ηi
− Ld

2

)∥∥∥b(i) − b(i−1)
∥∥∥2
2

≤ G
(
b(0)

)
−G

(
b(∞)

)
< ∞, (C.3)

where the second inequaltiy is becasue G (b) is bounded be-
low by

∑M
m=1(L+T ) log σ2

m. Since 1/(2ηi)−Ld/2 > 0, (C.3)
yields lim

i→∞

∥∥b(i) − b(i−1)
∥∥
2
= 0. Thus, with b∗ denoting a

limit point of b(i), we also have b(i−1) → b∗. Letting i → ∞
in (9), we obtain (C.4), where η∗ > 0 is the limit point of ηi
and the second equality comes from the last equality in (C.1).
Since b∗ is the optimal solution of (C.4), we have

(d∗)
T
(b− b∗) +

1

2η∗
∥b− b∗∥22 − ρ

K∑
k=1

max
t∈{0,...,T}

bk,t

≥ −ρ
K∑

k=1

max
t∈{0,...,T}

b∗k,t, ∀b ∈ [0, 1]K(T+1). (C.5)

Let T (b∗) denote the tangent cone of b ∈ [0, 1]K(T+1) at
b∗. Substituting b = b∗+ τ d̃ with d̃ ∈ T (b∗) into (C.5) and
dividing τ on both sides of (C.5), we have

−ρ
K∑

k=1

lim
τ→0+

max
t∈{0,...,T}

(
b∗k,t + τ d̃k,t

)
− max

t∈{0,...,T}
b∗k,t

τ

+(d∗)
T
d̃ ≥ 0, ∀d̃ ∈ T (b∗) . (C.6)

Noticing that d∗ is the gradient of G0(b), we can rewrite (C.6)
as (A.1), which means that the limit point b∗ is a stationary
point of problem (8).

APPENDIX D
PROOF OF THEOREM 3

We first show that L
({

x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
is

monotonically decreasing as i increases. With U3 (b) ,
L
({

x
(i−1)
m

}M

m=1
,b;
{
λ(i−1)
m

}M

m=1

)
+ δ/2

∥∥b− b(i−1)
∥∥2
2

and U4 (b) denoting the cost function of problem (15),

we have L
({

x
(i−1)
m

}M

m=1
,b;
{
λ(i−1)
m

}M

m=1

)
≤ U3 (b) =
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G (b) ≤ G0

(
b(i−1)

)
+
(
d(i−1)

)T (
b− b(i−1)

)
+

Ld

2

∥∥∥b− b(i−1)
∥∥∥2
2
− ρ

K∑
k=1

max
t∈{0,...,T}

bk,t︸ ︷︷ ︸
U1(b)

,

≤ G0

(
b(i−1)

)
+
(
d(i−1)

)T (
b− b(i−1)

)
+

1

2ηi

∥∥∥b− b(i−1)
∥∥∥2
2
− ρ

K∑
k=1

max
t∈{0,...,T}

bk,t︸ ︷︷ ︸
U2(b)

,

= U (b) + C
(i−1)
0 , ∀b ∈ [0, 1]K(T+1), (C.1)

b∗ = arg min
b∈[0,1]K(T+1)

1

2η∗
∥b− (b∗ − η∗d

∗)∥22 − ρ
K∑

k=1

max
t∈{0,...,T}

bk,t,

= arg min
b∈[0,1]K(T+1)

G0 (b
∗) + (d∗)

T
(b− b∗) +

1

2η∗
∥b− b∗∥22 − ρ

K∑
k=1

max
t∈{0,...,T}

bk,t, (C.4)

U4 (b) +
M∑

m=1
fm

(
x
(i−1)
m

)
, where the equality holds when

b = b(i−1). Consequently,

L
({

x(i−1)
m

}M

m=1
,b(i−1);

{
λ(i−1)
m

}M

m=1

)
−L

({
x(i−1)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
= U3

(
b(i−1)

)
− L

({
x(i−1)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
≥ U3

(
b(i)

)
− L

({
x(i−1)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
=

δ

2

∥∥∥b(i) − b(i−1)
∥∥∥2
2
, (D.1)

where the last inequality holds because b(i) is the optimal
solution of problem (15), and hence also the minimizer of
U3 (b).

On the other hand, since µ > 2Lm, we have µIK(T+1) −
∇2fm(xm) ≽ LmIK(T+1), which means that problem (17) is
strongly convex with modulus Lm. Thus, line 6 of Algorithm 2
can solve problem (17) to the optimal solution x

(i)
m and we

have

L
({

x(i−1)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
−L

({
x(i)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
≥

M∑
m=1

Lm

2

∥∥∥x(i)
m − x(i−1)

m

∥∥∥2
2
. (D.2)

Moreover, since x
(i)
m is the optimal solution of problem (17),

we have

∇fm

(
x(i)
m

)
+λ(i−1)

m +µ
(
x(i)
m − b(i)

)
= 0, ∀m = 1, . . . ,M.

(D.3)

Substituting (20) into (D.3), we obtain∥∥∥λ(i−1)
m − λ(i)

m

∥∥∥
2

=
∥∥∥∇fm

(
x(i−1)
m

)
−∇fm

(
x(i)
m

)∥∥∥
2

≤ Lm

∥∥∥x(i−1)
m − x(i)

m

∥∥∥
2
. (D.4)

Consequently, we have

L
({

x(i)
m

}M

m=1
,b(i);

{
λ(i−1)
m

}M

m=1

)
−L

({
x(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
=

M∑
m=1

(
λ(i−1)
m − λ(i)

m

)T (
x(i)
m − b(i)

)
= − 1

µ

M∑
m=1

∥∥∥λ(i−1)
m − λ(i)

m

∥∥∥2
2

≥ − 1

µ

M∑
m=1

L2
m

∥∥∥x(i−1)
m − x(i)

m

∥∥∥2
2
, (D.5)

where the second equality comes from (20) and the last
inequality is due to (D.4). Combining (D.1), (D.2), and (D.5),
we obtain

L
({

x(i−1)
m

}M

m=1
,b(i−1);

{
λ(i−1)
m

}M

m=1

)
−L

({
x(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
≥

M∑
m=1

(
Lm

2
− L2

m

µ

)∥∥∥x(i)
m − x(i−1)

m

∥∥∥2
2

+
δ

2

∥∥∥b(i) − b(i−1)
∥∥∥2
2
≥ 0, (D.6)

where the last inequality is due to µ > 2Lm and δ > 0.

Therefore, L
({

x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
is monotoni-

cally decreasing.
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Next, we prove that L
({

x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
is

lower bounded. Substituting (20) into (D.3), we have λ(i)
m =

−∇fm

(
x
(i)
m

)
. Substituting this equation into (14), we obtain

L
({

x(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
=

M∑
m=1

fm

(
x(i)
m

)
+ ρ

K∑
k=1

(
T∑

t=0

b
(i)
k,t − max

t∈{0,...,T}
b
(i)
k,t

)

+
M∑

m=1

∇fm

(
x(i)
m

)T (
b(i) − x(i)

m

)
+
µ

2

M∑
m=1

∥∥∥x(i)
m − b(i)

∥∥∥2
2
. (D.7)

Since µIK(T+1) ≽ LmIK(T+1) ≽ ∇2fm (xm), we have

M∑
m=1

fm

(
x(i)
m

)
+

M∑
m=1

∇fm

(
x(i)
m

)T (
b(i) − x(i)

m

)
+
µ

2

M∑
m=1

∥∥∥x(i)
m − b(i)

∥∥∥2
2
≥

M∑
m=1

fm

(
b(i)

)
. (D.8)

Substituting (D.8) into (D.7), we obtain

L
({

x(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
≥

M∑
m=1

fm

(
b(i)

)
+ ρ

K∑
k=1

(
T∑

t=0

b
(i)
k,t − max

t∈{0,...,T}
b
(i)
k,t

)

≥
M∑

m=1

(L+ T ) log σ2
m, (D.9)

which means that L
({

x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
is lower

bounded.
Finally, we prove that any limit point of the sequence({
x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
is a stationary point of prob-

lem (13). Summing (D.6) over i yields
∞∑
i=1

δ

2

∥∥∥b(i) − b(i−1)
∥∥∥2
2

+

∞∑
i=1

M∑
m=1

(
Lm

2
− L2

m

µ

)∥∥∥x(i)
m − x(i−1)

m

∥∥∥2
2

≤ L
({

x(0)
m

}M

m=1
,b(0);

{
λ(0)
m

}M

m=1

)
−L

({
x(∞)
m

}M

m=1
,b(∞);

{
λ(∞)
m

}M

m=1

)
< ∞,

(D.10)

where the second inequality comes from (D.9). Since µ >
2Lm and δ > 0, (D.10) yields lim

i→∞

∥∥b(i) − b(i−1)
∥∥
2

=

lim
i→∞

∥∥∥x(i)
m − x

(i−1)
m

∥∥∥
2
= 0. Together with (D.4) and (20), we

also have lim
i→∞

∥∥∥λ(i)
m − λ(i−1)

m

∥∥∥
2
= lim

i→∞

∥∥∥x(i)
m − b(i)

∥∥∥
2
= 0.

Thus, with
(
{x∗

m}Mm=1 ,b
∗; {λ∗

m}Mm=1

)
denoting a limit point

of the sequence
({

x
(i)
m

}M

m=1
,b(i);

{
λ(i)
m

}M

m=1

)
, we have

b(i−1) → b∗, x(i−1)
m → x∗

m, λ(i−1)
m → λ∗

m,

∀m = 1, . . . ,M, (D.11)

x∗
m = b∗, ∀m = 1, . . . ,M. (D.12)

Taking limit for (D.3), and using (D.11) and (D.12), we have

∇fm (x∗
m) + λ∗

m = 0, ∀m = 1, . . . ,M. (D.13)

On the other hand, since b(i) is the optimal solution of
problem (15), it satisfies the following first-order optimality
condition:

ρ

K∑
k=1

T∑
t=0

d̃k,t −
M∑

m=1

(
λ(i−1)
m

)T
d̃

−ρ

K∑
k=1

lim
τ→0+

max
t∈{0,...,T}

(
b
(i)
k,t + τ d̃k,t

)
− max

t∈{0,...,T}
b
(i)
k,t

τ

+δ
(
b(i) − b(i−1)

)T
d̃+ µ

M∑
m=1

(
b(i) − x(i−1)

m

)T
d̃ ≥ 0,

∀d̃ ∈ T
(
b(i)

)
, (D.14)

where T
(
b(i)

)
is the tangent cone of the feasible set of

problem (15) at b(i). Taking limit for (D.14), using (D.11)
and (D.12), and noticing that T (b∗) ⊆ T

(
bi
)

from (A.5),
we have

ρ
K∑

k=1

T∑
t=0

d̃k,t −
M∑

m=1

(λ∗
m)

T
d̃

−ρ
K∑

k=1

lim
τ→0+

max
t∈{0,...,T}

(
b∗k,t + τ d̃k,t

)
− max

t∈{0,...,T}
b∗k,t

τ

≥ 0, ∀d̃ ∈ T (b∗) . (D.15)

Combining (D.12), (D.13), and (D.15), we can conclude that(
{x∗

m}Mm=1 ,b
∗; {λ∗

m}Mm=1

)
is a stationary point of prob-

lem (13).
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