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Abstract—To support modern machine-type communications,
a crucial task during the random access phase is device activity
detection, which is to identify the active devices from a large
number of potential devices based on the received signal at
the access point. By utilizing the statistical properties of the
channel, state-of-the-art covariance based methods have been
demonstrated to achieve better activity detection performance
than compressed sensing based methods. However, covariance
based methods require to solve a high dimensional nonconvex
optimization problem by updating the estimate of the activity
status of each device sequentially. Since the number of updates is
proportional to the device number, the computational complexity
and delay make the iterative updates difficult for real-time
implementation especially when the device number scales up.
Inspired by the success of deep learning for real-time inference,
this paper proposes a learning based method with a customized
heterogeneous transformer architecture for device activity detec-
tion. By adopting an attention mechanism in the architecture
design, the proposed method is able to extract features reflecting
relevance among device pilots and received signal, permutation
equivariant with respect to devices, and its training parameter
number is independent of the device number. Simulation results
demonstrate that the proposed method achieves better activity
detection performance with much shorter computation time than
state-of-the-art covariance approach, and generalizes well to
different numbers of devices and BS-antennas, different pilot
lengths, transmit powers, and cell radii.

Index Terms—Activity detection, attention mechanism, deep
learning, Internet-of-Things (IoT), machine-type communications
MTO).
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I. INTRODUCTION

To meet the dramatically increasing demand for wireless
connectivity of Internet-of-Things (IoT), machine-type com-
munications (MTC) have been recognized as a new paradigm
in the fifth-generation and beyond wireless systems. Different
from the traditional human-to-human communications, MTC
scenarios commonly involve a large number of IoT devices
connecting to the network, but only a small portion of the
devices are active at any given time due to the sporadic traffics
[11-[3].

Due to the large number of devices in MTC, conventional
grant-based access schemes will induce high access latency
and signalling overheads [4]. To reduce the latency, a grant-
free random access scheme was advocated in [5], [6], where
each active device sends data without permissions from the
base station (BS). In order to know which devices are active,
each device is assigned a unique pilot sequence and the
BS detects which pilot sequences are received with activity
detection. However, the pilot sequences for device activity
detection have to be nonorthogonal, due to the large number
of devices but limited coherence time. The nonorthogonality
of the pilot sequences inevitably induces interference among
different devices, and hence complicates the task of device
activity detection in MTC.

By exploiting the sporadic nature of MTC, compressed
sensing based methods have been adopted to identify the active
devices through joint device activity detection and channel
estimation [7]-[22]. Specifically, [7]-[9] proposed approxi-
mate message passing (AMP) based algorithms to jointly
recover the device activity and the instantaneous channel
state information. Furthermore, AMP was extended to include
data detection [10]-[12] and to multi-cell systems [13]-[15],
respectively. In addition to AMP, other compressed sensing
based methods, such as Bayesian sparse recovery [16]-[18]
and regularization based sparse optimization [19]-[22] have
also been investigated for joint device activity detection and
channel estimation.

Different from the compressed sensing based methods,
another approach utilizes the statistical distribution of the
channel without the need of estimating the instantaneous
channel state information. This approach is referred to as
the covariance based methods, since they are based on the
sample covariance matrix of the received signal [23]-[31].
The covariance based methods have recently drawn a lot of
attention due to the superiority of activity detection perfor-



mance. In particular, the analytical results in [32], [33] show
that the required pilot sequence length of the covariance based
methods for reliable activity detection is much shorter than
that of the compressed sensing based methods. While the
covariance based methods outperform the compressed sensing
based methods due to the advantage of utilizing the statistical
properties of the channel, the covariance approach requires
to solve a high dimensional nonconvex optimization problem
[23]-[31], where the estimate of the activity status of each
device is updated sequentially using the coordinate descen-
t method. The sequential nature of the coordinate descent
method implies that the number of updates is proportional
to the total number of devices. Consequently, the resulting
computational complexity and delay make it unsuitable for
real-time implementation, especially when the device number
is very large.

Recently, deep learning has been exploited to avoid the
high computational cost caused by iterative algorithms [34],
[35]. Instead of solving each optimization problem instance-
by-instance, deep learning utilizes neural networks to represent
a mapping function from many problem instances to the
corresponding solutions based on a large number of training
samples. Once the mapping function is obtained, the neural
network can infer the solution of any new problem in a
real-time manner. Moreover, by unifying different system
modules into an end-to-end manner, deep learning also has
the opportunity to learn a better solution than the conventional
methods for complex problems [36]-[38].

For device activity detection, a pioneer work [39] proposed
a deep learning based method, where each layer of the neural
network is constructed by approximating an iteration of the
compressed sensing or covariance based methods. Lately, deep
unrolling was also applied to mimic various versions of AMP
[40]-[42] and sparse optimization methods [43], [44]. While
these deep learning based methods achieve better detection
performance than the conventional methods, they keep the
device pilots fixed during the training stage and only take
the received signal as the changeable input of the neural
networks. Therefore, the learned mapping function is from the
received signal to the device activities without considering the
variations of the device pilots. This means that whenever the
device pilots (including the device number of the system) are
changed, these neural networks need to be retrained, which is
a big hurdle to their wide deployment to different scenarios
or in changing environment.

Instead of restricting the neural network architecture by an
existing iterative algorithm and learning a mapping function
from the received signal to the device activities under a fixed
configuration of the device pilots, this paper strives to design
the neural network architecture that accepts the received signal
and device pilots as a pair of changeable inputs, and learn
different combinations of the received signal and device pilots.
In particular, while the generic multi-layer perceptrons (MLPs)
have been widely applied for function approximations, they
lack some key properties of the activity detection problem.
For example,

o To detect the device activities, the BS should perceive which
device pilots are received from the received signal. There-

fore, it is beneficial to incorporate a computation mechanism

into the neural network to learn the relevance among the

received signal and device pilots. However, MLPs do not
have such dedicated mechanism for relevance extraction.

e The device activity detection has an inherent permutation
equivariance property with respect to devices. To be specific,
if the indices of any two devices are exchanged, the neural
network should output a corresponding permutation. Incor-
porating permutation equivariance into the neural network
architecture can reduce the parameter space and also avoid
a large number of unnecessary permuted training sam-
ples [45]-[47]. Unfortunately, the permutation equivariance
property is not inherently incorporated in MLPs.

e As the device number scales up, it is highly expected that the
neural network is generalizable to larger numbers of devices
than the setting in the training procedure. Nevertheless,
MLPs are designed for a pre-defined problem size with
fixed input and output dimensions, and thus the well-trained
MLPs are no longer applicable to a different number of
devices.

To incorporate the properties of device activity detection
mentioned above, this paper proposes for the first time a
heterogeneous transformer architecture. The concept of trans-
former originates from natural language processing (NLP)
[48], in which an attention mechanism is exploited to extract
the relevance among different words within a sentence. Based
on the relevance extraction, transformer can decide which
parts of the source sentence to pay attention to. We observe
that there is an analogy between the relevance extraction in
NLP and the activity detection problem, since the BS should
perceive which device pilots contribute to the received signal
by evaluating the relevance among the received signal and
device pilots.

Yet different from the NLP tasks where different words
belong to the same class of features, and hence are processed
by the same set of trainable parameters in vanilla transformer,
the received signal and device pilots in device activity de-
tection have different physical meanings. Thus, we use two
different sets of parameters to process the representations of
the received signal and device pilots, respectively. In this way,
the two sets of parameters provide the freedom to represent
the received signal and device pilots in different spaces,
making the proposed heterogeneous transformer architecture
more expressive.

The overall deep neural network consists of an initial em-
bedding layer, multiple heterogeneous transformer encoding
layers, and a decoding layer. The initial embedding layer
takes the received signal and device pilots as the inputs
and produces the initial embeddings. The initial embeddings
are further processed through the encoding layers, where the
heterogeneous attention mechanism is applied to extract the
relevance among the received signal and device pilots. Finally,
the decoding layer decides the activity status of each device
based on the extracted relevance.

The main contributions of this work are summarized as
follows.

1) We provide a novel perspective on how device activity

detection can be formulated as a classification problem with



the received signal and device pilots as inputs. Different
from the existing works [39]-[44] that learn a mapping
function from the received signal to the device activities
under a fixed configuration of the device pilots, we learn the
mapping function from the pair of the received signal and
device pilots to the device activities. By learning different
combinations of the received signal and device pilots, the
trained heterogeneous transformer is suitable for different
configurations of the pilots (and also different numbers
of devices). Moreover, instead of iteratively solving an
optimization problem instance-by-instance, the proposed
learning based method can infer the solution of any new
problem in a real-time manner.

2) We further show how the transformer model in NLP can be
appropriately extended to work in the device activity detec-
tion problem. Instead of restricting the neural network ar-
chitecture by an existing iterative algorithm, we judiciously
design a heterogeneous transformer architecture by lever-
aging the powerful attention mechanism to approximate the
input-output relation of the activity detection problem. In
this sense, the designed architecture has more powerful
ability for function approximations than the algorithm-
driven unrolled architectures [49]. Moreover, by sharing the
parameters for producing the representations of different
device pilots, the proposed heterogeneous transformer is
permutation equivariant with respect to devices, and the
dimensions of parameters that require to be optimized dur-
ing the training procedure are independent of the number
of devices. This scale adaptability makes the proposed
architecture generalizable to different numbers of devices.

3) Simulation results show that the proposed learning based
method using heterogeneous transformer achieves better
activity detection performance with much shorter compu-
tation time than state-of-the-art covariance approach. The
proposed method also generalizes well to different numbers
of devices and BS-antennas, different pilot lengths, transmit
powers, and cell radii.

The remainder of this paper is organized as follows. System
model and existing approaches are introduced in Section II. A
novel deep learning perspective on device activity detection is
proposed in Section III. A heterogeneous transformer architec-
ture is designed in Section I'V. Simulation results are provided
in Section V. Finally, Section VI concludes the paper.

Throughout this paper, scalars, vectors, and matrices are de-
noted by lower-case letters, lower-case bold letters, and upper-
case bold letters, respectively. The real and complex domains
are denoted by R and C, respectively. We denote the transpose,
conjugate transpose, inverse, real part, and imaginary part of a
vector/matrix by (-)7, (), (-)71, R(-), and (+), respectively.
The N x N identity matrix and the length- N all-one vector are
denoted as Iy and 1y, respectively. The trace, determinant,
and the column vectorization of a matrix are represented as
Tr(-), | - |, and vec(+), respectively. The notation ® denotes
the element-wise product, I(-) denotes the indicator function,
ReLu(+) denotes the function max(-,0), and CN (-, -) denotes
the complex Gaussian distribution.

II. SYSTEM MODEL AND EXISTING APPROACHES
A. System Model

Consider an uplink multiple-input multiple-output (MIMO)
system with one M-antenna BS and N single-antenna IoT
devices. We adopt a block-fading channel model, where the
channel from each device to the BS remains unchanged within
each coherence block!. Let \/9nh;, denote the channel from
the n-th device to the BS, where /g, and h,, € CM are the
large-scale and small-scale Rayleigh fading components, re-
spectively. Due to the sporadic traffics of MTC, only K < N
devices are active in each coherence block. If the n-th device
is active, we denote the activity status as a,, = 1 (otherwise,
a, = 0).

To detect the activities of the IoT devices at the BS, we
assign each device a unique pilot sequence s,, € C%», where
L, is the length of the pilot sequence®. Device n transmits
the pilot sequence s, with transmit power p,, if it is active.
Assuming that the transmission from different devices are
synchronous, we can model the received signal at the BS as

N
Y =) sovpngnashl + W=SGIAH+W, (1)
n=1
where S £  [sy,...,sy] € CEXN G £
diag{plg1,---,pNgN7}, A = diag {ay,...,an},
H £ |hy,....,hy]" € CV*M and W ¢ CLXM js

the Gaussian noise at the BS.

This paper aims to detect the activity status {a,, }_; based
on the received signal at the BS and the device pilots. In many
practical deployment scenarios, the devices are stationary, so
their large-scale fading channels are fixed [25]-[27] and can
be obtained in advance using conventional channel estimation
methods [50]. In order to reduce the channel gain variations
among different devices, the transmit power of each device
can be controlled based on the large-scale channel gain [10].
This is especially beneficial to the devices with relatively weak
channel gains.

B. Existing Approaches

Existing approaches for device activity detection can be
roughly divided into three categories.

1) Compressed Sensing Based Methods: Denoting B £
SGz € CLo*N and X £ AH € CN*M| compressed sensing
based methods obtain the activity status by recovering the
row-sparse matrix X from Y = BX + W. However, since
a large amount of instantaneous channel state information
requires to be estimated simultaneously, the activity detection
performance of compressed sensing based methods cannot
compete with that of covariance based methods.

2) Covariance Based Methods: Covariance based methods
treat the small-scale fading channel matrix H as a complex

"When the coherence time and signal bandwidth are 1 ms and 200 kHz
[26], the channels will remain roughly constant over 200 symbols.

2The pilot length Ly is set to be shorter than the coherence block length,
so that the channels remain unchanged during the activity detection. Conse-
quently, the performance of the proposed method is affected by the coherence
block length only through the pilot length. The detection performance under
different pilot lengths is shown in Section V-C.



Gaussian random variable. Specifically, each column of H
is independent and identically distributed (i.i.d.) and follows
CN (0,1Iy). Together with the fact that each column of the
noise W is ii.d. and follows CA'(0,0°1y ), the covariance
approach models the received signal at each receive antenna
¥m as CN (0, X), where & = SGASH 4021, . Consequent-
ly, the activity status {a, }_; can be detected by maximizing
the likelihood function

I » (ymi{an}))

m=1

= ﬁexp (-Tr (Z7'YYH)), @
which is solved by the coordinate descent method that itera-
tively updates each a, with {a;};-, fixed. However, since
the coordinate descent method requires to update each a,
sequentially, the total iteration number is proportional to the
number of devices N, which induces tremendous compu-
tational complexity and delay, especially when the device
number is massive. Moreover, due to the non-convexity of
the optimization problems, the covariance approach can only
obtain a stationary point.

3) Deep Learning Based Methods: Existing deep learning
based methods tackle the device activity detection problem
by approximating an iteration of the conventional methods
as a layer of the neural network. In particular, the device
pilot matrix B = SG? is assumed to be fixed, and the
unrolled neural network represents a mapping function from
the received signal Y to the activity status {a,}N_;. With
B unchanged in the test stage, these methods achieve better
detection performance than the conventional methods.

In the following two sections, we propose a deep learning
based method that takes Y and B as a pair of changeable
inputs, so that the trained neural network can work for a
different set of device pilots. The proposed method consists of
interpreting device activity detection as a classification prob-
lem (Section III), and a customized neural network architecture
(Section 1V).

p (Yi{an})2))

III. A NOVEL DEEP LEARNING PERSPECTIVE

A. Device Activity Detection as Classification Problem

In this paper, we strive to learn the activity status {a, }2_;

without estimating the instantaneous channel H. We can see
from (1) that the received signal Y is actually a weighted
sum of the active device pilots SGzA = BA. To find out
which columns of B contribute to Y, we need to build a
computation mechanism to evaluate the relevance between Y
and B. Moreover, since each a,, € {0, 1} is a discrete variable,
we can view the activity detection as a classification problem,
i.e., classifying each a,, as 0 or 1 based on Y and B.
Specifically, denote the training data set as D, where the i-
th training sample is composed of <Y(i), B, {aﬁf)}N 1),
and &,(f ) is the ground-truth label of the n-th device’s activity
status. We learn a classifier to infer the active probability
of each device P, from Y and B. Let f : CLxM x
CE*N 5 10,1)" denote the mapping function from (Y, B)

top £ [Py,...,Py]". We strive to optimize the mapping

function f (-,-) such that the difference between the output
N

of the mapping function {P,Si)} and the ground-truth

n=1
tabel {a’
we adopt cr(;Lszslentropy [51] for measuring the discrepancy
between {P,(f)} and {a% )}

by minimizing the_f(l)llowing Cross. entropy based loss function:

n= =1
|D| N
2 N-—-K _. -
; il 5 (1) (4)
min a,”’ log P
AR (N Z < N e

n=1

K | |
Ko a0 _ pli)
+5( an)10g<1 Py ))) 3)

Notice that when the number of active devices is equal to
that of inactive devices, i.e., K = N — K, the loss function
(3) will reduce to the standard binary cross-entropy loss [51],
which is widely used for balanced classification in machine
learning. However, due to the sporadic traffics of MTC, the
number of active devices is commonly much less than that
of inactive devices, i..e., KX < N — K, and thus the standard
binary cross-entropy loss will induce overfitting to the inactive
class. In order to avoid overfitting, we put a much larger
weight (N — K) /N on the loss corresponding to the sporadic
active devices while setting a smaller weight K /N on the loss
corresponding to the more common inactive devices in (3).

is as close as possible. For this purpose,

, and learn the classifier

B. Parametrization by Neural Network

To solve problem (3), we train a neural network (the detailed
architecture is given in Section 1V) for parameterizing the
mapping function f (-,-). During the training procedure, the
neural network learns to adjust its parameters for minimizing
the loss function (3), so that the neural network can mimic the
optimal mapping function from the pair of Y and B to p. After
training, by inputting any Y and B into the neural network, we
can compute the corresponding output p via computationally
cheap feed-forward operations. Once p is obtained, we can
use Bernoulli sampling to obtain the activity status of each
device. Alternatively, we can adopt a threshold £ to determine
the activity status as a,, = I(P, > £).

Notice that the training data set is constructed based on the
received signal model (1), where the ground-truth labels of
the device activities are given. This allows the neural network
to mimic the optimal mapping function f (-,-) directly from
the ground-truth labels [39]-[41], [43], [44]. Therefore, there
is an opportunity to achieve better detection performance than
state-of-the-art covariance based methods that only obtain a
stationary point.

C. Limitations of MLPs

Although MLPs have been widely used for function repre-
sentations, they are not suitable for the activity detection prob-
lem mainly due to three reasons. First, the active probability of
each device P,, should be learned based on the the relevance
between the received signal Y and the scaled pilot matrix B.
However, MLPs have no specialized mechanism to extract the
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Fig. 1. The I-th encoding layer of the transformer model.

relevance between Y and B. Second, when any two columns
of B are exchanged and Y is unchanged, f (-, ) should output
a corresponding permutation of the original p. Nevertheless,
MLPs cannot guarantee the permutation equivariance for the
activity detection problem. Last but not the least, as the
number of devices scales up, it is highly expected that the
neural network is scale adaptable to the device number (i.e.,
the training parameter number is independent of the device
number) and generalizable to larger numbers of devices than
the setting in the training procedure. Unfortunately, as the
input and output dimensions of MLPs are fixed, they are
designed for a pre-defined problem size. Once the number of
devices N has changed, the well-trained MLPs are no longer
applicable.

IV. PROPOSED HETEROGENEOUS TRANSFORMER FOR
REPRESENTING f (-, )

In this section, we propose a customized neural network
architecture for representing the mapping function f (-, ).
Instead of directly applying MLPs, we strive to incorporate
properties of the activity detection problem into the neural
network architecture. In particular, the proposed architecture
is capable of extracting the relevance between the inputs Y and
B, permutation equivariant with respect to devices, and scale
adaptable to different numbers of devices. Before presenting
the proposed architecture, we first briefly review the basic idea
of the transformer model.

A. Transformer Model

Transformer adopts an encoder-decoder architecture, where
the encoder converts the input into a hidden representation
by a sequence of encoding layers, while the decoder recovers
the output from the hidden representation by a sequence of
decoding layers. Since both the encoder and decoder have
a similar structure, we only review the architecture of the
encoder as follows.

The transformer encoder consists of several sequential en-
coding layers, where each encoding layer extracts the rel-
evance among the input components. The generated output
of each encoding layer is then passed to the next encoding
layer as the input. Specifically, each encoding layer mainly
consists of two blocks: a multi-head attention (MHA) block
that extracts the relevance among different input components,
and a component-wise feed-forward (FF) block for addition-
al processing. Each block further adopts a skip-connection
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Fig. 2. The overall architecture of the proposed heterogeneous transformer.

[52], which adds an identity mapping to bypass the gradient
exploding or vanishing problem for ease of optimization,
and a normalization step [53], which re-scales the hidden
representations to deal with the internal covariate shift in
collective optimization of multiple correlated features.

For better understanding, the [-th encoding layer is illustrat-

(1—1]

ed in Fig. 1, where the inputs {xn are passed to the

MHA block and the component-wise Frllfélock successively.
The most important module in Fig. 1 is the MHA block,
which evaluates the relevance of every pair of components
in {x%_l] by scoring how well they match in multiple
attention sp;c_els. By combining all the matching results from
different attention spaces, each layer’s output is able to capture
the relevance among the input components. In the context of
NLP, this relevance information reflects the importance of each
source word and intuitively decides which parts of the source

sentence to pay attention to.

B. Architecture of Proposed Heterogeneous Transformer

The relevance extraction of transformer is appealing for rep-
resenting the mapping function f (-, -), as the device activity
should be detected based on the relevance between the received
signal Y and the scaled pilot matrix B. The overall architec-
ture of the proposed heterogenous transformer is shown in
Fig. 2, which is composed of an initial embedding layer, L
encoding layers, and a decoding layer. For ease of presentation,
the scaled pilot matrix is expanded as B [b1,...,bn],
with the column b,, corresponding to the n-th device. The
initial embedding layer takes the N device pilots {bn}N , and

n=
the received signal Y as the inputs and produces the initial

representations {XL]}N—H. Then, the initial representations
n=t N+1

"
Vi € {1,..., L}. Finally, the decoding layer takes {XL,L]} .
as the inputs and decides the active probability {Pn}»,]:]:y
1) Initial Embedding Layer

The initial embedding layer takes the N device pilots
{b"}fj:l and the received signal Y as the input features
and then transforms them into an initial representation for the
subsequent encoding layers. The input features are expressed
in real-vector forms by separating the real and imaginark; parts.
Specifically, the input features corresponding to {b,,},_; are
given by

are updated through L encoding layers to produce {xw}

. T
xi = [R{b,}", S {by}"] R, Va=1,.. N @



On the other hand, to make the proposed neural network
architecture scale adaptable to the number of antennas M, we
represent the input features corresponding to Y by vectorizing
the sample covariance matrix C = Y'Y /M:

xp1 = [R{vee (O, fvec (C))] €. (5)

whose dimension is independent of M. In section V, simula-
tion results will be provided to demonstrate the generalizability
with respect to different numbers of antennas M.

Given the input features {x‘,‘;}gill the initial embedding
layer applies linear projections to produce the initial embed-
dings. Let d denote the dimension of the initial embeddings.
The linear projections are given by

inin in
0] _ WB X, + bB7
no iny in in
YXN41 + by,

Vn=1,...,N,
n=N+1,

X

(6)

where Wi € R42Ly» and bl € R? are the parameters for
projecting the input features {xi,‘;}f:l, while Win € R4<2L5
and bl € R? are the parameters for projecting the input
feature xy_ ;. In (6), the same set of parameters { W, bif } is
shared among all devices’ pilots, so that the initial embedding
layer is scale adaptable to the number of devices in the actual
deployment. Furthermore, the input feature corresponding to
the received signal is processed heterogeneously by another
set of parameters { Wi, bi? }. The obtained initial embeddings

o N+ )
X, } from (6) are subsequently passed to L encoding

layers gs:%ollows.
2) Encoding Layers

In each encoding layer I € {1,..., L}, we adopt the general
transformer encoding layer structure in Fig. 1. However, the
architectures of MHA, FF, and normalization blocks in this
work are different from those of the standard transformer,
where all the inputs in a particular layer are processed using
the same set of parameters. In contrast, since the device pilots

and the received signal have different physical meanings, we
N

use one set of parameters to process the inputs {x%fl]}

n=
(corresponding to the device pilots), and we process xgi,_lﬁ

(corresponding to the received signal) heterogeneously using
another set of parameters.

Specifically, the computation in the /-th encoding layer is
described by (7) and (8) on the top of the next page, where
MHAL and MHA!, denote the MHA computations, FF5 and
FF., denote the component-wise FF computations, BN} and
BN@ represent the batch normalization (BN) steps [54], and
the plus signs represent the skip-connections. The superscript
! indicates that different layers do not share parameters,
while the subscripts B and Y mean that the representations
corresponding to the device pilots and the received signal are

computed heterogeneously. In (7), xg_l] and X[Zif_-&-ll] are put

N
outside of the set {x[-l _1]}

, which 1mphes that each
J . :
Jj=1,j#n

xgl_l] is processed in the same way, while x%;] and XK/_+11]
are processed in a different way from {xg-lfl] . Next,

1.t
we explain the computations of MHAg, MH&y, ﬁ:B, FFy,

BNp, and BNy in detail. For notational simplicity, we omit
the superscript with respect to [ in the following descriptions.

a) MHA Computations: First, we present the MHA com-
putations in (7), where we use 7' attention heads to extract
the relevance among the input components (see Fig. 3(a)).
To describe each attention head, we define six sets of pa-
rameters Wi , € R¥>*4, WY, € RY*4 Wk, € R4,
WY, e R x4, Wi, € R* >4 and Wy, € R¥*4 where d’
is the dimension of each attention space and ¢ € {1,...,T'}.
For the t¢-th attention head, it computes a query q,, a key
k, ¢, and a value v,,; for each x,, (see Fig. 3(b)):

Wi .x,, Vn=1,...,N,
Ani = . ©9)
Wy iXng1, n=N+1,
Wi vn=1,...,N
K por T T o)
Wy Xns1, n=N+1,
Wi Vn=1,...,N
Vit B,txna n ’ [EAS) (1 1)
Wy ixny, n=N+1,
where  the heteroqgeneity is reflected in  using

{WqB . WE Wy t} to project {x,}"_, (corresponding
, ; tf,q

T
to the device pilots) and using {Wg'(’t,W?“W{t} B

to project xy41 (corresponding to the received signal) to
different attention spaces. Then, each attention head computes
an attention compatibility «,;; for evaluating how much x,,
is related to x;:

T
q,,,. Kt

Vd
Vji=1,...,N+1,

Vn=1,...,N+1,

Qn,j,t =

vt=1,...,T, (12)

and the corresponding attention weight is computed by nor-
malizing o, ;. in [0, 1]:

ean,j,t
n,j,t — —, V’ﬂ:l,,N—i—l,
6 275t Z;Y:ll e%n. i’ t
Vi=1,...,N+1, Vt=1,...,T. (13)

With the attention weight j3,, ; ; scoring the relevance between
X, and x;, the attention value of x,, at the ¢-th attention head
is computed as a weighted sum?:
N+1
X, 1 = Z BnjtVit, Yn=1,...,N+1.

Jj=1

(14)

Finally, by combining the atteTntion values from T’ attentTion
heads with { 0, e]Rdxd’} and { %, elexd/} ,
' ’ t=1

{xﬁlﬁt}:{:f are projected back to d-dimensional vectors and
we obtain the MHA computation results (see Fig. 3(a)):

T
N 0 /
MHAg (Xn, {Xj}j:L#n ,XN+1) = ZWB,txn,t7
t=1

Vn=1,...,N, (15)

3Notice that the summation of (14) is taken over j rather than n. Therefore,
x;ht serves as the attention value at the ¢-th attention head corresponding to
X
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5([1] — J 1,j#n (7)
" -1 (1—1] 1—1]
BNy (] + MHAL (0 } n=N+1,
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(a) The overall architecture of the MHA block.
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(b) The architecture of attention head ¢ of the MHA block.
Fig. 3. The architecture of the MHA block.
(18)

T
MHAy (xv i1 1) = Y Wy X (16)
t=1
where (15) and (16) correspond to the projections for the
device pilots and the received signal, respectively. Notice that
xn and x 41 are put outside of {x; }J 1,jn in (15), because
.+ is computed by processing each x; using { W ,, Wy, }
in the same way, while by processing x, and Xy using
Wg)t,Wg’t,W};’t} and {W%‘(’t,W{{_’t}, respectively.
b) FF Computations: Next, we present the computations of
FFg and FFy in (8), which adopt a two-layer MLP with a
d¢-dimensional hidden layer using the ReLu activation:

FFg (X,,) = W ,ReLu (Wg 1%, + bl ;) + b 5,

¥n=1,... N, (7

FFy(XN+1) = W QRGLU(WYIXN+1 +bY1)+bY27

where {Xn}N+1 is the output of (7), and W§ B1 € Rdr>d,
bB , € R, WB € R4 bh, € RY, VVY € Rdxd,
by, e R¥ W, € RdXd' and bi , € R? are the parameters
to be optimized during the training procedure. In (17)-(18),
the heterogeneity is maintained since we use the same set
of parameters {Wp 1, by, W 5, b, } to process {xn}n 1
(corresponding to the device pllots) while we process Xy .1
(corresponding to the received signal) by another set of pa-
rameters {W4 ;, by |, W4, by ,}.

c¢) BN Computations: For the BN computations in (7)

and (8), it computes the statistics over a batch of training
Iy

samples. Specifically, let {x(z) € Rd} denote a mini-batch

Ji=] ..
of training samples for BN computatrozn. The BN statistics are



calculated as

1 &
v, = —> %D yn=1,... N+1, (19)
Ibl:l
1 & :
T, = (=Y AYD) | vn=1,...,N+1, (20)
(A 2)

where AS) is a diagonal matrix with the diagonal being
(X§f ) © (xY
corresponding to the device pilots and the received signal are
respectively given by

BNp (%) = wi o (T (2 = 1) ) + b

— vy — un). Then, the normalization results

Vn=1,....,N, (1)
BNy (5{%)“) = Wl\){n © (F&{H (ig\lf)+1 - VN+1))
+b% (22)

where wit € RY, bt € RY, wh € R%, and b} € R? are the
parameters to be optimized during the training procedure.
3) Decoding Layer

After the L encoding layers, the produced hidden repre-
<l

sentations are further passed to a decoding layer

to output the ﬁneﬁfrlnapping result. The proposed decoding
layer consists of a contextual block and an output block. The
contextual block applies an MHA block to compute a context
vector x¢, which is a weighted sum of the components in

(e}

« — MHAC <X5V1H, {X[L]}n_1> :

where MHA( is similar to MHAy in (16), but using dif-
ferent parameters Wi € R? >4, WE$ € R¥*4, Wy €

d'xd v, d'xd v, d'xd o, dxd’
RXWtERXWtERXWERX,

T
t € {1,...,T}. In particular, {WBt,W]VgCt}
t=1

(23)

is used

N
to process {XLLL]} (corresponding to the device pilots),
n=1

L
is used to process XEV]H

T
and {Wgc,w‘;i,W“,W?}
(corresponding to the received 51gnal) The specific expression

of MHAC( is shown in Appendix A. Each weight in x° reflects
N+1
(L]

the importance of each component in {an . Therefore,

the context vector X intuitively decides Whigﬁldevice pilots
to pay attention to based on the received signal.

With x¢, the output block decides the final output, i.e.,
the active probability of each device, by scoring how well
the context vector x¢ and each XLL], n € {1,..., N} match.
The relevance between the context vector x¢ and each x[nL] is
evaluated by

(x)T W oyt
Jd

where W, € R¥? is a parameter to be optimized during
the training procedure, and C' is a tuning hyperparameter

adt Ctanh( ), Yn=1,...,N, (24)

ut

that controls oy in a reasonable range. Finally, the active

probability of each device is computed by normalizing o™ in
[0, 1]:
1
P, _OUT( W) . Wn=1,...,N. (25
1+e %

C. Key Properties and Insights

The proposed heterogenous transformer for representing
f(-,-) has been specified as an initial embedding layer, L
encoding layer, and a decoding layer as shown in (4)-(25).
We examine some key properties of the proposed architecture
for the activity detection problem as follows.

a) Relevance Extraction Among Device Pilots and Received
Signal: Both the proposed encoding and decoding layers
are built on MHA as shown in (7) and (23), respectively.
The MHA computation is naturally a weighted sum as
shown in (14). The attention weight (3, ;. is the normal-
ization of the attention compatibility o, ; in (12), which
scores how well each pair of x,, and x; match. Therefore,
with the attention weight 3,, ; ; reflecting the importance of
each x; with respect to x,,, each encoding layer learns the
relevance among different device pilots and the received
signal. In the decoding layer, the captured relevance is
further used to compute the context vector x° in (23), which
finally extracts the relevance between each device pilot and
the received signal, and decides which device pilots to pay
attention to based on the extracted relevance.

b) Permutation Equivariant with Respect to Devices: The
proposed heterogeneous transformer architecture enjoys the
following permutation equivariance property.

Proposition 1. (Permutation Equivariance in Heteroge-
neous Transformer) Viewing the input-output mapping of
the proposed heterogeneous transformer in Section IV-B as
p = f(Y,B) and letting II denote a column permutation
matrix, we have TI'p = f(Y, BII).

Proof: See Appendix B. [ ]

Proposition 1 implies that the proposed architecture is
inherently incorporated with the permutation equivariance
property. This is in sharp contrast to the generic MLPs,
which require all permutations of each training sample
to approximate this property. In this sense, the proposed
architecture highly reduces the sample complexity and
training difficulty.

¢) Scale Adaptable and Generalizable to Different Numbers
of Devices: In all the layers of the proposed heterogeneous
transformer, the representations of different device pilots
are produced with the same architecture using the same
set of parameters. Therefore, the dimensions of parameters
that require to be optimized during the training procedure
are independent of the number of devices. This scale
adaptability empowers the whole architecture to be readily
applied to scenarios with any number of devices, and hence
generalizable to different numbers of devices.

Remark 1: Graph neural networks (GNNs) have been recent-
ly exploited to model resource allocation problems in wireless
networks and demonstrated superior performance, scalability,



Algorithm 1 Learning Procedure for Activity Detection

1: Training Procedure:
2: Input: number of epochs N, steps per epoch Ny, batch size IV}, and
learning rate decay epoch N4 and factor 8

3: Initialize: learning rate n
4: for epoch=1,..., Ne
5: for step =1,..., Ns
6: a) Generate a batch of Ny, samples
b) Compute the mini-batch gradient of the loss function (3) over
the parameters of heterogeneous transformer
c) Update the parameters by a gradient descent step using the
Adam optimizer with learning rate n
7: end
8: if epoch == Ny
9: n < Bn
10: end
11: end

12: Output: heterogeneous transformer with optimized parameters

13: Test Procedure:

14: Input: N; test samples )

15: Compute the output of the trained heterogeneous transformer P,(Lz) ,n=
1,...,N,i=1,..., NV _ _

16: Determine the activity status of each device as as,,l) = ]I(P,(f) > £),
n=1,...,N,i=1,..., NV

17: Output: (PM, PF) pairs under different &

and generalization ability [45]-[47]. Transformer is in fact a
special case of GNNs on a complete graph [55]. We consider a
complete graph because in the activity detection problem, it is
more helpful to extract the relevance among the received signal
and all device pilots, which is achieved by the incorporated
attention mechanism.

D. Learning Procedure

So far, we have presented the architecture and key properties
of the proposed heterogeneous transformer. Next, we show
the learning procedure to optimize the parameters of heteroge-
neous transformer for device activity detection in Algorithm 1,
which consists of a training procedure and a test procedure. As
shown in lines 8-10, we adopt a learning rate decay strategy
to accelerate the training procedure [56]. In particular, the
learning rate 7 is decreased by a factor of 5 after Vy training
epochs. During the test procedure, we adopt two metrics to
assess the performance of device activity detection, i.e., the
probability of missed detection (PM) and the probability of
false alarm (PF) [3], [S]-[7], which are respectively given by

25:1 andn, PF — 22[:1 an (1 —an)
N - = N ~ :
Zn:1 an anl(l — Q)
In (26), a,, is the ground-truth device activity, and the detected

activity status a,, = I(P, > &), where & is a threshold that
increases in [0, 1] to realize a trade-off between PM and PF.

PM=1-— (26)

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the benefits of the proposed learning based method.

A. Simulation Setting

We consider an uplink MIMO system with IoT devices uni-
formly distributed within a cell with a 250-meter radius, and
the ratio of the active devices to the total devices is 0.1. Both

the training and test samples are generated as follows. The
pilot sequence of each device is an independently generated
complex Gaussian distributed vector with i.i.d. elements and
each element is with zero mean and unit variance. The large-
scale fading coefficient is generated according to the path-loss
model 128.1 4 37.6log,, D,, in dB, where D,, is the distance
in kilometers between the n-th device and the BS, and the
small-scale Rayleigh fading coefficient follows CN (0,1). In
order to reduce the channel gain variations among different
devices especially for the cell-edge devices, the transmit power
of each device is controlled as p, = Pmax 9; [10], where
Pmax 18 the maximum transmit power and gp,i, 1S the minimum
large-scale channel gain in the cell. The maximum transmit
POWer Py 1s set from 11 dBm to 23 dBm, and the background
Gaussian noise power at the BS is —99 dBm. Based on these
settings, the SNR at the BS varies from 2.19 dB to 14.19 dB as
Pmax increases from 11 dBm to 23 dBm. The received signal is
generated according to (1), where the activity of each device is
generated from Bernoulli distribution and used as the ground-
truth label for the training samples. The hyper-parameters of
the proposed heterogeneous transformer are summarized in
Table I.

B. Performance Evaluation

First, we show the training loss of Algorithm 1 for updating
the parameters of heterogeneous transformer. During the train-
ing procedure, the number of devices is set as N = 100 and
the maximum transmit power iS ppax = 23 dBm. The length
of each pilot sequence is set as L, = 7 or 8, and the number of
BS-antennas is set as M = 32 or 64, respectively. The training
losses versus epochs under different settings are illustrated
in Fig. 4. It can be seen that the training losses generally
decrease as the training epoch increases. In particular, due
to the learning rate decay, the training losses have a sudden
decrease in the 90-th training epoch, which demonstrates the
effectiveness of learning rate decay in speeding up the training
procedure. We also observe from Fig. 4 that the training
performance can be improved by increasing the the length of
pilot sequence or equipping with a larger number of antennas
at the BS.

Then, we test the corresponding activity detection perfor-
mance of the well-trained heterogeneous transformer in terms
of PM and PF. For comparison, we also provide the simulation
results of state-of-the-art covariance approach [25], [26] and
the MLP based method in Fig. 5, where the proposed learning
based method using heterogeneous transformer is termed as
HT, the covariance approach is termed as Covariance, and
the MLP based method is termed as MLP. In particular, each
MLP has 4 hidden layers with batch normalization and ReLu
activation, where the first hidden layer has 1024 neurons, and
each of the other hidden layers has 512 neurons. Other settings
(4-10 hidden layers and 256-1024 neurons in each layer) lead
to similar performance and hence are omitted. The number
of training samples is the same as that of heterogeneous
transformer. It can be seen that the proposed method always
achieves better PM-PF trade-offs than those of the covariance
approach under different settings. In particular, when L, = 8



TABLE 1

HYPER-PARAMETERS OF THE PROPOSED HETEROGENEOUS TRANSFORMER

Parameters Values Parameters Values

Number of encoding layers L 5 Number of training epochs Ne 100
Encoding size d 128 Number of steps in each epoch Ny 5000

Number of attention heads T 8 Batch size Ny, 256
Dimension of attention space d’ 32 Learning rate n 10~4

Hidden size of the component-wise FF block df 512 Decay factor 3 0.1
Tuning parameter C' 10 Number of test samples Ny 5000

Training loss
/
I

103 ‘ ‘ ‘ |

0 20 40 60 80 100
Training epoch

Fig. 4. The training loss of Algorithm 1 for updating the parameters of

heterogeneous transformer.
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Fig. 5. The test performance comparison in terms of PM and PF.

and M = 64, the PM of the proposed method is about 10 times
lower than that of the covariance approach under the same PF.
This is because the proposed method utilizes neural network to
mimic the optimal mapping function directly from the ground-
truth training labels, which provide the opportunity to achieve
better detection performance than the covariance approach that
only finds a stationary point. Moreover, it can be seen that due
to the lack of a customized architecture design, MLPs have the
worst detection performance, which further verifies the neces-
sity of the proposed heterogeneous transformer architecture.
Due to the bad detection performance, we omit the results of
MLP in the rest of simulations.

To show the superiority of the proposed method for
real-time implementation, we compare the computation
time/complexity of the proposed method with that of the
covariance approach. The average computation time of the
approaches over the test samples are compared in Table II,
where the covariance approach is termed as Covariance, and
the proposed method is termed as either HT CPU or HT GPU,
depending on whether CPU or GPU is used. In particular, both
the covariance approach and HT CPU are run on Intel(R)
Xeon(R) CPU @ 2.20GHz, while HT GPU is run on Tesla
T4. We can see that the average computation time of HT
CPU is about 100 times shorter than that of the covariance
approach. Moreover, HT GPU achieves a remarkable running
speed, with a running time over 10° times shorter than that of
the covariance approach. Notice that the computation time of
the covariance approach is much longer than the coherence
time, which is commonly around 1 ms [26]. This makes
the detection result of the covariance approach outdated.
The computational complexity of the proposed heterogeneous
transformer is dominated by the matrix-vector multiplications,
especially the multi-head attention and feed-forward computa-
tions in the L encoding layers. The corresponding complexity
is O(Ld(N + 1)(Td + d)). Notice that in heterogeneous
transformer, the above matrix-vector multiplications for d-
ifferent devices, attention heads, and hidden neurons can
be executed in parallel. When the computations are fully
parallelized, e.g., on powerful GPUs, the time complexity
is simply O (Ld). In contrast, the computational complexity
of the covariance approach is dominated by an L, X L,
matrix inversion in each coordinate descent update [23], and
hence the complexity of a single update is O (LS’). Moreover,
the covariance approach requires to update the estimate of
the activity status of each device in a sequential manner
within each iteration, resulting in the overall time complexity
O (I N Lg), where I is the number of iterations. Since the
covariance approach commonly requires a large number of
iterations I for convergence (much larger than the number
of encoding layers L in heterogeneous transformer), and the
number of devices N is also usually large, its computation
time is much longer than that of heterogeneous transformer.

We further compare the performance under different ratios
of the active devices to the total devices in Fig. 6. The number
of the total devices is set as /N = 100 and the number of the
active devices varies from K = 8 to 12. The maximal transmit
POWET 1S prax = 23 dBm, the pilot length is L, = 8, and the
number of BS-antennas is M = 32, respectively. It can be seen
that as the number of active devices increases, the performance
of the two approaches becomes worse. However, the proposed



TABLE I
AVERAGE COMPUTATION TIME COMPARISON AMONG DIFFERENT

APPROACHES
Covariance HT CPU HT GPU
Ly=7,M=32 634x10°'s 631x103s 160x10= s
Ly,=8 M=232 624x10's 632x10"2s 163x10 %5
L,=8 M=64 633x10's 655x10°s 213x10 %5
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102k
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10 —+— Covariance, K = 10
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©-- Covariance, K = 8
HT, K =8
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PM
Fig. 6. The performance comparison under different ratios of the active

devices to the total devices.

method always outperforms the covariance approach.

C. Generalizability

Next, we demonstrate the generalizability of the proposed
method. Unless otherwise specified, the length of pilot se-
quence is set as L, = 8 in the following simulations. We
begin by training a heterogeneous transformer, where the
device number of the training samples is fixed as N = 100.
However, we test the activity detection performance under
different device numbers from 100 to 150. The number of
BS-antennas is set as M = 64 and the maximum transmit
power is Pmax = 23 dBm. Due to the trade-off between PM
and PF, we provide the PM when PF = PM and PF = 2PM
respectively, by appropriately setting the threshold £. In the
following figures, “Covariance, PF = PM” and “Covariance,
PF = 2PM” denote the PM of the covariance approach when
PF = PM and PF = 2PM respectively, while “HT, PF = PM”
and “HT, PF = 2PM” represent the PM of the proposed
method when PF = PM and PF = 2PM respectively. The
activity detection performance and average computation time
versus number of devices are illustrated in Fig. 7(a) and
Fig. 7(b), respectively. We can see from Fig. 7(a) that while
the activity detection performances of different approaches
become worse as the number of devices NV increases, the PM
of the proposed method is still comparable with that of the
covariance approach when N is increased from 100 to 150.
This demonstrates that the proposed method generalizes well
to different numbers of devices. On the other hand, Fig. 7(b)
shows that as IV increases, the average computation times of
both the covariance approach and the proposed method on
CPU are linearly increased. However, due to the the parallel
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(b) Average computation time versus number of devices.

Fig. 7. Generalization to different numbers of devices.

computation of GPU, the average computation time of the
proposed method on GPU is nearly a constant, i.e., about
2 x 1079 second, which is much shorter than that of other
approaches.

We further demonstrate the generalizability of the proposed
method with respect to different numbers of BS-antennas.
To this end, we train a heterogeneous transformer by fixing
the number of BS-antennas as M = 32, and then test
its activity detection performance under different numbers
of BS-antennas from 16 to 128. The number of devices is
N = 100 and the maximum transmit power is ppmax = 23
dBm. The performance comparisons in terms of PM and
average computation time are illustrated in Fig. 8(a) and
Fig. 8(b), respectively. Figure 8(a) shows that as M increases
from 16 to 128, the proposed method always achieves much
lower PM than that of the covariance approach. Although the
heterogeneous transformer is trained under M = 32, when
we test the detection performance under M = 128, the PM
of the proposed method is still 2 times lower than that of
the covariance approach for both PF = PM and PF = 2PM.
This demonstrates that the proposed method generalizes well
to larger numbers of BS-antennas. On the other hand, Fig.
8(b) shows that the average computation time of the proposed
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Fig. 8. Generalization to different numbers of BS-antennas.

method on CPU is about 100 times shorter than that of the
covariance approach, and the proposed method on GPU even
achieves a 10° times faster running speed than that of the
covariance approach.

Finally, we demonstrate the generalizability with respect
to different pilot lengths, transmit powers, and cell radii. In
Fig. 9(a), the pilot length of the training samples is fixed as
L, = 8, while we test the activity detection performance under
different pilot lengths from 8 to 12. The numbers of devices
and BS-antennas are N = 100 and M = 32 respectively,
and the maximum transmit power is pmax = 23 dBm. To
match the input size of the trained heterogeneous transformer,
we randomly select 8 time slots of the received signal and
device pilots as the input, and obtain the active probability by
averaging the outputs over 100 random selections. As shown
in Fig. 9(a), heterogeneous transformer generalizes well to
different pilot lengths. In particular, when the pilot length
increases to 11, the PM decreases to 0.

In Fig. 9(b), the maximum transmit power of the training
samples is fixed as pmax = 23 dBm, while the activity detec-
tion performance is tested under different p,,.x varying from
11 to 23 dBm. As shown in Fig. 9(b), when the SNR decreases
as the transmit power becomes lower, the PM of different

0.02 T T T
—+— Covariance, PF=PM
- -& - Covariance, PF=2PM
—a—HT, PF=PM
0.016 1 - - - HT, PF=2PM 1

0.0121% 1
=
o
0.008 1
0.004 1
0
12
Pilot length
(a) PM versus pilot length.
0.04 T T T T -
—+— Covariance, PF=PM
1 - -& - Covariance, PF=2PM
0.035 —&HT, PF=PM ]
b - -« - HT, PF=2PM
0.03 |
0.025 -
=
o
0.02 -
0.015
0.01r
0.005 | | | | |
11 13 15 17 19 21 23
Maximum transmit power in dBm
(b) PM versus maximum transmit power.
0.035 T T
—+— Covariance, PF=PM
- -G - Covariance, PF=2PM
0.03 [|—=—HT, PF=PM
- -x - HT, PF=2PM
0.025
=
g 002
0.015
0.01
0.005 : ) ‘ )
250 300 350 400 450 500
Cell radius in meters
(c) PM versus cell radius.
Fig. 9. Generalization to different pilot lengths, transmit powers, and cell
radii.

approaches becomes higher. However, the proposed method
still achieves much lower PM than that of the covariance
approach under different SNRs for both PF = PM and PF
= 2PM.

In Fig. 9(c), the cell radius of the training samples is fixed
as 250 meters, while we test the activity detection performance



under different cell radii varying from 250 meters to 500
meters. The maximum transmit power is fixed as 23 dBm.
Consequently, the SNR at the BS varies from 2.87 dB to 14.19
dB as the cell radius increases from 250 meters to 500 meters.
It can be seen that the proposed method generalizes well to
different cell radii and outperforms the covariance approach.

VI. CONCLUSIONS

This paper proposed a deep learning based method with a
customized heterogeneous transformer architecture for device
activity detection. By adopting an attention mechanism in the
neural network architecture design, the proposed heteroge-
neous transformer was incorporated with desired properties
of the activity detection task. Specifically, the proposed archi-
tecture is able to extract the relevance among device pilots
and received signal, permutation equivariant with respect to
devices, and scale adaptable to different numbers of devices.
Simulation results showed that the proposed learning based
method achieves much better activity detection performance
and takes remarkably shorter computation time than state-of-
the-art covariance approach. Moreover, the proposed method
was demonstrated to generalize well to different numbers
of devices and BS-antennas, different pilot lengths, transmit
powers, and cell radii.

APPENDIX A
THE EXPRESSION OF MHA

Define five sets of parameters W € RY>4, WS €
R4, WY € R4 Wyt € RY %4, and WY$ € RY >,
where d’ is the dlmensmn of each attention space and ¢ 6
{1,...,T}. Then, we compute a query qf for xg\,]ﬂ at the
t-th attention head:

qf = Wiexlh (A1)

(L]

The key and value corresponding to each x;,
computed as

are respectively

. Whexi, Vn=1,...,N,
kn,t - k,c [] (A2)
WYt N1 n=N+1,
(L] Vn=1,...,N
Vi = A N e
WyixNT 1 n=N+1.

To evaluate the relevance between x%]ﬂ and each component
N+1
of {Xm , we compute a compatibility o, , using the

query qs and the key ki,

C kC
a;tzm, Wn=1,.. N+1, Vt=1,..T
S (Ad)

and the corresponding attention weight is computed by nor-
malizing o, ; in [0, 1]:

ag, ¢
;7,&:%, Vn=1,....N+1, Vt=1,...,T.
Z] 1e

(A.5)

With the attention weight

xg\,]ﬂ and each component of {XLLL]}

(L]

of x\" ; at the ¢-th attention head is computed as

n.¢ scoring the relevance between
N+1
, the attention value

n=1

N+1

Zﬁnt nt

The expression of MHA( is finally given by a combination of
the 7" attention values:

MHAC <xgv]+1,{ } ) Zwocx;,

where WY € R%*4" is the parameter for projecting back to
a d-dimensional vector.

(A.6)

(A7)

APPENDIX B
PROOF OF PROPOSITION 1

For a device activity detection problem instance, denote the
input and output of the heterogeneous transformer as (Y, B)
and p, respectively. The corresponding output of the [-th en-

coding layer is denoted as {xg]

. For a permuted problem
. . n=1
instance, denote the input and output of the heterogeneous
Y,B
denote J\tfhe corresponding output of the [-th encoding layer as
S .
n=1

Since B = BII, there exists a permuted index m(n) such
that bﬂ(n) = b,,Vn = 1,..., N. Substituting Y =Y and
bw(n) = b,, into (4)-(6), we have

o _ [%0
Xn = [Oﬁ

XN+10

transformer as = (Y,BII) and p respectively, and

Yn=1,...,N,

B.1
n=N+1. (81)

Next, we prove that the equation in %B.l}) holds gor l as
1-1 [1—1

long as it holds for [ — 1. Substituting x, ~ = xﬂ(n Vn =
1,...,N and XK, +11] = xgi, +11] into (7) and (8), we obtain
(1] _
Kl = § Fatyr V2= Lo Y, (B.2)
XE\;JFN n=N+1.

Combining (B.1) and (B.2), we can conclude that (B.2)
holds VI = 0,..., L. Substituting (B.2) for [ = L into (23)-
(25), we obtain P, = Pr,),¥n = 1,..., N, which implies

= II”p. Together with p = f(Y,B) = f(Y,BII), we
have IT” p = f(Y, BII).
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