
31

Making a Type Difference

Subtraction on Intersection Types as Generalized Record Operations

HAN XU∗, Peking University, China

XUEJING HUANG and BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

In programming languages with records, objects, or traits, it is common to have operators that allow dropping,

updating or renaming some components. These operators are useful for programmers to explicitly deal with

conflicts and override or update some components. While such operators have been studied for record types,

little work has been done to generalize and study their theory for other types.

This paper shows that, given subtyping and disjointness relations, we can specify and derive algorithmic

implementations for a general type difference operator that works for other types, including function types,

record types and intersection types. When defined in this way, the type difference algebra has many desired

properties that are expected from a subtraction operator. Together with a generic merge operator, using

type difference we can generalize many operations on records formalized in the literature. To illustrate the

usefulness of type difference we create an intermediate calculus with a rich set of operators on expressions of

arbitrary type, and demonstrate applications of these operators in CP, a prototype language for Compositional

Programming. The semantics of the calculus is given by elaborating into a calculus with disjoint intersection

types and a merge operator. We have implemented type difference and all the operators in the CP language.

Moreover, all the calculi and related proofs are mechanically formalized in the Coq theorem prover.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: functional languages, object oriented languages, type systems

ACM Reference Format:

HanXu, XuejingHuang, and BrunoC. d. S. Oliveira. 2023.Making a TypeDifference: Subtraction on Intersection

Types as Generalized Record Operations. Proc. ACM Program. Lang. 7, POPL, Article 31 (January 2023), 28 pages.

https://doi.org/10.1145/3571224

1 INTRODUCTION

In programming languages with records, objects, or traits [Schärli et al. 2003], it is common to have

restriction operators and other derived operators that allow dropping or updating some components.

Cardelli and Mitchell [1991] did a comprehensive study of operations on records, identifying a variety

of record operators in a calculus with records, subtyping and bounded quantification [Cardelli et al.

1994]. Record operators have also been extensively studied in various calculi with row polymor-

phism [Wand 1989], though typically in settings without subtyping. Several existing functional

programming languages, including Haskell and OCaml, include some of these record operators.

Moreover, object-oriented languages with traits or mixins, such as the Pharo language [Tesone

et al. 2020] and the Jigsaw framework [Bracha 1992; Lagorio et al. 2009], also include operations

for renaming and removing methods to aid with the resolution of conflicts.

∗The work was conducted as part of a research internship funded by the University of Hong Kong.

Authors’ addresses: Han Xu, Peking University, Beijing, China, 1800012917@pku.edu.cn; Xuejing Huang, xjhuang@cs.hku.

hk; Bruno C. d. S. Oliveira, bruno@cs.hku.hk, The University of Hong Kong, Hong Kong, China.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART31

https://doi.org/10.1145/3571224

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-2548-6866
HTTPS://ORCID.ORG/0000-0002-8496-491X
HTTPS://ORCID.ORG/0000-0002-1846-7210
https://doi.org/10.1145/3571224
https://orcid.org/0000-0002-2548-6866
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-1846-7210
https://doi.org/10.1145/3571224
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571224&domain=pdf&date_stamp=2023-01-11

31:2 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

While for records and record types such operators are widely studied, there is little work on

generalizing and studying the theory of such operators for other types. Nonetheless there are two

lines of work that support some form of operators that deal with types other than records. In the

field of semantic subtyping [Castagna and Frisch 2005; Frisch et al. 2008] there is a related notion

that arises from set difference: we can interpret two type � and � as the sets of values that have

type � and �. Thus, under such interpretation, we can obtain a new set of values by employing

set difference �\�. The resulting set denotes a type with the values which are in � but not in �.

However the semantics of set difference is not what we want: set difference does not generalize

record restriction and it has different applications. Shields and Meijer [2001] studied a calculus

with type-indexed rows, where types are used instead of labels for indexing. The calculus supports a

simple restriction operation, but lacks some desirable properties and does not have subtyping.

This paper studies a general notion of type difference, which enables a generalization of record

restriction. Although type difference is a partial function that could fail in some cases, it poses

no restriction on types that can be subtracted in general. If type difference computes a result, a

number of useful properties are guaranteed, allowing values of the result type to be safely merged

with other values. Type difference is specified by an intuitive definition based on subtyping and

disjointness relations, resulting in a general type difference operator that works for function types,

record types and intersection types. When defined in this way, type difference has a rich algebra

with many useful properties that are expected from a subtraction operator.

Together with a generic disjoint merge operator [Oliveira et al. 2016], using type difference we

can generalize many record operators in the literature. There are two main primitive operations

that can be defined with type difference. The expression 4\� means that the information of type

� is dropped from the expression 4 . The related expression 41\42 means that the information in

the minimal type of 42 is dropped from 41. With those two primitive forms of expressions, several

operators can be defined as syntactic sugar. These operators include updates, biased merges, as well

as renaming operators (for the particular case of records). We show that all the record operators

proposed by Cardelli and Mitchell are encodable with type difference and a merge operator.

To illustrate the usefulness of type difference we create an intermediate polymorphic calculus,

called F∖
8
, with a rich set operators on types. The key feature of F∖

8
is a type-difference operation

between two types. The semantics of the calculus is given by an elaboration (a type-directed

translation) into a calculus with disjoint intersection types [Oliveira et al. 2016] with a symmetric

merge operator. The elaboration is proved to be deterministic and type-safe. The elaboration also

illustrates that, although type difference is convenient and enables encodings of many operators,

all the uses of type difference are encodable in terms of merges and explicit type annotations.

An important point to provide the correct intuition for type difference in our work is that the

interpretation of subtyping in calculi with the merge operator and disjoint intersection types is

coercive [Luo 1999; Reynolds 1991], rather than set-theoretic. Assume that the set of values that

inhabit type A is denoted by ⟦A⟧. In semantic subtyping and the set-theoretic interpretation,

subtyping is interpreted as set inclusion: A is a subtype of B means that ⟦A⟧ is a subset of ⟦B⟧.
So it considers a subtype to be smaller than its supertype. Differently, in a coercive interpretation

of subtyping, A ≤ B implies the existence of a monomorphism from ⟦A⟧ to ⟦B⟧, and leads to an

injective coercion function to convert values. From any value of a subtype, a value of its supertype

can be obtained. Therefore, we consider a subtype larger than its supertype. For instance, in the

set-theoretic interpretation for the top type, ⟦⊤⟧ is the set of all possible values. In contrast, in the

coercive interpretation, ⟦⊤⟧ is the set with a single value. In other words, ⊤ is interpreted as the

unit type, instead of the type that can be assigned to all values. Since a value of the type �\� can

be obtained from any value of �, we expect � <: �\�. In the coercive interpretation, the type �\�
contains less information than �, justifying its interpretation as a form of difference.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:3

We have implemented type difference and all the operators presented in this paper in the CP

language. In CP type difference is useful for implementing a variety of operations on traits, which

allow for conflict resolution when inheriting from multiple traits and for renaming components

of traits. We also illustrate that in CP the generalized version of the operators works even when

the expression being updated has a non-record type. In particular, the generalized operators are

useful to update overloaded functions. All the calculi and proofs in this paper are mechanically

formalized in the Coq theorem prover. In summary, our contributions are:

• Type difference:We formalize the idea of information difference on types in terms of subtyping

and type disjointness. Type difference enables operators that erase portions of a value that overlap

with some type. Type difference works in calculi that include a general merge operator [Dunfield

2014; Oliveira et al. 2016], and generalizes record restriction [Cardelli and Mitchell 1991].

• Algorithmic type difference:We study two concrete formulations of type difference for lan-

guages with intersection types. The simpler formulation is for the subtyping of Barendregt,

Coppo, and Dezani-Ciancaglini (BCD), extended with bottom and record types. The second

formulation considers a richer subtyping relation with disjoint polymorphism [Alpuim et al. 2017].

Our two algorithmic formulations of type difference are sound and complete with respect to our

specification of type difference.

• Encodings for a rich set of operators:We show that with type difference we can define two

primitive operations 4\� and 41\42. These enable encoding a variety of generic operators that

include updates, biased merges, as well as renaming operators (for the particular case of records).

All of Cardelli and Mitchell’s record operators are encodable with our operators.

• The F∖
8
calculus: an intermediate calculus with disjoint polymorphism and a rich set of operators.

The F∖
8
calculus is defined by a type-safe elaboration semantics into F+

8
[Bi et al. 2019; Fan et al.

2022]. The elaboration shows that the set of operators in F∖
8
is essentially a sophisticated form of

(type-directed) syntactic sugar via type difference in terms of the primitive merge operator in F+
8
.

• Mechanical formalization and implementation: We modified the CP language (https://

plground.org) to implement all the features of the F∖
8
calculus and we use CP to illustrate

applications of type difference and various operators in this paper (online demonstration at

https://plground.org/typediff/cipher). The F∖
8
calculus, its elaboration to F+

8
, and all the properties

for type difference described in this paper are formalized in Coq. The Coq development and the

appendix of this paper are included in the companion artifact [Xu et al. 2022].

2 OVERVIEW

This section covers background on the merge operator, disjoint intersection types and CP. We

motivate type difference using CP examples, discuss why our work is beyond the scope of existing

approaches and describe our key ideas. Formal definitions are deferred to Sections 3 and 4.

2.1 Background

A general type difference makes sense in calculi with a generic merge operator [Dunfield 2014]

that merges two arbitrary expressions together. Thus we first review calculi with such a merge

operator, and the CP language which is designed on top of such calculi.

Disjoint Intersection Types and the Merge Operator. Intersection types were introduced in the

seventies in Curry-style lambda calculi [Barendregt et al. 1983; Coppo and Dezani-Ciancaglini 1978;

Coppo et al. 1981; Pottinger 1980]. By composing two types with the constructor & , an intersection

type A&B specifies terms that have both type A and B. Although the type is not parametric, it is

polymorphic, providing a way to refine the characterization of terms. A corresponding term-level

constructor merge (,,) was proposed by Reynolds [1988, 1997] for the language Forsythe, and later

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

https://plground.org
https://plground.org
https://plground.org/typediff/cipher

31:4 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

refined by Dunfield [2014]. When two terms e1 and e2 of type A1 and A2 are merged, the whole term

e1 ,, e2 has an intersection type A1 &A2. For example, a function of type Int&Bool→ Bool& Int is:

_x : Int&Bool. (not x) ,, (x + 1)

In such settings, the merge construct is similar to pairs, and intersection types play a role similar

to product types. However, to extract a component from a pair, we need to use explicit projections,

while with merge values components are implicitly extracted using types, such as in (not x) above.
The convenience afforded by implicit extraction using types has its costs. The language designer

has to resolve conflicts when two branches of a merge overlap. We follow the design of _8 which

imposes a disjointness restriction on intersection types [Oliveira et al. 2016]. Two disjoint types

have their least upper bound equivalent to the top type. This restriction prevents, for example, two

different booleans, or functions of the same type but different implementations, to appear in one

merge. Therefore merges always have deterministic behavior when guided by a type. For instance,

here are one well-typed and one ill-typed expression.

✓ True ,, (1 ,, not) Bool is disjoint to Int& (Bool→ Bool)

✗ True ,, (1 ,, False) Bool is not disjoint to Int&Bool

Amerge operator with a disjointness restriction is an unbiased binary term constructor. It composes

expressions to form a tree structure. All the leaves on the tree are in an equal position. They can be

viewed as unordered and can be rearranged when needed. The basic elements in merges include

single-field records and any term of primitive types. Here we have a nested merge with three

elements. The nested merge is wrapped by an annotation, which triggers an upcast. The whole

expression then evaluates to a value that fits the shape of the type annotation.

({l = 1} ,, 2 + 3 ,, not) : Int& {l : Int} ↩→∗ 5 ,, {l = 1}

As we can see, types direct the runtime reduction of expressions. In the F+
8
calculus [Bi et al. 2019;

Fan et al. 2022], which we use in our work, merges of functions and merges of universally quantified

abstractions can be applied to an argument or a type argument simultaneously.

(not ,, (_x . x + 1 : Int→ Int)) (1 ,, False) ↩→∗ True ,, 2

If we replace the function not by a function of type Bool → Int, the whole expression will be

rejected during typing because Bool→ Int is not disjoint to Int→ Int. For two function types to

be disjoint, their return types must be hereditarily disjoint.

Traits and the CP Language. Disjoint intersection types with the merge operator serve as the

theoretical foundation of Compositional Programming [Zhang et al. 2021]: a recently proposed

programming paradigm. The language CP supports first-class traits [Bi and Oliveira 2018]. With

traits as basic reusable units, CP programs can be very modular and extensible. For this paper we

focus on basic uses of traits, but CP’s traits are useful to solve challenging modularity problems

such as the Expression Problem [Wadler 1998]. For further details on CP and its applications, we

refer the readers to the original paper by Zhang, Sun, and Oliveira.

Below is a simple trait defaultCipher, which defines two methods encrypt and decrypt that both

take a String and return a String. It also contains a field that indicates its name. Here we use an

identity function for both encryption and decryption.

type Cipher = { encrypt: String→String; decrypt: String→String; name: String };

id = ΛA . \(x:A) → x;

defaultCipher = trait implements Cipher ⇒ {

encrypt = id @String; decrypt = id @String; name = "Null Cipher";

};

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:5

A trait is elaborated into a function that returns a record in CP’s core calculus F+
8
. For instance

the trait above would be elaborated to a function of type Cipher→ Cipher. To model traits, CP uses

the semantics of inheritance introduced by Cook and Palsberg [1989] where a class is seen as a

function from a record of methods to a record of methods. The function argument denotes the

self reference. The argument of the function resulting in the elaboration of a trait denotes the

self-reference (i.e., this in conventional OOP languages). To create an object (typically via the use

of new), we take the fixpoint of the function, fixing the self-reference. As these functions can be

merged and act like one function, traits in CP are compositional. In the following example, we use ,

(the notation for merges in CP) to safely merge two traits defaultCipher and defaultHelp.

defaultHelp = trait [self: Cipher] ⇒ {

showHelp = "Encrypt using " ++ name;

test (s:String) = "After encryption and decryption the text is " ++ decrypt (encrypt s);};

simpleCipher = defaultCipher , defaultHelp;

(new simpleCipher).showHelp --> "Encrypt using Null Cipher"

Note that in the defaultHelp trait the notation [self: Cipher] allows us to specify the name and the

type of the self-reference, similarly to Scala’s self-type annotations [Scala Community 2022]. While

the self-reference is always available in every trait, the self type annotation is optional. The self

type annotation allows us to call the name, decrypt and encrypt methods, which are not implemented

in the trait. Later, to instantiate the trait, we must compose it with another trait that implements

the missing methods (such as defaultCipher). The unbiased merge (,) brings an extra safety check

in compilation via its disjointness restriction, and leads to a static error when two traits being

composed have conflicts. For instance, consider the following definitions:

caesarCipher (shift: Int) = trait inherits defaultCipher implements Cipher ⇒ {

override encrypt = ... ;

override decrypt = ... ;

override name = "Caesar Cipher with a shift of " ++ toString shift;

showHelp = "Caesar Cipher is a substitution encryption technique"};

new (caesarCipher 3 , defaultHelp) --> type error!

The trait caesarCipher inherits the methods in defaultCipher. However, when trying to compose

caesarCipher with defaultHelp we get a type error, since both traits have a showHelp method.

Trait conflicts. To resolve conflicts, one option is to remove the method showHelp from one of

the traits in advance. One way to do this in CP is to add type annotations to cast traits. Like the

following example demonstrates, we can choose what to keep from the two conflicting methods.

dropL = new (caesarCipher 3 : Trait<Cipher>) , defaultHelp;

dropR = new caesarCipher 3 , (defaultHelp: Trait<Cipher⇒{test:String→String}>);

dropL.showHelp ++ ". " ++ dropR.showHelp --> "Encrypt using Caesar Cipher with a shift of 3.

Caesar Cipher is a substitution encryption technique"

Here dropL drops the showHelp from caesarCipher, while dropR drops showHelp from defaultHelp. How-

ever, removing methods in this way is quite cumbersome. For instance, in dropR a programmer has to

explicitly annotate all the methods that should be preserved (the annotation {test: String→String}).

If there are several methods to be preserved this will lead to a lot of boilerplate and manual work.

In essence the programmer is manually computing a type difference on types here. Therefore better

mechanisms to deal with conflicts are desirable, which is where type difference will come in handy.

Next we will show how type difference and other operators can enhance the flexibility of trait

composition and reduce the burden of manual annotation for programmers.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:6 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

2.2 Operations on Traits and Merges

The type difference operator that we propose subtracts one type from the other by removing all

the common parts. It is denoted with A \ B. Take two record types for instance. Type difference

does not affect the fields that only appear in the first type.

{count : Int; check : String→ Bool} \ {num : Int; check : String→ Bool} = {count : Int}

Our type difference deals with types other than records. In particular, it can deal with function

types too. Even when they are nested in other constructs, functions can be partially subtracted.

{check : String→ Int&Bool} \ {num : Int; check : String→ Bool} = {check : String→ Int}

Therefore, type difference can be applied to trait types (which are function types returning records in

the core calculus) to remove some of their methods. We make use of type difference to automatically

resolve conflicts, rename components, and manually restrict traits in CP, as we shall see next.

Biased merges. In the example in Section 2.1, we use Trait<Cipher> to cast the trait (caesarCipher 3).

This type is the subtraction result of the type of two traits: (caesarCipher 3) and defaultHelp. We

can simplify the conflict resolution process by defining biased merge operators, which use type

difference to calculate the type annotation before merging two terms. There are two variants: +,

prioritizes the left part while ,+ prioritizes the right part. The following code has the same effect as

the previous example with no explicit type annotations written.

dropLAlt' = new caesarCipher 3 ,+ defaultHelp; dropRAlt' = new caesarCipher 3 +, defaultHelp;

The biased merge operators can be used with multiple inheritance as well. In the following example,

we define a trait simpleCompression to compress and decompress data. The trait efficientCipher

inherits the test method from simpleCipher, but its name field comes from caesarCipher. Besides, it

inherits compress and decompress from the simpleCompression trait and makes use of them to refine the

encrypt and decrypt methods it inherits from caesarCipher.

type Compression = {compressRatio: Int; compress: String→String; decompress:String→String};

simpleCompression = trait implements Compression ⇒ { ... };

efficientCipher (shift: Int) = trait [self: Cipher&Compression] inherits simpleCipher ,+

caesarCipher shift ,+ simpleCompression implements Cipher & Compression ⇒ {

override encrypt (s:String) = super.encrypt (compress s);

override decrypt (s:String) = decompress (super.decrypt s);};

(new efficientCipher 2).name --> "Caesar Cipher with a shift of 2"

Renaming. Now assume that we have another more advanced compression method, which

deserves a name. We want to combine this trait with the previously defined trait efficientCipher.

This time we choose to keep both of the conflicting fields (name) and rename them (as cipherName and

compressionName). The rename operator is also encoded by type difference, as we will discuss later.

advancedCompression = trait inherits simpleCompression ⇒ {name = "A Lossless Compression";...};

betterCipher = (efficientCipher 3) [name <- cipherName] ,+ advancedCompression [name <-

compressionName];

(new betterCipher).cipherName --> "Caesar Cipher with a shift of 3"

(new betterCipher).compressionName --> "A Lossless Compression""

Restriction operator. Another way to resolve conflicts is to use restriction on traits directly. We

use type difference to define restriction operators on traits: t\l means the remainder of trait t after

removing method l if it exists; t\\A means the remainder of trait t after removing every method in

type A. Suppose that we get a SecretCipher from somewhere. We can use restriction on traits to add

a compression feature, and cover the cipher’s name with a confidentiality note:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:7

secretCipher = trait inherits defaultCipher implements Cipher ⇒ { ... };

note = trait ⇒ { cipherName = "Confidential" ; helpInfo = ... };

hiddenCipher = (secretCipher \ name) , (betterCipher \\ Cipher) ,+ note;

We first remove name from SecretCipher, and merge it with betterCipher with its Cipher part removed.

Then we add note to the whole composed trait via a biased merge. Note that this is a typical example

where biased operators alone are limiting. When we need to remove methods from both traits we

cannot use a biased operator. But, in CP, we can use explicit restriction operators instead.

2.3 Existing Work on Record Operations and Set Difference

Before introducing the technical details of our work, it is useful to review existing related notions.

Operations on records. Extensible records, or rows, provide a flexible and type-safe way to compose

data dynamically. A record may contain multiple fields with distinct labels. Existing record calculi

vary in the operations that they support [Harper and Pierce 1991a; Ohori 1995; Rémy 1990]. We are

particularly interested in calculi that support subtyping. Therefore we use Cardelli and Mitchell

[1991]’s (CM) proposal to demonstrate common operations in a record calculus with subtyping:

⟨⟨l1 = True; l2 = 1⟩ | l3 = not⟩ • Extension: add a field of some label to a record, knowing

↩→∗ ⟨l1 = True; l2 = 1; l3 = not⟩ that the record does not contain the same label.

⟨l1 = True; l2 = 1⟩ \ l2 • Restriction: remove a field from a record.

↩→∗ ⟨l1 = True⟩ It does nothing if the given field label is absent.

⟨l1 = True; l2 = 1⟩.l1 • Extraction: extract the field associated with the given label.

↩→∗ True The following two operations are implemented by the above three.

⟨l1 = True; l2 = 1⟩[l2 ← l3] • Renaming: change the label name of a record field.

↩→∗ ⟨l1 = True; l3 = 1⟩ The record must contain the given label.

⟨⟨l1 = True; l2 = 1⟩ ← l2 = 2⟩ • Overriding: replace a field of the given label if it exists,

↩→∗ ⟨l1 = True; l2 = 2⟩ otherwise extend the record.

The type system of CM reasons about both positive information and negative information, where

positive information means the record labels are present in the type, and negative information

means the record labels are absent in the type. A value of type ⟨l1 : Int⟩ \ l2 must have a field of Int

under name l1, and can contain any fields except for l2. The positive information is used in extraction

to guarantee the existence of the wanted field. The negative information, expressed through the

special type constructor \ similar to our type difference, guards the safety of every record extension.

The subtyping of CM is complicated by the two kinds of information. Our type difference is a

function on types. In A \ B the part of A that matches with B is canceled and the whole type can

be converted into a form that does not contain the difference operator. So {l1 : Int; l2 : Int} \ l2
evaluates to {l1 : Int}. However, in CM’s record calculus, ⟨l1 : Int; l2 : Int⟩ \ l2 is equivalent to the

empty type because it excludes and contains the same label l2. Besides, not all negative information

can be eliminated. For example, ⟨⟩ \ l is the type of all records that lacks field l, which cannot be

expressed without the restriction operator. The operations in CM only work for records and take

fields as the basic units. They cannot deal with some of our intended applications, like the examples

in Section 2.2, where traits are not modelled as records, but as functions that return records.

Set difference in semantic subtyping. Semantic subtyping [Frisch et al. 2008], and its later exten-

sions to polymorphism [Castagna et al. 2015, 2014, 2016; Castagna and Xu 2011], defines subtyping

via a set-theoretic model. It supports intersection and union types with distributivity. Under the

interpretation that types are sets of values inhabited in it, the subtyping relation is derived from

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:8 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

the subset relation of values. For example, because A& B stands for the set intersection of A and B,

we directly know that A&B is a subtype of A (or B).

Type difference in semantic subtyping is an abbreviation for A&¬B, defined via the type comple-

ment ¬B. It can be applied to any form of types, but despite the syntactic similarity, this definition

in semantic subtyping has a completely different meaning to our type difference. Roughly, we want

an operation that inverts intersection, so that (A&B) \ B gives us A. But in semantic subtyping,

(A&B) & (¬B) is always equivalent to the empty type ⊥: no term of type A&B satisfies ¬B. We

cannot use set difference to cancel a field in a type, which is a typical use case for record restriction.

The next two examples compare the two forms of difference on two record types:

{l1 : Int; l2 : Bool}&¬{l1 : Int} = ⊥ semantic subtyping

{l1 : Int; l2 : Bool} \ {l1 : Int} = {l2 : Bool} our calculus

As discussed in Section 1, the semantics of subtyping in the set-theoretical model differs from

ours. The intersection of any two inhabited types is inhabited in our work thanks to the merge

operator. This matches up well with a coercive interpretation since the set of values in a subtype

should be larger than the set of values in a supertype. For example, we can actually take any Int and

Bool to compose a value of type Int&Bool, like 1 ,, True. In other words, intersection types in our

work should be interpreted as a form of product types, rather than as some form of set intersection.

In semantic subtyping, with no term-level constructors for composition, an intersection such as

Int&Bool, becomes uninhabited, as expected from an intersection of disjoint sets. In calculi with a

merge operator, from any value of a subtype, a value of its supertype can be obtained. For example,

if we drop the boolean part in 1 ,, True, the resulting value has type Int.

Type-indexed rows. Shields and Meijer [2001] proposed type-indexed rows to index each field in

a record by their types (which have to be distinct) instead of labels. _) �' does not have a restriction

operator, but we can implement one using a function. Consider the examples in _) �' (on the left)

and in our work (on the right):

;4C 5

: ∀U ∗ (Bool→ Bool) . (U & (Bool→ Bool) → U)

= _(G ,, _) . G

✓ f (1 ,, not) ↩→∗ 1

✗ f 1

✗ f (1 ,, (_(G ,, _). G) : Bool& Int→ Bool)

The following expressions all evaluate to 1

✓ (1 ,, not) \ (Bool→ Bool)

✓ 1 \ (Bool→ Bool)

✓ (1 ,, (_x . x) : Bool& Int→ Bool) \ (Bool→ Bool)

In _) �' we use 5 to remove the Bool→ Bool function from its input row. For better comparison, we

write the expressions in a syntax that is close to ours. The quantification U ∗ (Bool→ Bool) here
means type U is disjoint with Bool→ Bool. This function takes a record that has type U & (Bool→
Bool) and matches the pattern (G ,, _). It then returns G , which corresponds U , the first part of the

argument type, and therefore drops the Bool→ Bool part, like e \ (Bool→ Bool) on the right. We

use three cases to examine the function and our restriction operator. In the first one, a function

not of Bool → Bool is present, and can be successfully removed by 5 . The last two expressions

raise type errors as the function 5 requires the argument to contain a part exactly corresponding

to the type to remove. In particular, _) �' does not match (_(G ,, _). G) : Bool& Int → Bool with

Bool→ Bool because it does not support subtyping. For the same reason, the type of the remaining

part of restriction may not be disjoint to Bool→ Bool according to our definition of disjointness,

which breaks desirable properties.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:9

2.4 Key Ideas

A specification for type difference. Let A \ B denote A minus B. To reuse standard terminology

from subtractions, we say that A is the minuend and B is the subtrahend of the subtraction or type

difference. We want the function to satisfy the following three properties:

(1) A \ B is a supertype of A.

(2) A \ B is compatible (disjoint) with B, denoted by (A \ B) ∗B.
(3) (A \ B) &B is a subtype of A.

Consider a typical case where e1 has type A, e2 has type B and C is the difference of A and B.

(e1 : C ,, e2) : A

Expressions of this kind typically arise during updates, such as those that we illustrated at the end

of Section 2.1. The first property ensures that e1 : C is valid, because e1 is of type A and it is cast

to a supertype C. The second property guarantees that the merge is safe and compatible. The last

property justifies the outermost annotation. We can imagine that A and B are two sets (here atomic

types such as �=C or �>>; are the elements of the sets). Then the set difference of A and B is the

set of elements that are in A (which corresponds to the first property), and are not in B (which

corresponds to the second property). The set difference includes all elements that fulfill these two

conditions, and it is the relative complement of B with respect to A. This corresponds to the third

property. Formally, we use A \B B ≡ C to represent that C is the type difference of A and B. The

relational specification combines the three properties above:

Definition 2.1 (Type difference specification). A \B B ≡ C ≜ A ≤ C ∧ B ∗C ∧ B&C ≤ A.

Note that we use ≡ in later text to mean the equivalence relation defined on subtyping, i.e., A ≡ B

if and only if they are mutual subtypes. An important complication, which type difference has

to deal with, is that different types can be related by subtyping. Therefore we cannot simply use

equality of two types to decide whether or not to remove a type component from the minuend.

Take ⊤ → Bool and Bool → Bool as an example. The former is a subtype of the latter as it can

accept any argument that the latter accepts (⊤ accepts all legal terms). From the point of view of

sets, we can say that the subtype ⊤ → Bool includes supertype Bool→ Bool.

(Int& (Bool→ Bool)) \ (⊤ → Bool) ≡ Int

We can always use a subtype to remove a supertype component in the minuend. They cannot be

disjoint unless the supertype is equivalent to ⊤. So, only after ⊤ → Bool is removed, the result

satisfies property (2).

Partiality of type difference. Having subtyping as a partial order also means that we cannot define
a total subtraction operation that satisfies all three properties. What is the difference of ⊥ (the
infinite intersection of all types) and Int? More generally, what should the remaining part be when
we subtract a supertype from a subtype that cannot be further split? Take the previous two types
for example, and consider the following (incorrect) results for type difference:

(⊤ → Bool) \ (Bool→ Bool) ≡ ⊤ → Bool violates property (2)

(⊤ → Bool) \ (Bool→ Bool) ≡ ⊤ violates property (3)

According to property (1), the result is a supertype of ⊤ → Bool. So the candidates are restricted to

a function type, or a top-like type such as ⊤, or an intersection of both. For instance we could try

to pick a function type, such as ⊤ → Bool itself, or ⊤ for the result. But both types will violate at

least one property, and other similar types would be equally problematic. We say that the two types

above are not subtractable. Later, in the formal development, we will discuss how to determine

whether two types are subtractable in detail.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:10 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Table 1. Operations supported via type difference. Two primitive operations and syntactic sugar.

Extension/concatenation e1 ,, e2 Encoded directly by the merge operator

Restriction (minus a type) e \ A Primitive operation in F∖
8

Restriction (minus a term) e1 \ e2 Primitive operation in F∖
8

Restriction (minus a label) e \ ; ≜ e \ {l : ⊥}

Extraction e.l Encoded directly by projection

Renaming 4 [;1 ← ;2] ≜ e \ l1 ,, {l2 = e.l1}

Right-biased merge e1 ,
+ e2 ≜ (e1 \ e2) ,, e2

Left-biased merge e1
+, e2 ≜ e1 ,, (e2 \ e1)

On the other hand, given two subtractable types A and B, these three properties already limit

their type difference A \ B to a class of equivalent types. That is to say, all the types that fulfill the

properties are mutual subtypes. Property (1) allows A \B to be as large as A. But if the type contains

too many elements, it breaks property (2) because it may contain type components present in B.

On the contrary, if it has too few elements, it loses property (3).

Encoding operations with type difference. Instead of demanding users to annotate terms explicitly,

type difference provides a more direct way to model various desirable operations. As we have

shown in CP, it facilitates updating trait methods, renaming trait components and so on. Here, we

demonstrate how these operations are encoded with the help of type difference.

A first class of operations is restriction operations, which we have seen on traits. For expressions

in the core calculus, we use e \ A and e1 \ e2 corresponding to \\ in CP. These operations can be

applied to any terms, not only to records. Here are some simple examples.

1 \ Int = {} {} stands for the top value, a merge of no element

1 \ 2 = {} To subtract a term is to subtract its type

(1 ,, True) \ Int = True The part of merge that does not match the subtrahend type remains

1 \ Char = 1 If the subtrahend does not overlap with the minuend, it cancels no term

Table 1 shows a summary and description of the operations that we support.

Type difference for overloaded functions. Besides traits, type difference of functions has other

applications. For instance, we can use type difference to update implementations of an overloaded

function. In the following example, inspired by Haskell’s read and an example due to Marntirosian

et al. [2020], we use a biased merge to override the conflicting part of a function.

readInt : String → Int readChar : String → Char

readString : String → String myNewReadChar : String → Char

let read : (String→Int) & (String→Char) & (String→String)

= readInt ,, readChar ,, readString

in newRead = read ,+ myNewReadChar

In this example we have an overloaded read function that can parse a string as either an integer or

a character or a string. To obtain a variant of read that uses a different function to read characters

we can update the implementation of the corresponding type as shown in newRead.

Algorithms for type difference, disjointness and subtyping. Wewill present an algorithmic definition

for type difference, which does not rely on disjointness and subtyping. As disjointness and subtyping

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:11

can be encoded by type difference, we can derive disjointness and subtyping algorithms once we

have algorithmic type difference. A formal specification of disjointness is:

Definition 2.2 (Disjointness). A ∗B ≜ ∀�, if A ≤ C and B ≤ C then C ≡ ⊤.

According to the specification of type difference, we can conclude A ∗B from A \ B ≡ A. Via the

specification of disjointness we know that the other direction also holds. Therefore we have:

A ∗B↔ A \ B ≡ A

Similarly, we have that

A ≤ B↔ B \ A ≡ ⊤

The fact that we can derive subtyping from type difference is a natural consequence of its algebraic

properties. Our specification of type difference satisfies the three axioms for being a subtraction

algebra [Jun et al. 2004; Schein 1992], which is known to determine an order relation, guaranteeing a

good correspondence between the type difference and subtyping. We have the order ≤ representing

that the left side (subtype) contains more information than the right side (supertype).

A \ (B \ A) ≡ A

A \ (A \ B) ≡ B \ (B \ A)

(A \ B) \ C ≡ (A \ C) \ B

Distributivity and disjoint polymorphism. We add universal quantified types to the subtyping

relation by Barendregt et al. [1983]. Like other type constructors, universal quantifiers distribute

over intersections. We make use of the idea of splittable types [Huang et al. 2021]: all types that

contain intersections in positive positions can be split into smaller elements. Splittable types

enable us to deal with distributive subtyping. Furthermore, using splittable types we can subtract a

function partially, even when it is nested in other constructors, as we have shown at the beginning

of Section 2.2. In addition, we support disjoint polymorphism, which allows a disjointness constraint

to be specified for type abstractions.

(Λ(U ∗ Int). _x : U. x ,, 1) : ∀U ∗ Int. U → U & Int

This is an expression that takes a type and a term. U ∗ Int enforces a restriction to the type argument,

and ensures that the parameter x of type U can be merged with 1. Our type difference not only can

subtract a function from another, but can also handle universally quantified types and variables.

Disjoint quantification also allows us to encode the type restriction in the CM calculus.

CM : ;4C 5 (' <: ⟨l1 : Int⟩ \ l2) (A : ') : ⟨R|l2 : Int⟩ = ⟨⟨r ← l1 = r .l1 + 1⟩ | l2 = 0⟩

Us : Λ(U ∗ {l2 : ⊥}). _x : U & {l1 : Int}. x ,
+ {l1 = x .l1 + 1; l2 = 0}

The example above is from CM’s paper. Function 5 expects a type parameter that is a subtype of

⟨l1 : Int⟩ \ l2, and a value parameter of such type, i.e., it must contain a field of l1 and lack a field

of l2. The function increments the integer value of l1 and extends the input with a l2 field. The

remaining fields remain unchanged. Our implementation in the second line does the same thing.

3 DERIVING A TYPE DIFFERENCE

This section shows how to derive a type difference algorithm from the specification that was given

in Section 2. We present a type difference algorithm for the subtyping relation of Barendregt et al.

[1983] (BCD) extended with record types, and prove its soundness, completeness and decidability

with respect to the specification. Importantly, note that while the subtyping relations presented in

our work are extensions of BCD subtyping, our typing relation and semantics for the calculi in our

work (presented in Section 4) are very different from those in Barendregt et al.’s work.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:12 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

� ≤ � (BCD subtyping)

S-refl

A ≤ A

S-bot

⊥ ≤ A

S-top

A ≤ ⊤

S-topArr

⊤ ≤ ⊤ → ⊤

S-topRcd

⊤ ≤ {l : ⊤}

S-arr
A2 ≤ A1 A3 ≤ A4

A1 → A3 ≤ A2 → A4

S-rcd
A ≤ B

{l : A} ≤ {l : B}

S-distArr

(A→ B) & (A→ C) ≤ A→ B&C

S-distRcd

{l : A}& {l : B} ≤ {l : A&B}

S-trans
A ≤ B B ≤ C

A ≤ C

S-andl

A&B ≤ A

S-andr

A&B ≤ B

S-and
A ≤ B A ≤ C

A ≤ B&C

Fig. 1. BCD subtyping.

3.1 Syntax and Subtyping

Types �, �,� F Int | ⊤ | ⊥ | A&B | A→ B | {l : A}

Ordinary types �◦, �◦,�◦ F Int | ⊤ | ⊥ | A→ �◦ | {l : �◦}

Types. BCD subtyping [Barendregt et al. 1983] is a widely used subtyping relation for intersection

types. The most important feature of BCD-style subtyping is that it allows function types to

distribute over intersection types, like in rule S-distArr. We have all the types in the original BCD

type system, extended with a bottom type and a record type. Ordinary types [Davies and Pfenning

2000], are types that do not contain top-level intersection types. However, in BCD subtyping, arrow

types such as A→ B&C may behave like intersection types due to distributivity. Following the

approach by Huang et al. [2021], we restrict the notion of ordinary types to exclude such types.

Subtyping. The subtyping rules, presented in Figure 1, extend BCD subtyping [Barendregt et al.

1983] with rules for record types and the bottom type. Terms of an intersection type must satisfy

both parts of the intersection as A&B is the greatest lower bound of type A and B. The key

feature of BCD subtyping is that other type constructors distribute over intersections. For example,

A→ B&C is a subtype of (A→ B) & (A→ C). ⊤ is the supertype of all types, but there is a group

of types equivalent to ⊤, such as ⊤&⊤ or A→ ⊤.

Notation. Note that A ≡ B denotes the equivalence defined via subtyping (A ≤ B and B ≤ A) and

= is used for syntactic identity, i.e., A = B means that A and B are exactly the same type. We need

this notation because intersection types and distributivity introduce a lot of semantically equivalent

types that are not syntactically equivalent such as Int, Int& Int, Int& Int& Int... In particular, we

use top-like types to describe types that are equivalent to ⊤.

3.2 Deterministic Type Difference

The specification (A \B B ≡ C) in Definition 2.1 is neither algorithmic nor deterministic. It only

restricts the result of type difference to a semantically equivalent class of types. Next we will give

an intermediate definition in Fig 2, which is explained in detail over this section. This definition

will be helpful to derive an algorithmic version of type difference. Unlike the specification of type

difference, the new definition is deterministic: there can only be a unique type for such intermediate

type difference. We prove that the definition is sound and complete to the specification.

Equivalence results for type difference. The type difference specification does not distinguish two

semantically equivalent types, as it is defined by subtyping and disjointness, both of which are not

sensitive to the syntactic form of types. The following lemma expresses this property:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:13

A \3 B = C (Deterministic Type Difference)

TD-disjoint

A∗B

A \3 B = A

TD-subtype
B ≤ A

A \3 B = A⊤

TD-BCD
A1 � A� A2

A1 \3 B = C1 A2 \3 B = C2 A ⊢ C1 � C � C2

A \3 B = C

Fig. 2. Deterministic definition of type difference, considering different three cases.

Lemma 3.1 (Type Difference Specification Safety). IfA\BB ≡ C0 andC0 ≡ C1, thenA\BB ≡ C1.

Take the type difference of Int and Int for example. According to the specification, all the types

equivalent to ⊤ fit Int \B Int. Such types include ⊤, ⊤&⊤, and Int → ⊤. On the other hand, the

type difference specification is precise enough to restrict the result to an equivalence class of types.

We prove the coherence of the type difference specification using the covariance of disjointness

property. With Lemmas 3.1 and 3.3, show the specification forms an equivalence relation.

Lemma 3.2 (Covariance of Disjointness). If A ∗B and B ≤ C, then A ∗C.

Lemma 3.3 (Coherence of Type Difference). If A \B B ≡ C1 and A \B B ≡ C2 then C1 ≡ C2.

Two special cases for type difference. We next show two special cases of how the specification

behaves, to help us better understand the first two rules TD-disjoint and TD-subtype of determin-

istic type difference. Firstly, we have the case where A ∗B. Since the two types do not share any

nontrivial supertypes other than ⊤, we should remove no part from the minuend A.

Lemma 3.4 (Disjoint Type Subtraction). If A ∗B, then A \B B ≡ A.

The second case is when B ≤ A. In this case any part of A is a supertype of B. To find a result

that is disjoint to B, we have to discard all the components of A.

Lemma 3.5 (Subtype Subtraction). If B ≤ A, then A \B B ≡ ⊤.

Zero type. While the first rule TD-disjoint directly follows Lemma 3.4, in the second rule we

use a notion of zero type, defined at the right bottom of Figure 3. The zero type function helps the

second rule TD-subtype to return the same result when it overlaps with the first rule. It computes

a top-like type based on any given type. Notice that ⊤ is not only the supertype of every type, but

also disjoint to every type. For a minuend type A equivalent to ⊤, such as Int→ ⊤, A \ B always

matches both of the first two rules regardless of B. To make these two rules consistent, we choose

to preserve the original structure of the minuend as much as possible. For the concrete example

(Int→ ⊤) \ B, the result is Int→ ⊤ rather than ⊤, which is equal to (Int→ ⊤)⊤. Generally, the
zero type function maintains the structure of its input and erases all the meaningful components in

positive positions by using the ⊤ type instead. It does not change the input if it is already top-like.

Lemma 3.6 (Completeness of Zero Type). A⊤ ≡ ⊤.

Lemma 3.7 (Soundness of Zero Type). If A ≡ ⊤, then A⊤ = A.

The general case for type difference. In general, the subtrahend type is neither disjoint with

nor a subtype of the minuend. Suppose that we have an intersection of two functions: (Bool→
Bool) & (Int→ Int), and we want to remove the function on integers, which is (Bool→ Bool) &
(Int → Int) \ (Int → Int). In this case, the first two rules cannot apply. Only after the minuend

is separated, (Bool → Bool) \ (Int → Int) matches the first rule and (Int → Int) \ (Int → Int)
matches the second. By composing the two results, we obtain the type difference of the original

minuend and subtrahend (Bool→ Bool) & (Int→ ⊤), i.e., (Bool→ Bool). From the specification,

we can prove the correctness of the splitting and composition.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:14 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

B� A� C (Type Splitting)

A� A&B� B

C1 � B� C2

A→ C1 � A→ B� A→ C2

C1 � B� C2

{l : C1 }� {l : B}� {l : C2 }

A ⊢ B1 � C � B2 (Type Merging)

A1 &A2 ⊢ B1 � B1 &B2 � B2

A ⊢ B1 � C � B2

� → A ⊢ � → B1 �� → C �� → B2

A ⊢ B1 � C � B2

{l : A} ⊢ {l : B1 }� {l : C }� {l : B2 }

A⊤ ≡ B (Zero Type Function)

⊤⊤ = ⊤

⊥⊤ = ⊤

Int⊤ = ⊤

(A&B)⊤ = A⊤ &B⊤

(A→ B)⊤ = A→ B⊤

{l : B}⊤ = {l : B⊤ }

Fig. 3. The auxiliary meta functions used in the deterministic type difference.

Lemma 3.8 (Composition). If A1 \B B ≡ C1 and A2 \B B ≡ C2, then (A1 &A2) \B B ≡ C1 &C2.

Splittable and mergeable types. The last rule in Figure 2 deals with more than just intersection

types. It is very similar to the last lemma if we replace A1 � A � A2 and A ⊢ C1 � C � C2 by

A = A1 &A2 and C = C1 &C2. Actually, these two relations generalize the splitting and merging of

intersection types by taking distributivity into consideration.

For the last rule TD-BCD of type difference, we need to introduce the concept of splittable

and mergeable types. Splittable types were first introduced by Huang et al. [2021] to promote a

subtyping algorithm for BCD subtyping. The idea of splittable types is to specify the distributivity

brought by rules S-distArr and S-distRcd explicitly so that we can eliminate the use of the

transitivity rule S-trans in the subtyping deduction. We need the notion of splittable types because

in the general case of type difference, the intersection may hide deeply inside certain types like

Int → Int&Bool. Subtracting components like Int → Int from them would be impossible if we

only look at top-level intersections. Under such cases, we need the rules for splittable types defined

at the top of Figure 3 to help us analyze these intersection-like types.

Mergeable types are new and they are designed to complement splittable types. Merging is

defined at the left bottom part of Figure 3 as a reverse operation of splitting. A ⊢ B1�C�B2 means

merging two types B1 and B2 according to the shape of the type A will result in a type C. We need

the shape of A as a reference because splitting is not an injective function. Thus merging two types

like B1 → B2 and B1 → B3 could result in either B1 → B2 &B3 or (B1 → B2) & (B1 → B3). The
shape of A ensures the determinism of such merging process. We have the following results to

ensure the reversibility and determinism of the splittable and mergeable relations.

Lemma 3.9 (Split Determinism). If B1 � A� B2 and C1 � A� C2, then B1 = C1 and B2 = C2.

Lemma 3.10 (Determinism of Merging). If A ⊢ B1 � C � B2 and A ⊢ B1 � C ′� B2, then C = C ′.

Lemma 3.11 (Reversibility of Merging and Splitting). If A1 �A�A2, then A ⊢ A1 �A�A2;

if B ⊢ A1 � A� A2, then A1 � A� A2.

3.3 Algorithmic Type Difference

Deterministic type difference depends on subtyping and disjointness. While having algorithmic

formulations of disjointness and subtyping would enable us to obtain an algorithm for deterministic

type difference, in this section we will show an algorithmic formulation of type difference which

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:15

A \0 B = A (if A ≡ ⊤)

B \0 A = B (if A ≡ ⊤)

A \0 ⊥ = A⊤

Int \0 (A→ B) = Int

Int \0 {l : A} = Int

{l : A} \0 (B→ C) = {l : A}

{l : A} \0 Int = {l : A}

(A→ B) \0 Int = A→ B

(A→ B) \0 {l : C} = A→ B

Int \0 Int = ⊤

{l1 : A} \0 {l2 : B} = {l1 : A} (if l1 ≠ l2)

A1 → A2 \0 B1 → B2 = A1 → (A2 \0 B2) (if A2 \0 B2 = A2 or B1 \0 A1 = B1
⊤)

{l : A} \0 {l : B} = {l : A \0 B}

A \0 B = C (if A1 � A� A2 and A ⊢ (A1 \0 B) � C � (A2 \0 B))

A \0 (B1 &B2) = (A \0 B1) \0 B2 (if A \0 B1 is defined)

A \0 (B1 &B2) = (A \0 B2) \0 B1 (if A \0 B2 is defined)

Fig. 4. Algorithmic type difference.

does not depend on subtyping and disjointness. In turn, using this algorithmic formulation we can

give an algorithm for subtyping and disjointness as well, since both of these relations are definable

as special cases of type difference.

Design. The rules of algorithmic type difference, presented in Figure 4, can be divided into three

categories, which follow the three cases in deterministic type difference. The first set of rules is for

dealing with disjointness, such as Int \0 (A→ B) = Int. The second set of rules is for dealing with

subtyping, such as Int \0 Int = ⊤ and {l : A} \0 {l : B} = {l : A \0 B} . The last set of rules only
contains the last three rules in Figure 4. They are used for dealing with mixed cases, where the

subtrahend or minuend behave like intersection types.

Disjointness. Most of the rules in this category simply return the minuend if the rule operates

on two disjoint types. How to judge type disjointness from the type difference is given by the

following lemma. From it we directly obtain an algorithm for disjointness, that is calculating A \0 B
to see whether it results in A or not.

Lemma 3.12 (Disjoint Type Difference). A ∗B if and only if A \0 B = A.

For most rules such as Int \0 (A→ B) = Int, we can directly find the disjointness relation from

the structure of the two types. There are also rules which involve substructures of types, such as

(A1 → A2) \0 (B1 → B2) = A1 → A2 (if A2 \0 B2 = A2). Besides, if a type is equivalent to ⊤, then
it is disjoint to every type, which is the case of the first and the second rule in Figure 4. We give

an algorithm for judging whether a type is top-like in the Appendix. We will also introduce an

algorithm for judging a top-like type extended with polymorphism in Section 4.

Subtyping Rules. Most of the rules in this category simply return the zero type of the minuend if

the rule finds a subtyping relation between two types. The correctness of this behaviour is ensured

by the following lemmas.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:16 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Lemma 3.13 (Zero Type Difference). A⊤ = C if and only if A \0 A = C.

Lemma 3.14 (Subtyping Type Difference). B ≤ A if and only if A \0 B = A⊤.

For example, the rule Int \0 Int = ⊤ finds that Int is a subtype of Int, thus we return the zero

type of Int, which is ⊤. For two record types or two function types, there is no special rules for

the case that the subtrahend is a subtype of the minuend. Such rules are subsumed by the two

structural rules {l : A} \0 {l : B} = {l : A \0 B} and A1 → A2 \0 B1 → B2 = A1 → (A2 \0 B2) (if
B1 \0 A1 = B1

⊤). Note that with the lemmas above, we can give an algorithm for B ≤ A by checking

A \0 B = A⊤.

Intersections. The last three rules in Figure 4 are used to deal with intersection or intersection-like

types. The first rule is just the same as deterministic type difference. The rule A \0 (B1 &B2) =
(A \0 B1) \0 B2 says that if a type is subtracted by an intersection type, you can first subtract its

left component then subtract its right component. The rule A \0 (B1 &B2) = (A \0 B2) \0 B1 is the
commutative version. We need these two rules because type difference is not total. Recall the totality

counterexample in the Section 2. Similarly to the counterexample we have that (Int→ Int) → Int

is not subtractable by (Int → Int). Next we consider a type difference A \0 B when A = (Int →
Int) → Int and B = (Int→ Int) & (Int→ Int) → Int. By the rule A \0 (B1 &B2) = (A \0 B1) \0 B2
alone, we will first need the calculate (Int→ Int) → Int \0 (Int→ Int), which is not subtractable.

But B is a subtype of A, and according to rule TD-subtype we expect A \0 B to be subtractable.

Therefore, we need a commutative rule A \0 (B1 &B2) = (A \0 B2) \0 B1 to get through such cases.

Note that the 3 last cases overlap. We have proved that the first rule can always be applied first in

an implementation without loss of expressive power. For the commutative rules we proved that

their relative order does not matter: we can apply either one in any order.

3.4 Theorems

In this section we demonstrate some properties about type difference.Wewill prove the determinism

of type difference, the equivalence between the three type differences (A \B B ≡ C, A \3 B = C,

A \0 B = C) and the decidability of type difference.

Equivalence and Determinism. Using a lemma of deterministic type difference, we can prove the

equivalence of the algorithmic type difference with a direct induction.

Lemma 3.15 (Type Difference Concatenation). If A1 \3 B1 = A2 and A2 \3 B2 = A3, then

A1 \3 (B1 &B2) = A3.

Lemma 3.16 (Type Difference Eqivalence). A \3 B = C if and only if A \0 B = C.

By the Lemmas 3.9 and 3.10 showing the determinism of splittable and mergeable types, we can

directly show that deterministic type difference is indeed deterministic.

Theorem 3.17 (Determinism of Type Difference). If A \3 B = C1 and A \3 B = C2, then C1 = C2.

Completeness. Completeness means that deterministic type difference and algorithmic type

difference satisfy the specification of type difference. Similarly to Lemmas 3.12 and 3.14, we can

obtain the following two properties.

Lemma 3.18 (Completeness of Subtyping). If A \3 B = C, then A ≤ C.

Lemma 3.19 (Completeness of Disjointness). If A \3 B = C, then B ∗C.

By direct induction we obtain:

Lemma 3.20 (Completeness of Reverse Subtyping). If A \3 B = C, then B&C ≤ A.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:17

Combining three properties above, we prove the completeness of type difference.

Theorem 3.21 (Type Difference Completeness). If A \3 B = C, then A \B B ≡ C.

Soundness. Soundness means that if there exists a type � satisfying A \B B ≡ C, then we can find

a type C ′ that is equivalent to � and A \3 B = C ′. We define a new notion called subtractable and

use the decidability lemma of subtractable to prove the soundness.

Definition 3.22 (Subtractable). Subtractable A B ≜ For all �◦, if A ≤ �◦, then B ≤ �◦ ∨ B ∗�◦.

An intuition for subtractable is that for every component of type A identified by �◦, either B

is a subtype of it or B is disjoint with it. Otherwise it is not subtractable, such as Int → Bool

and Bool → Bool. After subtractable is defined, we can prove the following lemmas directly by

induction on A and B:

Lemma 3.23 (Soundness of Subtractable). If Subtractable A B, then ∃�,A \3 B = C .

Lemma 3.24 (Decidability of Subtractable). Subtractable A B is decidable.

Lemma 3.25 (Completeness of Subtractable). If ∃�,A \B B ≡ C, then Subtractable A B.

With the completeness Theorem 3.21, all that remains is to show that deterministic type difference

is sound with respect to the type difference specification, and the equivalence between the three

formulations of type differences is established. Furthermore type difference is decidable.

Theorem 3.26 (Type Difference Soundness). A\B B ≡ C if and only if ∃C ′,A \3 B = C ′∧C ≡ C ′.

Theorem 3.27 (Decidability of Type Difference). Type difference is decidable.

4 A CALCULUS WITH DISJOINT QUANTIFICATION AND OPERATIONS ON MERGES

In this section we extend the previously defined type difference to disjoint polymorphism [Alpuim

et al. 2017] and present it in a full calculus called F∖
8
. Disjoint polymorphism enables the calculus to

support encodings of bounded quantification and row polymorphism [Xie et al. 2020]. In particular

Xie et al. has shown that kernel �<: [Cardelli and Wegner 1985], which is the most widely used

decidable calculus with bounded quantification, can be encoded in F+
8
. F∖

8
is proved to be type-safe

via an elaboration into F+
8
[Bi et al. 2019; Fan et al. 2022] (a calculus with disjoint polymorphism

but without type difference) in Section 5.

4.1 Syntax and Well-Formedness

The syntax of F∖
8
is:

Types �, �,� F Int | ⊤ | ⊥ | A&B | A→ B | {l : A} | U | ∀U ∗A. B

Ordinary types �◦, �◦,�◦ F U | Int | ⊤ | ⊥ | A→ �◦ | {l : �◦} | ∀U ∗A. �◦

Expressions 4 F p | G | 8 | {} | 4 : � | e1 ,, e2 | fix x : A. e | ΛU. e | _x : A. e | {l = e}

| Λ(U ∗A) . e | _x . e | e1 e2 | e A | e.l | e \ A | e1 \ e2

Term contexts Γ F · | Γ, x : A

Type contexts Δ F · | Δ, U ∗A

Type and Expression Syntax. Our syntax extends the syntax of the F+
8
calculus [Fan et al. 2022] by

the gray parts. A type variable U is bound by disjoint quantification ∀U ∗A. B, which can only be

instantiated by types that are disjoint to A. We add two new expression forms (e1 \A and e1 \ e2) as
a generalization of a record restriction operation, and allow more flexibility on annotating lambda

abstractions and disjoint-quantified abstractions. The expression e \ A removes all components

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:18 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Δ ⊢ A ≤ B (Declarative Subtyping, Additional Rules)

DS-topVar
⊢ Δ U ∗A ∈ Δ Δ ⊢ A ≤ ⊥

Δ ⊢ ⊤ ≤ U

DS-forall
Δ ⊢ A2 ≤ A1 Δ, U ∗A2 ⊢ B1 ≤ B2

Δ ⊢ ∀U ∗A1 . B1 ≤ ∀U ∗A2 . B2

DS-distAll
⊢ Δ Δ ⊢ ∀U ∗A. (B1 &B2)

Δ ⊢ (∀U ∗A. B1) & (∀U ∗A. B2) ≤ ∀U ∗A. (B1 &B2)

DS-topAll
⊢ Δ

Δ ⊢ ⊤ ≤ ∀U ∗⊤.⊤

Δ ⊢ A ∗B (Disjointness)

D-top
Δ ⊢ B A ≡Δ ⊤

Δ ⊢ A ∗B

D-rcd
Δ ⊢ A ∗B

Δ ⊢ {l : A} ∗ {l : B}

D-var
U ∗A ∈ Δ Δ ⊢ A ≤ B

Δ ⊢ U ∗B

D-ax
A ∗0G B

⊢ Δ Δ ⊢ A Δ ⊢ B

Δ ⊢ A ∗B

D-and
Δ ⊢ A1 ∗B Δ ⊢ A2 ∗B

Δ ⊢ A1 &A2 ∗B

D-symm
Δ ⊢ B ∗A

Δ ⊢ A ∗B

D-arr
Δ ⊢ A1

Δ ⊢ B1 Δ ⊢ A2 ∗B2

Δ ⊢ A1 → A2 ∗B1 → B2

D-forall
Δ ⊢ A1 Δ ⊢ A2

Δ, U ∗A1 &A2 ⊢ B1 ∗B2

Δ ⊢ ∀U ∗A1 . B1 ∗∀U ∗A2 . B2

Fig. 5. Declarative subtyping and disjointness. The remaining rules of subtyping directly extend Figure 1 with

type contexts.

covered by the type A from expression e, while e1 \ e2 removes components from e1 that conflict

with e1. It can be interpreted as e1 \A2 assuming the minimal type of e2 is A2. These two expressions

enable simple syntactic sugar for a wide range of operations on merges, as shown in Table 1. Finally,

the most notable expression in calculi like F+
8
is the merge operator e1 ,, e2, which enables merging

two arbitrary expressions.

Context and Well-Formedness. We have two contexts. Type contexts Δ track disjointness infor-

mation of type variables. Term contexts Γ track the type information of term variables. Besides,

three standard well-formedness relations Δ ⊢ A, ⊢ Δ and Δ ⊢ Γ are defined in the Appendix.

Notations and Specification. As subtyping and type difference now depend on the type context,

all the notation needs an update. We still use A = B to denote that type A and B are syntactically

equivalent. But here we use A ≡Δ B to denote type equivalence (which is Δ ⊢ A ≤ B and Δ ⊢ B ≤ A)

under type context Δ. The specification of type difference is also updated.

Definition 4.1 (Type difference specification). A \B B ≡Δ C ≜ Δ ⊢ A ≤ C ∧ Δ ⊢ B&C ≤ A ∧ Δ ⊢
B ∗C.

4.2 Subtyping and Disjointness

We now present the subtyping and disjointness relations, which are the same as F+
8
[Fan et al. 2022].

Subtyping. The subtyping relation shown at the top of Figure 5 is the extension of Figure 1 with

disjoint polymorphism. Here we only show the new rules. The remaining rules directly extend

Figure 1 with type contexts. The rules DS-distAll and DS-topAll are natural extensions of BCD

subtyping for universal types. The rule DS-topVar adds a new rule for universal quantifiers that are

supertypes of ⊤. The rule DS-forall is the subtyping relation between universal types. It is very

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:19

A ≡ ⊥ (Algorithmic Bot-Like)

BL-bot

⊥ ≡ ⊥

BL-andl
A ≡ ⊥

A&B ≡ ⊥

BL-andr
B ≡ ⊥

A&B ≡ ⊥

A ≡Δ ⊤ (Algorithmic Top-Like)

TL-top
⊢ Δ

⊤ ≡Δ ⊤

TL-arr
Δ ⊢ A B ≡Δ ⊤

A→ B ≡Δ ⊤

TL-rcd
B ≡Δ ⊤

{l : B} ≡Δ ⊤

TL-all
B ≡Δ,U ∗A ⊤

∀U ∗A. B ≡Δ ⊤

TL-var
⊢ Δ U ∗A ∈ Δ

A ≡ ⊥

U ≡Δ ⊤

TL-and
A ≡Δ ⊤
B ≡Δ ⊤

A&B ≡Δ ⊤

Fig. 6. Algorithmic bo�om-like and top-like judgments.

similar to the function subtyping rule S-arr, being covariant on the result type and contravariant

in the argument type.

Disjointness. Disjointness is the same as in F+
8
, and it is shown at the bottom of Figure 5. RuleD-top

shows that top-like types, which are types equivalent to top, are disjoint to every type. Rule D-

var shows that a type variable is disjoint to the supertypes of its bound. Rule D-ax is for simple

disjointness axioms for types of different shapes, with a full definition in the Appendix. For instance

Int is disjoint to A→ B. Rule D-and shows that an intersection type is disjoint with another type

when all of its components are disjoint with that type. Rule D-symm shows that all the disjointness

rules are symmetric. The last three rules D-rcd, D-arr, and D-forall show that the disjointness

of types of the same shapes is determined by the substructure of these types.

4.3 Algorithmic Top-Like and Bo�om-Like Judgements

Top-like and bottom-like types. Top-like and bottom-like types are types that are equivalent to ⊤
and⊥, respectively. Here we only want to use algorithmic top-like types, while the bottom-like type

definition serves as an auxiliary relation. We present an algorithmic definition for both relations

in Figure 6. The most important addition in F+
8
’s subtyping is the rule TL-var for type variables,

which allows a type variable to be top-like when its disjointness bound is a bottom-like type. For

example, in ∀U ∗⊥. U , any type that instantiates U later must be disjoint to ⊥. Therefore it must be

disjoint to every type including itself. The correctness of the top-like judgment is given by:

Lemma 4.2 (Correctness of Algorithmic Top-like Types). C ≡Δ ⊤ if and only if Δ ⊢ ⊤ ≤
C ∧ Δ ⊢ C ≤ ⊤.

4.4 Zero Type and Deterministic Type Difference with Polymorphism

The zero type function and deterministic type difference are defined in Figure 7. Most extensions

related to polymorphism are natural extensions that simply add the type context. Deterministic

type difference is essentially the same. The zero type function changes slightly. The only changes

are on type variables because we have a new top-like type using rule TL-var. Similarly to Section

3, the zero type function needs to have the soundness of zero type property to keep the rule TDA-

disjoint and rule TDA-subtype consistent. So we separate two cases for type variable U . For U⊤
Δ
, U

is returned when the variable U is top-like (i.e., the bound of the variable is bottom-like). Otherwise

return the type ⊤ if the variable U is not top-like.

Lemma 4.3 (Soundness of zero type). If A ≡Δ ⊤, then A⊤
Δ
= A.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:20 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

⊤⊤
Δ

= ⊤

⊥⊤
Δ

= ⊤

Int⊤
Δ

= ⊤

(A&B)⊤
Δ

= A⊤
Δ
&B⊤

Δ

(A→ B)⊤
Δ

= A→ B⊤
Δ

{l : B}⊤
Δ

= {l : B⊤
Δ
}

U⊤
Δ

= ⊤ (if U ∗A ∈ Δ and A . ⊥)

U⊤
Δ

= U (if U ∗A ∈ Δ and A ≡ ⊥)

(∀U ∗C .A)⊤
Δ

= ∀U ∗C .A⊤
Δ,U ∗C

A \3 B =Δ C (Deterministic Type Difference)

TDA-subtype
Δ ⊢ B ≤ A

A \3 B =Δ A⊤
Δ

TDA-disjoint

Δ ⊢ A ∗B

A \3 B =Δ A

TDA-BCD
A1 � A� A2 A ⊢ C1 � C � C2
A1 \3 B =Δ C1 A2 \3 B =Δ C2

A \3 B =Δ C

Fig. 7. Zero type function and deterministic type difference.

Int \0 ∀U ∗A. B =Δ Int

{l : A} \0 ∀U ∗B.C =Δ {l : A}

(A1 → A2) \0 ∀U ∗B1 . B2 =Δ A1 → A2

∀U ∗A. B \0 Int =Δ ∀U ∗A. B

∀U ∗A. B \0 {l : C} =Δ ∀U ∗A. B

∀U ∗A1 .A2 \0 (B1 → B2) =Δ ∀U ∗A1 .A2

U \0 U =Δ ⊤ (if ¬(U ≡Δ ⊤))

U \0 A =Δ U (if U ∗B ∈ Δ and A \0 B =Δ A⊤
Δ
)

A \0 U =Δ A (if U ∗B ∈ Δ and A \0 B =Δ A⊤
Δ
)

∀U ∗A1 .A2 \0 ∀U ∗B1 . B2 =Δ ∀U ∗A1 . (A2 \0 B2) (if B1 \ A1 =Δ B1
⊤
Δ
and A2 \0 B2 =Δ,U ∗A1

A2
⊤
Δ,U ∗A1

)

∀U ∗A1 .A2 \0 ∀U ∗B1 . B2 =Δ ∀U ∗A1 .A2 (if A2 \0 B2 =Δ,U ∗ (A1 &B1) A2)

Fig. 8. Selected algorithmic rules for type difference. Full rules can be found in the Appendix.

4.5 Algorithmic Type Difference and Theorems

Algorithmic Type Difference. Figure 8 shows selected rules for type difference, focusing on rules

involving disjoint quantification. The rules assume that the type context and two types are all

well-formed. We can still classify the rules into three categories: subtyping cases, disjoint cases and

mixed cases. The correctness of such classification is ensured by Lemmas 3.12 to 3.14 extended

by a type context. These extended lemmas also guarantee that we can still give an algorithm for

subtyping by checking A \0 B =Δ A⊤
Δ
, and an algorithm for disjointness by checking A \0 B =Δ A.

Theorems. Most of the properties are preserved. Using the same techniques as in Section 3, we

will reach the same main results below.

Lemma 4.4 (Type Difference Eqivalence). A \3 B =Δ C if and only if A \0 B =Δ C.

Theorem 4.5 (Type Difference Determinism). If A \3 B =Δ C0 and A \3 B =Δ C1, then C0 = C1.

Theorem 4.6 (Type Difference Completeness). If A \3 B =Δ C, then A \B B ≡Δ C.

Theorem 4.7 (Type Difference Soundness). A \B B ≡Δ C iff ∃C0,A \3 B =Δ C0 ∧ C ≡Δ C0.

Theorem 4.8 (Decidability of Subtyping). Δ ⊢ A ≤ B is decidable.

Theorem 4.9 (Decidability of Type Difference). Type difference is decidable.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:21

4.6 Typing

We show the bidirectional typing rules in Figure 9. The gray parts are for elaborating expressions

to the target language, which we will explain in the next section. We keep most of the typing

rules of F+
8
except for six rules Ela-rabs, Ela-annotabs, Ela-diff, Ela-diffe, Ela-rcdinf, and

Ela-proj. The other typing rules of F+
8
are explained in the Section 5. Rule Ela-rabs and rule Ela-

annotabs are the rules that help us inferring and checking the newly-added lambda and type

abstractions. Rule Ela-rcdinf offers a more convenient infer mode for records, which reduces the

number of annotations with records. In F+
8
there is only a checking rule for records. Rule Ela-diff

and rule Ela-diffe are the rules that employ type difference. Rule Ela-diff means removing the

type � component of an expression 4 , while rule Ela-diffe means removing the conflicting type

components of 41 that appear in another expression 42. Rule Ela-proj is changed with a record

projection operator �l shown in Figure 9 to support multirecord selection so that an arbitrary label

;8 can be retrieved from a record {;1 = 41, , ..., , ;= = 4=}. The latter is not directly supported by F+
8
.

5 THE TARGET LANGUAGE AND ELABORATION

This section shows the target language F+
8
[Fan et al. 2022] and explains the elaboration of F∖

8
.

5.1 Typing of F+
8

If we remove the six changed rules Ela-rabs, Ela-annotabs, Ela-diff, Ela-diffe, Ela-proj, and

Ela-rcdinf of F∖
8
as well as the elaboration component, then we have the typing rules for F+

8
needed

to show the type-safety of the elaboration.

Bidirectional Typing. The typing of F+
8
is bidirectional [Pierce and Turner 2000]. Under the

inference mode⇒, the minimal type of the expression is computed. Under the checking mode⇐,

we examine whether the expression is convertible to the given type. F+
8
chooses to use a bidirectional

type system because the disjoint merge is incompatible with a general subsumption rule [Huang

et al. 2021; Oliveira et al. 2016]. For example, Int is disjoint to Bool, thus we can merge terms like

1 ,, True. But without a bidirectional type system returning the exact type, we may encounter a

situation where 1 ,, True is merged with a boolean (since Int&Bool ≤ Int), causing ambiguity. The

rule Ela-lit states that the type of an integer i is Int. The rule Ela-sub is the standard subsumption

rule. The rule Ela-anno shows how to check whether the expression has a given type. The rule Ela-

merge allows expressions of disjoint types A and B to be merged safely. The remaining F+
8
rules are

standard bidirectional typing for lambda abstractions, applications, type abstractions, fixpoints, etc.

5.2 Elaboration to F+
8

The elaboration generates an F+
8
expression in the gray parts of Figure 9. Most of the rules generate

an expression similar to the source expression. For instance, rule Ela-lit just keeps the same integer

i from the premise. The rule Ela-anno adds an annotation to the elaborated term e′ just as the

term e being typed. The rules Ela-rabs, Ela-annotabs, and Ela-rcdinf add a type annotation so

that the new terms can be expressed and typed in F+
8
. Only rules Ela-proj, Ela-diff, and Ela-diffe

change the structure.

Record Selection. The record projection operator�l , shown at the bottom of Figure 9, is a function

that will return ⊤ if it cannot retrieve any contents of label ; , otherwise it will return a record that

contains all the information. The elaboration of record projection adds an annotation {l : C} in the

elaboration so that multi-record selection can be interpreted by the target language. We also have

the following lemmas to show the elaboration is safe and deterministic.

Lemma 5.1 (Determinism of Record Distribution). If A�l B and A�l C then � = � .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:22 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Δ; Γ ⊢ e1 ⇔ A ⇝ e2 (Typing)

Ela-top
⊢ Δ Δ ⊢ Γ

Δ; Γ ⊢ {} ⇒ ⊤ ⇝ {}

Ela-lit
⊢ Δ Δ ⊢ Γ

Δ; Γ ⊢ i⇒ Int ⇝ i

Ela-var
⊢ Δ Δ ⊢ Γ x : A ∈ Γ

Δ; Γ ⊢ x ⇒ A ⇝ x

Ela-rabs
Δ; Γ, x : A ⊢ e⇐ B ⇝ e1

Δ; Γ ⊢ _x . e⇐ A→ B ⇝ _x : A. e1

Ela-abs
Δ; Γ, x : A ⊢ e⇒ B ⇝ e1

Δ; Γ ⊢ _x : A. e⇒ A→ B ⇝ (_x : A. e1) : A→ B

Ela-rcdinf

Δ; Γ ⊢ e⇒ A ⇝ e′

Δ; Γ ⊢ {l = e} ⇒ {l : A} ⇝ {l = e′} : {l : A}

Ela-tabs
Δ ⊢ Γ Δ, U ∗A; Γ ⊢ e⇐ B ⇝ e1

Δ; Γ ⊢ ΛU. e⇐ ∀U ∗A. B ⇝ ΛU. e1

Ela-annotabs
Δ ⊢ Γ Δ, U ∗A; Γ ⊢ e⇒ B ⇝ e1

Δ; Γ ⊢ Λ(U ∗A). e⇒ ∀U ∗A. B ⇝ (ΛU. e1) : ∀U ∗A. B

Ela-proj

A�l {l : C} Δ; Γ ⊢ e⇒ A ⇝ e′

Δ; Γ ⊢ e.l ⇒ C ⇝ (e′ : {l : C}) .l

Ela-tapp

Δ ⊢ A ∗C1 Δ; Γ ⊢ e⇒ B ⇝ e′ B� ∀U ∗C1 .C2

Δ; Γ ⊢ e A⇒ C2 [U ↦→ A] ⇝ e′A

Ela-diff

Δ; Γ ⊢ e⇒ A ⇝ e′ A \3 B =Δ C

Δ; Γ ⊢ e \ B⇒ C ⇝ e′ : C

Ela-app

A� B→ C Δ; Γ ⊢ e1 ⇒ A ⇝ e′1 Δ; Γ ⊢ e2 ⇐ B ⇝ e′2

Δ; Γ ⊢ e1 e2 ⇒ C ⇝ e′1 e
′
2

Ela-sub

Δ ⊢ A ≤ B Δ; Γ ⊢ e⇒ A ⇝ e′

Δ; Γ ⊢ e⇐ B ⇝ e′

Ela-merge

Δ ⊢ A ∗B Δ; Γ ⊢ e1 ⇒ A ⇝ e′1 Δ; Γ ⊢ e2 ⇒ B ⇝ e′2

Δ; Γ ⊢ e1 ,, e2 ⇒ A&B ⇝ e′1 ,, e
′
2

Ela-fix

Δ; Γ, x : A ⊢ e⇐ A ⇝ e′

Δ; Γ ⊢ fix x : A. e⇒ A ⇝ fix x : A. e′

Ela-anno

Δ; Γ ⊢ e⇐ A ⇝ e′

Δ; Γ ⊢ (e : A) ⇒ A ⇝ (e′ : A)

Ela-diffe

A \3 B =Δ C Δ; Γ ⊢ e1 ⇒ A ⇝ e′1 Δ; Γ ⊢ e2 ⇒ B ⇝ e′2

Δ; Γ ⊢ e1 \ e2 ⇒ C ⇝ e′1 : C

A�l B (Record Projection Distribution)

{l : A} �l {l : A} ⊤�l ⊤ A1 → A2 �l ⊤ ∀U ∗A1 .A2 �l ⊤

l1 ≠ l2

{l2 : A} �l1 ⊤

A1 �l ⊤ A2 �l ⊤

A1 &A2 �l ⊤

A1 �l ⊤ A2 �l {l : B}

A1 &A2 �l {l : B}

A1 �l {l : B} A2 �l ⊤

A1 &A2 �l {l : B}

A1 �l {l : B1} A2 �l {l : B2}

A1 &A2 �l {l : B1 &B2}

Fig. 9. Bidirectional type system for F∖
8
. Note that the syntax for modes is:⇔ ≜⇐ | ⇒.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:23

Lemma 5.2 (Safety of Record Distribution). If Δ ⊢ A, ⊢ Δ and A�l B, then Δ ⊢ A ≤ B.

Adding Type Difference. Adding type difference is straightforward, since we just have to cast the

expression with the corresponding type computed by type difference. The safety of such casts is

guaranteed by the equivalence with the type difference specification. We can get the following

property from the specification. Thus casting to type C is always safe.

Lemma 5.3 (Completeness of Subtyping). If A \3 B =Δ C, then Δ ⊢ A ≤ C.

5.3 Theorems

Since F+
8
[Fan et al. 2022] is proven to be deterministic and type sound, we only need to show that

the elaboration is deterministic and all elaborated terms are typeable in F+
8
. We first show that the

elaboration is complete with respect to typing, that is:

Theorem 5.4 (Completeness of Elaboration with respect to Typing). ∃e1,Δ; Γ ⊢ e ⇔
A⇝ e1 iff Δ; Γ ⊢ e ⇔ A, where the typing here is the elaboration without the elaborated term.

Then by the determinism of A�l B, we can prove the determinism of the elaboration.

Theorem 5.5 (Determinism of Inference). If Δ; Γ ⊢ e ⇒ A⇝ e1 and Δ; Γ ⊢ e ⇒ B ⇝ e2,

then 41 = 42 and � = �.

Theorem 5.6 (Determinism of Checking). If Δ; Γ ⊢ e ⇐ A ⇝ e1 and Δ; Γ ⊢ e ⇐ A⇝ e2,

then 41 = 42.

As for the typing results, since most of the elaboration rules keep the exact same terms and

types, we only need non-trivial proofs for the six newly added cases. But the added cases use

annotations to ensure that we get the desired type. So we have the following results, ensuring that

the elaboration preserves the same type after translation.

Theorem 5.7 (Type Preservation). If Δ; Γ ⊢ e ⇔ A⇝ e′, then in F+
8
, Δ; Γ ⊢ e′ ⇔ A.

Summing up, we get the soundness of the calculus, i.e., the calculus is type-safe and deterministic.

6 RELATED WORK

In Section 2 we have already discussed in detail most closely related work, including set difference

in semantic subtyping [Frisch et al. 2008], type-indexed rows [Shields and Meijer 2001] and the

work by Cardelli and Mitchell. Here we discuss other related work.

Record Calculi. Wand [1989] proposed a type system that requires constraints to signal whether

a field is present or absent in every record type. His calculus uses a biased operator which always

overrides the first record by the second when these two records have conflicts. Harper and Pierce

[1991b] enforce a compatibility check on every record concatenation and include the extension and

restriction operators. Their compatibility check # means that two records are safe to concatenate

without conflicts, providing a symmetric, unbiased merge. Compatibility is similar to disjointness

in F∖
8
. However, both Wand and Harper and Pierce do not consider subtyping.

Designing a record concatenation operator in a calculus with subtyping is a difficult problem,

as identified by Cardelli and Mitchell [1991]. Records may contain extra labels hidden by the sub-

sumption rule, causing label conflicts to bypass the type system. Pottier [2000], extending the work

of Rémy [1995], uses a constraint-based subtyping system to resolve label conflicts. Its constraints

require the presence or absence of certain labels, and supports asymmetric and symmetric concate-

nation. Cardelli and Mitchell’s work uses a subtyping system and negative quantification to resolve

conflicts, which is described in detail in Section 2. Zwanenburg [1995]’s adds record concatenation

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:24 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

to a variant of System F<: and uses a compatibility check in the quantification. For example, his

functions are of the form _- ≤) ; -#) .4 . His calculus includes intersection types and can be

elaborated to System � with pairs and records. Ohori [1992]’s work first uses a notion of record

kind, while Alves and Ramos [2021]’s work extends the record kind with negative information. In

Alves and Ramos’s work, a record kind requires explicit statements of whether a field is present or

absent in the type. For example, the kind {{;1 : g1, ..., ;= : g= ∥;
′
0
: g ′

1
, ..., ; ′< : g ′<}} denotes the set of

types contain the fields before ∥ and do not contain the fields after ∥.
The commonality between these works is that they either use a biased operator in evaluation or

use negative quantification like compatibility or label absence in the type system. Both methods

are encodable in our system. The biased operator can be encoded by (e1 \ e2) ,, e2 while disjoint
quantification is a negative form of quantification. As for record operators, most works include

label extraction and record concatenation. Some of the works include label restriction, renaming

and overriding. As we have shown in Section 2, all of these operations are encodable in our system.

Disjoint Intersection Types. Disjoint intersection types were proposed by Oliveira et al. [2016] in

the _8 calculus to address the non-determinism and subject reduction problem in Dunfield [2014]’s

work. Dunfield’s calculus is equipped with an unrestricted merge operator for intersection types,

reducing merges in a non-deterministic process. Terms like e1 ,, e2 can be reduced to either e1 or e2.

_8 imposes a disjointness restriction on the merge operator: only terms with disjoint types can be

merged. Therefore, reduction for the merge operator can be deterministic once the final type of the

program is decided. There are several extensions to _8 [Alpuim et al. 2017; Bi et al. 2018, 2019] with

relaxed restrictions, BCD subtyping and disjoint polymorphism. Our work is based on the recent

calculus F+
8
[Bi et al. 2019; Fan et al. 2022], which is a calculus with disjoint polymorphism.

Compositional Programming and Restriction Operators. In OOP, mixin classes [Ancona et al. 2003;

Bracha and Cook 1990; Duggan and Sourelis 1996; Flatt et al. 1998] and traits [Fisher and Reppy

2004; Schärli et al. 2003] are two composition mechanisms for code reuse and multiple inheritance.

Name conflicts are a common problem. Usually, the mixin model allows overlapping fields and omits

the one with lower priority, like the biased merge operator. In contrast, for two traits to compose,

they must have no conflicts, like our unbiased merge operator. Conflicts have to be resolved before

composition by renaming, restriction or other operators. But even in the mixin model, such explicit

conflict-resolving operators are useful [Bracha 1992]. In Featherweight Jigsaw [Lagorio et al. 2009],

as in F∖
8
, both mechanisms are supported. Users can choose between the conflict-free merge and

the conflict-auto-solving merge. We share the same interpretation of overriding with Ancona and

Zucca [1998, 2002]: overriding = restriction + commutative merge. Both our work and their work

consider operators including renaming, restriction, and overriding. While the merge in their work

has similar semantics to ours, it is limited to mixins and it always has a mixin type. Moreover, we

develop a general type difference operator that works for types other than records (or record-like

things like objects/modules), and we recover the operators on records/traits from that.

Compositional Programming [Zhang et al. 2021] is a recently proposed modular programming

paradigm based on first-class traits [Bi and Oliveira 2018], and implemented by the CP language.

CP uses disjoint intersection types to naturally solve the Expression Problem [Wadler 1998] and

offers modular pattern matching and dependency injection. In earlier versions of the CP language,

only a weak (and ad-hoc) restriction operator was supported due to the lack of a theory of type

difference. This operator enabled explicitly resolving conflicts on traits:

t1 = trait ⇒ { f = 1; g = "a" };

t3 = trait [self: Top] inherits t1 \ {f: Int} & t2 \ {g: String} ⇒ {

override f = super.f + (t1 ^ self).f};

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

Making a Type Difference 31:25

Since we can only remove a certain label using an exclusion operator \, this still required user-

written annotations when dealing with merges and inheritance.

Similar approaches are also adopted in previously mentioned OOP designs except that they

provide a more convenient way to override or rename methods to resolve conflicts. But all these

works only discuss label manipulation, not dealingwith function (and other forms of) type difference.

In the CP language, such an ad-hoc restriction is especially problematic because it requires explicit

type annotations, such as {f : Int} above. But with the new operators based on the type difference

that we provide, we can now address the problem in CP with fewer annotations and also convenient

operators such as biased merges, which were previously not available. As we have shown in

Section 2.4, type difference is more generally applicable since it is not restricted to objects or

records. This enables new applications, such as updating implementations of overloaded functions.

Furthermore it plays well with our encoding of traits, which is based on functions that return

records, rather than primitive objects or records.

Semantic Subtyping. As we have discussed in Section 2.3, semantic subtyping [Castagna and

Frisch 2005; Frisch et al. 2008] adopts a set-theoretic view to define the subtraction of two types.

Current systems with semantic subtyping support records and related operations with biased record

concatenation [Benzaken et al. 2013; Castagna 2018]. A type-level merge operator is defined to

calculate the type for concatenated or restricted records. Records have a deterministic runtime

behavior, but their typing rule is quite unique. They are not typed by intersections but by label-

indexed function types that may have a union type as its return type. Here we show the definition

of the type-level operator as it also uses the type difference defined in semantic subtyping.

('1 ,� '2) (;) ≡

{

'1 (;) if '1 (;)&� ≤ ⊥

('1 (;)\�) |'2 (;) otherwise

In the second case, '1 (;) subtracts � and adds '2 (;) back. In concatenation, � is a special constant

that stands for an undefined field and '1 is the rightmost record, which has the highest priority. So

when '1 is undefined on ; , the corresponding field type in '2 will be returned. We can see here

that union types play a similar role to intersection types in our system as we have very different

interpretations. This operator is specific to records, unlike our type difference, which is generalized

to cover other types.

7 CONCLUSION

In this paper, we present a theory of type difference, and design a F∖
8
calculus carrying out such

type difference via an elaboration to the F+
8
calculus. We derive a general type difference that

works for all types from a specification with three simple but essential requirements to a sound,

complete, deterministic and algorithmic formulation, verified by the Coq proof assistant. Besides

the theoretical aspects, type difference is expressive enough to encode all the record operators in

record calculi with subtyping. These operators include concatenation, restriction, overriding and

renaming. Type difference is also useful for languages with traits and compositional programming,

since it can deal with inheritance and merge conflicts, avoiding heavy annotations that would be

otherwise necessary. Future work includes studying even more expressive subtyping relations that

include additional features, such as union types [Barbanera et al. 1995].

ACKNOWLEDGMENTS

We are particularly grateful to Yaozhu Sun, who implemented type difference in CP. We thank the

anonymous reviewers for their helpful comments. This work has been sponsored by Hong Kong

Research Grant Council projects number 17209519, 17209520 and 17209821.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

31:26 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

REFERENCES

João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In European Symposium on Programming

(ESOP). https://doi.org/10.1145/1391289.1391293

Sandra Alves and Miguel Ramos. 2021. An ML-style Record Calculus with Extensible Records. Electronic Proceedings in

Theoretical Computer Science 351 (dec 2021), 1–17. https://doi.org/10.4204/eptcs.351.1

Davide Ancona, Giovanni Lagorio, and Elena Zucca. 2003. Jam—designing a Java extension with mixins. ACM Transactions

on Programming Languages and Systems (TOPLAS) 25, 5 (2003), 641–712. https://doi.org/10.1145/937563.937567

Davide Ancona and Elena Zucca. 1998. A theory of mixin modules: Basic and derived operators. Mathematical structures in

computer science 8, 4 (1998), 401–446. https://doi.org/10.1017/S0960129598002576

Davide Ancona and Elena Zucca. 2002. A calculus of module systems. Journal of functional programming 12, 2 (2002),

91–132. https://doi.org/10.1017/S0956796801004257

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. Intersection and Union Types: Syntax and

Semantics. Information and Computation 119, 2 (June 1995), 202–230.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. The Journal of Symbolic Logic 48, 4 (1983), 931–940. http://www.jstor.org/stable/2273659

Véronique Benzaken, Giuseppe Castagna, Kim Nguyen, and Jérôme Siméon. 2013. Static and dynamic semantics of NoSQL

languages. ACM SIGPLAN Notices 48, 1 (2013), 101–114. https://doi.org/10.1145/2480359.2429083

Xuan Bi and Bruno C. d. S. Oliveira. 2018. Typed First-Class Traits. In 32nd European Conference on Object-Oriented

Programming (ECOOP 2018). https://doi.org/10.4230/LIPIcs.ECOOP.2018.9

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In 32nd European Conference

on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands (LIPIcs, Vol. 109), Todd D.

Millstein (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:33. https://doi.org/10.4230/LIPIcs.ECOOP.

2018.22

Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. Distributive Disjoint Polymorphism for Composi-

tional Programming. In European Symposium on Programming (ESOP). https://doi.org/10.1007/978-3-030-17184-1_14

Gilad Bracha. 1992. The programming language Jigsaw: mixins, modularity and multiple inheritance. The University of

Utah.

Gilad Bracha and William Cook. 1990. Mixin-based inheritance. ACM Sigplan Notices 25, 10 (1990), 303–311. https:

//doi.org/10.1145/97945.97982

Luca Cardelli, Simone Martini, John C Mitchell, and Andre Scedrov. 1994. An extension of system F with subtyping.

Information and Computation 109, 1-2 (1994), 4–56.

Luca Cardelli and John Mitchell. 1991. Operations on Records. Mathematical Structures in Computer Science 1 (1991), 3–48.

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comput. Surv.

17, 4 (dec 1985), 471–523. https://doi.org/10.1145/6041.6042

Giuseppe Castagna. 2018. Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). CoRR abs/1809.01427 (2018). arXiv:1809.01427 http://arxiv.org/abs/1809.01427

Giuseppe Castagna and Alain Frisch. 2005. A Gentle Introduction to Semantic Subtyping. In Proceedings of the 7th ACM

SIGPLAN International Conference on Principles and Practice of Declarative Programming (Lisbon, Portugal) (PPDP ’05).

Association for Computing Machinery, New York, NY, USA, 198–208. https://doi.org/10.1145/1069774.1069793

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types: Part

2: Local Type Inference and Type Reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York,

NY, USA, 289–302. https://doi.org/10.1145/2676726.2676991

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

Functions with Set-Theoretic Types: Part 1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for

Computing Machinery, New York, NY, USA, 5–17. https://doi.org/10.1145/2535838.2535840

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyundefinedn. 2016. Set-Theoretic Types for Polymorphic Variants.

In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016).

Association for Computing Machinery, New York, NY, USA, 378–391. https://doi.org/10.1145/2951913.2951928

Giuseppe Castagna and ZhiwuXu. 2011. Set-Theoretic Foundation of Parametric Polymorphism and Subtyping. In Proceedings

of the 16th ACM SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for

Computing Machinery, New York, NY, USA, 94–106. https://doi.org/10.1145/2034773.2034788

William R. Cook and Jens Palsberg. 1989. A denotational semantics of inheritance and its correctness. In Object-Oriented

Programming: Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/74878.74922

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1978. A new type assignment for _-terms. Archiv für mathematische

Logik und Grundlagenforschung 19, 1 (1978), 139–156.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

https://doi.org/10.1145/1391289.1391293
https://doi.org/10.4204/eptcs.351.1
https://doi.org/10.1145/937563.937567
https://doi.org/10.1017/S0960129598002576
https://doi.org/10.1017/S0956796801004257
http://www.jstor.org/stable/2273659
https://doi.org/10.1145/2480359.2429083
https://doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1007/978-3-030-17184-1_14
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/6041.6042
https://arxiv.org/abs/1809.01427
http://arxiv.org/abs/1809.01427
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/74878.74922

Making a Type Difference 31:27

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional Characters of Solvable Terms. Math. Log.

Q. 27, 2-6 (1981), 45–58. https://doi.org/10.1002/malq.19810270205

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In Proceedings of the Fifth ACM

SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New

York, NY, USA, 198–208. https://doi.org/10.1145/351240.351259

Dominic Duggan and Constantinos Sourelis. 1996. Mixin modules. ACM SIGPLAN Notices 31, 6 (1996), 262–273.

Jana Dunfield. 2014. Elaborating intersection and union types. Journal of Functional Programming (JFP) 24, 2-3 (2014),

133–165. https://doi.org/10.1006/inco.1995.1086

Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2022. Direct Foundations for Compositional

Programming. In 36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International Proceed-

ings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 18:1–18:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.18

Kathleen Fisher and John Reppy. 2004. A typed calculus of traits. In Electronic proceedings of FOOL, Vol. 2004.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998. Classes and mixins. In Proceedings of the 25th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. 171–183. https://doi.org/10.1145/268946.268961

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article 19 (Sept. 2008), 64 pages. https://doi.org/10.

1145/1391289.1391293

Robert Harper and Benjamin Pierce. 1991a. A record calculus based on symmetric concatenation. In Proceedings of the 18th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 131–142. https://doi.org/10.1145/99583.99603

Robert Harper and Benjamin Pierce. 1991b. A Record Calculus Based on Symmetric Concatenation. In Proceedings of the

18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Orlando, Florida, USA) (POPL ’91).

Association for Computing Machinery, New York, NY, USA, 131–142. https://doi.org/10.1145/99583.99603

Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2021. Taming the Merge Operator. 31 (2021). https://doi.org/10.

1017/S0956796821000186 Publisher: Cambridge University Press.

Young Bae Jun, Hee Sik Kim, and Eun Hwan Roh. 2004. Ideal theory of subtraction algebras. Sci. Math. Jpn. Online e-2004

(2004), 397–402.

Giovanni Lagorio, Marco Servetto, and Elena Zucca. 2009. Featherweight Jigsaw: A minimal core calculus for modular

composition of classes. In European Conference on Object-Oriented Programming. Springer, 244–268.

Zhaohui Luo. 1999. Coercive Subtyping. J. Log. Comput. 9, 1 (1999), 105–130. https://doi.org/10.1093/logcom/9.1.105

Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias. 2020. Resolution as Intersection

Subtyping via Modus Ponens. Proc. ACM Program. Lang. 4, OOPSLA, Article 206 (nov 2020). https://doi.org/10.1145/

3428274

Atsushi Ohori. 1992. A Compilation Method for ML-Style Polymorphic Record Calculi. In Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, New Mexico, USA) (POPL ’92).

Association for Computing Machinery, New York, NY, USA, 154–165. https://doi.org/10.1145/143165.143200

Atsushi Ohori. 1995. A polymorphic record calculus and its compilation. ACM Transactions on Programming Languages and

Systems (TOPLAS) 17, 6 (1995), 844–895. https://doi.org/10.1145/218570.218572

Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint intersection types. In International Conference on

Functional Programming (ICFP). https://doi.org/10.1145/2951913.2951945

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (jan 2000), 1–44.

https://doi.org/10.1145/345099.345100

François Pottier. 2000. A 3-Part Type Inference Engine. In Programming Languages and Systems, Gert Smolka (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 320–335.

Garrel Pottinger. 1980. A type assignment for the strongly normalizable _-terms. To HB Curry: essays on combinatory logic,

lambda calculus and formalism (1980), 561–577.

Didier Rémy. 1990. Type inference for records in a natural extension of ML. Technical Reports (CIS) (1990), 641.

Didier Rémy. 1995. A case study of typechecking with constrained types: Typing record concatenation. (August 1995).

Presented at the workshop on Advances in types for computer science at the Newton Institute, Cambridge, UK.

John C Reynolds. 1988. Preliminary design of the programming language Forsythe. Technical Report. Carnegie Mellon

University.

John C. Reynolds. 1991. The coherence of languages with intersection types. In Lecture Notes in Computer Science (LNCS).

Springer Berlin Heidelberg, 675–700.

John C Reynolds. 1997. Design of the programming language Forsythe. In ALGOL-like languages. 173–233.

Scala Community. 2022. Tour of Scala Self-type. https://docs.scala-lang.org/tour/self-types.html.

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable units of behaviour.

In European Conference on Object-Oriented Programming (ECOOP).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1145/351240.351259
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/99583.99603
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1145/3428274
https://doi.org/10.1145/3428274
https://doi.org/10.1145/143165.143200
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/345099.345100
https://docs.scala-lang.org/tour/self-types.html

31:28 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Boris M Schein. 1992. Difference semigroups. Communications in algebra 20, 8 (1992), 2153–2169.

Mark Shields and Erik Meijer. 2001. Type-Indexed Rows. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (London, United Kingdom) (POPL ’01). Association for Computing Machinery, New

York, NY, USA, 261–275. https://doi.org/10.1145/360204.360230

Pablo Tesone, Stéphane Ducasse, Guillermo Polito, Luc Fabresse, and Noury Bouraqadi. 2020. A newmodular implementation

for stateful traits. Science of Computer Programming 195 (2020), 102470.

Philip Wadler. 1998. The expression problem. Java-genericity mailing list (1998).

M. Wand. 1989. Type inference for record concatenation and multiple inheritance. In [1989] Proceedings. Fourth Annual

Symposium on Logic in Computer Science. 92–97. https://doi.org/10.1109/LICS.1989.39162

Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers. 2020. Row and Bounded Polymorphism via Disjoint

Polymorphism. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). https://doi.org/10.4230/

LIPIcs.ECOOP.2020.27

Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2022. Making a Type Difference: Subtraction on Intersection Types as

Generalized Record Operations (Artifact). https://doi.org/10.5281/zenodo.7472859

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2021. Compositional Programming. ACM Transactions on

Programming Languages and Systems (TOPLAS) 43, 3 (2021), 1–61. https://doi.org/10.1145/3460228

Jan Zwanenburg. 1995. Record concatenation with intersection types. Technical Report 95-34. Eindhoven University of

Technology.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 31. Publication date: January 2023.

https://doi.org/10.1145/360204.360230
https://doi.org/10.1109/LICS.1989.39162
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.5281/zenodo.7472859
https://doi.org/10.1145/3460228

	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Operations on Traits and Merges
	2.3 Existing Work on Record Operations and Set Difference
	2.4 Key Ideas

	3 Deriving a Type Difference
	3.1 Syntax and Subtyping
	3.2 Deterministic Type Difference
	3.3 Algorithmic Type Difference
	3.4 Theorems

	4 A Calculus with Disjoint Quantification and Operations on Merges
	4.1 Syntax and Well-Formedness
	4.2 Subtyping and Disjointness
	4.3 Algorithmic Top-Like and Bottom-Like Judgements
	4.4 Zero Type and Deterministic Type Difference with Polymorphism
	4.5 Algorithmic Type Difference and Theorems
	4.6 Typing

	5 The Target Language and Elaboration
	5.1 Typing of Fi+
	5.2 Elaboration to Fi+
	5.3 Theorems

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

