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Efficient and Consistent Bundle Adjustment on
Lidar Point Clouds

Zheng Liu, Xiyuan Liu and Fu Zhang

Abstract—Simultaneous determination of sensor poses and
scene geometry is a fundamental problem for robot vision
that is often achieved by Bundle Adjustment (BA). This paper
presents an efficient and consistent bundle adjustment method
for lidar sensors. The method employs edge and plane features
to represent the scene geometry, and directly minimizes the
natural Euclidean distance from each raw point to the respective
geometry feature. A nice property of this formulation is that the
geometry features can be analytically solved, drastically reducing
the dimension of the numerical optimization. To represent and
solve the resultant optimization problem more efficiently, this
paper then adopts and formalizes the concept of point cluster,
which encodes all raw points associated to the same feature by
a compact set of parameters, the point cluster coordinates. We
derive the closed-form derivatives, up to the second order, of the
BA optimization based on the point cluster coordinates and show
their theoretical properties such as the null spaces and sparsity.
Based on these theoretical results, this paper develops an efficient
second-order BA solver. Besides estimating the lidar poses, the
solver also exploits the second order information to estimate
the pose uncertainty caused by measurement noises, leading to
consistent estimates of lidar poses. Moreover, thanks to the use
of point cluster, the developed solver fundamentally avoids the
enumeration of each raw point in all steps of the optimization:
cost evaluation, derivatives evaluation and uncertainty evaluation.
The implementation of our method is open sourced to benefit the
robotics community2.

Index Terms—Bundle adjustment, lidar SLAM.

I. INTRODUCTION

L IGHT detection and ranging (lidar) has become an es-
sential sensing technology for robots to achieve a high

level of autonomy [1, 2]. Enabled by the direct, dense, active
and accurate (DDAA) depth measurements, lidar sensors have
the ability to build a dense and accurate 3D map of the
environment in real-time and at a relatively low computation
cost. These unique advantages have made lidar sensors essen-
tial to a variety of applications that require real-time, dense,
and accurate 3D mapping of the environment, such as au-
tonomous driving [3, 4], unmanned aerial vehicles navigation
[5]–[7], and real-time mobile mapping [8]–[10]. This trend
becomes even more evident with recent developments in lidar
technologies which have enabled the commercialization and
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mass production of lightweight and high-performance solid-
state lidars at a significantly lower cost [11, 12].

The central task of many lidar-based techniques, such as
lidar-based odometry, simultaneous localization and mapping
(SLAM), and multi-lidar calibration, is to register multiple
point clouds, each measured by the lidar at different poses,
into a consistent global point cloud map. However, the pre-
dominant point cloud registration methods, such as iterative
closest point (ICP) [13] and its variants (e.g, generalized-ICP
[14]), normal distribution transformation (NDT) [15, 16], and
surfel registration [17], allow registration of two point clouds
only. Such a pairwise registration leads to an incremental
scan registration process for an odometry system (e.g., [17]–
[20]), which would rapidly accumulate drift, or a repeated
pairwise registration process for 3D mapping [21] or multi-
lidar calibration [22], which would bring dramatic computation
cost. All these necessitate an efficient concurrent multiple scan
registration technique.

Concurrent multiple lidar scan registration requires deter-
mining all lidar poses and the scene geometry simultaneously,
a process referred to as bundle adjustment (BA) in computer vi-
sion. Compared to visual BA, which has been well-established
in photogrammetry and played a fundamental role in various
vital applications, including visual odometry (VO) [23]–[25],
visual-inertial odometry (VIO) [26, 27], 3D visual reconstruc-
tion [28, 29] and multi-camera calibration [30, 31], lidar BA
has a similarly fundamental role but is much less mature due to
two major challenges. First, lidar has a long measuring range
but low resolution between scanning lines. The measured
point cloud are sparsely (sometimes even not repeatedly [12])
distributed in a large 3D space, making it difficult (almost
impossible) to scan the same point feature in the space
across different scans. This has fundamentally prevented the
use of straightforward visual bundle adjustment formulation,
which is largely based on point features benefiting from the
high-resolution images accurately capturing individual point
features. The second challenge lies in the large number of raw
points (from tens of thousands to million points) collected by
a practical lidar sensors. Processing all these points in the lidar
BA is extremely computation intensive.

In this work, we propose an efficient and consistent BA
framework specifically designed for lidar point clouds. The
framework follows our previous work BALM [32], which
formulates the lidar BA problem based on edge and plane
features that are abundant in lidar scans. The BA formulation
naturally minimizes the straightforward Euclidean distance of
each point in a scan to the corresponding edge or plane,
while the decision variables include the lidar poses and feature
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(edge and plane) parameters. Furthermore, it is shown that
the geometry parameters (i.e., edge and plane) can be solved
analytically, leading to an optimization that depends on the
lidar poses only. Since the number of geometry features is
often large, elimination of these geometry features from the
optimization will drastically reduce the optimization dimen-
sion (hence time).

A key concept our proposed BA framework adopts and
formalizes is the point cluster [33]–[35], which summarizes all
points of a lidar scan associated to one feature by a compact
set of parameters, point cluster coordinates. Based on the
point cluster, we derive the closed-form derivatives (up to
second order) of the BA optimization with respect to (w.r.t.)
its decision variables (i.e., lidar poses). We prove that the
formulated BA optimization and the closed-form derivatives
can both be represented fully by the point cluster without
enumerating the large number of individual points in a lidar
scan. The removal of dependence on individual raw points
drastically speeds up the evaluation of the cost function and
derivatives, which further enables us to develop an efficient
and consistent second-order solver, BALM2.0, which is also
released on Github to benefit the community. Our experiment
video is available on website3.

We conduct extensive evaluations on the proposed BA
method. Simulation study shows that the BA method pro-
duces consistent lidar pose estimate. Exhaustive benchmark
comparison on 19 real-world open sequences shows that the
BA method produces consistently higher performance (pose
estimation accuracy, mapping accuracy, and computation effi-
ciency) than other counterparts. We finally integrate the BA
method in three vital lidar applications: lidar-inertial odometry,
multi-lidar calibration, and global mapping, and show how
their accuracy and/or computation efficiency are improved by
the proposed BA.

II. RELATED WORKS

A. Multi-view registration

The bundle adjustment problem is similar to the multi-view
registration problem that has been previously researched [36]–
[41]. These methods all adopt a two layer framework: the first
layer estimates the relative poses of a selected set of scan pairs
using the pairwise registration methods (e.g., ICP [13]); From
the relative poses, the second layer constructs and solves a
pose graph to obtain a maximum a posteriori estimate of all
lidar poses. Such a two-layer framework decouples the raw
point registration from the global pose estimation, so that each
raw point registration only involves a small amount of local
points contained in the two scans (instead of all scans sharing
overlaps) and the pose graph optimization only involves a
small amount of constraints arising from the relative poses
(instead of raw points). The net effect is a significant saving of
time, hence being largely used in online lidar SLAM systems
[42, 43]. However, the advantage in computation efficiency
comes with fundamental limitation in accuracy: the pairwise
scan registration only considers the overlap among two scan
at a time, while the overlap is really shared by all scans and

3https://youtu.be/MDrIAyhQ-9E

should be registered concurrently. Moreover, the pose graph
optimization only considers constraints from the relative poses,
while the mapping consistency indicated by the raw points
are completely ignored. Consequently, it is usually difficult to
produce (or even be aware of) a globally consistent map that
is necessary for high-accuracy localization and mapping tasks.

Some early works in computer vision and computer graphics
have proposed multi-view registration methods that directly
optimize the mapping consistency from multiple range images,
aiming for consistent surface modeling of 3D objects. [44]
is a direct extension of the ICP method, it minimizes the
Euclidean distance between a pre-known control point in one
scan to all matched control points in the rest scans. Within
this framework, [45] uses a quaternion representation in the
optimization, and [46] extends the distance between control
points to the distance between surfaces around the respective
control points. More recently, Zhu et al. [47] proposes a
two step registration method: the first step uses a K-means
clustering to cluster points from all scans, and the second step
estimates the scan poses by minimizing the Euclidean distance
between each point in a cluster to the centroid. Since these
methods rely on point features in the scan, they require densely
populated point cloud (e.g., by depth camera) for extracting
such salient point features. While this is not a problem
for small object reconstruction for which these methods are
designed, it is not the case for scene reconstruction where the
LiDAR measurements are very sparse (sometimes even non-
repetitive) as explained above.

B. Bundle or plane adjustment

In recent years, researchers in the robotics community have
shown increasing interests to address the bundle adjustment
problem on (lidar) point clouds more formally. Kaess [48]
exploits the plane features in the bundle adjustment and mini-
mizes the difference between the plane measured in a scan and
the plane predicted from the optimization variables: scan poses
and plane parameters. This formulation was later integrated
into a key-frame-based online SLAM system [49]. Since the
method minimizes the plane-to-plane distance, it requires to
segment each scan and estimate the contained local planes
in advance. Such plane segmentation and estimation usually
require dense point clouds measured by RGB-D cameras on
which the work were demonstrated.

A more formal bundle adjustment method on lidar point
cloud, termed as the plannar (bundle) adjustment, was later
proposed in [34] which minimizes the natural Euclidean
distance between each point in a scan to the plane predicted
from the scan poses and plane parameters (the optimization
variables). Compared with plane-to-plane distance in [48],
the point-to-plane metric is faster, more accurate, and more
suitable for lidar sensors, where local plane segmentation
or estimation are less reliable due to sparse point clouds.
Moreover, the direct use of raw points in the point-to-plane
metric could also lead to a more consistent estimate of the
optimization variables by considering the measurement noises
in the raw points. Then, the formulated non-linear least square
problem is solved by a Levenberg-Marquardt (LM) algorithm.
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To lower the computation load caused by the large number of
points measurements associated to the same plane feature, [34]
propose a reduction technique to eliminate the enumeration
of individual points in the evaluation of the residual and
Jacobian. Furthermore, due to the very similar structure to
the visual bundle adjustment, the proposed bundle adjustment
is also compatible with the Schur complement trick [50],
which eliminates the plane parameters in each iteration of the
LM algorithm. This plane adjustment method is largely used
in many online lidar SLAM systems developed subsequently
[51, 52] or before [53, 54].

On the other hand, Ferrer [33] exploits plane features similar
to [34] and minimizes any deviation of each raw point from the
plane equation. The resultant optimization cost then reduces
to the minimum eigenvalue of a covariance matrix and is
thus termed as the eigen-factor. The author further derived
the closed-form gradient of the cost function w.r.t. to both the
scan poses and plane parameters and employed a gradient-
based method to solve the optimization iteratively. Due to the
second order nature of the eigenvalue (as confirmed in [32], see
below), the gradient method converges very slowly (requiring
a few hundreds of iterations) [33, 52].

Our previous work BALM [32] takes another step towards
more efficient bundle adjustment. Similar to [34], BALM
minimizes the natural Euclidean distance between each point
in a scan to the plane (i.e., point-to-plane metric). Based on
this cost metric, BALM proved that all plane parameters can
be analytically solved with closed-form solutions in advance,
hence the large number of plane parameters can be completely
removed from the resultant optimization. Such an elimination
of plane parameters is analogous to the well-studied separable
least-squares problem [55]–[58] in general, but is specifically
designed for the LiDAR BA problem. A prominent advantage
of the feature elimination is the significant reduction of op-
timization dimension, which poses a fundamental difference
from all the previous plannar adjustment methods [34, 51]–
[53] and visual bundle adjustment methods [50]. The feature
elimination also removed the various issues caused by plane
representation in the optimization, such as the normal con-
straints in the Hesse normal representation (n, d) [34], singu-
larity issue in the closest-point (CP) representation nd [51]–
[53] and over-parameterization issue in the quaternion repre-
sentation [48]. With the feature elimination, BALM further
proved that the point-to-plane (or edge) distance is essentially
the eigenvalues of the covariance matrix used in [33], thus uni-
fying the two metrics in [34] and [33]. While both BALM and
[33] eliminate the feature from the BA optimization, [33] uses
a gradient method to solve this optimization, which leads to
very slow convergence as reviewed above. In contrast, BALM
[32] derived the second order derivatives of the cost function
and developed a LM-like second-order solver. The developed
solver requires significantly less iterations to converge, achiev-
ing real-time sliding window optimization when integrated to
LOAM [18]. A further advantage of BALM against previous
method [33, 34, 53] is that the whole framework is naturally
extendable to edge features besides plane features.

A major drawback of the BALM [32] is that the evaluation
of the second-order derivatives including Jacobian and Hessian

requires to enumerate each individual lidar point, leading to a
computational complexity of O(N2) where N is the number
of points [52]. Consequently, the method is hard to be used
in large-scale problems where the lidar points are huge in
number. This problem is partially addressed in [35], which
aggregates all points associated to the same plane feature in a
scan in the scan local frame. However, to ensure convergence,
[35] modifies the cost function by including an extra heuristic
penalty term, which is not a true representation of the map
consistency. Moreover, the cost function in [35] still involves
the plane feature similar to [33, 34, 51]–[53]. To lower the
computation load caused by optimizing the large number
of feature parameters, the method further fixes the feature
parameters in the optimisation, which could slow down the
optimisation speed.

Our BA formulation in this paper is based on BALM [32],
hence inheriting the fundamental feature elimination advantage
when compared to [34, 51]–[53] and the fast convergence
advantage when compared to [33]. To address the computa-
tional complexity of O(N2) in BALM, we adopt and formalize
the concept of point cluster, which fundamentally eliminates
the enumeration of each individual point in the evaluation of
the cost function, Jacobian and Hessian matrix. Consequently,
the computational complexity is irrelevant to both the feature
dimension (similar to BALM [32]) and the point number
(similar to [34, 51]). The point cluster in our method is
similar to the point aggregation used in [35] (and also used
in [33, 34]), but the overall BA formulation is fundamentally
different: (1) it minimizes the true map consistency (the point-
to-plane distance) without trading off with any other heuristic
penalty; and (2) it performs exact feature elimination with
rigorous proof instead of empirical fixation. Based on these
nice theoretical results, we develop an efficient second-order
solver, termed as BALM2.0. Besides solving the nominal
lidar poses, the solver also estimates the uncertainty of the
estimated lidar pose by leveraging the second-order derivative
information, which is another new contribution compared with
existing works.

III. BUNDLE ADJUSTMENT FORMULATION AND
OPTIMIZATION

In this chapter, we derive our BA formulation and optimisa-
tion. First, following [32], we formulate the BA as minimizing
the the point-to-plane (or point-to-edge) distance (Sec. III-A)
and show that the feature parameters can be eliminated from
the formulated optimisation (Sec. III-B). Then, we introduce
the point cluster in Sec. III-C, based on which the first and
second order derivatives are derived in Sec. III-D. Based on
these theoretical results, we present our second-order solver
in Sec. III-E. Finally, in Sec. III-F, we show how to estimate
the uncertainty of the BA solution. Throughout this paper, we
use notations summarized in Table I or otherwise specified in
the context.

A. BA formulation

Shown in Fig. 1, assume there are Mf features, each
denoted by parameter πi (i = 1, ...,Mf ), observed by Mp
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TABLE I
NOMENCLATURES

Notation Explanation

Rm×n The set of m× n real matrices.
Sm×m The set of m×m symmetric matrices.

⊞ The encapsulated “boxplus” operations on manifold.
(·)f The value of (·) expressed in lidar local frame,
(·) The value of (·) expressed in global frame.
⌊·⌋ The skew symmetric matrix of (·).

exp(·) Exponential of (·), which could be a matrix.
1i=j Indicator function which is equal to “1” if i = j,

otherwise equal to “0”.
Mf ,Mp The number of features and poses, respectively.

i, j, k The indexes of features, poses and points, respectively.
l The index of eigenvalue and eigenvector of a matrix.

p,q The indexes of (block) row and column in a matrix.
el The vector in R4 with all elements being zeros except

the l-th element being one (l ∈ {1, 2, 3, 4}).
SP SP =

[
I3×3 03×1

]
∈ R3×4.

Sv Sv =
[
01×3 1

]
∈ R1×4.

Ekl Ekl = eke
T
l + ele

T
k ∈ S4×4, k, l ∈ {1, 2, 3, 4}.

𝛑𝑖

T2 T𝑗T1

𝛑1 𝛑2 𝛑3 𝛑𝑖+1

𝛑i T𝑗Plane/Edge Feature Pose

T𝑗+1 T𝑀𝑝

𝛑𝑀𝑓

Fig. 1. Factor graph representation of the bundle adjustment formulation.

lidar poses, each denoted by Tj = (Rj , tj) (j = 1, ...,Mp),
the bundle adjustment refers to simultaneously determining
all the lidar poses (denoted by T = (T1, · · · ,TMp

)) and
feature parameters (denoted by π = (π1, · · · ,πMf

)), such
that reconstructed map agrees with the lidar measurements to
the best extent. Denote c(πi,T) the map consistency due to
the i-th feature, a straightforward BA formulation is

min
T,π

(∑Mf

i=1
c(πi,T)

)
. (1)

In our BA formulation, we make use of plane and edge
features that are often abundant in lidar point cloud and min-
imize the natural Euclidean distance between each measured
raw lidar point and its corresponding plane or edge feature.
Specifically, assume a total number of Nij lidar points are
measured on the i-th feature at the j-th lidar pose, each
denoted by pfijk (k = 1, ..., Nij). Its predicted location in
the global frame is

pijk = Rjpfijk + tj . (2)

For a plane feature, it is parameterized by πi = (ni,qi)
with ni the plane normal vector and qi an arbitrary point on
the plane, both in the global frame (see Fig. 2 (a)). Then,
the Euclidean distance between a measured point pfijk to the
plane is ∥nT

i (pijk − qi)∥2. Aggregating the distance for all

𝐪𝑖

||𝐧𝑖
𝑇(𝐩𝑖𝑗𝑘 − 𝐪𝑖)||

𝐧𝑖

(a) The 𝑖-th plane feature 𝛑𝑖 = (𝐧𝑖 , 𝐪𝑖)

𝐧𝑖

||(𝐈 − 𝐧𝑖𝐧𝑖
𝑇)(𝐩𝑖𝑗𝑘 − 𝐪𝑖)||

𝑘-th point 𝐩𝑖𝑗𝑘

𝑗-th scan 𝐓𝑗
𝑗-th scan 𝐓𝑗

𝑘-th point 𝐩𝑖𝑗𝑘

𝐪𝑖

(b) The 𝑖-th edge feature 𝛑𝑖 = (𝐧𝑖 , 𝐪𝑖)

Fig. 2. Plane and edge features used in the lidar BA. (a) The plane
formulation. qi is a point in the plane and ni is the plane normal. (b) The
line formulation. qi is a point on the edge and ni is the edge direction.

points observed in all poses leads to the total map consistency
corresponding to this plane feature:

c(πi,T) =
1

Ni

Mp∑
j=1

Nij∑
k=1

∥∥nT
i (pijk − qi)

∥∥2
2

(3)

where Ni =
∑Mp

j=1 Nij is the total number of lidar points
observed on the plane feature by all poses.

For an edge feature, it is parameterized by πi = (ni,qi)
with ni the edge direction vector and qi an arbitrary point on
the edge, both in the global frame (see Fig. 2 (b)). Then, the
Euclidean distance between a measured point pfijk to the edge
is
∥∥(I− nin

T
i )(pijk − qi)

∥∥
2
. Aggregating the distance for all

points observed in all poses leads to the total map consistency
corresponding to this edge feature:

c(πi,T) =
1

Ni

Mp∑
j=1

Nij∑
k=1

∥∥(I− nin
T
i )(pijk − qi)

∥∥2
2

(4)

where Ni =
∑Mp

j=1 Nij is the total number of lidar points
observed on the edge feature by all poses.

B. Elimination of feature parameters

In this section, we show that in the BA optimization (1), the
feature parameter π can really be solved with a closed-form
solution. The key observation is that one cost item c(πi,T)
depends solely on one feature parameter, so that the feature
parameter can be optimized independently. Concretely,

min
T,π

( Mf∑
i=1

c(πi,T)
)
= min

T

(
min
π

( Mf∑
i=1

c(πi,T)
))

= min
T

( Mf∑
i=1

min
πi

c(πi,T)
)
. (5)

In case of a plane feature, we substitute (3) into c(πi,T):

min
πi

c(πi,T) = min
πi

( 1

Ni

Mp∑
j=1

Nij∑
k=1

∥∥nT
i (pijk − qi)

∥∥2
2

)
= λ3(Ai), when n⋆

i = u3(Ai),q
⋆
i = p̄i (6)

where λl(Ai) denotes the l-th largest eigenvalue of matrix Ai,
ul(Ai) denotes the corresponding eigenvector, the matrix Ai

and vector p̄i are defined as:
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Ai ≜
1

Ni

Mp∑
j=1

Nij∑
k=1

(pijk − p̄i)(pijk − p̄i)
T ,

p̄i ≜
1

Ni

Mp∑
j=1

Nij∑
k=1

pijk. (7)

The proof will be given in Supplementary III-A [59]. Note
that the optimal solution q⋆

i in (6) is not unique, any deviation
from q⋆

i along a direction perpendicular to n⋆
i will equally

serve the optimal solution. However, these equivalent optimal
solution will not change the plane nor the optimal cost (hence
the results that follow next). Indeed, the point q⋆

i could be an
arbitrary point on the plane as it is defined to be.

In case of an edge feature, we substitute (4) into c(πi,T):

min
πi

c(πi,T)=min
πi

( 1

Ni

Mp∑
j=1

Nij∑
k=1

∥∥(I− nin
T
i )(pijk − qi)

∥∥2
2

)
= λ2(Ai) + λ3(Ai); when n⋆

i = u1(Ai),q
⋆
i = p̄i. (8)

Again, the optimal solution q⋆
i in (8) is not unique, any

deviation from q⋆
i along the direction n⋆

i will equally serve the
optimal solution. However, these equivalent optimal solution
will not change the edge nor the optimal cost (hence the results
that follow next).

As can be seen from (6) and (8), the parameter πi for
each feature, either it is a plane or edge, can be analytically
solved and hence removed from the BA optimization process.
Consequently, the original BA optimization in (1) reduces to

min
T

( Mf∑
i=1

λl(Ai)
)

(9)

where l ∈ {2, 3} and we omitted the exact number of
eigenvalues in the cost function for brevity.

Note that the matrix Ai in (9) depends on the lidar pose
T since each involved point pijk depends on the pose (see
(7) and (2)). Hence the decision variables of the resultant
optimization in (9) involve the lidar pose T only, which
dramatically reduces the optimization dimension (hence com-
putation time).

C. Point cluster

With the feature parameters eliminated, another difficulty
remaining in the BA optimization (9) is that the evaluation
of matrix Ai (and its Jacobian or Hessian necessary for
developing a numerical solver) requires to enumerate every
point observed at each lidar pose. Such an enumeration is
extremely computationally expensive due to the large number
of points in a lidar scan. In this section, we show such point
enumeration can be avoided by point cluster, which is detailed
as follows.

x

y

z

x

y

z

𝐓 ∘ 𝓒

𝕽(𝓒) 𝐓𝕽(𝓒)𝐓𝑇

(a) Rigid transform

x

y

z

x

y

z

𝓒1⊕𝓒2

𝕽(𝓒1) + 𝕽(𝓒2)

𝕽(𝓒𝟏)

𝕽(𝓒𝟐)

(b) Cluster merging

Fig. 3. Two operations on point cluster (a) Rigid transform (b) Cluster
merging.

A point cluster is a finite point set denoted by set C =
{pk ∈ R3|k = 1, · · · , n}, the corresponding point cluster
coordinate, denoted as ℜ(C), is defined as:

ℜ(C) ≜
n∑

k=1

[
pk

1

] [
pT
k 1

]
=

[
P v
vT n

]
∈ S4×4

P =

n∑
k=1

pkp
T
k , v =

n∑
k=1

pk, (10)

where S4×4 denotes the set of 4× 4 symmetric matrix.
A point cluster can be thought as a generalized point, for

which a rigid transform could be applied. Similarly, we can
define rigid transformation on a point cluster as follows.

Definition 1. (Rigid transform) Given a point cluster with
point collection C = {pk ∈ R3|k = 1, · · · , n} and a pose

T =

[
R t
0 1

]
∈ SE(3). The rigid transformation of the point

cluster C, denoted by T ◦ C, is defined as

T ◦ C ≜ {Rpk + t ∈ R3|k = 1, · · · , n}. (11)

Besides rigid transformation, we also define cluster merging
operation, as follows.

Definition 2. (Cluster merging) Given two point clusters
with point collections C1 = {p1

k ∈ R3|k = 1, · · · , n1} and
C2 = {p2

k ∈ R3|k = 1, · · · , n2} in the same reference frame,
respectively. The merged cluster, denoted by C1⊕C2, is defined
as

C1 ⊕ C2 ≜ {pl
k ∈ R3|l = 1, 2; k = 1, · · · , ni}. (12)

Next we will show that the two operations defined above
can be fully represented by their point cluster coordinates.
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𝑘-th point 𝐩𝑓𝑖𝑗𝑘

(a) The 𝑖-th plane feature 𝛑𝑖

𝑗-th scan 𝐓𝑗

𝐂𝑓𝑖𝑗

(b) The 𝑖-th edge feature 𝛑𝑖

𝑘-th point 𝐩𝒇𝑖𝒋𝒌

𝑗-th scan 𝐓𝑗

𝐂𝑓𝑖𝑗

Fig. 4. For the i-the feature (either plane or edge), all points observed at the
j-th pose are clustered as a point cluster and is represented by Cfij in its
local frame.

Theorem 1. Given a point cluster C and a pose T =[
R t
0 1

]
∈ SE(3). The rigid transformation of the point

cluster satisfies

ℜ(T ◦ C) = Tℜ(C)TT (13)

Proof. See Supplementary III-B [59].

Theorem 2. Given two point clusters C1 and C2 in the same
reference frame. The merged cluster satisfies

ℜ(C1 ⊕ C2) = ℜ(C1) +ℜ(C2) (14)

Proof. See Supplementary III-C [59].

As can be seen, rigid transformation and cluster merging
operations on point clusters can be represented by usual matrix
multiplication and addition on the point cluster coordinates. A
visual illustration of the two operations and their coordinate
representations are shown in Fig. 3. These results are crucially
important: Theorem 1 indicates that the point cluster can be
constructed in one frame (e.g., local lidar frame) and trans-
formed to another (e.g., the global frame) without enumerating
each individual points; Theorem 2 indicates that two (and by
induction more) point clusters can be further merged to form a
new point cluster. A particular case of Theorem 2 is when the
second point cluster contains a single point, indicating that the
point cluster can be constructed incrementally as lidar points
arrives sequentially.

Remark 1. The concept of point cluster and its two operations
are not new and have been used in previous works such as
[33]–[35]. In this paper, we formalized this concept by 1) in-
troducing the point cluster coordinate composing of P,v, and
n as in (10), 2) formalizing the two operations: rigid transform
and cluster merging, and 3) explicitly showing the relation
between point cluster operations and their coordinates.

Remark 2. A point set and its coordinate is not a one-to-one
mapping. While it is obvious that the coordinate is uniquely
determined from the point set as shown in (10), the reverse
way does not hold: the point set cannot be recovered from
its coordinate uniquely. Since different point sets may lead to
the same coordinate, the raw points must be saved if a re-
clustering is needed.

Now, we apply the point cluster to the BA problem con-
cerned in this paper. To start with, we group all points on

the same feature as a point cluster. For example, the point
cluster for the i-th feature is Ci ≜ {pijk|j = 1, · · · ,Mp, k =
1, · · · , Nij}. Denote Ci the coordinate of the point cluster,
following (10), we obtain

Ci = ℜ(Ci) ≜
Mp∑
j=1

Nij∑
k=1

[
pijk

1

] [
pT
ijk 1

]
=

[
Pi vi

vT
i Ni

]

Pi =

Mp∑
j=1

Nij∑
k=1

pijkp
T
ijk, vi =

Mp∑
j=1

Nij∑
k=1

pijk (15)

A key result we show now is that this point cluster coor-
dinate Ci is completely sufficient to represent the matrix Ai

required in the BA optimization (9). According to (7), we have

Ai =
1

Ni

Mp∑
j=1

Nij∑
k=1

(pijk − p̄i)(pijk − p̄i)
T

=
1

Ni

Mp∑
j=1

Nij∑
k=1

(pijkp
T
ijk)− p̄ip̄

T
i

=
1

Ni
Pi −

1

N2
i

viv
T
i ≜ A(Ci) (16)

where we denote Ai as a function of Ci since the Ai is
fully represented (and uniquely determined) by Ci. We slightly
abuse the notation here by denoting the function as A(·).

On the other hand, since the point set Ci is defined on
points in the global frame, the coordinate Ci is dependent on
the lidar pose, which remains to be optimized. To explicitly
parameterize the lidar pose, we note that

Ci ≜ {pijk|j = 1, · · · ,Mp, k = 1, · · · , Nij} (17)

= ∪Mp

j=1{pijk|k = 1, · · · , Nij} (18)
Def.2
= ⊕Mp

j=1Cij , Cij ≜ {pijk|k = 1, · · · , Nij} (19)
Def.1
= ⊕Mp

j=1

(
Tj ◦ Cfij

)
, Cfij ≜ {pfijk |k = 1, · · · , Nij}

(20)

where pfijk is a point represented in the lidar local frame (see
(2)), Cij is the point set that is composed of all points on the
i-th feature (either plane or edge) observed at the j-th lidar
pose, and Cfij is the same point set as Cij , but represented in
the lidar local frame (see Fig. 4).

The relation between the point cluster Ci and Cfij shown
in (20) will lead to a relation between their coordinates Ci

and Cfij as below:

Ci
Thm.2
=

Mp∑
j=1

Cij
Thm.1
=

Mp∑
j=1

TjCfijT
T
j (21)

As a result, the BA optimization in (9) further reduces to

min
Tj∈SE(3),∀j

Mf∑
i=1

λl

A

Mp∑
j=1

TjCfijT
T
j


︸ ︷︷ ︸

c(T)

(22)

where the function A(·) is defined in (16). Note that the cost
function in (22) only requires the knowledge of point cluster
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coordinate Cfij without enumerating each individual points.
The coordinate Cfij is computed as (following (10)):

Cfij =

[
Pfij vfij

vT
fij

Nij

]
Pfij =

Nij∑
k=1

pfijkp
T
fijk

, vfij =

Nij∑
k=1

pfijk (23)

which can be constructed during the feature association stage
before the optimization. In particular, if the j-th pose observes
no point on the i-th feature, Cfij = 04×4, which will naturally
remove the dependence on the j-th pose for the i-th cost item
as shown in (22).

Theorem 3. Given a matrix function A(C) ≜ 1
NP− 1

N2vv
T

with C =

[
P v
vT N

]
∈ S4×4, λl(A) denotes the l-th largest

eigenvalue of A, then λl(A(C)) is invariant to any rigid
transformation T0 ∈ SE(3). That is,

λl

(
A

(
T0CTT

0

))
= λl (A (C)) ,∀T0 ∈ SE(3). (24)

Proof. See Supplementary III-D [59].

Theorem 3 implies that left multiplying all poses Tj ,∀j,
by the same transform T0 does not change the optimization
at all. That is, the BA optimization is invariant to the change
of the global reference frame, which is the well-known gauge
freedom in a bundle adjustment problem.

D. First and Second Order Derivatives

As shown in the previous section, the BA optimization
problem in (22) is completely equivalent to the original
formulation (1), where each cost item standards for the squared
Euclidean distance from a point to a plane (or edge). This
squared distance is essentially a quadratic optimization, which
requires the knowledge of the second-order information of
the cost function for efficient solving. In this section, we
derive such first and second order derivatives. Without loss of
generality, we only discuss the i-th feature, which contributes
a cost item in the form of

ci(T) = λl

A

Mp∑
j=1

TjCfijT
T
j

 (25)

with Cfij ∈ R4×4 being a pre-computed matrix (see (23)).
To derive the derivative of the cost item (25) w.r.t. the

pose Tj , which is an element of the Special Euclidean
group SE(3), we parameterize its perturbation by a special
addition, called boxplus (⊞-operation). For the pose vector
T = (· · · ,Tj , · · · ), we define the the ⊞ operation as below

T⊞ δT ≜ (· · · ,Tj ⊞ δTj , · · · ), (26)

Tj ⊞ δTj ≜ (exp (⌊δϕj⌋)Rj , δtj + exp (⌊δϕj⌋)tj), (27)

where δT ≜ (· · · , δTj , · · · ) ∈ R6Mp with δTj ≜
(δϕj , δtj) ∈ R6,∀j ∈ 1, · · · ,Mp, is the perturbation on the
pose vector.

For a scalar function f(T) : SE(3) × · · · × SE(3) 7→
R, denote

(
∂f(T)
∂T

)
(T0) its first-order derivative and

(
∂f2(T)
∂T2

)
(T0) its second-order derivative, both at a chosen

point of the input T0. The ⊞ operation enables us to pa-
rameterize the input of function f(·), T, by its perturbation
δT from a given point T0: T = T0 ⊞ δT. Since the map
between T and δT is bijective if ∥δϕj∥ < π,∀j, the scalar
function f(T) in terms of T can be equivalently written as a
function f(T0 ⊞ δT) in terms of δT. As a consequence, the
derivatives of f(T) w.r.t. T at the point T0 can be defined
as the derivatives of f(T0 ⊞ δT) w.r.t. δT at zero, where the
latter is a normal derivative w.r.t. Euclidean vectors:

(
∂f(T)

∂T

)
(T0) ≜

(
∂f(T0 ⊞ δT)

δT

)
(0) (28)(

∂2f(T)

∂T2

)
(T0) ≜

(
∂

∂δT

(
∂f(T0 ⊞ δT)

∂δT

))
(0) (29)

∀T0 ∈ SE(3)× · · · × SE(3).

In the following discussion, we use T as the reference point
to replace T0 in the derivatives and omit it for the sake of
notation simplification.

Based on the derivatives defined in (28) and (29), we have
the following results for the first and second-order derivatives
of the cost item (25).

Theorem 4. Given

(1) Matrices Cj =

[
Pj vj

vT
j Nj

]
∈ S4×4, j = 1, · · · ,Mp;

(2) Poses Tj ∈ SE(3), j = 1, · · · ,Mp;

(3) A matrix C =

[
P v
vT N

]
≜

∑Mp

j=1 TjCjT
T
j ∈ S4×4,

which is the aggregation of Cj , and a matrix function
A(C) ≜ 1

NP− 1
N2vv

T ∈ S3×3; and
(4) A function λl (A (C)), λl(A) denotes the l-th (l = 1, 2, 3)

largest eigenvalue of A with corresponding eigenvector
ul;

The Jacobian matrix Jl and Hessian matrix Hl of the function
λl(A(C)) with respect to the poses T are

Jl = gll ∈ R1×6Mp , (30)

Hl = Wl +

3∑
k=1,k ̸=l

2

λl − λk
gT
klgkl ∈ R6Mp×6Mp , (31)

where gll is gkl with k = l. gkl and Wl are matrices
partitioned as

gkl =
[
· · · gj

kl · · ·
]
∈ R1×6Mp , (32)

Wl =


...

· · · Wij
l · · ·

...

 ∈ R6Mp×6Mp , (33)

with block elements gj
kl ∈ R1×6,Wij

l ∈ R6×6,∀i, j ∈



8

{1, · · · ,Mp} defined as

gj
kl =

1

N
uT
l SP(Tj−

1

N
CF)CjT

T
j V

T
k

+
1

N
uT
k SP(Tj−

1

N
CF)CjT

T
j V

T
l , (34)

Wij
l =− 2

N2
VlTiCiFCjT

T
j V

T
l +1i=j

·
( 2

N
VlTjCjT

T
j V

T
l +

[
Kj

l 03×3

03×3 03×3

])
, (35)

Kj
l =

1

N
⌊SPTjCj(Tj −

1

N
CF)TST

P ul⌋⌊ul⌋

+
1

N
⌊ul⌋⌊SPTjCj(Tj −

1

N
CF)TST

P ul⌋, (36)

Vl =

[
−⌊ul⌋ 03×1

03×3 ul

]
F =

[
03×3 03×1

01×3 1

]
, (37)

SP =
[
I3×3 03×1

]
1i=j =

{
1, i = j

0, i ̸= j
. (38)

Proof. See Supplementary III-E [59].

Corollary 4.1. The Jacobian matrix Jl and Hessian matrix
Hl in Theorem 4 satisfy that, for any l = 1, 2, 3,

Jl · δT = 0, δTT ·Hl · δT = 0,

∀δT ∈ W ≜


w...
w


∣∣∣∣∣∣∣∀w ∈ R6

 , (39)

Jj
l = 01×6, if Cj = 0, (40)

Hij
l = 06×6, if Ci = 0 or Cj = 0, (41)

where Jj
l is the j-th column block of Jl and Hij

l is the i-th
row, j-th column block of Hl.

Proof. See Supplementary III-F [59].

Remark 3. (39) implies that the Jacobian and Hessian ma-
trices have null space containing the space spanned by W .
This essentially means that the cost function (25) in the BA
optimization does not change along the direction where all
the poses are perturbed by the same quantity w, which agrees
with gauge freedom stated in Theorem 3.

Remark 4. The results in (40, 41) imply that the blocks in
Jacobian and Hessian matrices are zeros and hence their
computation can be saved if any of the related poses does
not observe the current feature (i.e., Ci = 0 or Cj = 0).
This sparse structure could save much computation time if a
feature is observed only by a sparse set of poses.

Remark 5. The derivatives in Theorem 4 are obtained based
on the pose perturbation defined in (26), which multiplies
the perturbation δT on the left of the current pose (i.e.,
a perturbation in the global frame). If other perturbation
(denoted by δT̆) is preferred (e.g., a perturbation in the
local frame to integrate with other measurements such as
IMU pre-integration), where δT = LδT̆ with L the Jacobian
between the two perturbation parameterization, its first and
second order derivatives can be computed as J̆ = J · L and
H̆ = LT · H · L, respectively. It can be seen that J̆ and H̆
preserves a nullspace of L ·W with W defined in (39).

E. Second Order Solver

The Jacobin and Hessian matrix from Theorem 4 are com-
puted for one cost item (25) that corresponds to one feature in
the space. Denote Ji,Hi the Jacobian and Hessian matrix for
the i-th feature (or cost item), to determine the incremental
update ∆T, we make use of the second order approximation
of the total cost function c(T) in (22):

c(T⊞∆T) ≈ c(T) + J∆T+
1

2
∆TTH∆T (42)

where J =
∑Mf

i=1 Ji,H =
∑Mf

i=1 Hi. For any d ∈ W , since
Jid = 0,dTHid = 0,∀i, we have Jd = 0 and dTHd =
0,∀i, which means that any additional update along d ∈ W
does not change the approximation at all. One way to resolve
the gauge freedom is fixing the first pose at its initial value
throughout the optimization. That is, setting ∆T1 = 0 in (42).
Then, setting the differentiation of the cost approximation in
(42) w.r.t. ∆T (excluding ∆T1) to zero leads to the optimal
update ∆T⋆:

∆T⋆ = − (H+ µI)
−1

JT , (43)

where we used a Levenberg-Marquardt (LM) algorithm-like
method to re-weight the gradient and Newton’s direction by
the damping parameter µ. The complete algorithm is sum-
marized in Supplementary (Algorithm 1) with time analyses
detailed in Supplementary (Section IV). Overall, the solver
has a complexity of O

(
MfMp +MfM

2
p +M3

p

)
, which is

linear to the number of feature Mf , irrelevant to the number
of points N , and cubic to the number of pose Mp. The term
MfMp and MfM

2
p are due to the calculation of Jacobian and

Hessian, respectively and the term M3
p is due to (43).

F. Covariance Estimation

Assume the solver converges to an optimal pose T⋆, it is
often useful to estimate the confidence level of the estimated
pose. Let Tgt be the ground-true pose, which is unknown, and
δT⋆ be the difference between the optimal estimate T⋆ and
the ground-true Tgt, where Tgt = T⋆ ⊞ δT⋆. The aim is to
estimate the covariance of the error δT⋆, denoted by ΣδT⋆ .

Ultimately, the estimation error δT⋆ is caused by the mea-
surement noise in each raw point. Denote pgt

fijk
the ground-true

location of the k-th point observed on the i-th feature at the j-
th lidar pose, with measurement noise δpfijk ∈ N (0,Σpfijk

),
the measured point location, denoted by pfijk , is

pfijk = pgt
fijk

+ δpfijk . (44)

Aggregating the ground-true points and the measured ones
lead to the ground-true point cluster, denoted by Cgt

fijk
, and

the measured point cluster, denoted by Cfijk , respectively (see
(23)):

Cgt
fij

=

∑Nij

k=1 p
gt
fijk

(pgt
fijk

)T
∑Nij

k=1 p
gt
fijk(∑Nij

k=1 p
gt
fijk

)T

Nij

 (45)

≈ Cfij − δCfij , (46)
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where

δCfij =

Nij∑
k=1

Bfijkδpfijk , see Supplementary III-G, (47)

which can be constructed in advance along with the point
cluster Cfij during the feature associations stage.

In the following discussion, to simplify the notation, we
denote Cgt

f = {Cgt
fij

}, Cf = {Cfij}, δCf = {δCfij} the
ground-truth, measurements, and noises of all point clusters
observed on any features at any lidar poses.

Although the ground-true pose Tgt and point cluster Cgt
f are

unknown, they are genuinely the optimal solution of (22) and
hence the Jacobian evaluated there should be zero, i.e.,

JT
(
Tgt,Cgt

f

)
= 0 (48)

where we wrote the Jacobian as an explicit function of the
pose and point clusters. Now, we approximate the left hand
side of (48) by its first order approximation:

JT (Tgt,Cgt
f ) = JT (T⋆ ⊞ δT⋆,Cf − δCf ) = JT (T⋆,Cf )

+
∂JT (T⋆ ⊞ δT,Cf )

∂δT
δT⋆ − ∂JT (T⋆,Cf )

∂Cf
δCf . (49)

Noticing that JT (T⋆⊞δT,Cf )
∂δT = H (T⋆,Cf ), the Hessian

matrix of (22) evaluated at T⋆ (also see (42)), we have

0 = JT
(
Tgt,Cgt

f

)
= JT (T⋆,Cf )

+H · δT⋆ − ∂JT (T⋆,Cf )

∂Cf
δCf , (50)

which implies

δT⋆ = −H−1JT (T⋆,Cf ) +H−1 ∂J
T (T⋆,Cf )

∂Cf
δCf (51)

Since T⋆ is the converged solution using the mea-
sured cluster Cf , they should lead to zero update, i.e.,
H−1JT (T⋆,Cf ) = 0 (see (43) with zero µ at convergence).
Therefore,

δT⋆ = H−1 ∂J
T (T⋆,Cf )

∂Cf
δCf ∼ N (0,ΣδT⋆) , (52)

ΣδT⋆ = H−1 ∂J
T (T⋆,Cf )

∂Cf
ΣδCf

J (T⋆,Cf )

∂Cf
H−T . (53)

We defer the exact derivation and results of JT (T⋆,Cf )
∂Cf

δCf ,
ΣδCf

and ΣδT⋆ to Supplementary III-G [59]. Note that the
evaluation of ΣδT⋆ only requires the covariance δCfij , which
has been constructed in advance according to (47), avoiding
the enumeration of each raw point during the optimization.

IV. IMPLEMENTATIONS

We implemented our proposed method in C++ and tested it
in Unbuntu 20.04 running on a desktop equipped with Intel i7-
10750H CPU and 16Gb RAM. Since the reduced optimization
problem (22) is not in a standard least square problem,
which existing solvers (e.g., Google Ceres [60]) applies to,
we implemented the optimization algorithm with steps and
parameters described in Supplementary (Algorithm 1). When

Fig. 5. Simulation setup: A 16-channel lidar moves along a rectangular
trajectory in a cuboid semi-closed space. The white line is the trajectory and
the red lines are the laser points.

solving the linear equation on Line 9 at each iteration, we
use the LDLT Cholesky decomposition decomposition method
implemented in Eigen library 3.3.7. The termination conditions
on Line 19 are iteration number below 50 (i.e., jmax= 50),
rotation update below 10−6 rad, and translation update below
10−6 m.

V. CONSISTENCY EVALUATION

This study aims to verify the consistency of the proposed
BA method. That is, whether the estimated covariance ΣδT⋆

from (53) agrees with the ground-true covariance of the
pose estimation error δT⋆. As the ground-true covariance is
unknown, we refer to a standard measure of consistency, the
normalized estimation error squared (NEES) [61, 62], which
is defined below:

η = (δT⋆)TΣ−1
δT⋆δT

⋆,

where δT⋆
j is the estimation error of the pose defined accord-

ing to (27):

δT⋆ ≜ (· · · , δT⋆
j , · · · ) ∈ R6Mp ,

δT⋆
j =

[
Log

(
Rgt

j

(
R⋆

j

)T)
, tgtj −Rgt

j (R⋆
j )

T t⋆j

]T
,

where the superscript “gt” denotes the ground-true poses and
(R⋆

j , t⋆j ) denotes the estimated pose for the j-th scan. Assume
the pose estimate (R⋆

j , t⋆j ) is unbiased (i.e., E
(
δT⋆

j

)
= 0),

if the computed covariance ΣδT⋆ is the ground-truth, we can
obtain the expectation

E(η)=E
(
(δT⋆)TΣ−1

δT⋆δT
⋆
)
= trace

(
E
(
Σ−1

δT⋆δT
⋆(δT⋆)T

))
= trace

(
Σ−1

δT⋆E
(
δT⋆(δT⋆)T

))
= trace(I)=dim(δT⋆). (54)

That is, if the solver is consistent, the expectation of NEES
should be equal to the dimension of the optimization variable.
If the expectation of NEES is far higher than the dimension,
the estimator is over-confident (i.e., the computed covariance
is less than the ground-truth). Conversely, it is conservative.
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Fig. 6. The error (red) of rotation (deg) and position (m) with 3σ bounds
(blue) for one simulation run.

In practice, the expectation of NEES is evaluated by Monte
Carlo method, where the NEES is computed for many runs
and then averaged to produce the empirical expectation.

η̄ =
1

N

N∑
i=1

η(i)

where η(i) is the NEES computed at the i-th Monte Carlo run.
To conduct the Monte Carlo evaluation, we simulate a 16-

channel lidar along a rectangular trajectory in a cuboid semi-
closed space shown in Fig. 5. The size of the space is 30
m × 20 m × 8 m and the length of trajectory is about 92
m. 100 scans are equally sampled on the trajectory and the
number of points in each scan is 28,800. To simulate realistic
measurements, each point is corrupted with an independent
isotropic Gaussian noise with multiple standard deviations
σp ∈ {0.05, 0.10, · · · , 1.00} m and for each value of the
standard deviation σp, we performed 100 Monte Carlo ex-
periments, leading to a total number of 2000 experiments.
In each run, we compute the optimal pose estimate from
the Supplementary (Algorithm 1) with the same parameters
specified in Section IV and the covariance matrix from (53).
The initial trajectory required by the algorithm is obtained by
perturbing the ground-true trajectory with a Gaussian noise
with standard deviation δϕ = 2 deg and δt = 0.1 m on
each pose. To avoid unnecessary errors, we use the ground-
true plane association across different scans and ignore the
in-frame motion distortion in the simulation.

Fig. 6 shows orientation and position errors with the cor-
responding 3σ bounds in one Monte Carlo experiment with
σp = 0.05 m. As can be seen, the pose estimation errors are
very small and they all remain within the 3σ bounds very well,
which suggests that our new method is consistent.

Furthermore, we test the consistency of our BA method
under different levels of point noise, where the standard
deviation of a point noise ranges from σp = 0.05 m to 1
m. The results are shown in Fig. 7(a) for the NEES averaged
over 100 runs for each noise level and in Fig. 7(b) for the
average pose error. For better visualization, the average NEES
is normalized by the pose dimension (i.e., 600 for 100 poses

Fig. 7. (a) The normalized NEES averaged over 100 Monte Carlo runs at
different point noise levels. The NEES is normalized by the pose dimension
(i.e., 600) for better visualization. (b) The rotation (red) and translation (blue)
errors at different point noise levels. (c) The point cloud map with ground-true
poses at noise levels σp = 0.05m, 0.5m and 1m, respectively.

on the trajectory) in Fig. 7(a). As can be seen, the normalized
average NEES is very close to one, which suggests that
our method is consistent, when the point noise is up to 0.3
m. Beyond this noise level, the first order approximation in
(50) no longer holds, which undermines the accuracy of the
computed covariance. We should note that this noise level
rarely occurs in actual lidar sensors, which are well below
0.1 m. Moreover, from Fig. 7(b), we can see that our method
produces accurate pose estimation even when the point noise
are unrealistically large (up to 1 m, see Fig. 7(c) for the point
cloud map at this point noise level).

VI. BENCHMARK EVALUATION

In this section, we compare our method with other multi-
view registration methods for lidar point clouds. The experi-
ment will be divided into two parts: Section VI-A evaluates
all methods with known feature association on synthetic point
clouds, and Section VI-B evaluates the overall BA pipeline
including both optimization solver and feature association on
various real-world open datasets.

To verify the effectiveness of our method, we compare
it with four state-of-the-art methods that focus on the lidar
bundle adjustment (or similar) problem: Eigen-Factor (EF)
[33], BALM [32], Plane Adjustment (PA) [51], and BAREG
[35]. Among them, EF4, BALM5, BAREG6 are open sourced,
so we use the available implementation on Github. PA is

4https://gitlab.com/gferrer/eigen-factors-iros2019
5https://github.com/hku-mars/BALM
6https://hyhuang1995.github.io/bareg/

https://gitlab.com/gferrer/eigen-factors-iros2019
https://github.com/hku-mars/BALM
https://hyhuang1995.github.io/bareg/
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not available anywhere, so we re-implemented it in C++. To
reduce the time cost of PA, we used the reduced Jacobian
and residual technique in [34] (we derived it based on the
cost function in Equation (10) of [51]), which avoids the
enumeration of each individual point. The re-implemented PA
is solved by the Ceres solver with “DENSE SCHUR” [60],
which leverages the Schur complement trick to reduce the
linear equation dimension at each optimization iteration. To
better exploit the separable structure reducing the solving time,
we also compare with PA with inner iterations enabled in
Ceres (denoted as “PA (inner)”).

For the solver parameters, our method and the re-
implemented PA (and its variant PA (inner)) use the parameters
specified in Section IV and [34], respectively, while EF,
BALM and BAREG use their default parameters as available
on their open source implementation. All methods use the
same termination condition shown in Sec. IV (i.e. maximal
iteration number below 200, rotation update below 10−6 rad,
and translation update below 10−6 m), except for EF, which
we found it converges too slowly and hence set the maximal
iteration steps to 2000. In addition to the open source version
of BALM (denoted by BALM), which samples only three
points from each plane to lower the computation load, we
also evaluated another vision (denoted by BALM (full)) which
keeps all the points on a plane and use the same default
parameters as its open sourced version. All solvers use the
same initial pose trajectories detailed later.

A. Synthetic point cloud

To verify the effectiveness of the optimization solvers and
their scalability to the number of pose Mp, number of feature
Mf , and number of points N per feature, we design a point-
cloud generator which generates Mf random planes and Mp

lidar scans at random poses. Each pose corresponds to one
group of point-cloud whose number of points on each plane is
N . Hence, there are totally NMf points at each scan. We use
the ground-true plane association provided by the simulator. To
mimic the real lidar point noises, we also corrupt the points
sampled on each plane by an isotropic Gaussian noise with
standard deviation σp = 0.05m, the typical noise level for
existing lidar sensors. The initial poses are perturbed from the
ground-true poses with errors randomly sampled from a Gaus-
sian distribution. The base standard deviation of the Gaussian
distribution is ∥δϕ∥ = 0.1 deg for rotation and ∥δt∥ = 1 cm
for translation. In the nominal settings, Mf = Mp = N = 100
and the initial pose error standard deviation is 10× the base
value. From the nominal settings, we enumerate each of the
Mf ,Mp and N at values {10, 30, 100, 300, 1000, 3000} and
the initial pose error standard deviation at values 1×, 5×,
10×, 15×, 20×, 25× of the base value to investigate the
performance of each solver at different scales. This makes
a total number of 21 scenes. In each scene, the experiment is
repeated for 10 times with separately sampled poses, planes,
and point noises, leading to a total 210 experiments.

1) Convergence: First we investigate the convergence per-
formance of all methods. Fig. 8(a) and (b) respectively shows
the convergence of cost and point-to-plane distance in one

Fig. 8. Convergence of different methods for BA optimization. (a) Cost value
versus iterations in one repeat experiment with the nominal settings Mf =
100, Mp = 100, N = 100 and initial pose error 10×. (b) Point-to-plane
distance versus optimization time in one repeat experiment. (c) Iteration steps
experienced by each method in all repeat experiments (i.e., 10) of all scenes
(i.e., 21). The y-axis value represents how many experiments out of the 210
total experiments has experienced the iteration number indicated by the x-
axis. (d) Breakdown of time spent on each iteration of all BA methods. The
time is averaged among all experiments that all methods have participated.

repeat experiment with the nominal settings (i.e., Mf = Mp =
N = 100 and initial pose error 10×). Since different method
uses different cost function, to compare them in one figure,
the cost value of each method is normalized by its initial
cost and then it is re-based such that the converged cost
value of all methods are aligned at the same value. Similarly,
we normalize the point-to-plane distance by its initial value
as well, which is valid to do because all methods have the
same initial pose leading to the same initial point-to-plane
distance. As can be seen, EF converes rather slowly and
requires the most number of iterations. This is because EF
optimizes a cost function similar to ours in (9), which is
essentially a quadratic function, but uses only the gradient
information for optimization. Indeed, slow convergence of the
gradient descent method on a quadratic cost function is a
very typical phenomenon [63]. PA, PA (inner), and BAREG
converge fast at the beginning but slowly when approaching
the final convergence value. This is because PA optimizes
both the plane parameters and scan poses, leading to a very
large number of optimization variables that significantly slow
down the speed at convergence. PA (inner) converges faster
than the original PA due to the inner iteration, but still slower
than our method. For BAREG, the empirical fixation of plane
parameters also causes the optimization to slow down. In
contrast, BALM, BALM (full) and our method eliminates
the plane parameters exactly and the resultant optimization
problem is only in dimension of the pose number. Further
leveraging the exact Hessian information in their optimization
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Fig. 9. Benchmark results on synthetic point cloud.

update, BALM, BALM (full) and our method converge in a
few iterations, which often represent the fastest convergence.

Fig. 8(c) shows the iteration experienced by each BA opti-
mization method, where for each data point, the y-axis value
represents how many out of the total experiments experienced
the iteration number indicated by the x-axis. As can be seen,
the overall trend agrees with the results in Fig. 8 (a) very well:
our proposed method and BALM (full) require only four or
five iterations, while BAREG, PA, and PA (inner) require up to
20, 40, and 50 iterations, respectively. EF requires even more
iterations beyond 100.

Fig. 8(d) shows the computation time in each iteration. As
can be seen, EF consumes the least time for each iteration due
to the lack of Hessian computation and linear equation solving.
BALM (full) consumes the most time since the computation
of Jacobian, Hessian and residuals require to enumerate each
individual point, leading to a complexity of O(N2). The other
methods, PA, PA (inner), BAREG, and ours, consume similar
time for each iteration.

2) Accuracy: Fig. 9(a,b,d,e,g,h,j,k) shows the statistic val-
ues of the pose estimation accuracy in terms of RMSE. In each
subplot, we fix three parameters of Mf ,Mp, N and initial pose

error at the nominal values and change the fourth parameter
to investigate its effect on the pose accuracy. Since the error
of EF is much larger than the others, we used a broken y-axis
to better display all the RMSE. As can be seen, overall the
accuracy increases with the points per plane N (in (d) and (e))
or number of plane features Mf (in (g) and (h)) since both
increases the number of pose constraints. In contrast, no such
monotonic accuracy improvement is found for the number of
poses (in (a) and (b)) as the pose number increases because
increasing the pose number itself does not gives more pose
constraints. Likewise, the accuracy also remains similar for
different initial poses error for all methods except EF, which
did not converge at the maximum iteration number. Relatively
speaking, our proposed method and BALM (full) achieves
the same highest accuracy, since they essentially optimizes
the same cost using the same exact Hessian information. The
next best methods are BAREG, PA, and PA (inner). While
optimizing the same point to plane distance with our method
(and BALM (full)), PA has significantly more optimization
variables, which cause a much slower convergence where
the solution is still slightly premature at the preset iteration
number. Although PA (inner) has used inner iterations to
alleviate this problem, its iterations are still larger than our
methods and BAREG. The next accurate method is BALM,
which samples only three instead of all points (as in our
method, BALM (full), BAREG, PA, and PA (inner)) and hence
has higher RMSE. Finally, EF has the highest RMSE due to
the very slow convergence, the solution is much premature
even at the preset iteration number.

3) Computation time: Finally, we show the total compu-
tation time of different solvers at different feature number
Mf , pose number Mp, point number N and initial pose
error. The results are shown in Fig. 9(c,f,i,l). As can be
seen, the time consumption of all methods increases with the
number of poses Mp (see (c)) and plane features Mf (see
(i)), which is reasonable since more poses or planes lead
to a higher optimization dimension or more number of cost
items, respectively. On the other hand, as the point number
N increases (see (f)), the method BALM (full) increases
rapidly since its time complexity involves O(N2) while the
rest methods (including ours) do not increase notably since
they do not need to evaluate every raw point. For the effect of
initial pose errors in (see (l)), they do not affect the solving
time significantly.

Relatively speaking, our method achieves the lowest total
computation time in all cases due to the small number of
iteration numbers (Fig. 8(c)) and low time-complexity per
iteration (Fig. 8(d)). The next efficient method is BAREG,
which has very low time-complexity per iteration due to the
empirical feature parameter fixation but significantly more
iteration numbers due to the same reason. Compared with
our method, PA (and PA (inner)) has similar time complexity
per iteration as discussed in Supplementary (Section IV), but
requires more iterations to converge. Hence their time costs are
a little higher than ours and BAREG. BALM requires more
iterations than our method and more time in each iteration
due to the enumeration of the sampled points. Collectively,
it leads to a computation time higher than our method and
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also BAREG and PA (and PA (inner)). The slow convergence
problem is more severe in EF, leading to an even higher
computation time. Finally, the most time-consuming method
is BALM (full), which, although has very small iteration
numbers, consumes large time in each iteration.

B. Real-world datasets

In this experiment, we conduct benchmark comparison on
three real-world datasets. The first dataset is “Hilti” [64] which
is a handheld SLAM dataset including indoor and outdoor
environments. We use the lidar data collected by Ouster OS0-
64 in the dataset. The ground-true lidar pose trajectory is
captured by a total station or motion capture system. The sec-
ond dataset “VIRAL” [65] is collected on an unmanned aerial
vehicle (UAV) equipped with two 16-channel OS1 lidars. One
lidar is horizontal and the other is vertical. We will use the
horizontal one in this experiment. The ground-true positions
are provided by a Leica Nova MS60 MultiStation tracking a
crystal prism on the UAV. The last dataset “UrbanLoco” [66]
is collected by a car driving on urban streets. The lidar is
a Velodyne HDL 32E and the ground truth is given by the
Novatel SPAN-CPT, a navigation system incorporating Real
Time Kinematic (RTK) and precisional IMU measurements.

Two preprocessing are performed for all sequences: motion
compensation and scan downsample. To compensate the points
distortion caused by continuous lidar movements within a
scan, we run a tightly-coupled lidar-inertial odometry, FAST-
LIO2 [19], which estimates the IMU bias (and other state
variables) and compensates the point motion distortion in real-
time. We kept all points in a scan whose distortion has been
compensated by FAST-LIO2 and discard the odometry output.
The processed data are then downsampled from the original 10
Hz to 2 Hz for all sequences. This is because the BA methods
need to process all scans at once, a 10Hz scan rate causes
prohibitively high computation load for all BA methods. The
downsampling is also similar to the keyframe selection in
common SLAM frameworks.

We compare our method with EF, BALM, PA, PA (inner)
and BAREG. Noticing that the computation time of BALM
(full) is prohibitively high due to the extremely large number
of lidar points, we hence remove it from the benchmark
comparison. For the rest methods, their solver parameters are
kept the same for all sequences with values detailed in previous
sections.

For feature association, we use the adaptive voxelization
proposed in BALM [32], which registers all points in the
world frame (using an initial trajectory) and recursively cuts
the space into smaller sub-voxels until the sub-voxel contains
only one feature (either plane or edge) that associates points
from different scans. EF did not address the feature association
problem and PA did not open relevant codes, so we use
this method for them too. BAREG used a similar adaptive
voxelization method but has its own implementation, so we
retain its own implementation. All feature associations have
the same set of parameters: the root voxel size L = 1 m
for “Hilti” and L = 2 m for “VIRAL” and “UrbanLoco”, the
maximum voxelization layer lmax = 3, the minimum number

Fig. 10. Point cloud map of the UzhArea2 sequence in “Hilti”. (a) registered
by ground-true pose trajectory. (b) registered by ground-true position with
rotation optimized by our BA method. (c) registered by poses fully optimized
by our BA method. (d), (e) and (f) points on one side wall in (a), (b) and (c),
respectively.

of points nmin = 20 for a feature test, and the feature test
thresholds γ = 1

25 .
The above feature association method is able to extract and

associate both plane and edge features. Since the other BA
methods, including EF, PA (and PA (inner)), and BAREG, are
only designed for plane features, we use only plane features
for them. For our method, it is applicable to both plane and
edge features, so we test two variants: the one with only
plane features, denoted as “Ours”, for comparison with other
BA methods, and the one with both plane and edge features,
denoted as “Ours (edge)”. Moreover, besides the default imple-
mentation of our method with double-precision numbers, we
test the stability of our method with single-precision floating
number implementation, denoted as “Ours(float)”. Note that all
other BA methods were implemented with double-precision.

In addition to the multi-view registration methods, we also
compare with classic pairwise registration methods, including
ICP, GICP, and NDT offered in PCL library. We run the
pairwise registration methods in an incremental manner, where
each new scan is registered and merged to previous scans
incrementally. To constrain the computation time, in each new
scan registration, only the last 20 scans are used. The pose
estimation from the ICP is then used as the initial trajectory
for feature association and optimization of the BA methods,
including EF, BALM, PA, PA (inner), BAREG, and ours.

1) Accuracy: Table II shows the ATE results. As can be
seen, our method consistently achieves the best results in all
19 sequences even with single-precision. The next accurate
method is PA (inner), PA and BAREG, followed by BALM
and EF. This trend is in great agreement with the results on
synthetic point cloud shown in Section VI-A-2. In particular,
our method achieves an accuracy within a few centimeters
in all sequences of “Hilti” and “VIRAL”, with only one
exception (i.e., UzhArea2), which will be analyzed later. The
centimeter level accuracy achieved by our method is at the
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TABLE II
ABSOLUTE TRAJECTORY ERROR (RMSE,METERS) FOR DIFFERENT METHODS.

Datasets Sequence ICP GICP NDT EF BALM PA PA BAREG Ours Ours Ours
(inner) (float) (edge)

Hilti

Basement1 0.058 0.063 0.076 0.047 0.042 0.038 0.036 0.040 0.0359 0.0361 0.0353
Basement4 0.084 0.089 0.098 0.071 0.058 0.048 0.045 0.054 0.0444 0.0448 0.0443
Campus2 0.105 0.109 0.124 0.080 0.066 0.058 0.054 0.063 0.0535 0.0530 0.0531
Construction2 0.108 0.104 0.113 0.086 0.068 0.060 0.059 0.063 0.0563 0.0577 0.0553
LabSurvey2 0.066 0.069 0.072 0.046 0.025 0.019 0.019 0.023 0.0185 0.0189 0.0181
UzhArea2 0.182 0.191 0.211 0.161 0.141 0.122 0.121 0.127 0.1205 0.1102 0.1171

VIRAL

eee01 0.159 0.163 0.172 0.102 0.073 0.052 0.040 0.061 0.0390 0.0401 0.0382
eee02 0.153 0.154 0.163 0.092 0.062 0.043 0.037 0.057 0.0362 0.0378 0.0356
eee03 0.171 0.175 0.180 0.113 0.081 0.056 0.053 0.068 0.0522 0.0548 0.0517
nya01 0.139 0.136 0.163 0.107 0.082 0.042 0.038 0.054 0.0368 0.0372 0.0362
nya02 0.160 0.159 0.124 0.097 0.067 0.050 0.048 0.061 0.0474 0.0472 0.0468
nya03 0.142 0.143 0.146 0.085 0.074 0.044 0.042 0.067 0.0418 0.0425 0.0413
sbs01 0.133 0.142 0.147 0.083 0.077 0.052 0.043 0.068 0.0397 0.0404 0.0385
sbs02 0.127 0.127 0.121 0.094 0.062 0.040 0.039 0.059 0.0378 0.0393 0.0377
sbs03 0.146 0.149 0.150 0.108 0.072 0.051 0.046 0.068 0.0440 0.0432 0.0427

UrbanLoco

0117 1.382 1.364 1.372 0.728 0.625 0.525 0.506 0.594 0.4964 0.5324 0.4956
0317 1.384 1.299 1.289 0.878 0.732 0.661 0.657 0.682 0.6491 0.6449 0.6488
0426-1 1.436 1.457 1.566 1.014 0.875 0.708 0.689 0.733 0.6891 0.7135 0.6886
0426-2 1.676 1.693 1.543 1.113 0.924 0.864 0.837 0.905 0.8322 0.8536 0.8223

Average 0.411 0.410 0.412 0.268 0.221 0.186 0.179 0.203 0.1775 0.1826 0.1763

TABLE III
OCCUPIED CELLS OF POINT-CLOUD MAP FOR DIFFERENT METHODS.

Datasets Sequence ICP GICP NDT EF BALM PA PA BAREG Ours Ours Ours
(inner) (float) (edge)

(inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (base)

Hilti

Basement1 +20300 +20954 +21354 +16692 +6285 +963 +332 +5864 +132 +257 391962
Basement4 +7826 +7283 +8178 +6683 +4762 +1028 +223 +3752 +112 +197 558823
Campus2 +14459 +15511 +21146 +8028 +2863 +977 +248 +2862 +68 -97 1319482
Construction2 +6235 +9371 +10032 +6397 +1789 +1047 +394 +986 +95 +181 979614
LabSurvey2 +1680 +3141 +6331 +5043 +1375 +410 +210 +1228 +83 +204 139682
UzhArea2 +9490 +9623 +10832 +6371 +2688 +734 +484 +2785 +102 +344 628951

VIRAL

eee01 +43185 +43439 +44578 +22731 +2564 +996 +392 +1321 +85 +289 1166482
eee02 +10339 +14573 +15848 +6985 +5938 +1538 +177 +5635 +91 +181 892168
eee03 +8584 +9419 +7418 +5720 +2016 +1823 +286 +1060 +193 +630 594921
nya01 +53004 +56370 +48669 +26087 +7368 +1717 +457 +4246 +46 +585 571365
nya02 +38056 +37718 +38435 +24752 +4710 +1980 +692 +3902 +238 +232 572960
nya03 +14282 +13896 +16325 +10688 +5922 +2178 +308 +2614 +172 +446 562583
sbs01 +10069 +12196 +16597 +9635 +4224 +2056 +1064 +3691 +319 +717 794228
sbs02 +16573 +16446 +21046 +10577 +9278 +3451 +488 +5238 +95 +502 808235
sbs03 +12257 +11154 +8974 +4682 +877 +1492 +687 +763 +481 +332 867174

UrbanLoco

0117 +46718 +47572 +50969 +16327 +7237 +3420 +1016 +5412 +98 +1987 1743775
0317 +37635 +33676 +41367 +20072 +13102 +4783 +1453 +8521 +103 +1011 1709823
0426-1 +9165 +10242 +13695 +9539 +2331 +1364 +525 +1026 +33 +1413 1632662
0426-2 +31870 +30461 +29568 +13827 +3428 +2021 +799 +4451 +472 +1252 2176302

Average +21617 +21002 +22703 +12146 +4671 +1788 +539 +3439 +159 +561 953215

same level of lidar point noises. Moreover, using only lidar
measurements, our method achieved an average accuracy of
4.2 cm on all VIRAL dataset sequences, which outperforms
the accuracy 4.7 cm reported in VIRAL-SLAM [65] that
fuses all data from stereo camera, IMU, lidar, and UWB. The
accuracy on “UrbanLoco” is lower (analyzed later) than other
datasets, but still outperforms the other BA methods. Finally,
we can notice that the BA methods (i.e., EF, BALM, PA, PA
(inner), BAREG, and ours) generally outperforms the pairwise
registration methods (i.e., ICP, GICP and NDT) due to the full
consideration of multi-view constraints.

When comparing among different variants of our method,

the single-precision implementation has a lower accuracy than
double-precision as expected, but it offers significant time
savings as discussed later. The incorporation of edge features
leads to no noticeable accuracy improvement. The accuracy
difference with and without edge features are as small as 6
mm. This is because in real-world point clouds, edge features
extracted based on local smoothness (e.g., [18]) are very noisy
because the laser pulse emitted by lidars can barely hit an edge
exactly due to the limited angular resolution. The situation
is further exacerbated when the edge is located at far or
when the lidar has increased laser beam divergence, which
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creates many bleeding points behind an edge and degrades
the edge points extraction more [67]. On the other hand, in
real-world environments, edge features are often created by
depth discontinuity at the edge of a foreground object, which
meanwhile makes a good plane feature, so adding the edge
feature does contribute many new effective constraints.

It is noted that BAREG has an accuracy obviously lower
than other methods (e.g., PA, PA (inner) and our method),
which disagrees with results obtained previously from the
synthetic data. The reason is that BAREG first extracts eigen-
vectors u1 and u2 (λ1 > λ2 > λ3) of points corresponding to
a plane feature in each local lidar scan. The two eigenvectors
were assumed to be normal to the true plane normal and hence
used to construct a cost item λ1 ∥Ru1 · n∥2 + λ2 ∥Ru2 · n∥2
in addition to the point to plane residual. The additional
cost item could bias the optimization results if the extracted
eigenvectors u1 and u2 are not accurate (i.e., they are not
really perpendicular to the true plane normal), a presumption
for the optimality of BAREG. Unfortunately, such optimality
presumption did not hold well in real-world datasets, where
the points density varies considerably: points on planes further
from the sensor exhibit sparser distributions compared to those
closer. This sparsity in distant planes leads to significant
errors in the calculation of u1 and u2. Moreover, in real-
world datasets, due to the imperfections of plane extraction,
the extracted planes utilized for BA optimization may not be
perfect planes (e.g., slightly curved walls or ground), and the
point noise cannot be guaranteed isotropic Gaussian noise. All
these factors contribute to errors in the extracted u1 and u2

and bias the optimization results.
Now we investigate the performance degradation on “Ur-

banLoco” and the sequence UzhArea2 in “Hilti” more closely.
For the “UrbanLoco” dataset, we found that the RTK ground-
truth had some false sudden jumps, which contributes the large
ATEs. This sudden jump may be caused by tall buildings in the
crowded urban area which lowers the quality of the ground-
truth. For the sequence UzhArea2, we register the point cloud
with the ground-true pose trajectory and compare it with the
point cloud registered with our BA method in Fig. 10. As
can be seen, with the ground-true pose, points on the side
wall are very blurry and points on the wall form a plane
with standard deviation up to 15.3 cm (Fig. 10(d)); with the
ground-true translation but with rotations optimized by our
BA method, the points on the side wall are much thinner and
form an apparent plane of standard deviation 6.8 cm (Fig.
10(e)); with poses fully optimized by our method, the points
are even more consistent and the standard deviation is 1.7 cm
(Fig. 10(f)). From these results, we suspect that the ground-
truth may be affected by some unknown errors (e.g., marker
position change during the data collection). Indeed, we found
similar problem on this sequence also occurred in other works
[68]. Moreover, the standard deviation of 1.7cm achieved by
our method is exactly the ranging accuracy of the lidar sensor,
which confirms that our method achieves a mapping accuracy
at the lidar noise level as if the sensor had no motion.

2) Mapping quality: A significant advantage of the BA
method is the direct optimization of the map consistency
(i.e., point-to-plane residuals). To evaluate the map quality

without a ground-true map, we adopt a method proposed
by Anton et al. [69]. The method cuts the space into small
cells and then counts the number of cells that lidar points
occupy. The less the occupied cells, the higher the map
quality. This indicator is intuitive: if points from different scans
are registered accurately, they should agree with each other
to the best extent, hence occupying the minimum possible
number of cells. Based on this method, Table III presents the
number of occupied cell with size 0.1 m. To better show the
difference among different methods, the number of occupied
cells are subtracted by our method for each sequence. We
show the number of occupied cells by our method and the
difference value of other methods. As can be seen, our methods
consistently achieved the best performance in all sequences
and the next best is PA (inner), PA, and BAREG. This trend
also agrees with the ATE results very well.

3) Computation time: Finally, we compare the computation
time. Since the pairwise registration methods, including ICP,
GICP, and NDT, perform repetitive incremental registration at
each scan reception, its computation time is very different from
the BA methods that perform batch optimization on all scans
at once. Therefore, we only compare the computation time of
BA methods. Fig. 11 shows the convergence of all methods
and Table IV shows the total optimization time. As can be
seen, when all using double-precision, our method consumes
the least computation time, about one fourth of the BAREG,
one sixth of PA and PA (inner), one eighth of BALM, and one
twentieth of EF. The overall trend agrees well with the results
on synthetic point cloud in Section VI-A-3 with explanations
detailed therein. Besides, our single-precision implementation
reduces 40% further optimization time while still outperform-
ing the other BA methods as detailed in previous section.
Finally, the inclusion of extra edge features increases the
number of cost items, resulting in an increased optimization
time.

4) Plane merging: We further evaluate the performance
of all BA methods at different number of plane features.
To change the number of planes in real-world datasets, we
develop a merging procedure in addition to the adaptive
voxelization introduced in the experiment setup above. Starting
from the root voxels, the adaptive voxelization recursively
cuts the space into smaller sub-voxels until the sub-voxel
contains only one plane feature. Then the merging process
merges planes in small sub-voxels into larger planes. The
merging proceeds at different degrees denoted by i (see Fig.
12), where a plane is merged with planes within up to i − 1
layers of neighboring root voxels. In the merging process, the
two candidate planes Pi and Pj must satisfy

∣∣∣ ⟨ni,nj⟩
∣∣∣ < ϵ1 (55)

d
∣∣∣ ⟨ci − cj ,ni⟩ −

π

2

∣∣∣ < ϵ2

∣∣∣ ⟨ci − cj ,nj⟩ −
π

2

∣∣∣ < ϵ2 (56)

where n and c are the normal vector and center of a plane
respectively, symbol ⟨·⟩ denotes the angle of two vectors, ϵ1 =
ϵ2 = 10◦ are two constants. If the condition is not satisfied,
the neighboring plane will not be merged.
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Fig. 11. Point-to-plane distance versus optimization time in real-world datasets including Hilti, VIRAL, and UrbanLoco. All methods have the same initial
pose (hence the same initial point-to-plane distance) and have their point-to-plane distance all normalized by the initial values.

Given a merging degree i, we repeatedly merge planes
starting from a seed plane randomly selected from the plane
list. A merged plane will be removed from the list to avoid
duplicate merging. Such procedure produces a new list of
planes whose size are at most i · L with L = 1 or 2 m being
the root voxel size. Larger merging degree i will lead to fewer
number of planes but each with larger sizes.

Since the experimental results in the Sec. VI-A and VI-B
have proved the PA with inner iteration outperforms the origi-

nal PA, we use the PA with inner iteration by default. The ac-
curacy and computation time of all BA methods (including EF,
BLAM, PA (inner), BAREG, and ours) at different merging
degree i are shown in Fig. 13. The plane merging at different
degrees leads to different computation time, so the time cost
in the plot is the total time including adaptive voxelization,
plane merging (if applicable), and BA optimization. As can
be seen, our method consistently exhibits the highest accuracy
and lowest time cost for all numbers of planes. Moreover,
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Fig. 12. Plane merging at degree i: “i = 1” indicates only merging the
planes in the same root voxel. “i = 2” means merging maximum layers to
P2 and “i = 4” means merging maximum layers to P4. “i = ∞” means no
boundary layer is specified, the merging can go as far as possible.

as the merging degree i increases, the number of planes is
decreased accordingly, leading to fewer planes that also reduce
the optimization time of all BA methods. The reduction in
optimization time is often larger than the time increment for
merging, hence the total computation time still decreases with
the merging degree. On the other hand, the pose RMSE of
all methods all increase with the merging degree. This is
because a larger merging degree introduces more bias to the
optimization by merging planes not exactly on the same plane
(e.g., slightly curved ground).

VII. APPLICATIONS

Bundle adjustment is the central technique of many lidar-
based applications. In this section, we show how our bundle
adjustment method can effectively improve the accuracy or
computation efficiency of three vital applications: lidar-inertial
odometry, multi-lidar calibration, and global mapping. Con-
strained by the page limit, details about the incorporation of
bundle adjustment method in these applications and its effec-
tiveness in real-world experiments are presented in Section I
of the supplementary materials [59].

VIII. DISCUSSION

Here we discuss the efficiency, accuracy, and extendability
of the proposed bundle adjustment method.

A. Efficiency

Our method achieved lower computation time than other
state-of-the-art counterparts. The efficiency of our method are
attributed to three inter-related and rigorously-proved tech-
niques that make fully use of the problem nature and lidar
point cloud property. The first technique is the solving of
feature parameters in a closed-form before the BA optimiza-
tion. It allows the feature parameters to be removed from the
optimization, which fundamentally reduces the optimization
dimension to the dimension of the pose only, a phenomenon
that did not exist before in visual bundle adjustment problem.
The second technique is a second-order solver which fits the
quadratic cost function naturally and leads to fast convergence
in the iterative optimization. This is enabled by the analytical
derivation of the closed-form Jacobian and Hessian matrices
of the cost function. The third technique is the point cluster,
which enables the aggregation of all raw points without enu-
merating each individual point in neither of the cost evaluation,
derivatives evaluation, or uncertainty evaluation. Collectively,
these three techniques lead to an BA optimization with much
lower dimension and time complexity.

B. Accuracy

Benefiting from the point cluster technique, our proposed
method is able to exploit the information of all raw point
measurements, achieving high pose estimation accuracy (a
few centimeters) at the level of lidar measurement noise.
Optimization from the raw lidar points also enables the
developed method to estimate the uncertainty level of the
estimated pose, which may be useful when this information is
further fused with measurements from other sensors (e.g., IMU
sensors). Moreover, by minimizing the Euclidean distance
from each raw point to the corresponding feature, our method
can reinforce the map consistency in a more direct manner
than conventional pose graph optimization. While at a higher
computation cost (due to the more complete consideration of
features co-visible in multiple scans), it considerably improves
the mapping accuracy which is important for mapping appli-
cations. Due to this reason, our method is particularly useful
for accuracy refinements from a baseline pose trajectory that
can be obtained by an odometry or a pose graph optimization
module. The second order optimization provides very fast
convergence when the solution is near to the optimal value,
preventing premature solutions.

C. Extendability

As a basic technique for multiple scan registration, our
proposed method can be easily be integrated with other
formality of data, such as images and IMU measurements, by
incorporating visual bundle adjustment factors and IMU pre-
integration factors [62] in the optimization. Moreover, besides
the frame-based pose trajectory, which attaches each frame
an independent pose to estimate, our method can also work
with other forms of pose trajectories, such as continuous-
time trajectories based on Splines [9, 70] or Gaussian Process
models [71, 72], which have the capability to compensate
the in-frame motion distortion. According to the chain rules,
the derivatives of the BA cost with respect to the trajectory
parameters will consist of two parts: the first is the derivative
of the BA cost with respect to the pose of each point cluster
as derived in this paper, and the second part is the derivatives
of the pose with respect to the trajectory parameters, which
depends on the specific trajectories being used.

IX. CONCLUSION

This paper proposed a novel bundle adjustment method
for lidar point cloud. The central of the proposed method
is a point cluster technique, which aggregates all raw points
into a compact set of parameters without enumerating each
individual point. The paper showed how the bundle adjustment
problem can be represented by the point cluster and also
derived the analytical form of the Jacobian and Hessian
matrices based on the point cluster. Based on these derivations,
the paper developed a second-order solver, which estimates
both the pose and the pose uncertainty. The developed BA
method is open sourced to benefit the community.

Besides the technical developments, this paper also made
some theoretical contributions, including the formalization of
the point cluster and its operations, revealing of the invariance
property of the formulated BA optimization, the proof of
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Fig. 13. The ATE and time cost of our method when merging planes at different degrees. The number “0”, “1”, “2”, “4”, “∞” on the X axis denotes the
merging degree. The larger number in the parentheses below them are the number of planes corresponding to the merging degree.

null space and sparsity of the derived Jacobian and Hessan
matrices, and the time complexity analysis of the proposed
BA method and its comparison with others. These theoretical
results serve the foundation of our developed BA techniques.

The proposed methods and implementations were exten-
sively verified in both simulation and real-world experiments,
in terms of consistency, efficiency, accuracy, and robustness.
In all evaluations, the proposed method achieved consistently
higher accuracy while consuming significantly lower compu-
tation time. This paper further demonstrated three applications

of the BA techniques, including lidar-inertial odometry, multi-
lidar calibration, and high-accuracy mapping. In all applica-
tions, the adoption of BA method could effectively improve
the accuracy or the efficiency.

In the future, we would like to incorporate the BA method
more tightly to the above applications and beyond. This would
require more thorough considerations of many practical issues,
such as point cloud motion compensation, removal of dynamic
objects, tightly-fusion with other formality of sensor data (e.g.,
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TABLE IV
OPTIMIZATION TIME FOR DIFFERENT METHODS

Datasets Sequence EF BALM PA PA (inner) BAREG Ours (float) Ours (edge) Ours

Hilti

Basement1 297.68 145.72 129.39 106.08 52.99 7.20 12.07 11.94
Basement4 231.37 151.45 135.88 111.39 65.67 12.72 17.25 17.01
Campus2 989.37 352.72 290.78 261.39 191.87 27.09 40.02 39.95
Construction2 1415.18 412.00 335.70 313.23 231.48 33.04 47.34 47.12
LabSurvey2 244.86 42.47 31.63 25.67 14.59 3.39 7.89 7.64
UzhArea2 153.43 20.25 17.10 12.60 10.60 2.16 4.32 4.08

VIRAL

eee01 1162.25 342.60 259.95 227.86 175.83 33.01 56.21 55.22
eee02 968.90 202.98 171.41 155.86 110.31 14.06 33.21 32.34
eee03 89.45 71.56 66.11 59.02 44.10 3.27 8.17 7.89
nya01 972.81 438.09 364.18 351.14 276.37 31.19 51.78 51.01
nya02 1307.53 468.30 422.34 394.28 268.28 30.04 65.69 65.19
nya03 1134.21 493.29 479.64 385.79 287.19 39.26 67.73 67.26
sbs01 818.50 291.77 278.02 200.21 177.46 21.82 38.93 37.80
sbs02 738.91 304.65 268.42 201.61 193.68 27.45 42.54 41.35
sbs03 855.22 377.82 312.31 254.52 237.45 23.45 52.05 51.55

Urbanloco

0117 224.73 59.28 58.18 52.80 39.08 8.73 9.92 9.60
0317 380.98 92.11 87.48 70.35 40.25 8.89 13.20 12.38
0426-1 138.75 33.91 32.92 22.90 12.29 3.70 5.77 4.31
0426-2 174.40 117.36 108.79 85.26 80.44 14.47 17.92 17.34

Average 647.29 232.54 202.64 171.11 132.10 18.15 31.16 30.58

IMU, camera) and module (e.g., loop closure).
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