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A low-power vertical dual-gate neuro-
transistor with short-term memory for high
energy-efficient neuromorphic computing

Han Xu1,2,3,4, Dashan Shang 1,2,3 , Qing Luo 1,2,3, Junjie An1,2, Yue Li1,2,3,
Shuyu Wu1,2,3, Zhihong Yao1,2, Woyu Zhang1,2,3, Xiaoxin Xu1,2,3,
Chunmeng Dou1,2,3, Hao Jiang5, Liyang Pan4, Xumeng Zhang 5, Ming Wang 5,
Zhongrui Wang 6, Jianshi Tang 4 , Qi Liu1,2,5 & Ming Liu 1,2,5

Neuromorphic computing aims to emulate the computing processes of the
brain by replicating the functions of biological neural networks using elec-
tronic counterparts. One promising approach is dendritic computing, which
takes inspiration from the multi-dendritic branch structure of neurons to
enhance the processing capability of artificial neural networks.While there has
been a recent surge of interest in implementing dendritic computing using
emerging devices, achieving artificial dendrites with throughputs and energy
efficiency comparable to those of the human brain has proven challenging. In
this study, we report on the development of a compact and low-power neu-
rotransistor based on a vertical dual-gate electrolyte-gated transistor (EGT)
with short-termmemory characteristics, a 30 nm channel length, a record-low
read power of ~3.16 fW and a biology-comparable read energy of ~30 fJ.
Leveraging this neurotransistor, we demonstrate dendrite integration as well
as digital and analog dendritic computing for coincidence detection. We also
showcase the potential of neurotransistors in realizing advanced brain-like
functions by developing a hardware neural network and demonstrating bio-
inspired sound localization.Our results suggest that the neurotransistor-based
approach may pave the way for next-generation neuromorphic computing
with energy efficiency on par with those of the brain.

The human brain possesses unparalleled cognitive capabilities, occu-
pies a small footprint (roughly the size of a football; ~1200−1700 cm3,
depending on individuals), and yet consumes very little power
(approximately 20W). Neuromorphic computing seeks to emulate the
structure and functions of the human brain using electronic counter-
parts, thus replicating its area- and energy-efficiency1–5. The human

brain is a biological neural network (BioNN) composed of neurons,
dendrites, and synapses, which has inspired the development of arti-
ficial neural networks (ANNs) that have had transformative impacts on
computer vision, speech recognition6, and bioinformatics7. Nowadays,
ANNs predominantly operate on digital hardware, which is not
improving at an exponential pace anymore due to the slowdown of
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Moore’s Law, limiting the ability to make increasingly complex ANNs
without increasing compute times. Moreover, the von Neumann bot-
tleneck, an inherent limitation of digital hardware, further hinders the
execution efficiency of ANNs. Emerging non-volatile (or long-term
memory, LTM) memories and their crossbar integration have shown
advantages as hardware synapses8–15. Nevertheless, the performance of
ANNs still lags behind that of the brain, because the brain’s computing
power largely relies on the complex chemical cascades that occur
within neuron cells16. This necessitates amore faithful emulationof the
structure and dynamic behaviors of neurons to unleash the through-
put and efficiency of neuromorphic computing17,18.

To address this grand challenge, there is a tremendous effort
underway to devise new building blocks for neuromorphic systems.
For instance, basic neural functions, such as integration-and-fire, have
been implemented on short-term memory (STM) devices19–23. In
BioNN, a neuron interacts with over 1000 adjacent neurons through its
dendrites, processing massive spatiotemporal signals through its
dendrite24,25. This dendritic computing paradigm endows the neuron
with complex behaviors and computing power26,27. For example, there
is evidence that dendritic computing is responsible for the sound
localization capabilities of the brain28. Therefore, to emulate neural
computing with new fidelity, there has been a recent surge of interest
in devices that have both STM and multi-dendritic structures9,29.

Neurotransistors are among the devices that have demonstrated
important computational functions of neurons19,20,22,23. For example,
a neurotransistor derived from a proton-conducting graphene
oxide electric-double-layer transistor (EDLT), with a footprint of
80 µm×240 µm (channel length × channel width) and a read power of
tens of nW,mimicked the dendrite integration, orientation tuning, and
gain control of neurons19. Moreover, a multi-terminal neurotransistor
that can emulate the dendritic discrimination of neurons for different
spatiotemporal signals was also developed from EDLT, which employs
coplanar source-drain electrodes and gate and has a closest gate-to-
channel distance of 565 µm20. The energy consumption of this neuro-
transistor in response to a single gate voltage pulse is approximately
1 nJ. However, these three-terminal or multi-terminal devices, which
emulate how neurons compute, suffer from a large footprint, high
energy consumption, and poor scalability, which significantly under-
mine their advantages in area and energy efficiency.

In this study, we employed material and structure engineering to
develop a vertical EGT (V-EGT) based neurotransistor that simulta-
neously exhibits STM, an ultra-short channel (30 nm), low energy
consumption (read power ~3.16 fW, read energy ~30 fJ), and dual gates,
making it an ideal choice for hardware implementation of dendritic
computing, such as dendrite integration, digital and analog coin-
cidence detection. Moreover, by integrating neurotransistors into a
prototypical hardware BioNN, we demonstrated the ability to emulate
the sound localization function of the brain, including sound azimuth
and distance recognition. Our small size, low power neurotransistor,
and the proof-of-concept neural network for sound localization high-
light their potential in developing neuromorphic systems that can
achieve the energy-efficiency of the brain.

Results
Figure 1a depicts the schematic of the fabrication process flow of
V-EGT, which comprises three main steps. The first step (i) involves
electrode/spacer/electrode/spacer stack deposition, the second step
(ii) is one-step etching to the substrate, and the third step (iii) is
channel/electrolyte/gate stack deposition. Thanks to the exposed
vertical sidewall, constructingmulti-gate V-EGTs is easily achievable by
depositing multiple channel/electrolyte/gate stacks side-by-side along
the vertical sidewall (the right half of Fig. 1a iii), which is a challenging
task for planar EGTs. Furthermore, this V-EGT fabrication process
enables an ultra-short-channel without significantly increasing the
fabrication complexity compared to planar EGT (Supplementary

Fig. 1). Our V-EGTs are designed to be compatible with CMOS pro-
cesses, making them particularly suitable for large-scale, low-cost
fabrication (Supplementary Fig. 2). This is due to the absence of
organic/2D channels and liquid/gel-like electrolytes.

The power consumption bottleneck in current neurotransistors is
caused by the relatively high conductivity of semiconductor channel
materials (such as p-Si30, ITO31, IZO32, IGZO33, ZnO34, and In2O3

35) or
lithium-ion battery electrode materials (such as LiCoO2

36,37 and
LixTiO2

38). In our previous work, we demonstrated that the simple
binary metal oxide Nb2O5

39,40 is a promising solution to meet the
requirement of high channel resistivity. Additionally, the stable ther-
modynamic properties of Nb2O5 also contribute to stable and reliable
electrical operations41. It should be noted that although VO2

42,
SrCoOx

43, and SmNiO3
44meet the high channel resistivity requirement,

they are less favorable than Nb2O5 because VO2 is toxic, and SrCoOx

and SmNiO3 are complex in their compositional elements. To achieve
all-solid-state neurotransistors, LixSiO2 was utilized as the solid elec-
trolyte, which can also be conveniently deposited by physical vapor
deposition (PVD). Although there exists an incompatibility issue
between lithium electrolyte materials and CMOS technology, the
industry is actively exploring solutions to this challenge45.

The device structure was examined using cross-sectional trans-
mission electron microscopy (TEM), confirming the vertical structure
of our device (Fig. 1b). In contrast to the single-layer vertical device
depicted in Fig. 1a, a total of four layers of electrode/spacer bilayer
were deposited in this work, essentially creating a bilayer V-EGT
(Supplementary Fig. 3). The spacer and electrode have thicknesses of
30 and 20nm, respectively, resulting in a minimum channel length of
30 nm. This is a key feature that highlights the main difference
between V-EGTs and planar EGTs. Specifically, V-EGTs address the
issue of device scaling that has hindered planar EGTs by ingeniously
defining the channel length of EGTs with the thickness of thin films.
Furthermore, the vertical stackability of V-EGTs, made possible by the
easy cycling deposition of electrode and spacer, endows themwith the
merit of variable channel length, whichwill be discussed in detail later.
The multi-gate nature of V-EGTs also provides an opportunity to
implement various functionalities that exist in the brain, further
enhancing the superiority of V-EGTs over planar EGTs.

Elemental mapping (Fig. 1c) corresponding to Fig. 1b confirms the
presence and spatial distribution of the Nb2O5 channel, LixSiO2 elec-
trolyte, TiN source-drain, Ti/Au gate, and SiO2 spacer, revealing the
sharp boundaries between them (Fig. 1c and Supplementary Fig. 4).
The zoomed-in high-resolution cross-sectional TEM image illustrates
the vertical structure of a single V-EGT (Fig. 1d). Unlike planar EGTs
with exposed source/drain electrodes, the 3D stacked TiN electrodes
of different layers in the TEM are interfaced with an array of non-
overlapping probing pads for electrical testing. In addition to mini-
mizing the EGT channel length by adopting a vertical structure,
the channel width of the EGT was also scaled down as much as
possible, resulting in the smallest EGT (channel length × channel
width = 30nm× 2 µm=0.06 µm2). An elemental line scan along the
V-EGT channel/electrolyte/gate stack direction (dashed line in Fig. 1d)
indicates that our V-EGT has a channel thickness of less than 10 nmand
an electrolyte thickness of less than 20nm (Fig. 1f). Therefore, our
V-EGT not only features a significantly reduced horizontal dimension
(down to 30nm) but also a vertical dimension (down to 20nm).

To highlight the advantages of our V-EGT, we have compared it
with recently reported V-EGTs (Supplementary Table 1)46–50. Our V-EGTs
demonstrate three key advances. First, we have optimized the etching
process of the vertical sidewalls, resulting in steeper and smoother
sidewalls (Fig. 1d). Second, we have demonstrated dual-gate V-EGTs.
Lastly and most importantly, our V-EGTs employ different types of
electrolytes, enabling STM electrical characteristics. The compact dual-
gate V-EGT, with STM and ultra-low power, is an ideal building block for
high area- and energy-efficient neuromorphic systems.
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Like planar EGTs, V-EGTs are also operated by biasing both the
gate and drain while grounding the source (Fig. 2a, b). Furthermore,
both V-EGTs and planar EGTs rely on the migration of electrolyte ions,
specifically the hybrid electric double layer and ion intercalation/
deintercalation mechanism. This unique feature of EGT (Supplemen-
tary Fig. 5)51 is also the origin of the observed coexistence of STM and
LTM in our case, with the former dominating (Fig. 2c and Supple-
mentary Fig. 6). Regarding the obvious STM of our V-EGT, Li’s analysis
on the correlation between the retention and device size of Li-ion-
based EGTs (Li-EGTs) can be applied. According to Li’s analysis, the
retention (STM) of Li-EGTs decreases (increases) with decreasing
channel area52. Specifically, the retention of EGT depends on the dis-
charge speed of EGT in the gate-source circuit after experiencing a
gate pulse (τRC = R × C) from a circuit perspective. Here, R comprises
the EGT electrolyte resistance and the external resistance in series with
EGT, and C contains the gate and channel capacitance of EGT (Fig. 2d
and Supplementary Fig. 7)53. For Li-EGT that is in series with an elec-
tronic switch (1S1E), the R in the discharge circuit ismainly determined
by the OFF state resistance of the electronic switch, which does not
change with the size of Li-EGT. However, the C of the discharge circuit
decreaseswith the reduction of Li-EGT size. Therefore, the retention of
1S1E decreases with decreasing channel area (Fig. 2e). Although this
situation applies to the retention of 1S1E or Li-EGT in open circuits, it
remains true for our case or Li-EGT in short circuits. This is because the

short-circuit condition has a smaller discharge load resistance than the
open-circuit condition (which only contains the electrolyte resistance
of Li-EGT and no external resistance), resulting in a faster discharge
speed and more obvious STM.

Benefiting from the stackability of our V-EGTs, the channel length
canbe flexibly tuned. For instance, EGTswith channel lengths of 30 nm
(using the first and second layers of TiN electrodes), 80 nm (using the
first and third layers of TiN electrodes), and 130 nm (using the first and
fourth layers of TiN electrodes) were demonstrated by selecting dif-
ferent source-drain electrodes. All of them exhibited typical
electrolyte-gated behaviors (Supplementary Fig. 8). We also examined
the symmetry of the source-drain electrodes and observed that the
transfer characteristics of different source-drain electrode combina-
tions were consistent, without any impact from vertical sidewall tilt
(Supplementary Fig. 9).

Figure 2f and g display the current-time response of V-EGT under
pulses of varying amplitudes and widths. Regardless of the amplitude
or width of the gate pulse, the channel current of V-EGT decays over
time after the pulse excitation, indicating the presence of STM. Fur-
thermore, as the pulse amplitude or width increases, the device exhi-
bits a gradually increasing residual channel current. We quantified the
change in conductance as ((G1-G0)/ G0) × 100%, where G0 represents
the channel conductance before the pulse application and G1 is either
the channel conductance right after the pulse application or after 30 s,
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corresponding to the STM and LTM, respectively. Figure 2h and i show
the conductance change ratios of V-EGT as a function of the write
voltage pulse amplitude (Vw) and width (tw), respectively. When
Vw ≤ 3 V (tw = 1ms) or tw < 1ms (Vw = 3.5 V), the LTM conductance
change ratio is 0. As the amplitude andwidth of thewrite voltage pulse
increase, the LTM becomes increasingly obvious. To enable the V-EGT
to work as an artificial neuron, we engineered the amplitude andwidth
of the gate voltage pulses to produce nearly complete STM.

The energy consumption of EGTs during write and read opera-
tions is a crucial factor to consider. Since the gate-source path of EGTs
is capacitive in nature, the read operation dominates the energy
consumption54. While the read operation of EGTs typically involves
applying a DC voltage to the drain, resulting in a finite read energy
consumption being unavailable, the read power (PR = VR × IR) is a more
meaningful metric to evaluate EGT performance.

Planar EGTs have a larger channel length (Supplementary Fig. 10),
leading to a higher read voltage and, consequently, higher read power
consumption. Conversely, V-EGTs can significantly reduce their read
voltage and readpower consumption because the channel length is no
longer limited by lithography technology but instead by material
thickness (Fig. 3a). With the channel thickness, width, and current
remaining constant, VD is calculated to decrease linearly with the
decrease in channel length (Fig. 3b). Therefore, V-EGTs can achieve a
substantial reduction in their read voltage, and subsequently, their

read power consumption. In this study, we demonstrated an ultra-low
read voltage of 0.1mV for a 30 nm channel length V-EGT (Fig. 3c).
Moreover, the channel current was found to be obviously larger than
the gate leakage at VD =0.1mV (~150 pA Vs. ~50 pA), thereby validating
the effectiveness of the 0.1mV read voltage (Fig. 3d). We also com-
pared the ultra-low read voltage of our V-EGT with other EGTs (Sup-
plementary Fig. 11). While some EGTs have achieved read voltages of
0.1 or even 0.01mV, they consist of organic channel and liquid elec-
trolyte, posing difficulties in large-scale manufacturing. In contrast,
our V-EGTs not only offer easy and cost-effective fabrication at a large-
scale but also possess the lowest read voltage (0.1mV) among all
inorganic all-solid-state EGTs54–63. Furthermore, reducing the gate
width of the EGT can further decrease the read current of the device,
thereby reducing the read power consumption (Fig. 3e and Supple-
mentary Fig. 12).

To calculate the read power of V-EGTs, we characterized the
current-time response of our devices upon voltage pulses at different
read voltages. The curve corresponding to the 1mV read voltage is
clean and free of fluctuation (Fig. 3f). Furthermore, we evaluated the
readpower of the device (Fig. 3g). Thanks to the small readvoltage and
the resulting small read current, we achieved a minimum measured
read power of 110 fW (Vw (4 V, 10ms), Vr (0.5mV)). Moreover, the use
of narrower write voltage pulses and smaller read voltages leads to a
read power of the V-EGT in the fW-level, specifically ~3.16 fW
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(Supplementary Fig. 13). To the best of our knowledge, such a read
power is the lowest among various EGTs (Fig. 3h). In addition to ana-
lyzing the read power, we have also computed and compared the read
energy consumption of our devices with that of others. Initially, we
formulated an equation to calculate the energy of both the STM and
LTM EGTs. For STM EGTs, we estimated the time for calculating the
read energy consumption by measuring the time required for the
decay of STM EGTs from the maximum channel current to the initial
current after undergoing a pulse. To ensure a fair comparison with
STM EGTs, we used the write-read delay of LTM EGTs as the time for
calculating read energy consumption (refer to Supplementary Note 1
for further details). We then computed and compared the read energy
consumption of various EGTs (Supplementary Table 2 and Fig. 3i).
Despite the relatively long decay time of our V-EGT (~10 s), we still
achieved a read energy consumption of approximately 30 fJ due to the
ultra-low read power, which is comparable to the energy consumption
of biology (1–10 fJ). By expediting the decay process of V-EGT (refer to
Supplementary Note 2 for further details), it is possible to decrease the
decay time and hence the read energy consumption of the V-EGT.With
a projected decay time of 10ms, the V-EGT could potentially achieve a
read energy of approximately 30 aJ (Fig. 3i). Apart from the read
energy, write energy is also an important aspect of EGT’s energy pro-
file, although it can be neglected due to the minimal gate leakage
current. The key challenge in write energy estimation is to measure

accurately the write current. By assuming an average gate leakage
current of 50 pA (the maximum value observed in Fig. 3d), based on
Supplementary Fig. S13c, we have estimated the write energy of V-EGT
(275 fJ = 50 pA× 5.5 V × 1ms) and compared it with other literatures
(Supplementary Table 3).

In addition to low energy consumption, the vertical structure of
V-EGTs also offers inherent advantages in device density. Compared
with planar EGTs, V-EGTs boast a 2.5-fold increase in device area
(4F2 vs. >10F2, where F refers to the feature size) (see Supplementary
Note 3 for more discussion on the calculation of V-EGT device foot-
print in array configuration)49. Furthermore, when the vertical stack-
ability of V-EGTs is exploited in the future, their dimensions could be
further reduced by a factor of N, where N represents the number of
V-EGT layers64. It is important to note that the significantly decreased
channel length of V-EGTs will not only result in a substantial reduction
in the read voltage, but also facilitate the potential enhancement of the
write voltage and speed of the EGT. Through an analysis of the current
composition of EGT and the interdependence between them65, it was
discovered that the electrolyte thickness has the ability to synergisti-
cally scale with the channel length of EGT (Supplementary Fig. 14a–c).
Thanks to the significantly reduced channel length of V-EGT, the
electrolyte thickness of V-EGT is thinner than that of planar EGTs
(~20 nm vs. ~50 nm for planar EGTs), which consequently improves the
write voltage and speed (~5-fold increase compared to planar EGTs)
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(Supplementary Fig. 14d, e). Ultimately, the overall scaling down of
V-EGT (including the channel length and width, as well as the elec-
trolyte thickness) results in concurrent low write and read voltages
(Supplementary Fig. 15).

The compact size and multi-gate structure, along with the fea-
tures of STM and low energy consumption, make our V-EGTs highly
suitable for use ashigh-density and low-power artificial neurons. In this
regard, we first demonstrate that V-EGTs and biological neurons
exhibit similar relationships that govern the input-output signals by
using a single dual-gate V-EGT (Fig. 4a). In this setup, with the gate of a
dual-gate V-EGT being considered as the dendrite of a neuron and the
drain of a dual-gate V-EGT as the axon of a neuron, our device can
mimic signal propagation pathways in the brain. Furthermore, the
short-term response of the channel current to gate voltage pulses and
the integration function of the drain current to multiple gate voltage
pulses reflect the short-term information processing capability of the
neuron and the dendrite’s spatial integration of multiple input signals.
Figure 4b illustrates the electrical testing setup for the dual-gate
V-EGT, which is used to characterize the artificial neuron properties of
our device. Firstly, we examined the dendrite integration of our

dual-gateV-EGTneurons (Fig. 4c). Since the channel current controlled
by each gate is independent, the resulting dendrite integration is lin-
ear, i.e., Ids = Ids1 + Ids2. It should be noted that although the dendrite
integration of our dual-gate V-EGT artificial neurons lacks the non-
linearity observed in BioNNs, this linear integrationmechanism is well-
suited for scenarios requiring precise computations, such as logical
operations. In biology, different dendrites of a neuron form distinct
synaptic weights with neighboring neurons. However, for simplicity,
we assume here that each dendrite of a neuron shares the same signal-
receiving capacity. Correspondingly, each gate of the dual-gate V-EGT
should also have equal ability to regulate the channel current. To verify
this, we investigated the consistencybetweendifferent gates.Owing to
the highly uniform etching and thin-film deposition processes, the
electrical properties of different gates in the dual-gate V-EGT exhibited
good consistency when each gate was controlled individually (Sup-
plementary Fig. 16). Note that, the dual-gate V-EGT devices are not
exact the same to the biological neurons. The different gate stacks of
the devices have the same synapticweight, while different dendrites of
biological neurons inherently have different synaptic weights. This
characteristic of biological neurons can be achieved indirectly by
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applying different pulses to each gate of the dual-gate V-EGT. (Sup-
plementary Fig. S17). One possibleway to achieve the synaptic weights
with inherent difference is separately depositing the different channel/
electrolyte/gate stacks of the dual-gate V-EGT with different material
dimensions.

In addition to realizing the dendrite integration function of neu-
rons, our dual-gate V-EGT can also perform AND logic by utilizing the
difference between the drain current when the two gates act simulta-
neously and separately. This functionality enables the realization of the
coincidence detection function of neurons. To achieve this, a current
threshold Ith is set, and the drain current is only larger than Ith when
both gates act simultaneously (Fig. 4d). Vice versa, the current is
smaller when the gates act separately, which implements the AND
logic, as illustrated in Fig. 4e. Interestingly, the peak channel current
varies with the time interval between voltage pulses applied to gate 1
and 2, gradually decreasingwith the increase of the time interval. Here,
we use high1, high2, and high3 to represent the peak of channel cur-
rents corresponding to Δt = 0, 1, and 7 s, respectively, where high1>-
high2>high3. This characteristic can be utilized for coincidence
detection by biological neurons in response to two events. For biolo-
gical neurons, receiving two input signals simultaneously results in the
largest output signal, while receiving them separately results in a
weaker output signal. In order to improve the coincidence detection
function of our dual-gate V-EGT artificial neurons and apply it to sound
distance detection (which will be discussed later), we have expanded
the definition of neuronal coincidence detection by adopting a new
physical quantity to benchmark the degree of coincidence of two
events (Fig. 4f). Specifically, we define the interval between two events
asΔt, whereΔt canbeany real number.With thedual-gate paired-pulse
facilitation (PPF) characteristics of our device, coincidence detection
can be achieved in other situations (e.g. Δt = 0.1, 0.5, and 2 s). To dif-
ferentiate it from the PPF of a single-gate EGT, we refer to the PPF of
dual-gate V-EGT as dual-gate PPF, and an example waveform of dual-
gate PPF is shown in the inset. The intensity of such coincidence
detection can change continuously (non-linear decay) (Fig. 4f), which
is crucial for sound distance detection.

To better demonstrate the coincidence detection capabilities of
our device for sound distance detection, we present the A2/A1 values
obtained from a series of input pulses with different time intervals
(Δt = 0.1, 0.5, 2, and 7 s) in Fig. 4g. By defining a coincidence threshold
of Δt = 0.1, 0.5, and 2 s respectively, and a non-coincidence threshold
of Δt = 7 s, we were able to observe coincidence detection similar to
that observed in biological neurons, as indicated by the vertical trend
in Fig. 4g. Specifically, we observed a significantly larger coincidence
degree at Δt = 0.1, 0.5, or 2 s compared to that at Δt = 7 s, which is
indicative of digital coincidence detection. In addition, by varying the
criteria of coincidence detection from Δt = 0.1 s to Δt = 0.5 s and Δt =
2 s along the horizontal direction of Fig. 4g, we observed a gradual
decrease in the A2/A1 coincidence degree for the corresponding coin-
cidence detection, which is a manifestation of analog computing-
based coincidence detection (refer to Supplementary Note 4 for fur-
ther details).

The neuronal properties of our device facilitate the reemergence
of complex brain functions. Sound localization serves as an example.
By defining the front of the human eye as the reference direction, the
angle between the propagation direction of sound and the normal is
referred to as the azimuth of sound. When sound is emitted, the pre-
sence of the azimuth generates a sound path difference, causing the
left and right ears to perceive the sound at different times (interaural
timedifference, ITD) (Fig. 5a). As ITD and sound path difference have a
one-to-one correspondence, the brain can determine the sound azi-
muth through ITD (Fig. 5b).

To replicate the sound localization abilities of the brain accu-
rately, it is essential to predict the distance of the sound source in
addition to recognizing the sound azimuth. For instance, consider the

human brain’s ability to estimate the distance of a truck driving on the
road ahead. As the intensity of sound decreases proportionally with
the square of the distance, the brain can determine the distance of the
truck based on the intensity of sound it receives (Fig. 5c). When the
truck is to the listener’s left and moves from left to right, the listener
perceives a gradual increase in the volume of the truck’s honk. As the
truckmoves towards the right and away from the listener, the soundof
the honk gradually diminishes (Fig. 5d).

To distinguish the ITD of sound and identify its azimuth and dis-
tance, we constructed a neural network (Fig. 5e). The blue spheres in
thefigure represent neurons that sense sound in the left and right ears,
respectively. These neurons transmit sound information topost-sound
information processing neurons (green or yellow spheres) through
axons (blue lines), synapses (blue nodes), and dendrites (green or
yellow lines). The sound signal is assumed to propagate through the
network in the form of spikes, where the amplitude of spikes is
modulated by synaptic weight. By configuring the synaptic weight
matrix between the pre-neurons and two green post-neurons into a
diagonalmatrix, the outputs of the two post-neurons can be different.
The difference between the outputs of the two neurons varies with the
ITD and is symmetricwith respect to the ITD (specifically, theoutput of
neuron 1 (3) at ITD = -t is the same as the output of neuron 3 (1) at
ITD = t). The network can recognize sound azimuth accordingly (see
Supplementary Note 5 for a more detailed working principle analysis).
The post-neuron situated in the center of the three post-neurons
exhibits equivalent connection strength to the two neurons that sense
sound in the left and right ears, as shown in Fig. 4while introducing the
coincidence detection function of neurons. As the distance between
the truck and the listener increases, the intensity of the honking sound
heard by the listener diminishes. This precisely corresponds to the fact
that a larger ITD results in a smaller coincidence degree A2/A1. There-
fore, this neuron functions as a detector of sound distance. Notably,
the ITD and the travel time of the truck’s honk differ, and A2/A1 is not
inversely proportional to the square of ITD. Nonetheless, a clear
mathematical relationship between them exists, as depicted in Sup-
plementary Fig. 18. Hence, it is possible to determine the distance to
the sound sourcebased onour neurons’ coincidencedetectionwith an
analog coincidence degree A2/A1 (refer to Supplementary Note 6 for
further details).

In accordance with Fig. 5e, a hardware neural network was con-
structed (Fig. 5f). To emphasize the sound localization capability ofour
network, we neglected the section that emulates human ears to con-
vert sound signals into electrical signals. Instead, we stimulated the
output signals of sound sensing neurons with electrical signals that
have different time intervals. Additionally, we substituted the mod-
ulation of synaptic weights on the spike amplitude of the sound signal
with the modulation of voltage pulse amplitude using voltage divider
circuits while retaining the diagonal synaptic weight matrix. The fea-
sibility and efficacy of this approach, the modulation of synaptic
weight on pulse spike amplitude, is depicted in Supplementary Fig. 19.
Three dual-gate V-EGTs serve as the three post-neurons, with two
green post-neurons working together on sound azimuth recognition
and the yellowpost-neuron functioning in sound distance recognition.
The gates of all post-neurons function as dendrites.

Based on the aforementioned hardware neural network, whose
equivalent circuit diagram is presented in Fig. 5g, we replicated the
brain’s recognition of sound azimuth (Fig. 5h–j) and distance (Fig. 5k),
respectively. As an illustration of sound azimuth localization according
to ITD, we displayed the intensity and sequence of sound signal spikes
receivedby eachdendrite of post-neurons 1 and 3, aswell as the output
signal when ITD = 2 s (Fig. 5h, i). The Ipost1/Ipost3 value corresponds to a
unique ITD and can be utilized to determine the sound azimuth, thus
simulating the brain’s sound azimuth recognition function. By altering
ITD, we further demonstrated the identification of all potential azi-
muths (−90° − 90°) (Fig. 5j).
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Aside from recognizing sound azimuth, we also demonstrated the
capability of our hardware neural network to recognize sound source
distance, based on the response of the yellow post-neuron to the left
and right ears. By creating a symmetric dual-gate PPF of our dual-gate
V-EGTs around ITD and integrating the inherent analog characteristic
and nonlinear decay, our hardware neural network replicated the
sound distance recognition function of the brain (Fig. 5k). Therefore,
our constructed hardware neural network has the ability to simulta-
neously recognize both sound azimuth and distance.

The biological ITD typically falls within the range of 1ms. How-
ever, due to the relatively long current decay time (~10 s) of our current
V-EGT, our ITD for sound localization ranges from 0.1 to 10 s, which is
significantly larger than its biological counterpart. Nonetheless, given
that our current V-EGTs are capable of recognizing ITD within the
range of 0.1−10 s, a future V-EGT with a decay time of 10ms (refer to
Supplementary Note 2 for further details) will be able to accurately
identify ITD with smaller time differences (e.g., identify ITD with a
0.1ms difference).

Sound localization in the humanbrain is not only characterizedby
high accuracybut alsoby fast processing speed, allowing for very short
intervals between consecutive sound localizations. As for the current
V-EGT prototypes with relatively long current decay times, there is a
waiting period to process the next sound localization until the V-EGTs
return to their initial states, implying a slow sound information pro-
cessing. The strategies for optimizing sound localization accuracy (see
Supplementary Note 2) are also contribute to improving the speed of

the sound localization system. Thus, reducing the decay time of
V-EGTs not only benefits obtaining accurate ITDs but also facilitates
the development of a fast sound localization system.

In conclusion, we have demonstrated an all-solid-state, vertical,
compact and low-power EGT equipped with STM characteristics by
engineeringmaterials and devising a novel vertical structure. Our dual-
gate V-EGT, benefiting from the multi-gates of the proposed vertical
structure, functioned as a neurotransistor and successfully emulated
the dendritic computing function of neurons, including dendrite
integration and digital and analog computing for coincidence detec-
tion. By constructing a hardware neural network, we were able to lar-
gely replicate the sound localization function of the brain. Thinning
the thickness of the electrolyte, optimizing the device’s operating
conditions, and constructing neural networks more similar to their
biological counterpart could further improve the energy efficiency of
our neurotransistors and enablemore faithful emulations of the sound
localization function of the brain. This work provides insight into
replicating advanced cognitive functions of the brain with emerging
neuromorphic systems that are of high density and low power
consumption.

Methods
Construction of V-EGT
The 8-inch Si wafers were utilized to fabricate vertical sidewalls. Prior
to fabrication, the substrate underwent a standard cleaning process to
remove the native oxide layer on the surface of the Si wafer. Following
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this, a layer of SiO2 was formed on the Si wafer surface via thermal
oxidation (1000 °C, 4 h).

Preparation of the laminated structure
A four-layer structure of TiN + SiO2 bilayer was prepared by sequential
deposition of TiN (20 nm) and SiO2 (30 nm) four times. TiN was
deposited by PVD and served as the source and drain electrodes, while
SiO2 was deposited by plasma-enhanced chemical vapor deposition
and used as a spacer between the source and drain electrodes.

Construction of vertical sidewall
After patterning the Si wafer on which the laminated structure was
grown (to create the sidewall and reserve positions for subsequent
exposure of each electrode layer), the exposed part was dry etchedwith
BCl3 +Cl2 gas using photoresist as a mask until it reached the substrate
(the etching cavity temperature was 80 °C). Cleaning of the vertical
sidewall structure was performed with a DSP cleaning agent to remove
residual photoresist and organics generated during the etching process.
The Si wafer was then dried with a nitrogen gun, making it suitable for
the fabrication of V-EGT. After etching the vertical sidewalls, to facilitate
subsequent electrical testing, it was necessary to expose the TiN located
beneath the SiO2 at different levels. Initially, the eight horizontal elec-
trode pad positions in Fig. 1e had the same height, consisting of a
TiN/SiO2/TiN/SiO2/TiN/SiO2/TiN/SiO2 stack. To expose the first TiN, we
etched away the top SiO2 at thefive rightmost electrodepadpositions in
Fig. 1e, thereby exposing the first TiN electrode. Next, at the third elec-
trode pad position from the left, we sequentially etched away the SiO2,
TiN, and SiO2, exposing the second TiN electrode. This process was
repeated, and we successively exposed the third (at the second elec-
trode pad position from the left) and the fourth (at the first electrode
pad position from the left) TiN electrodes. With this procedure, all the
TiN electrodes covered by the SiO2 were exposed, enabling convenient
measurement of the electrical characteristics of V-EGT devices.

Channel/electrolyte/gate stack deposition
Following the patterning of the Si wafer with vertical sidewall struc-
ture, α-Nb2O5 (~20 nm), LixSiO2 (~44 nm), and Ti/Au were sequentially
deposited. Magnetron sputtering was employed to deposit α-Nb2O5

and LixSiO2, which served as the channel and electrolyte of V-EGT,
respectively, while electron beam evaporation (EBE) was used to
deposit Ti/Au, which acted as the gate. The V-EGT was released
through a lift-off process. It shouldbenoted that the above thicknesses
for the three materials are the thicknesses of each material when
deposited on a flat surface. As the thin film grown on the sidewall by
magnetron sputtering or EBE is thinner than the thin film grown on the
flat surface, the actual thickness of each functional layer of V-EGT
should be calibrated according to the cross-sectional TEM imageof the
corresponding device.

Electrical characterization
The electrical characteristics of V-EGT were obtained at room tem-
perature in atmospheric conditions using a semiconductor parameter
analyzer B1500A.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the SupplementaryMaterials. Additional data related
to this paper may be requested from the authors.
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