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Abstract 

Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating 
cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms 
underlying these phenomena remain poorly understood. 
Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular 
carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors 
(TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with 
macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was 
validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, 
flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse 
hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. 
Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell 
subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation 
of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional 
characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor 
initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within 
the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related 
subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted 
in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization 
towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of 
TAMs and tumor-infiltrating T cells.  
Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an 
immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness 
maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more 
attributed to M2 polarization than the recruitment of the TAMs. 
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Introduction 
Hepatocellular carcinoma (HCC) is the fifth most 

common cancer and the third leading cause of 
cancer-related death worldwide [1]. HCCs are often 
diagnosed at an advanced stage, and tumor 
recurrence is frequent even after surgical resection [2]. 
In recent years, the emerging combination therapy of 
tyrosine kinase inhibitors (TKI) and immune 
checkpoint inhibitors (ICI) has shown some clinical 
efficacy in the treatment of advanced HCC [3]. How-
ever, despite the improvements in therapy, treatment 
of advanced HCC remains a great challenge.  

Emerging evidence has indicated that cancer 
stem cells (CSCs), a subpopulation of tumor cells, bear 
tremendous ability in cancer initiation, tumorigenesis, 
metastasis, recurrence and therapeutic resistance [4, 
5]. The characterization of liver CSCs largely relies on 
the putative surface markers, such as CD133, CD44, 
EpCAM, CD90 and CD13 [5]. Similar to normal 
organs, tumors also harbor a relatively hierarchical 
collection of cancer cells and stromal cells, with CSCs 
residing at the top of the hierarchy [5].  

Maintaining an ideal microenvironment or niche 
is very important for CSCs to protect themselves 
against stress signals, chemotherapeutic agents, and 
attacks by the immune system [6]. As an indispen-
sable component of the CSC niche, tumor associated 
macrophages (TAMs) receive immune-suppressive 
signals from CSCs to further enhance the 
tumor-promoting microenvironment. Although some 
studies have already hinted at the crosstalk between 
CSCs and TAMs [6-9], they have largely relied on 
traditional bulk-cell strategies or cultured cell lines. 
Therefore, the precise mechanisms of how the 
CSCs and TAMs interact remain inadequately 
understood.  

On the other hand, prior studies [10] exploring 
HCC at the single-cell level have primarily focused on 
the infiltrating immune cell populations or the 
intricate HCC ecosystem [11-13]. There is still an open 
question regarding the interaction between CSCs and 
TAMs in HCC. Herein, we performed single-cell 
RNA-sequencing (scRNA-seq) in patients’ resected 
HBV-associated HCC samples and identified a 
previously unrecognized population of CSCs among 
the cancer cells that exhibited stemness gene 
signatures and aggressive tumor properties. Taking 
advantage of the cell-cell communication analysis, we 
unraveled a strong link between stemness mainte-
nance and macrophage polarization, highlighting 
M2-like macrophages as a significant contributor to 
the pathogenesis of HBV-associated HCC. Our results 
may offer a mechanistic explanation for the variation 
in treatment responses and highlight the importance 

of precision medicine.  

Results 
ScRNA-seq profiling of HBV-associated HCC 
ecosystem and cellular stratification 

Fresh, resected HBV-associated HCC tissues 
from 9 patients were obtained immediately from the 
operation theaters. All patients were treatment-naïve 
without chemotherapy or radiotherapy prior to 
surgery. The demographic and clinical characteristics 
of the patients are described in supplementary Table 
S1. Tumors were digested into single-cell suspension, 
and scRNA-seq was performed using barcoding with 
unique molecular identifiers (UMIs) (Figure 1A). 
After the removal of potential doublets and low- 
quality cells, more than 204 million unique transcripts 
were obtained from 31,664 cells with more than 29,273 
genes captured. To profile the transcriptomic 
landscape of HCC, unsupervised clustering and 
t-distributed stochastic neighbor embedding (tSNE) 
algorithm were carried out. All quantified cells were 
initially stratified into 44 cell clusters and further 
assigned to 7 major cell lineages based on the 
canonical markers and differentially expressed genes 
(DEGs) (Figure 1B-D, S1A-B). Of the total cells, 
immune cells (CD45+) accounted for approximately 
65% (Figure S1C) and were classified into 5 subsets. 
The most abundant subset was T cells (12,386 cells, 
marked with CD3D and CD3E), comprising 39.12% of 
the total cells and over 50% of the total immune cells 
(Figure 1C, E). Other populations included natural 
killer (NK) cells (1,622 cells, 5.12% of the total cells, 
marked with GNLY and KLRF1), B cells (839 cells, 
2.65% of the total cells, marked with CD79A and 
MZB1), TAMs (4,400 cells, 13.89% of the total cells, 
marked with CD14 and CYBB) and dendritic cells 
(DCs) (1,168 cells, 3.69% of the total cells, marked with 
CD1C and FCER1A). Among the non-immune cells, 
apart from a small population of tumor-associated 
endothelial cells (21 cells, 0.07% of the total cells, 
marked with VWF and ENG), the rest were cancer 
cells (11,228 cells, 35.46% of the total cells, marked 
with GPC3 and ASS1). Consistent with previous 
studies [14], immune cells displayed no significant 
differences among patients (Figure S1C-D, F) at 
varying proportions (Figure 1F, S1E-F), while cancer 
cells demonstrated intertumoral heterogeneity and 
separated according to patients, as expected. Notably, 
consistent with our previous study [15], we 
independently observed an inverse correlation in the 
cell proportion between T cells and total TAMs 
(Pearson’s r = -0.719, p-value<0.05) (Figure 1G), 
implying that TAMs might suppress the tumor 
infiltration of T cells in HCC.  
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Figure 1. scRNA-seq of hepatocellular carcinoma revealed major cell types. (A) Schematic overview of the generation of scRNA-seq data. Nine HCC samples were 
collected. (B) t-SNE plot of 31,664 high-quality cells. Each point is a single cell colored by cluster assignment. (C) Violin plots of canonical marker genes expression by cell type 
with highest log-normalized expression value labeled. (D) t-SNE plot, color-coded for expression (gray to red) of marker genes for the major cell types as indicated. (E) 
Representative donut plots depicting distribution of overall immune cell composition. (F) The tumor cell lineage compositions inferred by scRNA-seq data of nine HCC sample. 
The low panel shows the HCC-defined cell types (rows) by patient (columns). The size of the circle represents, for each specific cell type, the fraction of corresponding cell 
(among the total quality-control passed cells) in each individual. The circles are color coded by defined cell types. The histogram on the top shows, for each individual sample, the 
accumulation of the raw number of each cell type. (G) Linear regression showing the inverse correlation between T cells and macrophages proportion. Pearson’s correlation R 
values are shown and the significance of the difference between two data sets was measured by two-tailed Student’s t-test. Only cases with at least 500 non-malignant cells were 
included. 
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Transcriptional heterogeneity of cancer cell 
clusters and prognostic implications 

Next, we aimed to dissect the intratumor 
heterogeneity (ITH) and molecular characteristics of 
the various cancer cell subsets. Unsupervised 
clustering analysis on the 11,228 cancer cells disclosed 
7 distinct clusters (C1-C7) with respective variable 
proportions among the patients (Figure 2A-B, S2A-D). 
Furthermore, large-scale copy number variations 
(CNVs) were inferred from the scRNA-seq data 
cancer cells exhibiting remarkably higher CNV levels 
than the referenced normal hepatocytes, confirming 
the identity of the cancer cells (Figure S2E). To 
characterize their functions in greater detail, we 
conducted gene set variation analysis (GSVA) 
analysis and observed significant phenotypic 
diversity (Figure 2C). Notably, cluster C6 displayed 
high expression of genes involved in interferon-γ/α 
response, IL-6/JAK/STAT pathway, angiogenesis 
and epithelial-mesenchymal transition (EMT), and all 
these are associated with tumor maintenance and 
metastasis.  

To predict the transcription factor regulatory 
networks (regulons) of each cancer cell cluster, we 
exploited SCENIC (single-cell regulatory network 
inference and clustering) [16] to score the regulon 
activity by the AUCell algorithm (AUC score) across 
all single cells. By scanning and examining the 
transcription factor binding sites as well as the 
co-expression of transcription factors (TFs) and their 
putative target genes, we summarized the top 3 TFs 
from each cluster (Figure 2D) and observed the highly 
up-regulated NFE2L1 and NFE2L3 expression in 
cluster C6 as an important regulator of cancer 
malignancy [17-19]. The results also indicated 
intratumor heterogeneity through diverse TF 
regulation.  

We further utilized the liver HCC (LIHC) cohort 
from The Cancer Genome Atlas (TCGA) database and 
stratified the samples according to the top 10 
cluster-specific (C1-C7) gene marker expression. 
Remarkably, Kaplan-Meier curves showed that high 
expression of the corresponding marker genes from 
cluster C6 was exclusively and significantly 
associated with poorer overall survival (OS) (Figure 
2E). This finding suggests that the transcriptomics 
features in cluster C6 were closely related to the 
prognostication of HCC. 

Elucidation of stemness-related landscape and 
the identification of CD24/CD47/ICAM1 
subclone in cancer cells 

Cancer stemness is associated with important 
hallmarks of tumor behavior, including tumor 
initiation, metastasis, drug resistance and tumor 

recurrence, and tumor cells with enhanced stemness 
possess the stronger self-renewal ability. As the 
aforementioned results indicate the existence of 
variation in the functional and regulatory enrichment 
across cancer cell subpopulations (Figure 2C-D), we 
therefore further assessed their liver CSC marker 
expression, based on a panel of established liver CSC 
markers previously reported [5]. Our results 
displayed disparate expression levels of these liver 
CSC markers across the 7 clusters of cancer cells, with 
some markers ubiquitously expressed in all sub- 
clusters and some others exclusively expressed in 
certain sub-clusters (Figure 3A-C). We identified the 
co-expression of ALDH1A1 and ANPEP in cluster C1, 
co-expression of CD24/CD47/ICAM1 in cluster C6, 
and co-expression of ALDH1A1/CD24/DLK1/ 
EPCAM in cluster C7 (Figure 3B-C). Furthermore, 
clusters C6 and C7 were enriched with higher 
stemness signature scores [20] than the other clusters 
(Figure 3D), indicating their greater stemness-related 
potential. Notably, cluster C6 was of particular 
interest, given the aforementioned finding suggesting 
its putative stemness capability with poorer 
prognostication. Of note, cluster C6 cancer cells 
mainly came from two patients (P8 and P9), in which 
more than 90% of cancer cells were demarcated with 
triple expression of CD24/CD47/ICAM1 (Figure 3E). 
The presence of concurrent expression of CD24, CD47 
and ICAM1 in clinical specimen was confirmed by 
multi-color immunofluorescence staining (Figure S3). 

In vitro and in vivo functional characterization 
consolidated S100A11 as a downstream 
stemness-related mediator 

The gene expression profiles of cancer cells were 
comprehensively characterized and compared among 
the various clusters. Among the top DEGs of cluster 
C6 (Figure 4A), SPP1 and UBD have already been 
investigated in depth in previous studies [21, 22], 
exemplifying the potential functional roles elicited by 
cluster C6 cells. To this end, we shortlisted S100A11, 
which was the next top candidate, as our target gene 
for further functional interrogation with both in vitro 
and in vivo experiments. We adopted a stable gene 
knockdown approach to establish knockdown clones 
of S100A11 (shS100A11) in PLC/PRF/5 and CLC7 
HCC cell lines and confirmed their knockdown 
efficiency (Figure S4). Stable knockdown shS100A11 
clones showed markedly reduced sphere-forming 
ability (test for self-renewal ability in vitro) (Figure 
4B-C) and chemoresistance on cisplatin (there were no 
significant effects on other drugs, including sorafenib, 
lenvatinib, 5-FU, doxorubicin and gemcitabine [data 
not shown]) (Figure 4D-E).  
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Figure 2. Identification of cancer cell subpopulations. (A) t-SNE plot of cancer cells, color-coded by the subsets. (B) t-SNE plot, color-coded for expression (gray to red) 
of marker genes for the subsets as indicated. (C) Differential activity pathways in cancer cell subsets (scored by GSVA for each cell). Red represents upregulated pathways; blue 
represents down-regulated pathways. (D) Heatmap showing the regulon activity of cancer cell subsets estimated by SCENIC, depicting the top three transcription factors 
estimates from one cluster versus all the other clusters. (E) Kaplan-Meier survival plots of LIHC patients (n = 371) from TCGA, the expressions of top ten genes were used to 
stratify patients into binary subgroups (high and low). 
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Figure 3. CSC-associated heterogeneity in HCC. (A) t-SNE plot, color-coded for expression (gray to red) of typically reported cancer stem cell markers in cancer cells. 
(B) DotPlot visualization of the relative expression of cancer stem cell markers in each subset, where the size represents the percentage of cells expressing the gene of interest 
and the color indicates the scaled average expression of the gene of interest across the various. (C) Intra-heterogeneity at the gene expression level for a panel of CSC markers. 
(D) Violin plot showing stemness signature in subpopulations of HCC. The middle box shows the median and interquartile range (IQR 25th-75th percentiles). (E) Bar plot 
showing the fraction of cells with triple expression of CD24/CD47/ICAM1 in each patient. 
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Figure 4. S100A11 enhanced cancer cells stemness both in vivo and vitro. (A) Bar plot showing the expression log2FC of up/down-regulated DEGs. Significance was 
determined by Wilcoxon test at p-value < 0.05. (B) and (C) Spheroid formation assay showed that S100A11 knockdown by two independent shRNA sequences dramatically 
reduced the ability of PLC/PRF/5 and CLC7 cells to form spheres compared with the non-treated control (NTC) after 10-day incubation. Scale bar, 250 µm. The data are 
reported as mean ± SEM (**p < 0.01). (D) and (E) S100A11 knockdown and non-target control (NTC) PLC/PRF/5 cells treated with and without cisplatin were analyzed by 
Annexin V assays using flow cytometry detection. (F) and (G) In vivo limiting dilution assays with varying numbers of NTC and S100A11-knockdown cells for both PLC/PRF/5 and 
CLC7 cells subcutaneously injected into NOD-SCID mice (n = 4/group), respectively, were performed. Tumor incidence was examined at day 70 post-inoculation and frequency 
of tumor initiating cells was calculated. 
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In vivo tumorigenicity assay by subcutaneous 
inoculation of shS100A11 and non-target control 
(NTC) HCC cells respectively in NOD-SCID mice 
showed that S100A11 knockdown in both HCC cell 
lines significantly reduced the tumor incidence 
(Figure 4F-G), indicating the role of S100A11 in tumor 
initiation and growth. Collectively, these results 
indicate that S100A11 is likely a downstream 
mediator for the stemness capacity in the cluster C6 
subclone of HCC tumors. 

Reconstruction of the functional trajectory of 
tumor-infiltrating immune cells 

To obtain a clearer understanding of the tumor 
immune microenvironment (TIME), we re-clustered 
lymphocytes and myeloid cells, respectively (B cells 
were excluded from the analysis due to their very 
limited numbers, which did not permit reliable and 
conclusive analysis). Firstly, 14,008 lymphocytes were 
clustered into 5 groups, including CD4+ T cells 
(marked with CD4 expression), CD8+ T cells (marked 
with CD8A expression), cycling T cells (marked with 
TOP2A expression), FGFBP2+ NK cells and KLRC1+ 
NK cells (Figure 5A-B). GSVA analysis for hallmark 
signatures demonstrated that CD4+ T cells were 
enriched in genes that are highly expressed in the 
allograft rejection and interferon-γ (IFN-γ) response 
pathways. CD8+ T cells had distinct expression 
hallmarks regarding induction of positive regulators 
of immune-related signatures, such as IL-6/JAK/ 
STAT3, p53 and Wnt/β-catenin pathways, which are 
intricately associated with T cell proliferation and 
exhaustion. We also noted the enrichment of KRAS 
and EMT signaling pathways in cycling T cells (Figure 
5C).  

NK cells play a critical role in innate immunity 
and complement the adaptive immunity to fight 
against tumor [23]. Here, we classified NK cells into 2 
subpopulations with high expression of FGFBP2 and 
KLRC1, respectively (Figure 5A-B). The KLRC1+ NK 
cell subpopulation exhibited up-regulated expression 
of genes in the TGF-β and NOTCH signaling 
pathways, suggesting immune-metabolic dysfunction 
(Figure 5C). On the other hand, the FGFBP2+ NK cell 
subpopulation showed down-regulation of the 
expression of the hypoxia-related genes (Figure 5C). 

In addition, subsequent TF analysis revealed top 
TF candidates that underlay the different lymphocyte 
subsets (Figure 5D). Interestingly, genes regulated by 
EOMES, IRF8 and IRF7 were upregulated in CD4+ T 
cells, whereas those regulated by FOXO1 and FOXP1 
were upregulated in CD8+ T cells. Notably, EOMES 
and IRF8 are involved in the polarization of Th1 and 
Th17 cells [24] and FOXO1 has reactivation and 

self-renewal functions in CD8+ T cells [25]. These 
results also revealed the heterogeneity of regulons 
across the 5 lymphocyte subpopulations (Figure 5D). 

To investigate the heterogeneity landscape of 
myeloid cells, we stratified the 5,568 myeloid cells into 
10 subsets, including 6 TAM and 4 DC subsets (Figure 
5E-F). The main subsets of TAMs were distinguished 
by the combination of 6 markers: LGMN, SPP1, 
APOC3, APOBEC3A, LILRA5 and IGF2. Among these 
6 markers, highly up-regulated co-expression of 
LGMN and SPP1 in the macrophage subpopulation 
has been reported in various diseases with tumor- 
promoting and pro-fibrotic characteristics [21, 26-28], 
although some conclusions remain controversial. 

DCs are pivotal in orchestrating antiviral 
immunity. Our scRNA-seq data distinguished four 
subpopulations of DCs, which comprised BDCA-1 
(CD1c)+ type 2 classical DCs (cDC2), BDCA-2 
(CD303)+ plasmacytoid DCs (pDCs), BDCA-3 
(CD141)+ type 1 classical DCs (cDC1) and LAMP3+ 
DCs. The former 3 DC subpopulations have been 
widely investigated while a recent single-cell study 
has revealed the existence of a previously unnoticed 
group of LAMP3+ DCs in a mature state in HCC [11]. 
On the other hand, our GSVA results revealed a broad 
spectrum of expression of genes in the APOC3+ TAMs 
towards 51 hallmark pathways, suggesting a large 
profile of up-regulated genes in this cluster (Figure 
5G). Similarly, TF analysis showed a diversity of 
regulons in each subset, indicating the functional 
discrepancy (Figure 5H). 

Bi-directional crosstalk between M2-like TAMs 
and cancer cells 

We leveraged the method proposed by 
Vento-Tormo et al [29] to explore the potential 
interaction between the various cell types. Endothelial 
cells (ECs) were excluded from the analysis due to 
their low abundance within our samples. Interest-
ingly, we noted an exceedingly frequent communi-
cation among the immune cells, with relatively high 
expression of ligands and the corresponding receptors 
in respective cell types. Of note, we observed that 
TAMs had strong interactions, with contributions as 
both ligands and receptors source. This abundant 
interaction was followed by DCs and B cells, but not T 
cells, probably due to the exhausted state of the T cells 
(Figure 6A).  

Given that TAMs were the most prominent 
ligand contributor, we set out to investigate the roles 
of TAMs in regulating cancer cells. Frequent 
connections were observed between the macrophage 
clusters (providing ligands) and cancer cell clusters 
(C6 in particular; providing receptors) (Figure 6B).  
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Figure 5. Dissection and subclusters of lymphocytes/monocytes in HCC. (A) t-SNE plot of lymphocytes (exclude B cells), color-coded by the subsets. (B) t-SNE plot, 
color-coded for expression (gray to red) of marker genes for the subsets as indicated. (C) Differential activity pathways in the five lymphocyte subsets (scored by GSVA for each 
cell). Red represents upregulated pathways; blue represents down-regulated pathways. (D) Heatmap showing the regulon activity of five lymphocyte subsets estimated by 
SCENIC, depicting the top five transcription factors from one cluster versus all other clusters. (E) t-SNE plot of monocytes, color-coded by the subsets. (F) t-SNE plot, 
color-coded for expression (gray to red) of marker genes for the subsets as indicated. (G) Heatmap showing the regulon activity of ten monocyte subsets estimated by SCENIC, 
depicting the top five transcription factors from one cluster versus all the other clusters. (H) Differential activity pathways in the ten monocyte subsets (scored by GSVA for each 
cell). Red color represents upregulated pathways; blue color represents down-regulated pathways. 
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Figure 6. Interrogation of cell-cell communication between TAMs and cancer cells in HCC. (A) Heatmap showing the number of potential ligands and receptors 
among the cell components. (B) Heatmap showing the number of potential ligand-receptor pairs between TAM subsets and cancer cell subsets (TAMs as ligands source and 
cancer cells as receptor source). (C) Module scores of M2 signatures for each TAMs subpopulation (Genes list in from Azizi et al.). (D) Ligand-receptor pair expression 
according to cell type. Ligands are indicated in the left panel, and receptors are indicated in the right panel. (E) Module scores of M2 signatures for CD24/CD47/ICAM1high HCC 
tumors compared to the rest tumor samples in the TCGA-LIHC dataset. Significance was determined by Wilcoxon test at p-value < 0.05. 

 
On the contrary, all the cancer cell clusters had a 

strong connection with many of the macrophages in 
general (except APOC3+ and IGF2+ TAMs) when 
TAMs provided receptors instead, indicating possibly 
less specific crosstalk in this direction (Figure S5A). To 
this end, we speculated a distinctive association 
existed between cancer stemness and TAM function 
in HCC. It is well accepted that TAMs can enhance 
cancer cell proliferation to promote tumorigenesis, 
and reversely, the recruitment of TAMs through the 
secretion of chemokines or polarization alteration by 

CSCs to build an immunosuppressive environment 
[6]. Binary polarization system is commonly 
implicated in macrophage studies; however, in our 
study, TAMs showed mixed polarization states, 
which suggest the complexity of the residential TAM 
functionality (Figure S5B). 

Next, we sought to derive the M1/M2 signature 
scores, as demonstrated in previous report [30], of the 
TAM subsets based on their expression of signature 
genes. The results showed that LGMN+, SPP1+, 
APOC3+ and IGF2+ TAMs were more M2-like, 
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whereas the remaining ones were more M1-like 
(Figure S5C). Of note, LGMN+ and SPP1+ TAMs 
possessed the highest M2 signature score, supporting 
their putative M2 identity (Figure 6C). In addition, we 
also noted that LGMN+ and SPP1+ TAMs represented 
more than half of the TAMs (Figure S5D) and they 
mostly came from patients P8/P9 (Figure S5E-F), the 
same patients with identified cancer cell cluster C6 
that displayed stemness-related phenotypes (Figure 
S2D).  

To decipher the relationship between TAM 
polarization and cancer stemness, we stratified the 
TAMs into M2high (LGMN+ and SPP1+ TAMs) and 
M2low (the remaining TAMs) based on M2 signature 
scores (Figure 6C, S5C) and subsequently analyzed 
the cell-cell communication pinpointing ligand- 
receptor interactions (Figure 6D). We found 59 
(31+28) unique interactions between cancer cell 
cluster C6 and M2high cells but not between the other 
cancer cell clusters and M2low cells (Figure S5G). There 
were strong connections via the GAS6-AXL/MERTK 
and THBS1-CD36/CD47/ITGA4/ITGB1/LRP1 axes 
between cancer cells (contributing ligands) and TAMs 
(contributing receptors) (Figure 6D, left panel). These 
axes were associated with immune suppression, 
tumor invasiveness and progression [31-33]. More 
importantly, the findings implicate the ability of 
cluster C6 to drive TAM towards an M2-like 
phenotype [34, 35]. Conversely, we examined the 
interaction of TAMs (contributing ligands) with 
cancer cells (contributing receptors) (Figure 6D, right 
panel). The presence of high expression of 
CXCL12-ITGB1 pair (Figure 6D, right panel) could 
promote the stem-like properties of OV6+ CSCs in 
HCC through Wnt/β-catenin pathway [36], while 
VEGFA-ITGAV pair may implicate the initiation and 
stemness in various tumors [37]. We believe there 
exists bi-directional cross-talk between cancer cells 
and TAMs. To identify the potential ligand-receptor 
pairs that could possibly mediate M2 polarization of 
macrophages, we identified ligands of cancer cells 
(Figure 6D, left panel) and constructed a siRNA 
library to systematically evaluate their influence on 
M2 polarization upon their knockdown. After siRNA 
transfection, HCC cells knocked down for individual 
target ligands were subjected to co-culture assay with 
THP-1 cells. The expression of M1 markers (CD68, 
CD80 and CD86) and M2 markers (CD204, CD206 and 
CD163) in THP-1 cells were determined by qPCR. We 
found that upon knockdown of several ligands 
(GAS6, ADAM9 and ANXA1) in HCC cells, there was 
significant upregulation and reduction in at least one 
M1 and M2 markers, respectively (Figure S6A). 
Intriguingly, knockdown of GAS6, ADAM9 and 
ANXA1 could result in downregulation of S100A11 in 

HCC cells (Figure S7). On the other hand, to 
substantiate the potential ligand-receptor pairs that 
could possibly mediate HCC stemness, we identified 
ligands of macrophages (Figure 6D, right panel) and 
constructed another siRNA library to systematically 
evaluate their influence on cancer stemness upon their 
knockdown. After siRNA transfection, M2-differen-
tiated THP-1 cells knocked down for individual target 
ligands were subjected to co-culture assay with HCC 
cells. The expression of liver cancer stem cell markers 
(ICAM1, CD47, CD24 and EPCAM) in HCC cells were 
determined by qPCR. We found that upon 
knockdown of several ligands (VEGFA, ITGB3BP and 
ADAM9) in M2 macrophages, there was significant 
reduction in at least one of the liver cancer stem cell 
markers tested (Figure S6B). Taken together, we 
believe these screenings can suggest putative 
mechanistic ligand-receptor pairs that could possibly 
drive M2 polarization of macrophages and stemness 
properties of HCC cells. Furthermore, GO enrichment 
analysis displayed a global increase of tumor-related 
functions when cancer cells provided the ligands, 
particularly in relation to functions such as cell 
adhesion and extracellular matrix organization, 
whereas phagocytosis and apoptotic cell clearance 
were detected in the reverse direction (Figure S5H).  

In addition, since the cancer cell cluster C6 was 
characterized by concurrent enrichment of liver CSCs 
markers CD24, CD47 and ICAM1, we further sought 
to confirm the interaction between cluster C6 cancer 
cells and M2-like TAMs using TCGA-LIHC cohort. 
The results consistently indicate more M2-like 
signatures in HCC tumors with higher expression of 
CD24, CD47 and ICAM1 (Figure 6E), providing 
support to our cell-cell communication findings. 

Co-culture systems confirmed the 
bi-directional feedback loop between cancer 
stemness and TAM polarization 

Intrigued by these in silico results, we used 
transwell co-culture models (co-culturing HCC cells 
with THP-1-derived macrophages) to investigate the 
implicated bi-directional association between cancer 
cell stemness and TAM polarization. The treatment 
with PMA (phorbol 12-myristate 13-acetate) on the 
THP-1-derived macrophages was aimed to generate 
M0 macrophages, treatment with IL-4 (interleukin-4) 
and IL-13 (interleukin-13) to generate M2-like macro-
phages, while treatment with IFN-γ (interferon- 
gamma) and LPS (lipopolysaccharide) was aimed to 
form M1-like macrophages. We observed that the 
M2-like TAMs upregulated the expression of CD24, 
CD47 and ICAM1 (markers enriched in cluster C6 
cancer cells) in MHCC7L HCC cells (Figure 7A). 
Conversely, knockdown of S100A11 in HCC cells 
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increased the expression of anti-cancer M1 
macrophage markers CD80 and CD86 but suppressed 
the expression of pro-cancer M2 markers CD204 and 
CD206 upon co-culture with THP-1 derived 
macrophages. The findings suggest that S100A11 
could promote macrophage polarization into M2-like 
phenotype to exert potential immunosuppressive 
roles in re-modeling the TIME to favor HCC 
development (Figure 7B). Moreover, to further 
substantiate the functional role of S100A11 in driving 
M2 polarization of macrophages, we established 
S100A11 knockdown Hepa1-6 cells and orthotopically 
injected them into C57BL/6 mice. There was a mild 
trend for reduction in tumor mass upon S100A11 
knockdown. After dissociating the HCC tumor, we 
observed a significant increase in M1 macrophages 
upon S100A11 knockdown whereas the total tumor 
infiltrating macrophages remained unchanged 
(Figure S8). We also conducted co-culture-based 
transwell migration assays and observed that the 
migratory ability of M0/M1/M2 macrophages was 
unaffected by S100A11 knockdown (Figure S9), 
indicating that cluster C6 cancer cells might not likely 
recruit TAMs to the tumor site. Taken altogether, our 
cell-cell communication analysis and the subsequent 
functional confirmations support the bi-directional 
feedback loop between cancer cells cluster C6 and 
M2-like TAMs.  

Discussion 
In this study, we employed a high-resolution 

single-cell approach to characterize the tumor and 
immune components within the TIME, with a 
particular focus on cancer stemness and cell-cell 
communication. We provided a detailed distribution 
of CSC-related markers at cellular resolution across 
the patients’ tumors. With this, we identified a 
subgroup of HCC cells with concurrent expression of 
CD24, CD47 and ICAM1, which correlated with 
stemness characteristics and poorer survival. We also 
discovered a mutual regulation between stemness 
property and macrophage polarization, specifically 
M2-like macrophages.  

To the best of our knowledge, the concurrent 
expression of CD24, CD47 and ICAM1 has not been 
reported in HCC. Our study also revealed the novel 
downstream mediator S100A11, and its downregu-
lation resulted in reduced cancer stemness properties. 
The S100 protein family has been implicated in 
hepatic steatosis, non-alcoholic steatohepatitis, and 
HCC [38]. Specifically, S100A11 is involved in cell 
proliferation, invasion, endoplasmic reticulum stress 
and drug resistance. A recent study by Sobolewski et 
al [39] utilized a proteomic approach and suggested 
that S100A11/ANXA2 overexpression was a hallmark 
of liver inflammation/fibrosis and associated with 

 

 
Figure 7. Reciprocal interactions between TAM polarization and cancer cell stemness by co-culture assays. (A) Barplot representing the mean expression value 
of the CSC markers using qPCR, normalized to three reference genes. Error bars indicate the standard error. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Barplot representing the 
mean expression value of M1/M2 macrophage markers using qPCR, normalized to three reference genes. Error bars indicate the standard error. *p < 0.05, **p < 0.01, ***p < 
0.001. 
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high-grade HCC and poor clinical outcomes. 
Additionally, S100A11 was also implicated in 
de-differentiation and EMT of hepatocytes. Our 
findings provide new insights into the role of S100A11 
in HCC pathogenesis, suggesting its potential as a 
therapeutic target for further study. 

The interplay among the diverse cell types in the 
TME is crucial in tumor progression and therapeutic 
outcomes. Our study has unraveled a unique 
association between LGMN/SPP1+ TAMs and 
stemness-related cancer cells (cancer cell cluster C6 
marked by co-expression of CD24, CD47 and ICAM1). 
Our further investigation unveiled a reciprocal 
regulation between TAM polarization and cancer cell 
stemness.  

With GSVA analysis, we identified a list of 
up-regulated genes within the hallmark gene sets in 
CD4+ T cells and KLRC1+ (NKG2A) NK cells. As a 
subtype of immunosuppressive NK cells, we 
observed a high level of TGF-β signaling in KLRC1+ 
NK cells (Figure 5C), suggesting its negative impact 
on anti-tumor immunity, particularly on CD8+ T cells. 
In general, TGF-β is a crucial cytokine that can 
directly inhibit CD8+ T cell cytotoxicity, stimulate the 
generation of regulatory T cells, and contribute to the 
exclusion of T cells from tumor core. Furthermore, it 
can promote the immunosuppressive TIME that 
favors evasion of tumor surveillance [23]. Our 
analysis also revealed an enrichment of IL-6/JAK/ 
STAT3 signaling in CD8+ T cells, which is known to 
enhance proliferation, survival, invasiveness, and 
metastasis of tumor cells [40]. The various 
immunosuppressive factors induced by individual 
malignant and non-malignant components of the 
TIME may contribute to the exhausted T cell 
phenotype to evade immune surveillance.  

Additionally, the distinct regulatory networks of 
the TFs within the sub-clusters also suggested their 
potentially diverse functions. For example, lines of 
evidence have suggested that EOMES+ CD4 T cells, 
which we observed in this study, tend to accumulate 
in inflamed tissues and may play a role in chronic 
inflammatory disorders [41]. We also found the high 
expression of FOXO1 in CD8+ T cells, a control point 
for the reactivation and self-renewal [25]. With 
reference to myeloid cells and consistent with 
previous reports [26, 27], we identified LGMN+ and 
SPP1+ TAM clusters in our data, with a particular 
association with cancer cells. In addition, we also 
demonstrated the existence of LAMP3+ DCs, which 
play a pivotal role in regulating the function of 
lymphocytes and recruiting CD4+ T cells [11]. 

Taken together, this study provided insights on 
the presence of a cancer-stemness subpopulation of 
HCC cells with S100A11 as its downstream mediator. 

We also demonstrated the presence of a bi-directional 
crosstalk between this subpopulation of HCC cells 
and TAMs, resulting in the maintenance of the 
expression of cancer stem cell markers and driving 
M2-like TAM polarization towards a pro-tumorigenic 
niche. We hope our findings will lead to a better 
understanding of HCC progression and help to 
identify new therapeutic targets. 

Materials and methods 
Sample collection 

We obtained informed consent from all patients. 
Of note, 5 of them were previously reported [14]. 
Samples were selected randomly, which complied 
with the criteria of HBV infection and having more 
than 1000 viable single cells from dissociated tumor 
cell suspension per case. HCC tissues were obtained 
intraoperatively from patients who underwent 
surgical resections at the Queen Mary Hospital and 
Queen Elizabeth Hospital of Hong Kong. All 
protocols and experiments were approved by the 
Institutional Review Board of the University of Hong 
Kong/Hospital Authority Hong Kong West Cluster 
(UW 17-056). 

Tissue dissociation 
We followed the tissue dissociation and viable 

singlet cell selection protocols as we previously 
established [14]. Finally, Trypan blue staining was 
carried out for cell concentration evaluation. The 
viable singlet cell suspension was prepared to the 
desired concentration range (100-2000 cells/µl), as 
recommended by the user protocol of 10X Genomics.  

Library preparation and sequencing 
To perform scRNA-seq experiments, the 

Chromium platform (10X Genomics, California, USA) 
was used. The platform contains microfluidics circuits 
to allow droplet-based capture of single cells together 
with barcoded oligos on gel beads in oil emulsion 
droplets. Sequencing libraries were subsequently 
constructed as described [14]. The sequencing 
libraries were then subjected to the Illumina Novaseq 
platform and we ensured they were sequenced with 
adequate coverage.  

Cell culture  
PLC/PRF/5 (CRL-8024) was obtained from 

American Type Culture Collection (ATCC). CLC7 was 
a kind gift from Dr. Lijian Hui of Shanghai Institutes 
for Biological Sciences. HCC cell lines used in this 
study were authenticated by short tandem repeat 
(STR) DNA Profiling and no cellular cross-contami-
nation (Figure S10) or mycoplasma contamination 
was detected. PLC/PRF/5 cell line was cultured in 
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Dulbecco’s Modified Eagle Medium (DMEM-HG, 
Invitrogen Gibco, Massachusetts, USA) supplemented 
with 10% (v/v) fetal bovine serum (FBS), 1 × (50 
unit/ml) penicillin-streptomycin cocktail (P/S) 
(Gibco, USA). CLC7 cells were cultured in the 
RPMI1640 medium (Invitrogen Gibco, Massachusetts, 
USA) supplemented with human recombinant EGF 
(Thermo Fisher PeproTech, Massachusetts, USA) and 
ITS-A (Invitrogen Gibco, Massachusetts, USA). Cell 
lines were cultured at 37°C and 5% CO2 incubator.  

Establishment of stable knockdown and 
spheroid formation assay 

Stable knockdown cells were established as 
previously described [42, 43]. Oligos for short hairpin 
RNAs (shRNAs) targeting the various gene mRNA 
were subcloned into pLKO.1-Puro shRNA expression 
vector. The shRNA sequences were listed in 
supplementary Table S2. Viral packaging for the 
lentiviruses containing the shRNA vectors was 
carried out in HEK293FT according to the 
manufacturer’s protocol for the MISSION® Lentiviral 
Packaging System (Sigma-Aldrich, St Louis, MO). 
Then, the viral particles containing shRNA were 
transduced into HCC cells to establish the shRNA 
stably expressing cells. Total RNA was extracted by 
Trizol (Invitrogen) and cDNA was synthesized by 
reverse transcription kit (Invitrogen). Western 
blotting using anti-S100A11 antibody (Proteintech 
(10237-1-AP), IL, USA) was performed to validate the 
reduction of protein levels in the respective 
knockdown cells.  

For the spheroid formation assay [44, 45], cells 
were cultured in 0.25% methylcellulose in serum-free 
DMEM/F12 in wells pre-coated with 1% polyHEMA 
in the presence of B-27 supplement to allow spheroid 
formation. At end point, the numbers of spheres 
greater than 100µm in diameter were counted. 
Experiments were done thrice independently. 

Annexin V assay for drug resistance 
Cells were treated with or without 0.8µg/ml 

cisplatin in the respective media for 48h for 
PLC/PRF/5 and CLC7 cell lines. The culturing media 
were kept and the attached cells were trypsinized 
after PBS washing. The trypsinized cells had trypsin 
neutralized by the FBS-containing media which were 
mixed with the above kept media. Cells were washed 
once in PBS after centrifugation at ~1400g for 5min. 
Commercial kit for annexin V assays (BD Biosciences, 
Sparks, MD) was used according to the 
manufacturer’s instructions. By using a ZE5 flow 
cytometer (Bio-rad, and CellQuest software (BD 
Biosciences), the percentages of apoptotic cells were 
determined under proper gating for PI and annexin V 
signals as described [46]. 

Tumorigenicity assay 
For the subcutaneous tumorigenicity models 

[47], 5×104 or 5×105 viable HCC cells (PLC/PRF/5 and 
CLC7, each with both shS100A11 and NTC) were 
re-suspended in 100ul 1:1 ice-cold DMEM 
medium-Matrigel mix (v/v) and subcutaneously 
injected into 6-week-old, male, immunocompromised 
NOD-SCID mice. The size of the tumor was 
monitored over a period of 3-5 (PLC/PRF/5) or 8-10 
(CLC7) weeks. The tumor mass (g) of the harvested 
tumor was measured at the endpoint of the 
experiment. The tumor volume in mm3 was 
calculated by the following formula: 1/2 × the longer 
diameter (mm) × power 2 of the shorter diameter 
(mm). The animal experiment was approved by the 
Committee on the Use of Live Animals in Teaching 
and Research (CULATR 5688-21), Li Ka Shing Faculty 
of Medicine, University of Hong Kong. 

Orthotopic injection assay 
Orthotopic liver injection model was performed 

to investigate the tumor growth and tumor- 
infiltrating macrphages. Briefly, 3.5×106 mouse 
hepatoma Hepa1-6 cells (NTC and shS100a11) were 
injected into the left lobes of livers of C57BL/6 mice. 
Each experimental group had at least 6 mice. After 2 
weeks, the mice were sacrificed. Tumor mass was 
recorded. Tumors from C57BL/6 mice were 
dissociated for detecting tumor infiltrating 
macrophages by flow cytometry. 

Transwell co-culture assays  
To investigate the effect of tumor associated- 

macrophages on HCC stemness, HCC/THP-1 
co-culture assay was utilized. 1×105 HCC cells were 
seeded in upper chamber (0.4μm pore size, 12 mm 
diameter; MilliporeSigma, Massachusetts, USA). M0, 
M1 or M2-differentiated THP-1 cells were seeded in 
the lower chamber containing 750 μl RPMI-1640 
medium with 10% FBS. After 24-72 hours of 
co-culture, HCC cells were harvested. RNA extraction 
and reverse transcription (RT) were conducted to 
generate cDNA. Expression of stemness markers, 
including ICAM1, CD47, CD24 and EPCAM were 
determined by quantitative real-time PCR (qRT-PCR).  

To evaluate the effect of S100A11 on macrophage 
polarization, 1×105 PLC/PRF/5 cells (NTC, 
shS100A11) were seeded in the upper chamber (0.4μm 
pore size, 12 mm diameter; MilliporeSigma, 
Massachusetts, USA). The lower chamber contained 
2×105 M0-differentiated THP-1 cells in 750 μl 
RPMI-1640 medium with 10% FBS. RNA was 
extracted from THP-1 cells after 48 hours of 
co-culture. Gene expression of M1 and M2 markers 
(CD68, CD80, CD86, CD204, CD206 and CD163) was 
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determined by qRT-PCR. 
To study the effect of S100A11 on macrophage 

recruitment, 2×105 M0, M1 and M2-differentiated 
THP-1 cells were seeded in the upper chamber (8μm 
pore size; MilliporeSigma, Massachusetts, USA). 
2×104 PLC/PRF/5 cells (NTC, shS100A11) were 
seeded in the lower chamber. After 72 hours, the 
THP-1 cells in the upper chamber were fixed in 
methanol and underwent crystal violet staining. The 
cells passing through the upper chamber were 
counted by software Image J (National Institutes of 
Health, Bethesda, USA). 

To identify the potential ligands that mediated 
HCC cell stemness and macrophage M2-polarization, 
we chose 9 ligands from HCC tumors and 12 ligands 
from macrophages by expression level in our 
scRNA-seq data. A small pooled siRNA library 
(LP_162028; Horizon Discovery Cherry-Pick Custom 
Library Tool, UK) was utilized to target and 
knockdown the ligands in the corresponding cells. 
Co-culture assay was conducted after 48hrs of siRNA 
transfection. The expression of liver CSC markers 
(ICAM1, CD47, CD24 and EPCAM) in HCC cells and 
the M1/M2 markers in macrophages were 
determined by qPCR.  

Quantitative Real-time PCR (qRT-PCR)  
qRT-PCR was performed as described [48, 49], 

using ABI Power SYBR® Green master mix and 
detected by ABI QuantStudio 5 Real-Time PCR 
System (Applied Biosystems, Foster City, CA). The 
primer sequences are listed in supplementary Table 
S3. 

Multicolor immunofluorescence staining 
We used Opal Polaris 7 Color Kit 

(NEL861001KT) according to the manufacturer’s 
recommendation, with anti-CD24 (Abcam, Ab202073, 
1:25), anti-CD47 (Abcam, Ab284132, 1:100) and 
anti-ICAM1 (Abcam, Ab282575, 1:200) antibodies. 

Single-cell RNA-seq data processing 
The sequenced data were processed by the Cell 

Ranger Software Suite (v5.0.1, 10X Genomics). Briefly, 
Illumina base call (BCL) sequence files were 
demultiplexed into FASTQ format, then FASTQ files 
from each sample were aligned to the human GRCh38 
reference genome. After the default filtering for 
quality control of each sample, unique molecular 
identifier (UMI) count matrix with feature barcode 
was generated for subsequent analysis. 

Dimension reduction and unsupervised 
clustering  

The UMI count matrix was converted to Seurat 
object using the R package Seurat (v2.3.4) [50]. Briefly, 

we utilized the following procedure to exclude 
low-quality cells of each sample: cells with fewer than 
500 genes or more than 4,000 genes detected and cells 
for which more than 10% of UMIs were derived from 
mitochondrial genes were excluded. The filtered gene 
expression matrix was normalized, in which the 
number of UMIs of each gene was divided by the sum 
of the total UMIs per cell, multiplied by 10,000, and 
then transformed to log-scale. We included transcripts 
of variably expressed genes (top 2000 features) using 
the vst method for downstream analysis. Since 
single-cell capture may be contaminated by doublets, 
the R package DoubletFinder (v2.0.3) [51] was 
exploited to detect potential doublets. After 
implementing the above procedures, datasets were 
integrated at normalized count level across patients 
for better elimination of batch effect. Next, we applied 
PCA after standard preprocessing linear 
transformation (‘scaling’) for the integrated data. The 
top 40 informative PC dimensions were selected 
based on the k-nearest neighbor graph, which came 
from the Euclidean distance in PCA space and we 
clustered cells using the Louvain algorithm with 
resolution 1.5 for t-SNE. Finally, we yielded 44 
different initial clusters. 

Differentially expressed gene analysis and 
major cell clusters identification 

To characterize each cluster, DEGs of each subset 
were identified by the non-parametric Wilcoxon Rank 
Sum test via the FindMarkers function in the Seurat 
package and ranked by average log2FC (fold change) 
and p-value. We filtered marker genes using a 
minimum log2FC of 0.25 and a maximum p-value of 
0.05. The marker genes assigned to label each cluster 
also generally had expression levels higher than those 
of the genes in the other developmentally or 
functionally related clusters. Seven major clusters 
were identified using canonical marker genes in the 
two-dimensional t-SNE map. 

Copy Number Variation (CNV) calling 
Computationally inferring large-scale chromoso-

mal CNVs in every cell enables us to identify the 
cancer cells. We used InferCNV (https://github.com/ 
broadinstitute/inferCNV) (v1.2.1) to determine CNV 
profiles on single cells. We provided raw UMI count 
data and used the recommended parameter settings 
with cut-off value equal to 0.1 for the minimum 
average read count per gene among reference cells. 
We used PTPRC-negative clusters as input and the 
results were referenced to the normal hepatocytes 
from public data [52]. The per-gene copy number 
scores calculated for each cell were visualized through 
heatmap. 
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Sub-clustering of cancer cells and immune 
cells 

The dimensional reduction was specifically 
re-performed on the cancer cells. Similar to the above 
cell type clustering, sub-clustering analysis of the 
cancer cells was performed. Clusters were then 
merged into major cell classes by combining 
related/highly similar clusters according to the 
expression of marker genes. Regarding the immune 
cells, we first stratified them according to myeloid and 
lymphoid origins, which were then subclustered 
separately. We also re-applied t-SNE dimension 
reduction and marker gene detection, similar to those 
performed on cancer cells. 

Survival Analysis 
A total of 377 LIHC samples were retrieved from 

TCGA by using the R packages RTCGA 
clinical (v20151101.6.0) and RTCGA rnaseq (v1.60.0), 
from which we extracted the gene expression and 
clinical information. Survival data was extracted 
using the survivalTCGA function, and only 371 
samples with survival data remained. Then, the 
TCGA samples were simultaneously split into two 
groups (expression “low” and “high” groups) based 
on the median expression of the top 10 highly 
expressed genes for each of the 7 major cancer cell 
classes. Finally, comparisons of the overall survival 
between expression “low” and “high” groups were 
performed and we generated Kaplan-Meier plots with 
two strata by utilizing the survfit and Surv functions 
of the survival package (v3.2.7) and ggsurvplot of the 
survminer package (v0.4.3). 

Functional enrichment analysis 
Pathway analyses were predominantly 

performed on the 50 hallmark pathways (msigdbr 
package, v7.2) as described in the molecular signature 
database. Next, the GSVA package (v1.34.0) was 
applied and pathway scores were calculated for 
different cell clusters using the gsva function. 
Student's t-test was applied to identify the 
significantly enriched signaling pathways with 
p-value < 0.05. 

SCENIC analysis 
We employed SCENIC to analyze the activity of 

TFs towards different cell types, which could group 
the target genes and the corresponding TFs into 
regulons and computes the activity of the regulons as 
the relative rank-sum of the expression of these 
targets (pySCENIC, version 0.9.15) [16]. In brief, 
normalized expression matrices were used as input to 
generate gene regulatory networks by GRNboost2 
(arboreto 0.1.5). Then, regulatory features 10 kb 

centered from the TSS of the cisTarget human motif 
database v9 were utilized to identify the enriched 
motifs via “ctx” function and individual cells were 
scored for motifs using the “aucell” function. 
Subsequently, Student's t-test was used to determine 
the significantly enriched TFs dominant in each 
subset. 

Cell-cell interaction analysis  
Cell-cell communication networks were 

investigated via ligand-receptor interactions and we 
employed the similar analysis proposed by 
Vento-Tormo et al [29]. Briefly, Normalized gene 
expression from both immune and cancer cells was 
taken to perform cell-cell interaction analysis based on 
a public repository of ligands and receptors [29, 53]. 
All ligand-receptor pairs expressed in less than 10% of 
all cells within each cell type population were 
eliminated. A null-distribution-based permutation 
test was applied to identify particular and unbiased 
interactions on the corresponding expression of 
ligand-receptor partner (1000 permutations) and 
ligand from one cell type and the corresponding 
receptor from another cell type were tested with 
p-value < 0.05 was considered statistically significant. 

Definition of cell scores and signature  
Gene module scores for different malignant 

subclusters were generated using the 
AddModuleScore function in Seurat (v2.3.4) [50] with 
normalized matrix. Gene modules were visualized 
using the VlnPlot function. 

Statistical analysis 
For the scRNA-seq data, statistical analyses and 

graphics production were performed using R v3.6.3 
(Foundation for Statistical Computing). For the 
experimental data, statistical analyses and graphics 
production were performed using GraphPad Prism 7 
(GraphPad Software).  
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