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Abstract: In dynamic traffic assignment problems, travelers choose routes that
minimize their cost of traveling to their destination. In traditional continuum
models, travelers have a global perception of traffic; in this study, two novel
reactive route-choice strategies are devised in which travelers have a local
perception of traffic. In Strategy A, travelers identify a set of feasible temporary
destinations that are equidistant from their final destination, and then choose
an optimal path within the local perception region that minimizes their cost of
traveling to the temporary destination set. In Strategy B, travelers identify a
direct path that they can follow to move closer to their final destination within
a short, fixed time. These route-choice strategies are used to formulate complete
continuum dynamic models for traffic flows in an urban city that consist of
a conservation law and a set of eikonal equations or optimization problems
involving ordinary differential equations. High-order numerical schemes and
suitable solution algorithms are applied to solve these equations on unstructured
triangular meshes. Numerical examples are also presented to compare the novel
local route-choice strategies with traditional global strategies.

Keywords: continuum modeling, local perception, route-choice strategy,
dynamic traffic assignment

1 Introduction

For decades, the solution of traffic flow problems has been crucial to the development of society.

Dynamic traffic assignment (DTA) [4, 29] can be applied to many traffic flow problems, such as

dynamic traffic management and control, that cannot be simulated by traffic flow models of static

scenarios, and can capture many traffic flow features such as shock waves, expansion waves, and
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queue overflows. Consequently, DTA is one of the most active research fields in transportation

science.

DTA consists of two components: travel choice and traffic flow. The travel choice principle

captures the route-choice strategy of traffic units and directly influences the traffic flow on each

road in a study area. The traffic flow principle describes how traffic propagates within a traffic

region, which in turn influences travelers’ route-choice strategies. These two components of DTA

influence each other, and DTA is therefore used to derive a timing-varying flow pattern that satisfies

both principles.

Route-choice problems in DTA have been examined in many studies. The dynamic user equilib-

rium (DUE)-based route-choice strategy [28, 27, 20] is an extension of principle of Wardrop (1952)

[47] that assumes that if any two travelers have the same departure time, origin and destination,

their travel costs should be equal and minimal. DUE problems can be further categorized into reac-

tive dynamic user equilibrium (RDUE) problems [2, 24, 21] and predictive dynamic user equilibrium

(PDUE) problems [28, 27, 13, 14]. In RDUE problems, travelers select the route that minimizes

the instantaneous travel cost, adjusting their choices reactively. In PDUE problems, travelers are

assumed to possess perfect information about the modeled domain, allowing them to choose the

route that minimizes the actual travel cost in a predictive manner. Moreover, a stochastic extension

of the DUE principle has been developed: the stochastic dynamic user equilibrium (SDUE)-based

route-choice strategy [38, 41]. Some route-choice strategies are non-equilibrium but nevertheless

of great significance [36]. The dynamic system optimal (DSO)-based route-choice strategy [32, 33]

assumes that travelers cooperate when choosing a path and aims to minimize the total travel cost

of a system over a given period. The bounded rational (BR) model [12] assumes that travelers

have a limited ability to consider all possible routes and thus heuristically identify a small subset

of routes, from which they choose the best route.

People often use heuristic rules when making decisions, which leads to bias and systematic

errors [10]. For example, BR problems can arise due to cognitive limits and deliberation costs

in route choices [16], violation of the shortest-path principle [1, 37], and nonexistence of perfect

rationality via learning processes [10, 31, 16]. As such, the route-choice strategy used by Xia et al.

[51] is based on a traffic-cost function that is influenced by travelers’ memory and current traveler

densities, whereas that used by Hoogendoorn et al. [19] is based on computing a local potential

function to determine how to avoid high-density areas.

Two different modeling approaches are used to examine DTA problems: the discrete model-

ing approach and the continuum modeling approach. The discrete modeling approach is used for

detailed examination of travel patterns in road network systems. In contrast, the continuum mod-

eling approach—which we employ in the current study—is used to examine the overall behavior of

travelers at a macroscopic level, as its treatment of the modeled region and its dense network as a

continuum allows certain characteristics, such as the traffic flow intensity and density, to be repre-

sented by smooth mathematical functions [44]. The first continuum model to be devised was the

Lighthill–Whitham–Richards (LWR) model [26, 39], which deals with a one-dimensional scenario.

The LWR model has since been extended to two-dimensional models of highly dense transportation

systems [3, 49, 48, 17, 18, 54]. Huang et al. [21] followed the route-choice strategy provided in

[49] by developing a continuum RDUE model that consists of a conservation law that governs the

traffic flow and an eikonal equation that represents the instantaneous traffic cost. Du et al. [13]

constructed a PDUE-based route-choice strategy and a DTA model that consists of a conservation

law and the Hamilton–Jacobian equation, which identify the real travel cost. Du et al. [14] further

extended their earlier model to apply to anisotropic scenarios. Long et al. [30] devised a two-level
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continuum transportation system approach to modeling a dynamic taxi traffic-assignment problem

using real-time traffic information. Yang et al. [52] formulated a continuum model of air pollution

based on traffic flow as a coupled system comprising a conservation law, an eikonal equation, and

an advection–diffusion equation.

The majority of aforementioned continuum DTA models assume that travelers possess a global

perspective when selecting a route. This assumption is valid when travelers have full knowledge of

the global dynamic distributions of all other travelers; such knowledgeable travelers are those in,

for example, automated vehicles or those with navigation systems connected to intelligent traffic

systems. When drivers of cars with navigation systems are unfamiliar with an area, they usually

follow the shortest route suggested by these systems. However, many traditional travelers have only

a local perspective of traffic dynamics, such as commuters in small or medium-sized cities. These

travelers generally consider only local traffic information, such as information obtained from what

they can see or from radio broadcasts, and thus make route choices based on their own judgment

of local traffic conditions. They may also use intelligent maps to obtain local information (e.g.,

traffic density) to assist them to drive around their local area.

Nevertheless, although it is possible for drivers to obtain full real-time information about their

destination from radio broadcasts and intelligent maps, some drivers only consider local information

and ignore information about remote places, as traffic conditions change dynamically and local

information is relatively more important. Furthermore, humans have a limited ability to consider

global information; thus, drivers usually preset their intelligent map or navigation device to have

a certain visibility window around their location, and thus the map or device shows only the

traffic conditions within this window. Drivers therefore have their own local field of perception

that is determined by various factors, such as the road intersection width, the block size, and the

setting of their navigation device. In this case, the traditional assumption that drivers have a global

perspective does not hold, and therefore drivers’ route-choice strategies must be reformulated from a

local perspective. The objective of this paper is to develop mathematical models and corresponding

numerical methods that accurately represent real-life scenarios.

Research on local route-choice problems has mainly focused on pedestrian flows determined

from local visual information. However, local route-choice problems can also be applied to traffic

flow problems, and most local route-choice studies have used a microscopic-level discrete modeling

approach. For example, Guo and Huang [15], Zeng et al. [53], and Wang et al. [46] have divided

a global region into several smaller shapes representing the local views of pedestrians based on

pedestrians’ experience. Zhou et al. [58] considered that pedestrians set various temporary target

exits during their journeys. Hoogendoorn et al. [19] developed a model consisting of local route-

choice strategies that avoided high-density areas, but although this model is continuous, unlike

discrete models it does not explicitly consider the concept of a local view.

Accordingly, in this study, we use a continuum modeling approach to consider a DTA problem

in a city. We assume that there is only one type of vehicle and focus on the construction of local

route-choice strategies, which allows us to study the behavior of travelers with a local and reactive

perspective of traffic dynamics. Based on these strategies, we construct several route-choice models

that are applicable to real-life traffic scenarios, and inspired by discrete models, we devise two

precise local route-choice strategies: Strategy A and Strategy B. In Strategy A, travelers first

identify feasible temporary destinations that are equidistant from their final destination and then

determine an optimal path within their local perception region such that a local RDUE principle

is satisfied. The DTA model for Strategy A consists of a conservation law to describe the traffic

flow and a locally defined eikonal equation to determine the travel choice. In Strategy B, travelers
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directly compute their path within their local region, so that they can move close to their final

destination within a short time. The complete model for Strategy B consists of a conservation

law, an ordinary differential equation (ODE), and an optimization problem. We provide detailed

solution procedures for these models, give numerical examples to demonstrate the validity of the

model and the solution algorithms, and compare the new local strategies with two traditional global

route-choice strategies.

As in some traditional continuum traffic flow models, the conservation law plays an important

role in our new models and requires a suitable numerical scheme. In [21], the Lax–Friedrichs

scheme was used. However, the scheme is only first-order accurate. In [22, 59], finite-difference

(FD) high-order weighted essentially non-oscillatory (WENO) methods on rectangular meshes were

applied. However, FD WENO schemes require large computational stencils and are difficult to

extend to unstructured meshes. In computational fluid dynamics applications, the discontinuous

Galerkin (DG) methods [7, 6, 5, 8, 9] have demonstrated good stability, high orders of accuracy, h–p

adaptivity, and flexibility for solving complex geometry problems; however, they have rarely been

applied for solving traffic flow problems. In this paper, we adopt a high-order DG method to solve

the conservation law. Compared with the FD WENO scheme, the DG method requires a highly

compact computational stencil and hence is more suitable for the treatment of different boundary

conditions and parallel coding. We also add a high-order WENO limiter [60, 57] to the DG method

to avoid numerical oscillations near strong shocks. Moreover, a high-order positivity-preserving

(PP) limiter [55] is added to theoretically avoid a negative nonphysical value of density while

maintaining flow conservation. In addition to solving the conservation law, we also need to locally

solve eikonal equations or ODE problems in different route-choice strategies. In this paper, we use

high-order fast sweeping methods [56, 35, 50] to solve the eikonal equations and adopt high-order

nonlinearly stable Runge–Kutta (RK) discretizations [40] to solve the ODE problems. For mesh

decomposition, we adopt unstructured triangular meshes, which are suitable for a computational

domain with a more general shape and allow for the local refinement of the mesh. These attractive

properties are unobtainable using the traditional FD WENO method, which is not suitable for

unstructured meshes.

The remainder of this paper is organized as follows. The problem and the continuum model are

described in Section 2. Two novel route-choice strategies are detailed in Section 3, together with

the complete model formulation. Numerical schemes and algorithms to solve the models are given

in Section 4. The numerical results and a comparison of various route-choice strategies are detailed

in Section 5. Finally, conclusions and suggestions for further studies are given in Section 6.

2 Problem assumptions and description of the continuum model

This section describes the basic construction of the continuum model. Section 2.1 presents the

background to the traffic problem considered in this study and some basic assumptions. Section

2.2 introduces the conservation law that governs the traveler density. Section 2.3 discusses the

route-choice strategy to determine the velocity direction used in the conservation law.

2.1 Basic assumptions

In this study, we consider the region modeled by Du et al. [13], which is a city with a single
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central business district (CBD) and some obstructed areas. As shown in Fig. 2.1, the modeled

region is an arbitrary shape, and is denoted as Ω. Let Γo be the outer boundary of the city, Γc be the

boundary of the CBD, and Γi be the boundaries of the obstructed areas. Thus, Γ := Γo
⋃

Γc
⋃
Γi

is the boundary of Ω. The trips from travelers’ homes to the CBD are considered, and we make

the following basic assumptions.

• The road network is highly dense and thus the modeled region can be viewed as a two-

dimensional continuum. The travelers’ homes are continuously located within the modeled

region Ω, and travelers depart their homes and travel to the CBD.

• The traffic demand varies with time, and as a result, the travelers’ departure time choices are

known.

• Travelers do not leave the city and are not allowed to enter the obstructed areas, which may

be a lake or an undeveloped area. Once travelers have entered the CBD, they do not return

home within the modeled period [0, T ] (in h).

• Travelers are continuously surrounded by a local perception field, which is denoted by the

green circle in Fig. 2.2. Travelers only obtain information on traffic within this local field,

and use this information to make local route-choice decisions. Figure 2.2 shows a traveler

making local decisions during the trip—that is, continually adjusting travel direction based

on the local traffic information—and ultimately arriving at the destination.

Figure 2.1: The modeled region.

Figure 2.2: Basic assumption of the local perspective.
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2.2 Conservation laws

We use ρ(x, y, t) (in veh/km2) and v(x, y, t) = (u(x, y, t), v(x, y, t)) to denote the density and

the velocity vector of travelers at location (x, y) at time t, respectively. If the density ρ is known,

the norm of the velocity vector v(x, y, t), i.e., the speed of travelers at location (x, y) at time t,

denoted by U(x, y, t) = ||v(x, y, t)|| (in km/h), can be determined. Any given speed density relation

can be adopted; in our numerical examples, we use the following Newell’s model [34, 11].

U = Uf

{
1− exp

[
C

Uf

(
1− ρj

ρ

)]}
, ∀(x, y) ∈ Ω, t ∈ [0, T ], (2.1)

where Uf (in km/h) is the free-flow speed, ρj is the jam density, and C > 0 (in km/h) is a backward

congested wave parameter, i.e., the slope of the fundamental diagram at the given jam density. Here

both Uf and ρj can vary over space, indicating spatial heterogeneity. Equation (2.1) indicates that

speed U decreases as density ρ increases. This model also has the following properties:

U → Uf , when ρ → 0+ ( when ρ = 0, we let U = Uf ) ;
U = 0, when ρ = ρj ; and
Q′|ρ=ρj

= −C, when ρ = ρj ,

where Q = U × ρ is the flow variable and Q′ = dQ/dρ is the kinematic wave speed. The direction

of the velocity vector v is determined by the route-choice strategy, which is discussed in Section 3.

We use F(x, y, t) =
(
f(x, y, t), g(x, y, t)

)
to denote the flow vector at location (x, y) at time t,

which is defined as

F(x, y, t) = ρ(x, y, t)v(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ]. (2.2)

Similar to the mass conservation law in fluid dynamic, ρ(x, y, t) is governed by the following con-

servation law.

ρt(x, y, t) +∇ · F(x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ], (2.3)

where q(x, y, t) (in veh/km2/h) is the given travel demand at location (x, y) at time t, ρt(x, y, t) =

∂ρ(x, y, t)/∂t, and ∇ · F = ∂f(x, y, t)/∂x+ ∂g(x, y, t)/∂y.

2.3 Review of global route-choice strategies

To determine the density ρ using the conservation law (Eq. (2.3)), we need to determine the

direction of the velocity vector v using the route-choice strategy. In this subsection, we review

some global route-choice strategies. It is necessary to define the travel cost first and then choose

the travel direction that minimizes this cost.

We use c(x, y, t) (in $/km) to denote the local travel cost per unit distance of travel at location

(x, y) at time t, which depends on the local traffic conditions and the preferences of travelers, such

as travel time and ambient comfort. Following Du et al. [13, 14], the local travel cost can be

computed by

c(x, y, t) = κ

(
1

U(x, y, t)
+ π(ρ(x, y, t))

)
, ∀(x, y) ∈ Ω, t ∈ [0, T ], (2.4)
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where κ is the time value,
κ

U(x, y, t)
represents the travel time cost, and κπ(ρ(x, y, t)) represents

other density-related expenses.

In continuum RDUE models, travelers choose the route that minimizes the instantaneous total

travel cost and change their path in a reactive manner. According to [21], the instantaneous total

travel cost from (x, y) to the CBD at any fixed time t ∈ [0, T ], denoted ϕ(x, y, t), can be computed

by solving the following static eikonal equation with suitable boundary conditions:

∥∇ϕ(x, y, t)∥ = c(x, y, t), ∀(x, y) ∈ Ω, (2.5)

where ∇ϕ(x, y, t) = (
∂ϕ(x, y, t)

∂x
,
∂ϕ(x, y, t)

∂y
).

As in continuum PDUE models, travelers consider the actual travel cost and choose a path in

a predictive way. Thus, as in [13, 14], the total travel cost incurred by a traveler who departs from

location (x, y) at time t to travel to the CBD using the constructed path-choice strategy, denoted for

simplicity as ϕ(x, y, t), can be computed by solving the following time-dependent Hamilton-Jacobi

equation:

1

U(x, y, t)
ϕt(x, y, t)− ||∇ϕ(x, y, t)|| = −c(x, y, t), ∀(x, y) ∈ Ω, ∀t ∈ [0, T ]. (2.6)

The route-choice strategy for all of the models mentioned above at a fixed time t satisfies

v(x, y, t)//−∇ϕ(x, y, t), ∀(x, y) ∈ Ω, (2.7)

where ‘//’ indicates that the two vectors are parallel.

In the above-mentioned continuum models, it is assumed that the global traffic information

in space is shared by every traveler in the city, such that a traveler at any location (x0, y0) ∈ Ω

knows the density ρ(x, y, t) at any point (x, y) in the city. Hence, the speed function U(x, y, t) and

the local travel cost c(x, y, t) can be obtained by computing Eq. (2.1) and Eq. (2.4), respectively.

Thus, we can obtain the total travel cost function ϕ by solving Eq. (2.5) or Eq. (2.6) globally in

space and then choosing the path according to Eq. (2.7).

3 Local route-choice strategies

The previous section briefly describes the existing continuum models in which travelers have a

global perception of traffic information. In contrast, we consider the case in which only local traffic

information around (x, y) is considered by travelers located at point (x, y). Two new local route-

choice strategies used to determine the direction of the velocity vector v(x, y, t) are introduced in

Section 3.1 and Section 3.2, respectively. The DTA model for both cases is also discussed.

3.1 Strategy A

This subsection introduces the first kind of new route-choice strategy, denoted Strategy A. In

classical continuum models, global traffic information is known, and thus travelers always directly

choose the best route to the CBD, which is a static destination. However, if travelers can only

obtain information on traffic conditions in their local area, it is difficult for them to perform global

and long-term path planning, especially when they are far away from the CBD. In this case, it is
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convenient to set several temporary destinations that are closer to travelers rather than taking a

far-away CBD as the static destination. Therefore, based on local perceptions of traffic information,

travelers adjust the temporary destinations dynamically until they reach the final destination.

(a) Assume a straight journey toward the CBD. (b) Set a temporary destination.

(c) Confirm the feasible region. (d) Determine the optimal velocity direction.

Figure 3.1: Graphical explanation of Strategy A.

Figure 3.1 illustrates the entire route-choice process for a traveler at a fixed point (x, y) at time

t. If travelers do not have much information about traffic conditions, it is reasonable for them

to travel directly to the CBD. As shown in Fig. 3.1(a), the travel direction v0 is straight from

the current location (x, y) to the center of the final destination CBD. A traveler located at (x, y)

estimates that after a short time Tperc (in s) of traveling along v0, point (x1, y1) will be reached

(Fig. 3.1(b)). Tperc reflects the traveler’s short-term traffic forecasting, which can be described as

“predictions made from few seconds to possibly few hours into the future based on current and past

traffic information” [45]. In this case, we assume that the location (x1, y1) remains located within

the local region. Consequently, for our purposes, Tperc should not exceed 30 seconds. Additionally,

we set Tperc to be no less than the look-ahead time (0.5s−1.5s) of human-driven cars, as described

in references [43, 42]. We denote the distance from (x1, y1) to the CBD center (xc, yc) as d(x, y, t).

As d is only a preliminary estimate, we treat the speed U as a constant during Tperc, as follows:

d(x, y, t) =
√

(xc − x1)2 + (yc − y1)2 =
√
(xc − x)2 + (yc − y)2 − U(x, y, t)Tperc.

We denote a circle with a center (xc, yc) and radius d as Γ̃(x, y, t), which is defined as

Γ̃(x,y,t) := {(x′, y′)|
√

(xc − x′)2 + (yc − y′)2 = d(x, y, t)}.
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This is shown as a red circle in Fig. 3.1(b). The circle Γ̃(x,y,t) passes through location (x1, y1). Due

to traffic congestion, the travel direction v0 may not be the best choice. All points on the red circle

Γ̃(x,y,t) are equivalent temporary destinations, as they are equidistant from the final destination

CBD. Thus, the traveler determines which path to the circle Γ̃(x,y,t) has the lowest traffic cost.

As shown by the black line in Fig. 3.1(c),we denote a circular region centered at location (x, y)

with radius r0(x, y, t) as Ω̃(x,y). The radius r0(x, y, t) reflects the local perception of travelers and

thus may be affected, for example, by the width of a road intersection. We assume that a traveler at

point (x, y) can only obtain information on the surrounding traffic conditions within Ω̃(x,y). We also

assume that the estimation time Tperc is not excessively large, i.e., that location (x1, y1) remains

within the local perception region Ω̃(x,y). As shown by the blue line in Fig. 3.1(c), we denote the

intersection of Γ̃ and Ω̃ as

Γ(x,y,t) = Γ̃(x,y,t)

⋂
Ω̃(x,y).

Γ(x,y,t) therefore contains the feasible temporary destinations within the traveler’s local perception

domain. Unlike the CBD center, which is a point, the blue temporary destination set is an arc. As

shown in Fig. 3.1(d), the local computational domain Ω(x,y,t) marked in green is defined as

Ω(x,y,t) = Ω̃(x,y)\(Ω̃(x,y)

⋂
B̃(x,y,t)),

where B̃(x,y,t) is the circular domain bounded by Γ̃(x,y,t). Therefore, the local route-choice problem

for a traveler located at point (x, y) at time t can be summarized as follows.

Problem 3.1. Consider a local computational domain Ω(x,y,t) with boundary Γ(x,y,t), part of which

is the temporal destination, as shown in Fig. 3.1(d). Find the optimal travel direction v∗(x′, y′) for

each point (x′, y′) ∈ Ω(x,y,t) to reach the temporal destination Γ(x,y,t), such that an RDUE at time

t can be satisfied locally in the region Ω(x,y,t).

To solve this problem, we denote the instantaneous travel cost incurred by a traveler who departs

from location (x′, y′) ∈ Ω(x,y,t) at time t to travel to temporary destination Γ(x,y,t) through the local

computational domain Ω(x,y,t) as ϕloc
(x,y,t)(x

′, y′). Unlike in Eq. (2.5) or Eq. (2.6), where the total

travel cost function is global and defined for the entire city, the travel cost function ϕloc
(x,y,t)(x

′, y′)

is defined locally within the circular region Ω(x,y,t) for a traveler who needs to make a route choice

at point (x, y) at time t. Inspired by the continuum model in [21], the route-choice strategy within

the local region Ω(x,y,t) should satisfy

v∗(x′, y′)//−∇ϕloc
(x,y,t)(x

′, y′), ∀(x′, y′) ∈ Ω(x, y, t), (3.1)

where ∇ = (∂x′, ∂y′). Under the path choice strategy defined in Eq. (3.1) within Ω(x,y,t), the

instantaneous travel cost function ϕloc
(x,y,t) can be obtained by solving the following static eikonal

equation locally in the domain Ω(x,y,t):

∥∇ϕloc
(x,y,t)(x

′, y′)∥ = c(x′, y′, t), ∀(x′, y′) ∈ Ω(x,y,t), (3.2)

where c is the local travel cost per unit of distance, which is defined as in Eq. (2.4). The RDUE

principle can then be proved as follows.

Theorem 3.1. If the speed vector v∗ at any fixed location (x′, y′) ∈ Ω(x, y, t) satisfies Eq. (3.1),

then the RDUE principle within the local region Ω(x,y,t) is satisfied.
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Proof. First, let the “used” path p in Ω(x,y,t) represent the path from origin O ∈ Ω(x,y,t) to destina-

tion D ∈ Γ(x,y,t) based on the parallel condition defined in Eq. (3.1). Naturally, on some segments

of the “unused” path, Eq. (3.1) is not satisfied. The reactive total travel cost Cp along this “used”

path is equal to the difference between O and D in terms of ϕloc
(x,y,t), in that

Cp =

∫
p
c ds

Eq.(3.2)
=======

∫
p
∥∇ϕloc

(x,y,t)∥ds
Eq.(3.1)
======= −

∫
p
∇ϕloc

(x,y,t) · ds = ϕloc
(x,y,t)(O, t)− ϕloc

(x,y,t)(D, t).

For some regions along any “unused” path p̃ between the same O and D, the parallel condition

does not hold, which means that

∥∇ϕloc
(x,y,t)∥ds ≥ −∇ϕloc

(x,y,t) · ds,

and thus the travel cost is given by

Cp̃ =

∫
p̃
c ds

Eq.(3.2)
=======

∫
p̃
∥∇ϕloc

(x,y,t)∥ds ≥ −
∫
p̃
∇ϕloc

(x,y,t) · ds = ϕloc
(x,y,t)(O, t)− ϕloc

(x,y,t)(D, t).

This means that the total reactive travel cost along a “used” path is less than that along an

“unused” path. This satisfies the user equilibrium conditions in [21], and thus the reactive dynamic

user equilibrium (RDUE) holds.

The route-choice strategy for a traveler at location (x, y) at time t is taken as

v(x, y, t) = v∗(x, y)//−∇ϕloc
(x,y,t)(x, y). (3.3)

Given that ∥v∥ = U(x, y, t) and we can derive the travel direction from Eq. (3.3), we can obtain

the following formula for the velocity vector:

v(x, y, t) = −U(x, y, t)
∇ϕloc

(x,y,t)(x, y)

∥∇ϕloc
(x,y,t)(x, y)∥

, (3.4)

where U(x, y, t) is the speed function determined by the speed density relation in Eq. (2.1).

In summary, the complete model for Strategy A is constructed as follows:

ρt(x, y, t) +∇ · F(x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

F(x, y, t) = ρ(x, y, t)v(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

v(x, y, t) = −U(x, y, t)
∇ϕloc

(x,y,t)(x, y)

∥∇ϕloc
(x,y,t)(x, y)∥

, ∀(x, y) ∈ Ω, t ∈ [0, T ],

U(x, y, t) = Uf (x, y)e
−β(x,y)ρ2(x,y,t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

(3.5)

with the following initial boundary conditions{
ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,

F(x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ Γi, t ∈ [0, T ],
(3.6)

where the cost function ϕloc
(x,y,t)(x

′, y′) can be obtained by solving the following eikonal equation

locally for region (x′, y′) ∈ Ω(x,y,t) for each fixed location (x, y) ∈ Ω at any fixed time t ∈ [0, T ],{
∥∇ϕloc

(x,y,t)(x
′, y′)∥ = c(x′, y′, t), ∀(x′, y′) ∈ Ω(x,y,t),

ϕloc
(x,y,t)(x

′, y′) = 0, ∀(x′, y′) ∈ Γ(x,y,t).
(3.7)
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The function ρ0(x, y) in Eqs (3.6) is the given initial density at time t = 0. The vector n is an

outward unit normal vector on the boundary Γo ∪ Γi. The second equation in Eqs (3.6) indicates

that vehicles do not leave Ω through the outer boundary of the city and are not allowed to enter

the obstructed areas. The second equation in Eqs (3.7) is the boundary condition of ϕloc
(x,y,t)(x

′, y′),

which implies that the instantaneous travel cost decays to 0 when a traveler reaches the feasible

temporary destination Γ(x,y,t).

Remark 3.1. It is important to note that even if two distinct locations are in close proximity to

one another, their local perception areas differ. Consequently, the travel directions at these locations

are determined individually and are likely to vary.

3.2 Strategy B

Here, we introduce Strategy B, which aims to find a path that allows travelers to directly move

closer to the final destination CBD in a fixed time Tperc (which is as defined in Section 3.1).

(a) Assume a straight journey in all direc-
tions.

(b) Identify locations that are closer to
the CBD.

(c) Compare how far each location is from
the CBD.

(d) Determine the optimal velocity direc-
tion.

Figure 3.2: Graphical explanation of Strategy B.

Figure 3.2 shows the entire local route-choice procedure for a traveler at fixed location (x, y)

at time t. A traveler first considers different paths and calculates the straight-line distance of each

path. Figure 3.2(a) shows three possible path directions; these are chosen arbitrarily, and there are

infinitely many choices. For any fixed direction γ⃗ = (γ1, γ2) with ∥γ⃗∥ = 1, we denote the estimated

travel distance from point (x, y) in this direction within period τ as sγ⃗(τ). As the traveler can
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obtain local traffic information, such as the travel speed U in the surrounding region, the travel

distance can be obtained by solving the following ODE, dsγ⃗(τ)

dτ
= U

(
x+ sγ⃗(τ)γ1, y + sγ⃗(τ)γ2, t

)
,

s(0) = 0.
(3.8)

After a fixed time Tperc traveling straight in direction γ⃗, the traveler arrives at location
(
x +

sγ⃗(Tperc)γ1, y + sγ⃗(Tperc)γ2
)
, denoted as point Pγ⃗ . Figure 3.2(b) shows these possible locations,

and we denote the set of points Pγ⃗ for all possible directions γ⃗ as

L(x,y,t) := {Pγ⃗ =
(
x+ sγ⃗(Tperc)γ1, y + sγ⃗(Tperc)γ2

)
, ∀γ⃗ with ∥γ⃗∥ = 1}.

The set forms a closed curve, part of which is colored blue in Fig. 3.2(c).

Different directions γ⃗ may result in different travel distances, as these depend on the speed

U(x, y, t) along a path, which can vary. Thus, the route-choice strategy for a traveler at point

(x, y) at time t involves determining the optimal traveling direction γ⃗∗, as shown in Fig. 3.2(d),

such that the corresponding location P ∗ := Pγ⃗ is the closest point in the set L(x,y,t) to the CBD

center (xc, yc). The velocity of that direction is given by

v(x, y, t)

||v(x, y, t)||
= argmin

γ⃗=(γ1,γ2), ||γ⃗||=1

√
(x+ sγ⃗(Tperc)γ1 − xc)2 + (y + sγ⃗(Tperc)γ2 − yc)2. (3.9)

Point P ∗ satisfies the following property.

Theorem 3.2. Suppose that curve L(x,y,t) is smooth. Center a circle B(r) at the CBD center with

a radius r. As the radius r increases from r = 0, the circle first reaches the set L(x,y,t) at one point

P ∗ or at more points. In this case, the circle is tangential to the curve L(x,y,t) and the tangential

point P ∗ is the optimal point we are seeking.

Proof. Suppose that B(r) is not tangential to L(x,y,t) at P ∗. As P ∗ is the common point of the

two curves, one of the two opposite tangential directions of L(x,y,t) must exist at P ∗ where the

angle from the normal direction of the circle B(r) at P ∗ is less than π
2 . As shown in Fig. 3.3,

because L(x,y,t) is smooth, there must exist a point P̃ in some domain of P ∗ on L(x,y,t) that is also

within the circle B(r), meaning that P̃ is closer to the CBD center than P ∗. This contradicts the

hypothesis.

Figure 3.3: Counterexample diagram as proof of Theorem 3.2.
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The complete model for route-choice Strategy B is constructed as follows:

ρt(x, y, t) +∇ · F(x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

F(x, y, t) = ρ(x, y, t)v(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

v(x, y, t)

U(x, y, t)
= argmin

γ⃗=(γ1,γ2), ||γ⃗||=1

√
(x+ sγ⃗(Tperc)γ1 − xc)2 + (y + sγ⃗(Tperc)γ2 − yc)2,

U(x, y, t) = Uf (x, y)e
−β(x,y)ρ2(x,y,t), ∀(x, y) ∈ Ω, t ∈ [0, T ],

(3.10)

with the initial boundary conditions are{
ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,

F(x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ Γi, t ∈ [0, T ],
(3.11)

where the travel distance sγ⃗(τ) can be obtained by solving the following ODE for each fixed location

(x, y) ∈ Ω at any fixed time t ∈ [0, T ], dsγ⃗(τ)

dτ
= U

(
x+ sγ⃗(τ)γ1, y + sγ⃗(τ)γ2, t

)
,

s(0) = 0.
(3.12)

The initial boundary conditions are the same as those in Strategy A (Eq. (3.6)). The second

equation in Eqs (3.12) is the boundary condition of dsγ⃗(τ), which means that the travel distance

is calculated from τ = 0 at point (x, y) to τ = Tperc at some other point.

Remark 3.2. In our work, we aim to develop mathematical models that simulate the behavior

of conventional human drivers. These drivers possess only local perception of traffic dynamics

and make route choices based on their judgment of local traffic conditions. In both strategies,

drivers initially identify nearby temporary destinations instead of directly considering the distant

final destination, as it is challenging for them to perform global and long-term path planning. Since

they cannot access traffic information (such as density and speed) outside their local perception

fields, the distance required to progress from the temporary destination to the final destination

serves as the sole indicator for selecting a temporary destination. In Strategy A, travelers opt

for equidistant temporary destinations. However, when moving from their current locations to

temporary destinations within local perception regions, travelers prioritize travel time or cost over

distance. They determine an optimal path, as in (3.1), to minimize travel costs to the temporary

destinations. The travel cost is calculated using the eikonal equation in (3.2) and depends on the

definition of the local travel cost per unit distance. In our numerical simulation, we set the local

cost as the travel time per unit distance, but it may also depend on other factors. In Strategy B,

travelers consistently strive to use the same travel time to reach a temporary destination closer

to the final destination, thus reducing the total travel time when they eventually reach their final

destination. In both strategies, travelers continually adjust their temporary destinations and travel

directions en route to the final destination, always attempting to minimize travel costs based on the

available local traffic information.

Remark 3.3. In Strategy A, travelers always choose moving directions to minimize the local travel

cost to the temporary destinations. When vehicles are relatively distant from the final destination

CBD, the temporary destinations are those places closer to the CBD. When vehicles are close to

the CBD such that the CBD is already located within their local perception regions, the CBD serves
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both as the final destination and as the temporary destination. In this case, travelers simply find

paths to minimize the travel cost to the CBD. For the travel cost ϕloc computed using the eikonal

equation in (3.7), the boundary value is set as 0 at the destination. Also, the local cost c > 0. Thus,

the negative gradient direction of ϕloc points towards the destination. For Strategy B, vehicles will

continuously reduce the distance to the CBD. Their goal is to minimize the distance to the CBD as

much as possible, so they will never drive away from the CBD.

4 Numerical Algorithms

In this section, we present numerical algorithms and a solution procedure for each model. To

solve the problems numerically, we consider an unstructured triangular decomposition Th of the

computational domain Ω, where h is the maximum size of the triangular cells. We denote the total

number of triangles in the spatial mesh as Nee and the nth point in time as tn. Section 4.1 presents

the third-order RK method to solve the ODE problems in our model. In Section 4.2, we solve

the eikonal equation via the second-order fast sweeping method, and in Section 4.3, we solve the

conservation law via the high-order DG method with the PP and WENO limiters.

4.1 Runge-Kutta method

RK method [40] is the general method for solving ODE problems (e.g., Eq. 4.1).
dw

dξ
= J(w(ξ)), ξ ∈ [a, b]

w(a) = 0.
(4.1)

We divide [a, b] into discrete grid cells with size hξ and denote the nth point as ξn. We denote the

numerical solution of w(ξn) as w
n. The numerical scheme is constructed as follows:

w(0) = wn,

w(1) = w(0) + hξJ(w
(0)),

w(2) =
3

4
w(0) +

1

4
w(1) +

1

4
hξJ(w

(1)),

wn+1 =
1

3
w(0) +

2

3
w(2) +

2

3
hξJ(w

(2)).

(4.2)

4.2 Second order fast sweeping method on triangular meshes

The eikonal equation is a particular static-state form of the Hamilton-Jacobi equation. The

solution does not depend on time t. We take the following eikonal equation as an example.{
∥∇ϕ(x, y, t)∥ = c(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0, T ],
ϕ(x, y, t) = 0, ∀(x, y) ∈ Γc, t ∈ [0, T ],

(4.3)

where the local travel cost c is given. In Eqs (3.7), we only need to change the computational

domain and the boundary location.
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The fast sweeping method begins with the following initialization. According to the boundary

condition in Eqs (4.3), we assign the exact boundary values on Γc. Large values (e.g., 106) are

assigned as the initial guess at all other grid points. For the second-order fast sweeping method, the

solution from the first-order fast sweeping method is used as the initial guess at all other grid points.

First, we need to choose multiple reference points xi
ref , i = 1, 2, . . . , R, and sort all nodes according

to their l2-distances to the reference points in ascending and descending orders and record them as

arrays S+
i and S−

i , i = 1, 2, . . . , R, respectively. We set R = 4 in this paper. Then, the following

Gauss-Seidel iterations are performed after initialization: For all of i = 1, 2, . . . , R, j = +,−, for

each vertex C ∈ Sj
i and every triangular mesh associated with C, the local solver is applied. Here,

a triangular mesh (Fig. 4.1) with three nodes is taken as an example.

A = (xA, yA), B = (xB, yB), and C = (xC , yC). Under the assumption that ϕA and ϕB are

given, and we need to modify ϕC , we denote α = ∠B, β = ∠A, γ = ∠C.

Figure 4.1: A triangular cell.

1. If the following two conditions are satisfied

(1) |TB − TA| ≤ |AB|c(C), where |AB| represents the length of ĀB and c(C) is the value of

c(x, y, t) at point C at time t;

(2) θ := arcsin(
|TB − TA|
|AB|c(C)

), max(0, α− π
2 ) ≤ θ ≤ π

2 − β or α− π
2 ≤ θ ≤ min(0, π2 − β), then

for a first-order fast sweeping method, we compute

ϕnew
C = min{ϕold

C ,
1

2
(ϕA+ϕB+

sin(β − α)

sinγ
(ϕA−ϕB)+

2sinαsinβ

sinγ

√
|AB|2c2(C)− (ϕA − ϕB)2)}.

(4.4)

For a second-order fast sweeping method, we first denote that

DA =

(
xA − xB yA − yB
xA − xC yA − yC

)
, DB =

(
xB − xA yB − yA
xB − xC yB − yC

)
, DC =

(
xC − xA yC − yA
xC − xB yC − yB.

)
(4.5)

Then, we get

∇ϕA = D−1
A

(
ϕA − ϕB

ϕA − ϕold
C

)
, ∇ϕB = D−1

B

(
ϕB − ϕA

ϕB − ϕold
C

)
. (4.6)

We use ϕA, ϕB,∇ϕA, and ∇ϕB to update ϕC :

ϕnew
C = min{ϕold

C ,
1

4
(2ϕA + 2ϕB + m̃+ ñ+

sin(β − α)

sinγ
M̃ +

2sinαsinβ

sinγ

√
|AB|2c2(C)− M̃2)},

(4.7)
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where
M̃ = 2ϕA − ϕB + m̃− ñ,

m̃ = (xC − xA, yC − yA)
T · ∇ϕA,

ñ = (xC − xB, yC − yB)
T · ∇ϕB.

(4.8)

2. If any of the above conditions is not satisfied, then

ϕC = min{ϕC , ϕA + |AC|c(C), ϕB + |BC|c(C)}. (4.9)

Convergence is declared if

∥ϕnew − ϕold∥ ≤ δ, (4.10)

where δ is a given convergence threshold value. δ = 10−14 and the L∞ norm are used in our

computation for the first-order fast sweeping method, and δ = 10−3 and the L∞ norm are

used for the second-order fast sweeping method. Finally, we can modify ∇ϕC with ϕnew
C :

∇ϕnew
C ≈ D−1

C

(
ϕnew
C − ϕA

ϕnew
C − ϕB

)
. (4.11)

4.3 DG method with a PP limiter and a WENO limiter

The conservation law and its initial condition are as follows:{
ρt + f(ρ)x + g(ρ)y = s, ∀(x, y) ∈ Ω, t ∈ [0, T ],
ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω.

(4.12)

We use high-order RK DG methods to solve the above nonlinear hyperbolic conservation law. In

combination with the Lax–Friedrichs (LF) numerical flux [25], we use the high-order RK method

for temporal discretization [40] and the DG method for spatial discretization. We add a high-order

WENO limiter [60, 57] to the DG method to avoid numerical oscillations. Moreover, a high-order

PP limiter [55] is added to theoretically avoid a nonphysical negative value of the density.

In DG methods, the solutions consist of piecewise discontinuous functions. We denote the finite

element solution space as

V k
h =

{
p : p|K ∈ P k (K) , ∀K ∈ Th

}
,

where P k (K) denotes the set of polynomials of degree up to k in cell K. We aim to find ρh(x, y, t) ∈
V k
h , such that for any test functions vh ∈ V k

h and any cell K ∈ Th, we have∫
K
(ρh)tvhdxdy −

∫
K

(
f(ρh)(vh)x + g(ρh)(vh)y

)
dxdy +

∫
∂K

F̂nvhds =

∫
K
svhdxdy. (4.13)

In this scheme, F̂n is the numerical flux defined on cell boundaries and is an approximation to

F · n, where F = (f, g)T and n denotes the unit outward normal vector of the boundary ∂K. In

our numerical examples, we adopt the following LF numerical flux

F̂n(ρinth , ρexth ,n) =
1

2
(F(ρinth ) · n+ F(ρexth ) · n− α(ρexth − ρinth )),

where α = maxρ

∣∣∣F′
(ρ) · n

∣∣∣. The superscripts ext and int represent the values of ρh read from

the exterior and interior of K respectively. After we apply the DG method in space, the semi-

discrete scheme (4.13) can be written as a set of ODE problems. We apply the third-order RK

time-marching method in Section 4.1.
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For traffic flow problems, the density ρ must be physically nonnegative; therefore, we apply a

PP limiter to modify the numerical solution ρh(x, y, t). For convenience, we omit the independent

variables x, y, t in the following schemes. In each cell K, we let ρnh|K = ρnK and denote the cell

average as

ρ̄nK =
1

|K|

∫
K
ρnKdxdy.

Assuming ρ̄nK ≥ m, we replace the polynomial ρnK with the following modified polynomial ρ̃nK using

a linear scaling limiter:

ρ̃nK = θ (ρnK − ρ̄nK) + ρ̄nK , θ = min
{∣∣∣ m−ρ̄nK

mn
K−ρ̄nK

∣∣∣ , 1} , (4.14)

where mn
K = minK ρnK . In [55], it is proved that this limiter preserves the lower bound m of the

solution and does not affect the original high-order accuracy of DG methods. Moreover, after the

application of the PP limiter at time level n, the cell average ρ̄n+1
K at the next time level will be

automatically nonnegative.

Figure 4.2: The compact stencil in the WENO limiter.

In addition to the PP limiter, we add a high-order WENO limiter to the DG method to avoid

numerical oscillations. First, we need to identify the troubled cells via the KXRCF technique [23].

Then, we replace the DG polynomial in each troubled cell with a new smooth polynomial. For

simplicity, we omit t and the related superscript n. We relabel the troubled cell and its three

neighboring cells as shown in Fig. 4.2. We denote this stencil as S = {K0,K1,K2,K3}. The DG

solution polynomials ρh on cells Ki, i = 0, 1, 2, 3 are first denoted as qi(x, y), i = 0, 1, 2, 3,

respectively. Then, the following modifications are made:

q̃i(x, y) = qi(x, y)− q̄i + q̄0, i = 0, 1, 2, 3, (4.15)

where

q̄i =
1

|K0|

∫
K0

qi(x, y)dxdy, i = 0, 1, 2, 3. (4.16)

The nonlinear WENO reconstruction polynomial ρ̃K0 is defined by a convex combination of these

modified polynomials:

ρ̃K0(x, y) = ω0q0(x, y) +

3∑
i=1

ωiq̃i(x, y), (4.17)

with
3∑

i=0

ωi = 1. (4.18)
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To obtain ωi, i = 0, 1, 2, 3, we need to compute the smoothness indicators βi, i = 0, 1, 2, 3:

βi =
k∑

|ℓ|=1

|K0||ℓ|−1
∫
K0

(
∂|ℓ|

∂xℓ1∂yℓ2
qi(x, y)

)2

dxdy, (4.19)

where l = (l1, l2). Then we can get

ωi =
ω̄i∑3
j=0 ω̄j

, ω̄j =
γj

(ε+ βj)
2 , i, j = 0, 1, 2, 3. (4.20)

4.4 Solution procedures

In our problem, we assume that all travelers ultimately reach the CBD, at which time there

is no further traffic demand in the city. Hence, we set an indicator tend that represents the time

at which all vehicles reach the CBD. For this purpose, we let fCBD(t) (in veh) be the cumulative

number of vehicles that reach the CBD by time t, as follows:

fCBD(t) =

∫ t

0

∮
Γc

(F · n)(x, y, τ)dsdτ, t ∈ [0, T ], (4.21)

where n(x, y) is the unit normal vector on the boundary Γc. We let D(t) (in veh) be the cumulative

traffic demand at time t, as follows:

D(t) =

∫ t

0

∫∫
Ω
q(x, y, τ)dxdydτ, t ∈ [0, T ]. (4.22)

We then define tend as the time at which the following condition is satisfied:

|D(tend)− fCBD(tend)|
D(tend)

< 10−5. (4.23)

We then stop the computation.

Figure 4.3: Solution procedure for Strategy A.

In Strategy A, starting from density ρn at time tn (for simplicity, we omit the subscript K), we

obtain the density ρn+1 in the following steps. Figure 4.3 illustrates the procedure, where the red
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dotted box highlights the route-choice strategy.

Solution procedure for Strategy A

Step A1 At t = tn, suppose that the density ρn is already known, and the density at the initial

time is given by the initial condition, as follows: ρ(x, y, 0) = ρ0(x, y).

Step A2 Compute the speed value U using Eq. (2.1).

Step A3 Compute the local cost c using Eq. (2.4).

Step A4 Use the second-order fast sweeping method to solve Eqs (3.7) in Ω(x,y,t) to obtain the

temporary total travel cost ϕloc
(x,y,t) at each mesh grid.

Step A5 Set the direction using the route-choice strategy Eq. (3.3). Combine this with the speed

obtained in Step A2 to solve the speed vector v.

Step A6 Use the RK method and third-order DG scheme with PP limiter and WENO limiter

to solve the time-dependent conservation law (Eq. (2.3)) to obtain the density ρn+1 at

t = tn+1 by Eq. (4.13) and Eq. (4.2).

Step A7 Stop the iteration process when t ≥ tend.

Figure 4.4: Solution procedure for Strategy B.

Similarly, for Strategy B, starting from the density ρn at time tn, we obtain the density ρn+1

by performing the following steps in a Euler forward time discretization process (see Fig. 4.4).

Solution procedure for Strategy B

Step B1 At t = tn, suppose that density ρn is already known.

Step B2 Compute the speed value U using Eq. (2.1).

Step B3 Use the Euler method to solve the ODE (Eq. (3.8)) to obtain the travel distance sγ⃗ in

each direction.
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Step B4 Compute the optimization problem (Eq. (3.9)) and set the direction.

Step B5 Combine the direction with the speed obtained in Step B2 to solve the speed vector v.

Step B6 Apply the RK method and third-order DG scheme with the PP limiter and the WENO

limiter to solve the time-dependent conservation law (Eq. (2.3)) to obtain the density

ρn+1 at t = tn+1 using Eq. (4.13) and Eq. (4.2).

Step B7 Stop the iteration process when t ≥ tend.

5 Numerical Examples

In this section, numerical examples are given to demonstrate the effectiveness of our model

and the convergence of the solution algorithm. We also compare various route-choice strategies.

5.1 Example 1: An urban city with a circular CBD

5.1.1 Problem Settings

Figure 5.1: The modeled region in the numerical example.

As shown in Fig. 5.1, the city is a [0 km, 35 km]× [0 km, 25 km] rectangular region containing a

circular CBD with radius rCBD = 1.5 km. The CBD center is located at (xc, yc) = (11 km, 10 km).

In the speed function given by Eq. (2.1), we use the following parameter settings:

ρj = 6000[1− 0.01 dist(x, y)]

and C = 8 km/h. The free-flow speed is defined as

Uf (x, y) = Umax [1 + γ2dist(x, y)] ,

where Umax = 30 km/h and γ2 = 4× 10−3 km−1 are parameters, and

dist (x, y) =

√
(x− 11)2 + (y − 10)2
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is the distance from location (x, y) to the CBD center. The factor [1 + γ2dist(x, y)] is used to

express the greater free-flow speed in the domain further from the CBD, where there are fewer

junctions. The traffic demand is set as

q(x, y, t) = qmax [1− γ1dist(x, y)] g(t),

where qmax = 400 veh/km2/h is the maximum traffic demand and γ1 = 0.01 km−1 is a parameter.

The factor [1− γ1dist(x, y)] indicates that there is a higher traffic demand in the area closer to the

CBD, and g(t) is a non-negative and time-varying function defined by

g(t) =


t, t ∈ [0h, 1h],
1, t ∈ (1h, 2h],
−4

5(t− 3) + 1
5 , t ∈ (2h, 3h],

1
5 , t ∈ (3h, 5h],
0, otherwise.

(5.1)

In Strategy A, we use c(x, y, t) =
κ

U(x, y, t)
, which means that the local potential function

ϕloc
(x,y,t)(x

′, y′) defined in the local region Ω(x,y,t) is simply the travel time value. We set κ = 90 $/h.

For simplicity, when defining the feasible region Ω̃(x,y) := B((x, y), r0(x, y, t)), we set r0(x, y, t) as

a constant, i.e., r0(x, y, t) ≡ 0.25 km. In strategies A and B, we set Tperc = 30 s to represent the

perception of travelers.

For comparison, we also test three cases of the original global route-choice strategies described

in Section 2.3, denoted as strategies C, D, and E. For Strategy C, we set the local cost function to

c(x, y, t) ≡ 1, ∀(x, y) ∈ Ω, t ∈ [0, T ], (5.2)

which is independent of the density. The global cost function ϕ is thus the travel distance to the

CBD. To minimize the travel distance, the path choice strategy requires traveling directly to the

CBD. Hence, in this special case, travelers do not consider any information about the density of

the city. In Strategy D, we set the local cost function to

c(x, y, t) =
κ

U(x, y, t)
, ∀(x, y) ∈ Ω, t ∈ [0, T ], (5.3)

where κ is the value of time and
κ

U
represents the local travel-time cost. Hence, the route-choice

strategy is to minimize the global travel time ϕ to the CBD. In Strategy E, the total travel cost ϕ

is computed using Eq. (2.6). The various strategies tested in these numerical examples are listed

in Table 5.1.

Strategy Perception Destination Principle Section
A Local Temporary Minimize the travel time 3.1
B Local CBD Move closer to the CBD in a short time 3.2
C None CBD Minimize the travel distance 2.3
D Global CBD Minimize the instantaneous travel time 2.3
E Global CBD Minimize the actual travel time 2.3

Table 5.1: Various route-choice strategies.

The numerical initial boundary conditions are set as follows.

1. On the solid wall boundary Γo ∪ Γi, we set the normal numerical flux F̂n to 0.
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2. On the CBD boundary Γc, we set ϕ = 0 in strategies C and D, as Γc is the destination. We

assume that the capacity of the CBD is sufficiently large such that no travelers leave the CBD

after they have arrived at the CBD. Moreover, vehicles can enter the CBD without congestion, and

therefore the speed is the free-flow speed inside the CBD.

3. On the local destination boundary Γ(x,y,t) in Strategy A, we set ϕloc
(x,y,t) = 0.

4. We set the initial time as t = 0 h. The initial condition of the conservation law is ρ = ρ0 =

0 veh/km2 in Ω.

5.1.2 Numerical Results

To solve the conservation law, we adopt the third order DG methods. For the computational

domain decomposition, we use an unstructured mesh with Nee triangles. We use a fine mesh

near the CBD and in areas with predictable traffic complexity, as well as for further needs (such

as setting the blockage area in Section 5.2). We use a coarse mesh elsewhere to save on total

computational costs. Figure 5.2 shows the mesh with Nee = 12, 116 triangles.

Figure 5.2: Triangular mesh with Nee = 12116.

We first test the convergence of the numerical algorithm by refining the mesh. The results for

the various route-choice strategies are similar, and thus for brevity we only show the results of

Strategy D. We take the time t = 2 h. The one-dimensional cuts of the density along x = 25 km

and y = 5 km are shown in Fig. 5.3 under different meshes. A good convergence exists among the

meshes, and the results are sufficiently accurate, with Nee = 12, 116 triangles. Hence, we adopt

Nee = 12, 116 (as shown in Fig. 5.2) for further analysis.
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(a) x = 25 (b) y = 5

Figure 5.3: Convergence curves of the density at t = 2h.

Table 5.2 shows the CPU time required to solve the entire model (from initial time to final

time tend) with each strategy. The models using local route-choice strategies A or B require more

time to solve than the global models using strategies C, D, or E. Strategy B requires the most

time because we use the enumeration method (i.e., 400 possible directions of travel) to solve the

optimization problem at each time step and each grid point. Since the RK method will greatly

increase the calculation time, we apply Euler method to solve the ODE in Strategy B. Moreover,

for each enumeration, we solve the ODE with the Euler method, which requires 10 steps each time.

However, for the local eikonal equations and ODE evaluations at each grid point, the computations

are independent at each time point. As the third-order DG scheme for the conservation law needs

only a local small computational stencil, parallel computing can be used to swiftly perform the

computations for local route-choice strategies. We can also divide the city into several regions and

solve the model for each region independently. Thus, only a small amount of information must be

transferred between the models for the various regions.

Strategy CPU time (s) tend (h) CPU time/tend (s/h)
A 335,329 6.0197 55,705.27
B 1,798,319 6.2810 286,310.94
C 21,963 6.7421 3,257.59
D 254,452 5.8715 43,336.80
E 152,104 5.4829 27,741.52

Table 5.2: CPU time required to solve the entire model using various different strate-
gies.

In the local route-choice strategies, Tperc is an interesting parameter whose value may vary with

the scenario. Hence, we conduct a sensitivity analysis of this parameter. Recall that tend is the

time by which all travelers have reached the CBD, as defined in Section 4.4. We consider tend to be

an indicator of traffic efficiency, and we denote another indicator, tavg, as the average travel time

of all vehicles, as follows:

tavg =

∫ tend

0

∫∫
Ω ρ(x, y, t)dxdydt

D(tend)
. (5.4)

The values of these two indicators correspond to various strategies, and those of Tperc are shown in

Table 5.3. We can see that tavg is positively related to tend. Generally, travelers following strategies

A and B travel faster than those following Strategy C and slower than those following strategies D

and E, and Strategy E performs better than Strategy D. This is consistent with a priori estimates,
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as Strategy D considers global instantaneous traffic information and Strategy E is able to predict

global real traffic information, whereas strategies A and B only consider local traffic information

and Strategy C does not consider any traffic information. In strategies A and B, as Tperc increases

the local perception of traffic conditions improves and the local route-choice region expands. Table

5.3 also shows that the values of tend and tavg decrease as Tperc increases; moreover, Strategy A is

more sensitive to Tperc than Strategy B, and Strategy A performs better with a large Tperc. If Tperc

and r0 are sufficiently large, the performance of Strategy A is almost the same as that of Strategy

D. In the following sections, we set Tperc = 30 s for further analysis.

Strategy Tperc/s tend/h tavg/h
A 30 6.0184 0.6437
A 15 6.0054 0.6927
A 5 6.0169 0.7815
A 2 6.0473 0.8089
B 30 6.2810 0.8389
B 15 6.4929 0.8764
B 5 6.6026 0.8983
B 2 6.6271 0.9057
C \ 6.7421 0.9192
D \ 5.8715 0.4773
E \ 5.4829 0.4064

Table 5.3: Overall performances of various strategies and Tperc.

Figure 5.4: Traffic demand and outflow.

In the above analysis, the overall performances of the different strategies are compared in terms

of the indicators tend and tavg. We now compare their performance over time. Consider the city’s

total hourly traffic demand at time t (in veh/h), defined as follows:

D̃(t) :=
d

dt
D(t) =

∫∫
Ω
q(x, y, t)dxdy, t ∈ [0, T ], (5.5)
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and the total outflow rate through the CBD boundary at time t (in veh/h), defined as follows:

f̃CBD(t) :=
d

dt
fCBD(t) =

∮
Γc

(F · n)(x, y, t)ds, t ∈ [0, T ]. (5.6)

Figure 5.4 shows a comparison of D̃ (t) and f̃CBD (t) for the various strategies. The numerical

results show that the areas under the curves are all the same, confirming that all travelers have

reached the CBD by the end of the modeled period. As shown by the yellow line, the traffic

demand grows quickly in [0 h, 1 h] and then maintains the maximum value for [1 h, 2 h]. After

a short delay, the outflows through the CBD boundary increase for all strategies. As travelers

have a global perception of traffic information, the outflows in strategies D and E (the purple

line and green line, respectively, in Fig. 5.4) increase rapidly and then the outflow of Strategy D

remains a high level and that of Strategy E keeps growing rapidly, which shows the efficiency and

effectiveness of the global route-choice strategy. In contrast, in strategies A and B (the navy-blue

line and red line, respectively), the maximum outflow intensity is relatively small because only local

traffic information is available to each traveler. In Strategy C, in which travelers do not consider

any traffic information and travel directly to the CBD, the outflow (the light-blue line) is always

lagging, and the maximum outflow intensity can only be maintained at a low level.

When the traffic demand starts to decrease from t = 2 h, the outflow curves for strategies D

and E decrease rapidly. This also occurs for the other strategies but their respective decreases are

slower. The total demand remains at a positive constant value for a period and then decreases

to 0 veh/h. The outflows in strategies D and E rapidly decrease to the same constant, as most

travelers have already reached the CBD by this time. The outflow curves for the other strategies

remain at a relatively high level and their rates of descent are slower because the large amount of

traffic demand generated has not yet reached the CBD.

After t = 5 h, the traffic demand falls to 0 veh/h, and the outflow intensity for all strategies

decreases to 0 veh/h thereafter. This takes a long time to occur for Strategy C, as no traffic

information is considered.
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(a) t = 1 h (b) t = 2 h

(c) t = 3 h (d) t = 4 h

(e) t = 5 h (f) t = 5.5 h

Figure 5.5: Density and velocity plots for Strategy A.

We next compare the spatial distribution of the density and the velocity vector for various

strategies and times. Figure 5.5 shows the density and velocity plots for Strategy A. To clearly

visualize the details, we only show zoom-in figures of the region near the CBD of all plots. In Fig.

5.5(a), the density is initially low. As increasing numbers of vehicles travel toward the CBD, the

main high-density area is concentrated to the northeast of the CBD (Fig. 5.5(b)-(c)). Travelers

are able to choose a curved path to avoid the high-density area and thus their driving directions

change significantly, particularly near the contours with large density changes. Far away from the

CBD, the density of vehicles is low and thus vehicles travel in near-straight lines. However, these

straight lines do not point toward the CBD center; they are more likely to pass tangentially along

the boundaries of the high-density area. As demand decreases to 0 veh/h, as shown in Fig. 5.5(d)-
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(f), the main area of the city returns to a non-congested state and more vehicles move along a less

curved path to the CBD. All of the vehicles reach the CBD by tend = 6.0184h.

(a) t = 1 h (b) t = 2 h

(c) t = 3 h (d) t = 4 h

(e) t = 5 h (f) t = 5.5 h

Figure 5.6: Density and velocity plots for Strategy B.

Figure 5.6 shows the density and velocity plots for Strategy B. As in Strategy A, there is no

congestion in the region far away from the CBD. As the traffic demand increases, the high-density

area to the east of the CBD increases in size. The traffic then gradually dwindles until all vehicles

have reached the CBD (Fig. 5.6(e)-(f)) and there is no new traffic demand. Travelers are also able

to choose curved paths to avoid the high-density area, especially near contours with large density

changes. All of the vehicles reach the CBD by tend = 6.2810 h.
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(a) A, t = 1.5 h. (b) A, t = 2.0 h. (c) A, t = 2.5 h. (d) A, t = 3.0 h.

(e) B, t = 1.5 h. (f) B, t = 2.0 h. (g) B, t = 2.5 h. (h) B, t = 3.0 h.

(i) C, t = 1.5 h. (j) C, t = 2.0 h. (k) C, t = 2.5 h. (l) C, t = 3.0 h.

(m) D, t = 1.5 h. (n) D, t = 2.0 h. (o) D, t = 2.5 h. (p) D, t = 3.0 h.

(q) E, t = 1.5 h. (r) E, t = 2.0 h. (s) E, t = 2.5 h. (t) E, t = 3.0 h.

Figure 5.7: Density and velocity plot comparison at different times.

Figure 5.7 shows a comparison of the density and flow vector plots for different route-choice

strategies at different times. We can see that travelers can make a detour near the high-density

regions, except in Strategy C. However, travelers using the local route-choice strategy (Fig. 5.7(a)-

(h)) only being to change directions when they obtain density information inside their local per-

ception region. In addition, the paths of travelers using Strategy A are more curved than those

using Strategy B, as the former aim to minimize travel time, even if this requires making a detour.

In contrast, travelers using Strategy B aim to move closer to the CBD within a short time, and

therefore do not make many detours. Travelers using Strategy C (Fig. 5.7(i)-(l)) only consider their

straight-line distance from the CBD and their travel cost is their travel distance, so they always

travel straight to the CBD without changing direction; thus, the shape of the high-density area is
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determined only by the location and shape of the CBD . Travelers using strategies D and E (Fig.

5.7(m)-(p)) make the most detours, as global traffic information is available and they can make

decisions efficiently. In strategies D and E, travelers from north and south may travel west first

to reach the CBD without encountering the high-density regions, which makes the distribution of

vehicles around the CBD more even than in other strategies. The high-density regions in strategies

D and E are concentrated near the CBD during t ∈ [2.0, 2.5] h, while in strategies A and B there

remains some congestion near the city center at this time. This is clearly shown in Fig. 5.4, in

which the outflows of strategies D and E during t ∈ [2.0, 2.5] h are the highest, followed by those

in strategies A and B, and then that of Strategy C.

In addition to the overall traffic situation, the travel of individual vehicles can also be tracked.

The tracking method we utilize involves determining the vehicle’s position in the next discrete time

layer using its current velocity information. This process is repeated in subsequent time layers

until the vehicle reaches the Central Business District (CBD) boundary. Without loss of generality,

we consider a vehicle departing from location (15 km, 12 km) at t = 1 h as an example. Figure

5.8(a) shows the trajectory comparison and Fig. 5.8(b) shows the total real travel-time comparison.

Travelers following strategies A and B can change directions when making route choices. Travelers

following Strategy C travel straight toward the CBD without considering the traffic dynamics; it

is therefore no surprise that although they cover the shortest distance, it takes them the longest

time to reach the CBD. Travelers following strategies D and E can avoid high-density regions by

considering global traffic information. They take a very short time to reach the CBD.

(a) Trajectory (b) Travel time

Figure 5.8: A typical example demonstrating that global route-choice strategies perform
better in most cases.
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(a) Trajectory from (15 km, 5 km). (b) Trajectory from (12 km, 6 km).

(c) Travel time from (15 km, 5 km). (d) Travel time from (12 km, 6 km).

(e) Evolution of speed from (15 km, 5 km). (f) Evolution of speed from (12 km, 6 km).

Figure 5.9: A rare example illustrating that local route-choice strategies perform better
in certain situations.

Interestingly, global route-choice strategies D and E are not always better than local route-

choice strategies A and B for individual travelers: a proportion of travelers using local route-choice

strategies take less time to reach the CBD than those using global route-choice strategies. The

subfigures on the left-hand side and right-hand side of Fig. 5.9 show the traffic information of

travelers departing from point (15 km, 5 km) and point (12 km, 6 km) at t = 2 h, respectively.

Similar to Fig. 5.8, Fig. 5.9(a)-(b) show that compared to travelers following other strategies,

travelers following the global strategy adopt more curved trajectories to avoid the highly congested

region. However, Fig. 5.9(c)-(d) show that travelers following strategies A and B arrive at the

30



CBD earlier than those following strategies D and E, which is in contrast to the observation in

5.8(b). This is probably because in strategies A and B, travelers consider only local information,

and thus travelers in different parts of the city have unequal information. Hence, the behaviors

of travelers diverge greatly and few individuals reach the CBD efficiently, meanwhile, the overall

traffic efficiency of the city remains relatively low. In contrast, in global strategies D and E,

all travelers obtain the same global traffic information. However, under global user equilibrium

principles, individuals do not cooperate and there is thus the potential for competition. Hence,

we observe that travelers departing at t = 2 h from point (15 km, 5 km) and point (12 km, 6

km) following local strategies may reach the CBD more efficiently than travelers following global

strategies. Nevertheless, by reference to the previous results, we can see that the overall efficiency

under global strategies remains significantly enhanced.

(a) t = 1 h, (35km, 1km). (b) t = 1 h, (35km, 24km). (c) t = 1 h, (17km, 24km).

(d) t = 2 h, (35km, 1km). (e) t = 2 h, (35km, 24km). (f) t = 2 h, (17km, 24km).

Figure 5.10: Trajectory plots of various vehicles departing from different times and
locations.

Additionally, to provide a more comprehensive illustration, we have included trajectory plots

of vehicles departing at t = 1 h and t = 2 h from various locations in Fig. 5.10. The titles of

the subgraphs indicate the departure times and locations. We can observe that travelers following

Strategy A do so more frequently than those following Strategy B. Travelers adhering to Strategies

D and E tend to take significant detours to avoid high-density regions, while those following Strategy

C consistently travel straight ahead. These observations align with our expectations.

5.2 Example 2: an additional blockage region

5.2.1 Problem Settings

According to the problem settings of Example 1, we consider the case in which a blockage

happens near the CBD owing to traffic accidents or road breakdowns. As shown by the green circle

in Fig. 5.11, the blockage occurs during t ∈ (1, 3) h within a circular region ΩB with radius 1.5 km.

The blockage center is located at (xc, yc) = (15 km, 10 km). During the blockage, the free-flow
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speed Uf within ΩB is reduced to 0.2Uf , indicating that some traffic lanes are occupied. After

t = 3 h, the free-flow speed returns to the normal Uf as defined in Example 1.

5.2.2 Numerical Results

In Figs. 5.12, 5.13 and 5.14, we compare the behaviors of travelers under different strategies.

We mark the blockage region ΩB with a black circle and compare the results of the cases with

and without a blockage. For the case in which a blockage occurs during t ∈ (1, 3) h, travelers

under different strategies react differently to the blockage. Travelers under strategies A, B, and

C are likely to get stuck within ΩB, resulting in the expansion of the high-density region behind

the blockage area, compared with the blockage-free case. Because travelers move slowly within

ΩB and faster once they drive out of the blockage area, a low-density region occurs between the

CBD and ΩB. Compared with Strategy C, travelers under local strategies can change direction to

reduce travel cost, and some of them even make a slight detour at the boundary of ΩB to avoid the

blockage area. Travelers under Strategy A (Figs. 5.12d–f) can more easily choose curved routes to

avoid the blockage area compared with travelers under Strategy B (Figs. 5.12j–l). Travelers under

Strategy C (Figs. 5.13d–f) move straight toward the CBD. They neither avoid the blockage area

nor optimize their paths when getting stuck in the blockage. Hence, Strategy C features the most

congested traffic conditions, both outside and inside the blockage. Under the global route-choice

strategies D and E (Figs. 5.13j–l, 5.14d–f), because the global traffic information is available to

every driver in the city, travelers can bypass the blockage region ΩB and reduce overall travel costs.

Figure 5.11: The modeled domain with a blockage region.

32



(a) A without blockage at t = 1.5 h (b) A without blockage at t = 2.0 h (c) A without blockage at t = 2.5 h

(d) A with blockage at t = 1.5 h (e) A with blockage at t = 2.0 h (f) A with blockage at t = 2.5 h

(g) B without blockage at t = 1.5 h (h) B without blockage at t = 2.0 h (i) B without blockage at t = 2.5 h

(j) B with blockage at t = 1.5 h (k) B with blockage at t = 2.0 h (l) B with blockage at t = 2.5 h

Figure 5.12: Density and velocity plot comparison without and with blockage - strategies
A and B.
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(a) C without blockage at t = 1.5 h (b) C without blockage at t = 2.0 h (c) C without blockage at t = 2.5 h

(d) C with blockage at t = 1.5 h (e) C with blockage at t = 2.0 h (f) C with blockage at t = 2.5 h

(g) D without blockage at t = 1.5 h (h) D without blockage at t = 2.0 h (i) D without blockage at t = 2.5 h

(j) D with blockage at t = 1.5 h (k) D with blockage at t = 2.0 h (l) D with blockage at t = 2.5 h

Figure 5.13: Density and velocity plot comparison without and with blockage - strategies
C and D.
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(a) E without blockage at t = 1.5 h (b) E without blockage at t = 2.0 h (c) E without blockage at t = 2.5 h

(d) E with blockage at t = 1.5 h (e) E with blockage at t = 2.0 h (f) E with blockage at t = 2.5 h

Figure 5.14: Density and velocity plot comparison without and with blockage - Strategy
E.

For the local strategies A and B, the Tperc value reflects the size of the local distance horizon.

Figures 5.15 and 5.16 show the performances under different Tperc values. With an increased Tperc

value and hence an enlarged local perception region, travelers can more easily change moving

direction and avoid the blockage area, and hence, the local congestion intensity can be reduced,

particularly in the peripheral region near the blockage. Moreover, at a small Tperc, travelers move

in an almost straight line to the CBD, and hence, a small congestion region exists on the northwest

corner of the CBD. With an increased distance horizon, the distribution of vehicles around the CBD

becomes more even, showing an increased overall traffic efficiency. Strategy A is more sensitive to

Tperc because travelers make more turns around the blockage. With increasing Tperc, travelers

under Strategy A are less susceptible to getting stuck in a blockage; therefore, they can more

quickly access the CBD, reducing the extent of high-density areas.
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(a) Tperc = 5 s, t = 1.5 h. (b) Tperc = 5 s, t = 2.0 h. (c) Tperc = 5 s, t = 2.5 h.

(d) Tperc = 15 s, t = 1.5 h. (e) Tperc = 15 s, t = 2.0 h. (f) Tperc = 15 s, t = 2.5 h.

(g) Tperc = 30 s, t = 1.5 h. (h) Tperc = 30 s, t = 2.0 h. (i) Tperc = 30 s, t = 2.5 h.

Figure 5.15: Comparison under different Tperc for Strategy A.
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(a) Tperc = 5 s, t = 1.5 h. (b) Tperc = 5 s, t = 2.0 h. (c) Tperc = 5 s, t = 2.5 h.

(d) Tperc = 15 s, t = 1.5 h. (e) Tperc = 15 s, t = 2.0 h. (f) Tperc = 15 s, t = 2.5 h.

(g) Tperc = 30 s, t = 1.5 h. (h) Tperc = 30 s, t = 2.0 h. (i) Tperc = 30 s, t = 2.5 h.

Figure 5.16: Comparison under different Tperc for Strategy B.

Moreover, Fig. 5.17 presents a comprehensive view of the scenario by displaying trajectories

similar to those in Fig. 5.10. The titles of the subgraphs indicate the departure times and locations

of certain vehicles. These observations are also in line with our expectations.
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(a) t = 1 h, (35km, 1km). (b) t = 1 h, (35km, 24km). (c) t = 1 h, (17km, 24km).

(d) t = 2 h, (35km, 1km). (e) t = 2 h, (35km, 24km). (f) t = 2 h, (17km, 24km).

Figure 5.17: Trajectory plots of various vehicles departing at different times and from
distinct locations.

6 Conclusions

In this study, we examine route-choice strategies in DTA problems based on the continuum

modeling approach. A two-dimensional city with a single CBD is considered. Most existing models

assume that travelers have a global perception of traffic dynamics across an entire city. In contrast,

we also study the behavior of travelers who have only a local view of a city and thus we consider

local route-choice strategies. We assume that travelers can only obtain dynamic traffic information

for a small local area. We devise two new local route-choice strategies, denoted strategies A and B.

The complete model for Strategy A includes a local potential function solved by an eikonal equation

within a local feasible region, whereas the complete model for Strategy B includes a minimum value

problem equipped with ODEs. Both models include a conservation law to obtain the density and

determine the traffic flow level.

To demonstrate the effectiveness of these models, we use numerical examples and compare

various route-choice strategies using unstructured mesh grids and also consider a case with blockage

inside the city. The numerical results are in line with our expectations. We find that a higher

traveling efficiency is obtained as the local perception of traffic dynamics improves, and that the

city’s overall traffic efficiency in local route-choice strategies is higher than that in a strategy

with no real-time traffic information and lower than that in a global route-choice strategy with

instantaneous or actual traffic information. Nevertheless, some individual vehicles travel faster in

local route-choice strategies than in global route-choice strategies. This may be because RDUE and

PDUE models are not DSO. Although there is global information, all travelers possess it, so there is

competition between them until equilibrium is achieved. Thus, from an individual traveler’s point

of view, a local strategy is sometimes better than a global strategy.

We analyze several possible route-choice strategies separately. In future studies, we will consider

mixed traffic flow models, such as a mixture of cooperative autonomous vehicles and human vehicles,

and develop a traffic model with various mixed route-choice strategies. Moreover, in future work,

38



Tperc could be varied for different parts of the city Ω. Although we cannot specify a particular

vehicle type, we can change the size of the perception region in the city, which is determined by the

city’s spatial structure. In addition, although we use a continuous traffic flow model in which the

roads are so dense that it is almost impossible to consider vehicles as moving freely in the city, the

shape and range of the perception region can nevertheless differ from the actual traffic distribution

in the city, which corresponds to the local region Ω(x,y,t) in Strategy A. For example, the width of

an intersection determines the range of perception of vehicles at that location. Finally, for the sake

of simplicity, this study focuses only on deterministic route choices; in future, we will also study

choices of departure time.

As our aim is to compare various route-choice strategies, we only solve a simple numerical

example. However, our model is also applicable to a situation with multiple CBDs and multiple

obstructed areas (such as those occupied by lakes). In future work, we will also study multiple

groups of traffic units in a city, as route-choice strategies may vary between groups. Furthermore,

although we study traffic flow with our model, it is also widely applicable to other similar traffic

scenarios, such as pedestrian flow on a platform and the emergency evacuation of crowds in shopping

malls, and thus provides a good reference for setting macro-level guidance for such situations.
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