

Interaction among Local Flows, UHI, Coastal Winds, and Complex Terrain: Effect on Urban-scale Temperature and Building Energy Consumption during Heatwaves

Ruiqing Du ^a, Chun-Ho Liu ^{a, *}, Xianxiang Li ^{b, c, d}, Chuan-Yao Lin ^e

^a Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

^b School of Atmospheric Sciences, Sun Yat-sen University, China

^c Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, China

^d Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China

^e Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Revised Manuscript No. ENB-D-23-02853

submitted

to

Energy and Buildings

on

November 3, 2023

*Correspondence:

Chun-Ho LIU

Department of Mechanical Engineering,
7/F Haking Wong Building,
The University of Hong Kong,
Pokfulam Road, Hong Kong SAR, CHINA

Tel: +852 3917 7901 / + 852 9788 7951

Fax: +852 2858 5415

liuchunho@graduate.hku.hk

<https://aplhk.tech>

ORCID: 0000-0002-4609-524X

1 Abstract

2 Extreme heat aggravates thermal stress and electricity shortage in urban areas. This
3 study investigates the (circulating) winds in Hong Kong during a heatwave. Unprecedentedly,
4 the collective effect of coastal winds, complex terrain, and local flows on urban temperatures
5 and air-conditioning load intensity (ACLI) is examined using the mesoscale Weather Research
6 and Forecasting (WRF) model. Three representative wind patterns, including urban-accelerated
7 channel wind, channel-wind-induced heat advection, and urban-mountain-stagnated sea-breeze,
8 are analyzed. Our results show that the mountain blockage in foothill areas would increase 2-
9 m temperatures (T_2) and ACLI by 1 °C to 2 °C and 5 W m⁻², respectively. ACLI in compact
10 high-rise areas (LCZ 1) is most sensitive to extreme heat. Moreover, the urban heat island (UHI)
11 downstream is crucial that would accelerate channel flows by 1.66 m sec⁻¹ (50.26 %). On the
12 other hand, terrain-induced channel winds augment heat advection, increasing downstream T_2
13 (0.7 °C) and ACLI (2.62 W m⁻²). UHI-induced local flows interact with hilly slopes, stagnating
14 the sea breeze on mountain leeward side. Subsequently, the winds would be slowed down by
15 0.81 m sec⁻¹ while the temperature T_2 would be increased by 0.9 °C in downstream urban areas.
16 Eventually, the daytime ACLI could be raised as much as 6.41 W m⁻².

(200 words)

18

19

19 *Keywords:* air-conditioning (AC) load; building category (BC); building energy consumption;
20 coastal effect; complex terrain; energy policy; local climate zone (LCZ); local flows;
21 sustainable strategy development; Weather Research and Forecasting (WRF) model.

22

23 **1. Introduction**

24 Rapid urbanization has altered notably urban microclimate. Some phenomena, such as
25 urban heat island (UHI), where urban temperatures are higher than those of the surrounding
26 (rural) areas, have attracted increasing attention. The extreme warmth could pose a threat to
27 public health, energy consumption, and infrastructure security, especially during heatwave
28 events. One of the challenges is surging air-conditioning (AC) load for space cooling. During
29 summer time, the AC-related electricity demand in China and the United States could exceed
30 50% of the total [1, 2] that could even paralyze the power grid [3]. Therefore, unraveling the
31 UHI mechanism and its effect on city-scale AC load intensity (ACLI) is crucial to tackle the
32 heat-related risk.

33

34 UHI intensities (UHIIs) not only depend on the city characteristics but also the
35 surrounding landuse/landcover (LULC) and topography [4, 5]. Inhomogeneous LULC and
36 terrain might induce buoyant flows by creating temperature gradients between: (i) sea and land
37 (sea/land breeze), (ii) urban and rural areas (UHI breeze), (iii) LULC of various radiative
38 properties (micro-circulation), together with (iv) slopes, valleys, and adjacent planes
39 (mountain-valley flows) [6]. Besides, the channeling and blocking caused by mountains and
40 urban canyons modify local flows [7, 8]. These local winds in turn alter substantially the
41 temperatures and transport in urban areas, creating microclimate of different scales [5]. When
42 a city is situated within coastal areas adjacent to complex terrain, UHI circulation, sea-land
43 breeze, and mountain-valley circulation coexist, further complicating urban microclimate [5,
44 6]. The existing high-resolution (800 m) convection-permitting simulation over Sydney found

45 that Foehn wind (sea breeze) could increase (decrease) the UHII by 10.17 °C (11.43 °C) [5].
46 Besides, local flows extended UHI coverage beyond city boundary by heat advection. Urban
47 heat advection was also found significant in Birmingham, augmenting air temperature by
48 1.9 °C [9]. In addition, it was reported that sea breeze combines with upslope wind that could
49 change the wind-flow structure under mild synoptic conditions in Taiwan [10]. Moreover, the
50 topography in Sao Paulo was found to enhance sea breeze propagation that intensified urban-
51 rural-temperature gap by 2 °C [11]. Thus, it is important to study the influence of local winds
52 on UHII and the physical implication behind, in particular for coastal cities.

53

54 Local flows would also affect city-scale AC load by modifying temperatures and winds.
55 An extensive data analysis found that the building energy consumption in poorly ventilated
56 urban areas could be increased by 6.704% [12]. During extreme temperature events, this
57 change in temperature could be fatal for power grids which are already on the verge of collapse
58 due to surging loads [3]. On the other hand, coastal dynamics, such as sea breeze, considerably
59 reduced the AC energy demand by around 15 W m^{-2} in New York [13]. Hence, the pressing
60 need for a thorough understanding of the effect of local winds on city-scale building energy
61 consumption arises.

62

63 Urban energy engineers have coupled microclimate models, such as computational
64 fluid dynamics (CFD) with building energy models (BEMs) to solve the local winds within
65 urban canopy layer and their effects on AC load [14]. These models simulate weather data and
66 **thermo-radiative** processes at refined scales. Their scales are mostly limited in small urban

67 areas but the computation is expensive. In contrast, climatologists have developed mesoscale
68 models with urban canopy models that are able to handle synoptic conditions and mesoscale
69 meteorological processes. The computational costs are lessened, realizing larger city-scale
70 modeling [14, 15].

71

72 Weather Research and Forecasting (WRF) model couples the Building Effect
73 Parameterization (BEP) and Building Energy Model (BEM) that is a promising solution to
74 urban-scale climate and AC load prediction [16]. WRF encompasses natural terrain, real
75 weather conditions, as well as mesoscale meteorological processes in simulation. Apart from
76 climate change [17, 18] and local microclimate [19], existing studies have widely used WRF
77 to quantify the benefit of UHI mitigation strategies, such as high-albedo surfaces [20, 21],
78 photovoltaic panels [22, 23], and passive cooling techniques [24], in terms of building energy.
79 These efforts demonstrated the importance of mesoscale meteorological processes to urban-
80 scale building energy consumption. Besides, it enables the modeling of microclimate and AC
81 load at large city scale. As such, the interaction among city zones, such as heat exchange due
82 to local winds, could be well represented.

83

84 BEP/BEM [25, 26] simplifies urban morphology in the form of infinitely long streets
85 with uniform width but different building geometry. It assigns the building dimensions, street-
86 canyon aspect ratios, building height distributions, surface albedo, and material thermal
87 properties, etc., according to LULC. The model calculates separately the surface-energy budget
88 for streets, roofs, and facades to estimate the sensible heat exchange between buildings and the

89 atmosphere. The influence of shading and trapping in street canyons for radiation calculations
90 is also included. This simplification enables an efficient computation in mesoscale modeling.
91 BEM calculates the two-way energy exchange and the anthropogenic heat (AH) based on
92 weather conditions. It considers the advective, conductive, and radiative heat transfer between
93 indoor and outdoor space, walls and floors, together with heating, ventilation, and air
94 conditioning (HVAC).

95

96 WRF-BEP/BEM has been used to assess urban-scale energy consumption elsewhere
97 [27]. Most of the existing studies have used the LULC data to define the urban morphology
98 and building categories in three classes: commercial or industrial, high intensity residential,
99 and low intensity residential. Recently, the Local Climate Zone (LCZ) was extensively mapped
100 in the World Urban Database Access Portal Tools (WUDAPT) project [28]. It has a more
101 detailed classification, consisting of 10 classes for built areas. However, the LCZ cannot
102 include building category that weakens its functionality of BEM. Compared with chaining
103 strategies, WRF-BEP/BEM uses coupling to integrate the feedback from BEM, such as
104 anthropogenic heat, to urban climate modeling. Moreover, it handles well the dynamical
105 interaction between local wind and building energy consumption. In contrast, chaining
106 strategies simulate the climate output by WRF first which is then input into BEM [29]. This
107 approach enables the detailed modeling of building characteristics at the expense of ignoring
108 the two-way interaction between the buildings and the neighborhood context. Besides, WRF-
109 BEP/BEM was improved recently, enhancing its modeling accuracy as well as functionality
110 [30, 31].

111 In this study, we investigate how topography, land-sea breeze, and UHI breeze
112 synergistically affect the urban temperatures and AC load in an Asian metropolis, Hong Kong
113 (HK). HK is a typical coastal city with large population (7.41 million [32]) but limited land
114 space (1,064 km²) in which 70% is hilly terrain. Coastal areas are attractive to human settlement
115 because of the convenient transport, abundant natural resource, as well as ecological benefit
116 [33]. Nowadays, more than half of the world population lives in coastal cities (< 200 km
117 measuring from the coastline). In fact, most people reside in riparian areas with complex terrain
118 [33, 34]. The surrounding maritime surfaces and mountains in HK complicate the wind patterns.
119 Besides, HK has a compact, high-rise urban setting with subtropical climate where is hot in
120 summer, especially during heatwave events (maximum temperature 35.5 °C). Extreme
121 temperatures would surge the ACLI for space cooling [35]. During the summer in HK, the
122 peaked AC load could jump to 66% of the output [36]. Power companies even have to mitigate
123 power-grid overload by raising electricity tariff [37].

124

125 To the best knowledge of the authors, previous studies have examined individual or two
126 types of local flows, such as modification of UHI circulation by land-sea breeze, and vice versa.
127 Whereas, the coupling among UHI, coastal winds, complex terrain, and buoyant flows, remains
128 an open question. For instance, how sea breeze, slope flows, and urban-rural circulation interact,
129 together with their collective influence on UHII and AC load. Moreover, the heat transfer from
130 upwind urban areas is attributed to local flows. The subsequent temperature variation is yet to
131 be quantified. Furthermore, CFD models coupled with BEM were rarely tested for synoptic,
132 mesoscale meteorological processes. Besides, these coupled models focused on individual

133 neighborhood or block scale rather than larger city scale. In this connection, the advective heat
134 transfer among various neighborhood zones is seldom examined by urban-scale BEMs
135 (UBEMs).

136

137 To bridge the aforementioned knowledge gap, we integrate the local climate zone (LCZ)
138 defined in the World Urban Database and Access Portal Tools (WUDAPT) and building
139 category (BC) map into the multi-layer WRF model. The coupled WRF-WUDAPT/BC model
140 is applied to calculate the spatio-temporal patterns of UHII and AC load in response to local-
141 flow scenarios during a typical heatwave event in Hong Kong (June 23 to 28, 2016) [38].

142

143 In contrast to previous studies, this paper adds new dimensions to the mechanism of
144 urban airflows: the coupling among UHI, land-sea breeze, mountainous topography, and local
145 flows. **In addition**, the effect of local flows on building energy consumption is examined within
146 a multiscale framework connecting to mesoscale boundaries. Furthermore, the indirect effect
147 of upstream/downstream terrain and heat advection on UHII and ACLI is quantified for the
148 first time. The outcome will provide references for urban thermal comfort and sustainable
149 energy policy.

150

151 **2. Methodology**

152 **2.1 Model Configuration**

153 Advanced WRF (ARW version 3.6.1) [39] is used in this study that consists of four
154 one-way nested domains at 9 km (241×181 grids), 3 km (271×181), 1 km (241×181), and 0.33

155 km (241×181) spatial resolution (Figure 1). Apart from the refined 10-m resolution in the urban
156 canopy, there are 51 η vertical levels from the ground to 50 hPa for the atmospheric model. The
157 initial and boundary conditions are collected from European Centre for Medium-Range
158 Weather Forecasts (ECMWF) ERA-Interim datasets at 6-hour and 0.75° intervals. Specifically,
159 to study the UHI mechanism in summer, a 160-hour WRF calculation (from 0800 LST on June
160 21, 2016 to 2300 LST on June 27, 2016) is conducted. After the first 40 hours of spin-up (0800
161 LST on June 21, 2016 to 2300 LST on June 22, 2016), a typical 120-hour heatwave event (0000
162 LST on June 23, 2016 to 2300 LST on June 27, 2016) [40] is selected as the analysis period.
163 During that heatwave event [as defined by the Hong Kong Observatory \(HKO\)](#) [40, 41], [the](#)
164 [monthly-average maximum temperature hit a record high of 32.4 °C. Besides,](#) the daily
165 maximum temperatures were above 35 °C for four consecutive days (from June 24 to 27, 2016),
166 breaking the weather record of three consecutive days ([from May 30 to June 1, 1963](#)). In
167 particular, the maximum hourly temperature was recorded [as hot as 35.5 °C](#) at 1400 LST on
168 June 25, 2016.

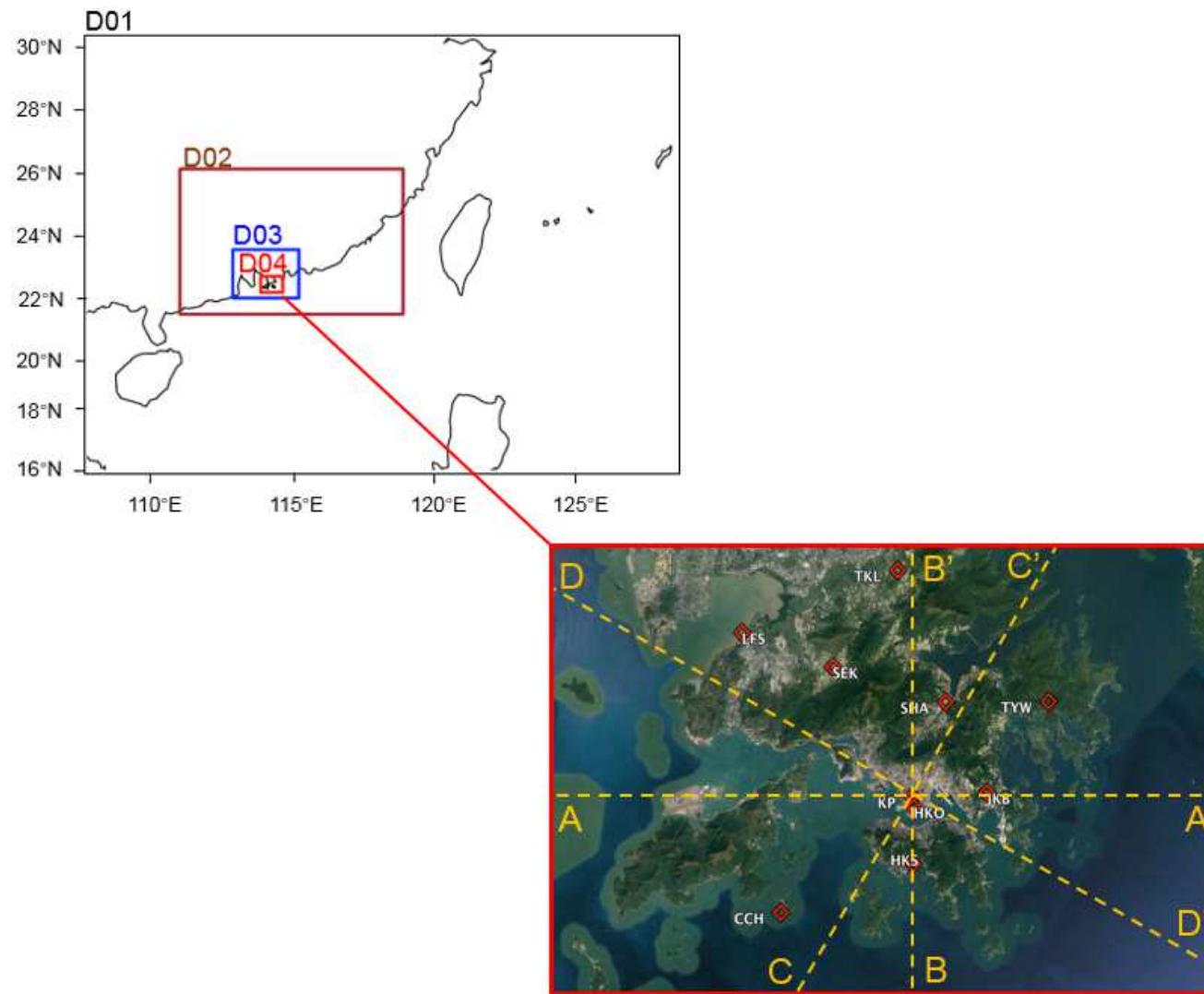


Figure 1. Computation domains and the 10 selected HK weather stations (red circles). Also shown are the transects A-A', B-B', C-C', and D-D'.

170 To test the ACLI during an extreme temperature event, we developed the LCZBC map
171 (including 30 urban classes) over HK by overlaying the LCZ map (Figure 2) on the BC map.
172 The BC information was extracted from the Land Utilization Map of Planning Department
173 (PlanD) of HK Special Administrative Region (HKSAR) at 10-m resolution [34]. In each of
174 the 10 urban LCZ types, the BC data are further categorized into three classes (commercial,
175 residential, and non-building; [Table S1](#)) according to the dominant LULC at individual model
176 grids (Figure 2).

177

178 The physical parameterization schemes adopted in this study are listed in Table 1. To
179 capture city-scale AC load, the WRF model is coupled with the multi-layer [BEP](#) and [BEM](#) [25,
180 26]. The building characteristics and AC configurations are set according to the BCs regardless
181 of urban morphology ([Table S2](#)). These parameters are obtained from government codes,
182 guidelines, surveys, and studies in literature [12-16].

183

Table 1. Physical parameterization schemes used in the WRF model.

Physics Options	Schemes	References
Boundary Layer	BouLac	[42]
Microphysics	Single-Moment 3-class	[43]
Land Surface	Noah	[44]
Cumulus	Kain-Fritsch	[45]
Short Wave Radiation	Dudhia	[46]
Long Wave Radiation	Rapid Radiative Transfer Model	[47]
Surface Urban	BEP/BEM	[25, 26]

184

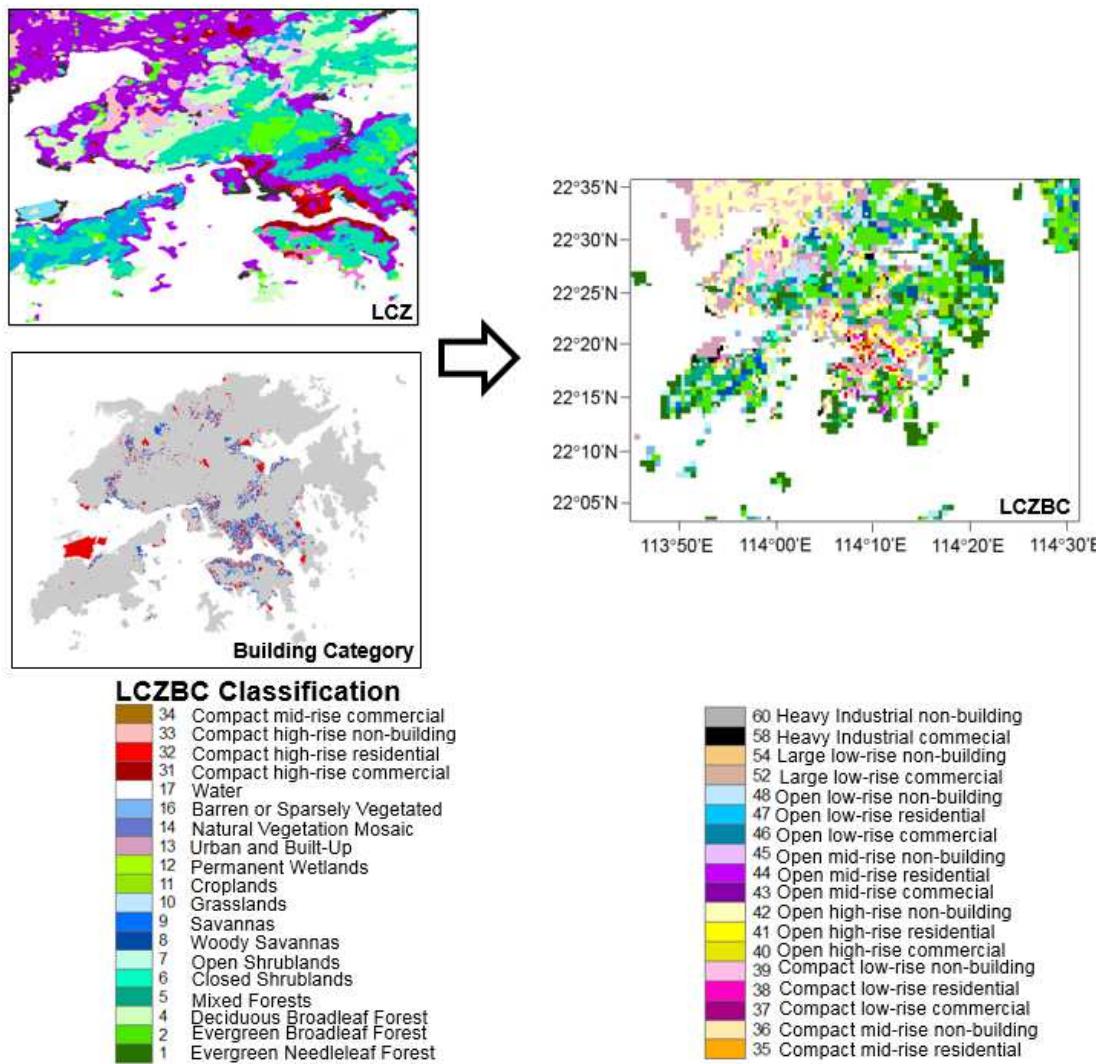


Figure 2. Development of the local climate zone and building category (LCZBC) map in Hong Kong.

187 **2.2 Analytical Approach**

188 **2.2.1 Wind Information Layer**

189 A schematic of summer wind information (Figure 3) was obtained from Urban Climatic
190 Analysis Map of Hong Kong (UC-AnMap) [48] which was collectively developed based on
191 observation, numerical simulation, and expert evaluation. UC-AnMap identified the summer
192 (June to August) typical wind patterns. The prevailing southerly wind coincides with the
193 summer background wind over HK during the analysis period [49]. In view of the prevailing
194 wind, the southerly sea breeze could penetrate to North HK Island. Sea breeze was also
195 observed along the Eastern and Western coastlines of Kowloon Peninsula. The Easterly channel
196 wind establishes due to the narrow inlet to the East of Victoria Harbor, ventilating the
197 downtown Kowloon Peninsula and the North central business district (CBD) on HK Island [7,
198 8]. Besides, the slope flows from Kowloon Peak or the hilly region on HK Island complicate
199 the urban winds. UC-AnMap classifies the North HK Island and Kowloon Peninsula into 6
200 zones according to their dominant wind directions and urban ventilation characteristics [48].

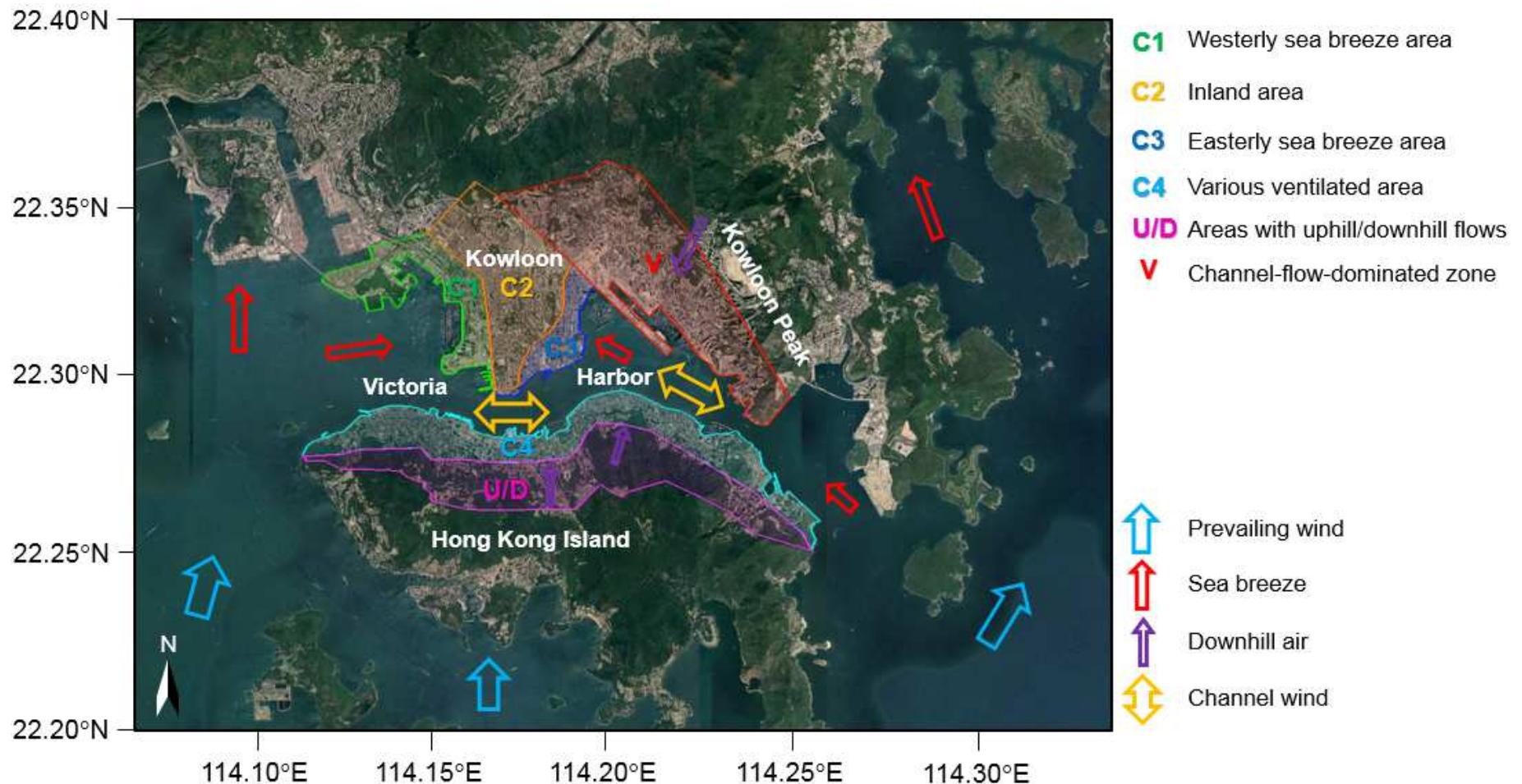


Figure 3. Wind information layer of Hong Kong in summer [48].

202 **2.2.2 Numerical Experiment**

203 To test the sensitivity of meteorology variables and AC load in downtown Kowloon
204 (zone C2; Figure 3) to the surrounding mountains and urban areas, five numerical experiments,
205 including one real scenario (REAL) and four hypothetical scenarios, are carried out (Table 2).
206 The four hypothetical scenarios are: (1) a no-terrain scenario (ALLFlat) by removing all the
207 terrain in (innermost) Domain 4 (Figure 1); (2) a no-urban scenario (ALLGreen) by switching
208 all the urban areas in Domain 4 to grassland; (3) a scenario (NoV) by switching only the urban
209 areas in Channel Wind Ventilation Zone V to grassland; and (4) a scenario (NoC4) by
210 switching only the urban areas in Various Ventilation System Zone C4 to grassland (Figure 3).

212 **2.3 Model Validation**

213 The WRF model setup in this study had been fully validated in our previous study [31].
214 Its results are validated against the measurements from 10 selected HKO weather stations
215 (Figure 1). The root-mean-square errors (RMSEs) are calculated to evaluate the model
216 performances by 2-m air temperature ($T2$), 2-m relative humidity ($RH2$), and 10-m wind speed
217 ($W10$; Table 3) [31]. The WRF results and HKO measurements agree well with each other.
218 Their maximum RMSEs are 1.4 °C, 11.16%, and 1.41 m sec⁻¹ for $T2$, $RH2$, and $W10$,
219 respectively. The numerical result could accurately represent the weather condition and urban
220 contexts in HK during the analysis period (June 23 to 27, 2016).

Table 2. Design of numerical experiments.

Scenario	Numerical experiment	Model setup
Real	1	REAL WRF coupled to BEP/BEM with the combination of LCZ data and BC data (LCZBC) as the LULC configuration.
	2	ALLFlat Same as REAL but all the terrains in Domain 4 is flattened.
	3	ALLGreen Same as REAL but all the urban areas in Domain 4 are switched to grassland.
	4	NoV Same as REAL but only the urban areas in Channel Wind Ventilation Zone (V; Figure 3) are switched to grassland.
	5	NoC4 Same as REAL but only the urban areas in upstream Various Ventilation System Zone (C4; Figure 3) are switched to grassland.

Table 3. Root-mean-square errors (RMSEs) between the predicted and observed 2-m temperature ($T2$), 2-m RH ($RH2$), and 10-m wind speed ($W10$) at the 10 selected weather stations operated by HKO [50].

Station	Classification	LCZ type	RMSEs		
			$W10$ (m sec $^{-1}$)	$RH2$ (%)	$T2$ (°C)
HKO	urban	LCZ1	1.38	9.83	1.4
KP	urban	LCZ4	1.10	9.89	1.04
HKS	suburban	LCZ5	1.20	8.15	1.05
JKB	suburban	LCZ4	0.79	9.8	0.96
LFS	suburban	LCZ4	1.41	9.7	0.98
SEK	suburban	LCZC	1.07	11.16	1.02
SHA	suburban	LCZ6	1.18	7.09	0.91
CCH	rural	LCZA	1.06	9.02	1.25
TKL	rural	LCZ6	0.88	8.90	1.31
TYW	rural	LCZ4	/	8.42	1.30

223

224

225

226

227

228

229

230

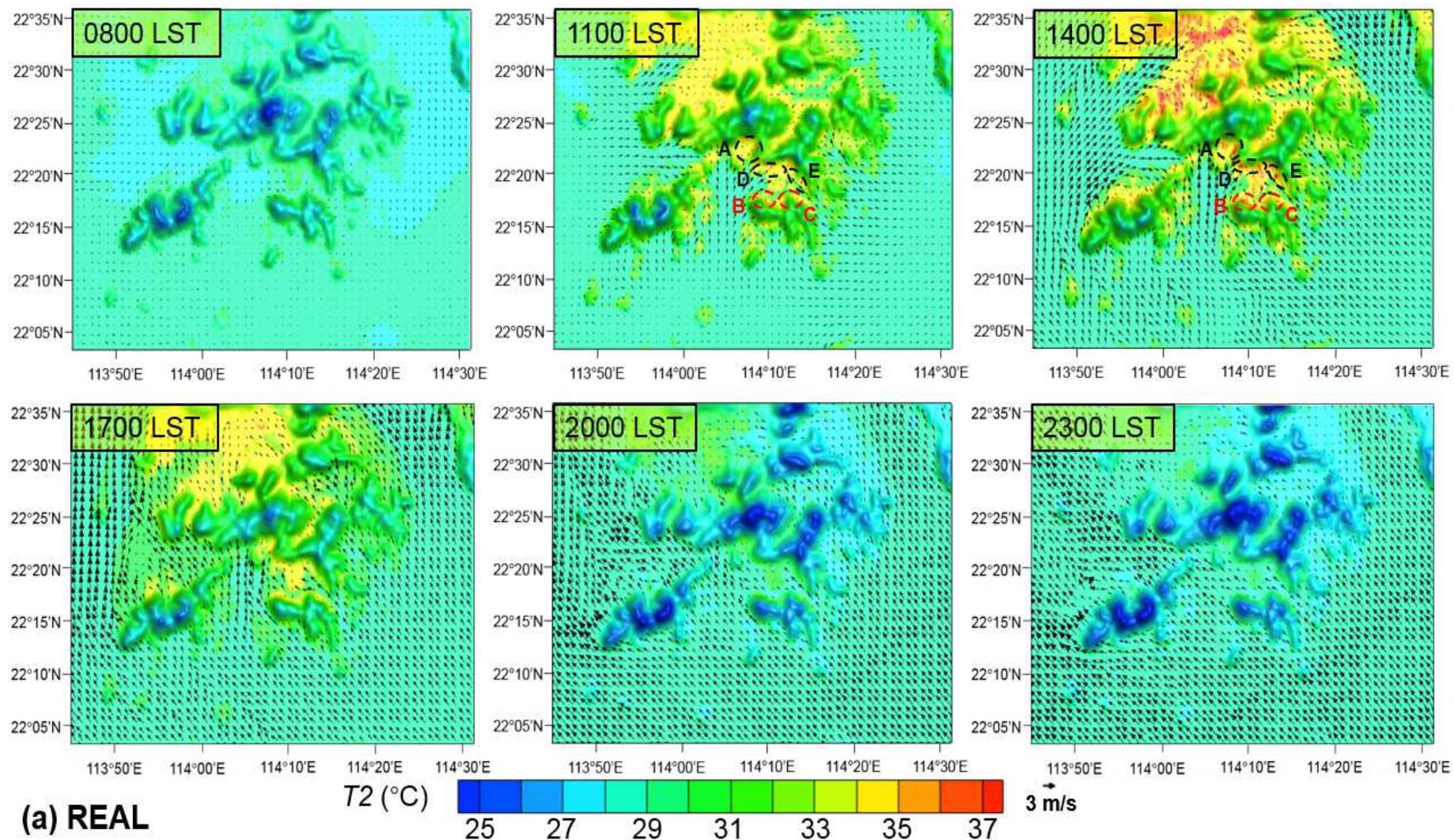
231

232 **3. Results and Discussion**

233 In this section, the combined influence of complex terrain, UHI, and land-sea breezes
234 on ground-level thermal circulation and temperatures are investigated. Besides, we assess the
235 effects of terrain-induced channel winds on heat advection in urban areas. The sensitivity of
236 ACLI to terrain, UHI, and local flows is tested as well.

237

238 **3.1 Effect of Mountains**


239 **3.1.1 Blockage**

240 To quantify the effects of mountainous topography [51] on UHII and ACLI, one
241 sensitivity experiment (ALLFlat) is conducted by flattening all the terrains in Domain 4 (Figure
242 1). Figure 4 compares $T2$ and $W10$ of the cases REAL and ALLFlat in early morning (0800
243 LST), late morning (1100 LST), early afternoon (1400 LST), late afternoon (1700 LST),
244 evening (2000 LST), and late evening (2300 LST). The main discrepancy of $T2$ between the
245 two cases ($\Delta T2_{R-ALLFlat}$) appears from late morning (1100 LST) to early afternoon (1400 LST)
246 when the incoming solar radiation is most intense. Mountainous topography induces several
247 high-temperature zones (35 °C to 37 °C, circles in Figure 4) in REAL where $T2$ is about 1 °C
248 to 2 °C hotter than other areas. Whereas, these hot spots are not observed in ALLFlat where $T2$
249 is spatially more uniform. These five high-temperature zones could be bisected into two
250 categories according to their dissimilar mechanisms underlying extreme temperatures. The first
251 type (red dashed circles in Figure 4) consists of the zones on the mountain leeward. They are
252 poorly ventilated where cooling sea breeze seldom sweeps directly due to the mountain
253 blockage. The poor ventilation could be caused by the heat trap in street canyons and the

254 subsequent elevated ground-level temperature. The second type (black dashed circles in Figure
255 4) includes the inland foothill zones between urban leeward and mountain windward. The
256 southerly sea breeze penetrates the urban areas then ends up with stagnation in these zones due
257 to mountain blockage. The heat from the upstream urban areas accumulates, elevating $T2$.
258 Previous studies based on pointwise observation in HK found that the summertime high-
259 temperature in the second type of foothill areas is attributed to the warming effect of mountains
260 [52]. Whereas, the current results show that heat advection and accumulation are the main
261 reasons for the hotter $T2$.

262

263 Energy impact in response to hills is further tested by the difference in sensible cooling
264 demand ($\Delta SCD_{R-ALLFlat}$) between the cases REAL and ALLFlat. Figure 5 shows $\Delta SCD_{R-ALLFlat}$
265 in early afternoon (1400 LST) when terrain causes maximum $\Delta T2_{R-ALLFlat}$. Compared with the
266 ALLFlat test, the mountainous topography in REAL also results in heavier ACLI in some of
267 the zones (about 38 W m^{-2} , red and black circles in Figure 5). These zones almost coincide with
268 the aforementioned high-temperature zones (Figures 4a and 5). Whereas, the mountain
269 blockage increases the AC load in the foothill zones A, B, C, and E (Figures 4 and 5), while
270 there is no noticeable change in zone D. These increases in AC load are mainly attributed to
271 their compact, high-rise urban setting (LCZ1-C/R, Figure 2) with the following two
272 characteristics: (1) high-intensity AC usage and the subsequent strengthened **AH**, and (2)
273 aggravated heat trap due to the deep street canyons in HK. As a result, the AC load in zones A,
274 B, C, and E is more sensitive to the weakened winds on the leeward side than those in the low-
275 density urban or the non-building areas in zone D.

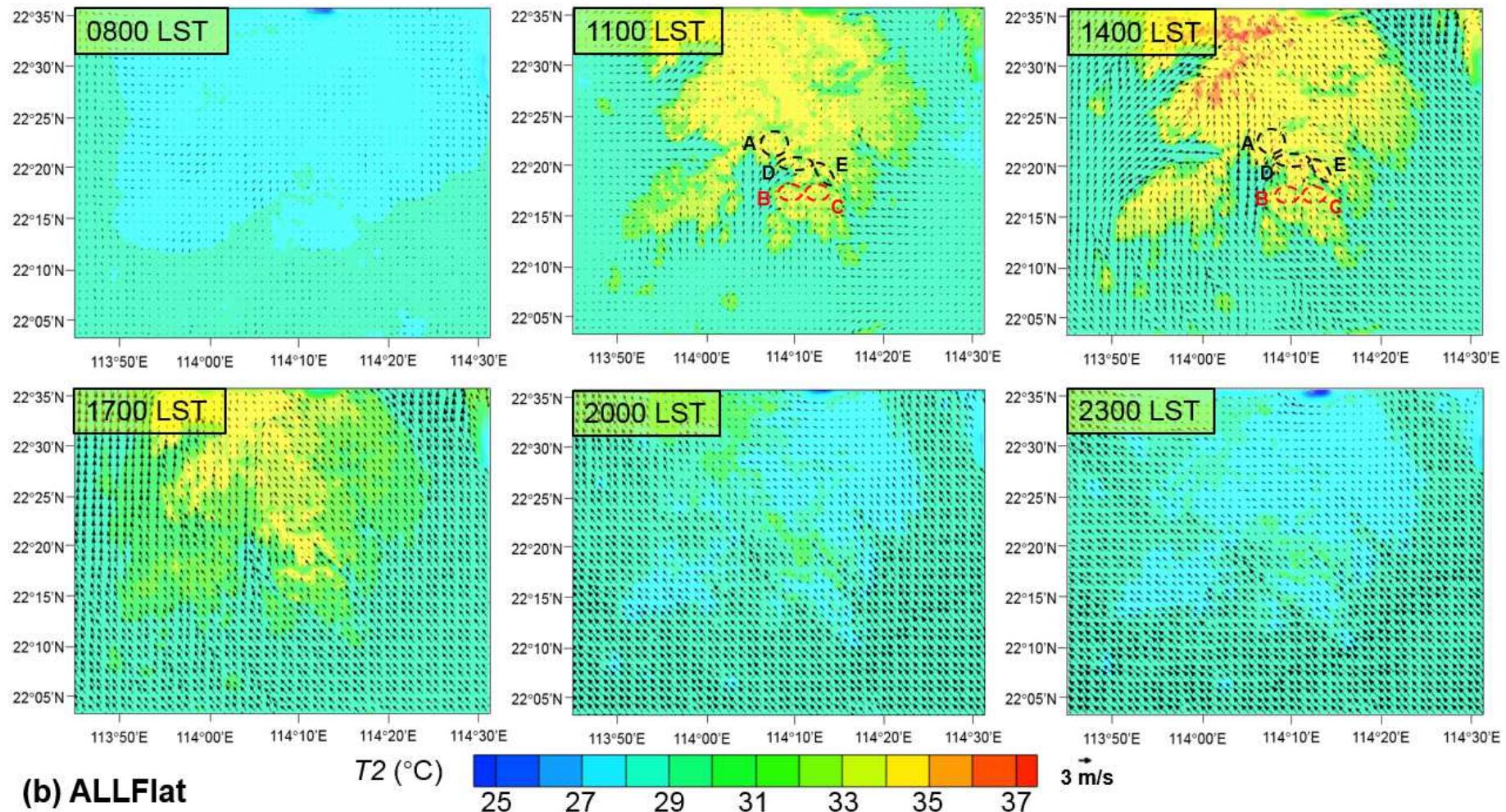


Figure 4. 2-m air temperatures ($T2$; shaded contours) and 10-m winds ($W10$; vectors) of the (a) REAL and (b) ALLFlat cases in early morning (0800 LST), late morning (1100 LST), early afternoon (1400 LST), late afternoon (1700 LST), evening (2000 LST), and late evening (2300 LST). The red and black circles (dashed lines) denote the foothill areas on the leeward and windward sides, respectively.

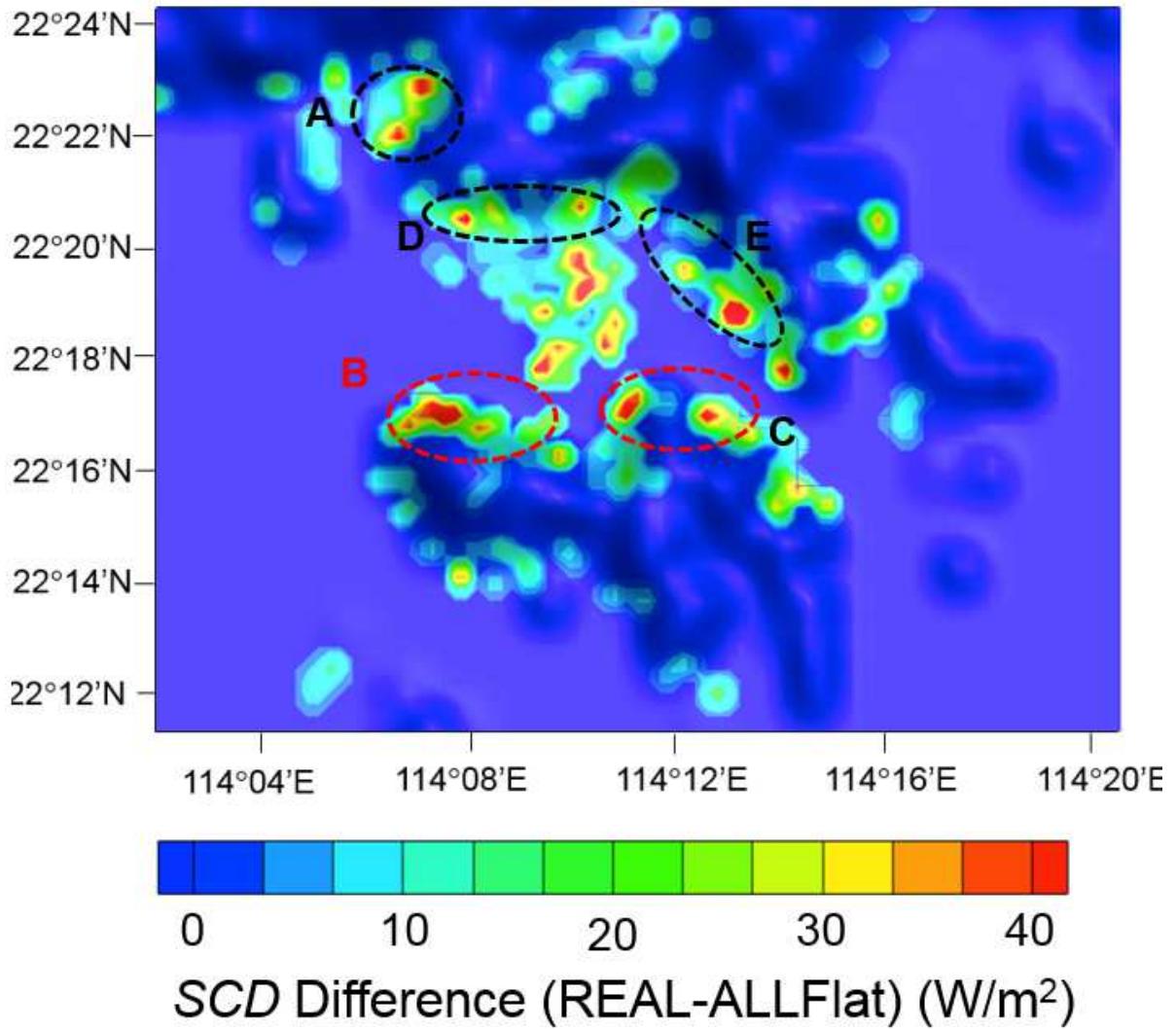


Figure 5. Difference in sensible cooling load between the cases REAL and ALLFlat ΔSCD_R .

ALLFlat at 1400 LST. The red and black circles (dashed lines) denote the foothill areas on the leeward and windward sides, respectively.

277

278 **3.1.2 Channeling**

279 Although the channel winds in east Victoria Harbor have been reported elsewhere [7,
 280 8, 48, 53], their development mechanism worth investigation. To test the sensitivity of channel
 281 winds to UHI, one numerical experiment (ALLGreen) is conducted by switching all the urban
 282 areas to grassland in the innermost Domain 4 (Figure 1). Figure 6 compares the U-component

283 (easterly) wind velocity at 10-m (U_{10}) and 50-m (U_{50}) elevation in the channel winds between
284 the REAL and ALLGreen cases. Compared with the REAL case, the maximum U_{10} (U_{50}) of
285 the ALLGreen case is 1.45 m sec^{-1} (1.66 m sec^{-1}) slower at the eastern (narrow) inlet of Victoria
286 Harbor, suppressing the channel winds locally. The UHI in the ALLGreen test is switched off
287 that in turn weakens the vertical (buoyant) flows and the thermal forcing for horizontal winds.
288 Eventually, the sea breeze would escape from the eastern narrow inlet of Victoria Harbor,
289 diverting to areas with lower resistance. In addition to rough terrains, this finding shows that
290 downwind UHI could be important to channel-flow development under calm winds.

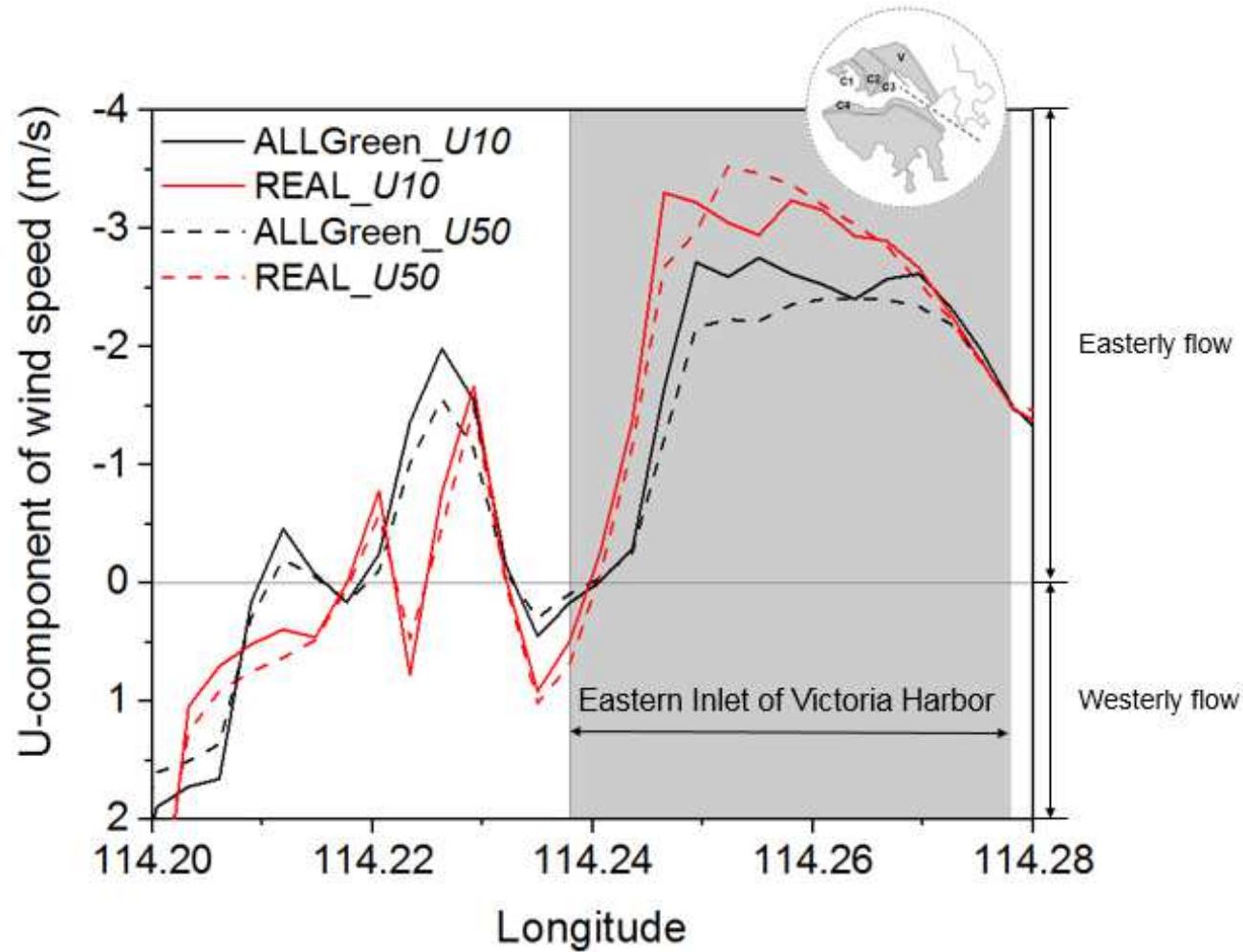


Figure 6. Comparison of the U-component wind velocity at 10-m (U_{10}) and 50-m (U_{50}) elevation on the vertical cross section along the channel wind (transect D-D' in Figure 1 or the dashed line in the figure inserted) between the REAL and ALLGreen cases.

292 **3.2 Heat Advection by Channeling**

293 The hills (400 m to 550 m) on HK Island and Kowloon Peninsula flank Victoria Harbor
294 that collectively initiate the (southeasterly) channel winds (Sections 2.2.1 and 3.1.2) [7, 8]. To
295 test the sensitivity of heat advection to the channel winds, the meteorology parameters and
296 ACLI under two characteristic wind patterns are compared (Figure 7). The first wind pattern
297 develops from 0000 LST (midnight) on June 23, 2016 to 1400 LST (afternoon) on June 25,
298 2016 that consists of the westerly sea breeze and easterly channel flow (WSBECF) [54]. The
299 ground-level winds U_{10} in each climate zone fluctuate between -1.71 m sec^{-1} (easterly wind)
300 and 1.61 m sec^{-1} (westerly wind; Figure 7). The other wind pattern is characterized by stronger
301 easterly channel flow (ECF, $-2.59 \text{ m sec}^{-1} \leq U_{10} \leq -0.18 \text{ m sec}^{-1}$) from 1500 LST (afternoon)
302 on June 25, 2016 to 0000 LST (midnight) on June 29, 2016 (Figure 7).

303

304 The urban zone V (Figure 3) was classified as channel-flow-ventilated areas by urban
305 climatic map (Section 2.2.1) [48]. To quantify the channel-flow-induced heat advection, one
306 numerical experiment (NoV; Table 2) is carried out by replacing all the urban areas in zone V
307 by grassland. The differences in T_2 between the cases REAL and NoV ($\Delta T_{2R-NoCV}$) are
308 compared under the two aforementioned wind patterns (WSBECF and ECF). Figure 7 shows
309 the diurnal variation of the spatially averaged ΔT_{2R-NoV} for downwind coastal areas (zone C1).
310 Here, spatial average is the average of all model grids (elevation $z = 2 \text{ m}$) in a specific climate
311 zone. As zone C1 is not contiguous to zone V, ΔT_{2R-NoV} of zone C1 could be attributed to the
312 heat advection from zone V being driven by the easterly channel winds. The heat advection in
313 turn induces significantly $\Delta T_{2R-NoCV}$ in zone C1 in daytime ($\leq 0.7 \text{ }^{\circ}\text{C}$) but not at nighttime (\leq

314 0.2 °C). All $\Delta T2_{R-NoCV}$ increases are coincident with strong easterly winds ($U10 < 0 \text{ m sec}^{-1}$) in
315 Kowloon Peninsula (zones C1 to 3). The maxima of $\Delta T2_{R-NoV}$ in ECF are 0.31 °C and 0.18 °C
316 higher in daytime and at nighttime, respectively, than their WSBECEF counterparts. There are
317 two reasons leading to the dissimilarity between the two patterns (Figure 8): (1) the stronger
318 easterly channel winds in ECF carries more heat from zone V to zone C1 than does the
319 moderate winds in WSBECEF; and (2) the convergence of westerly sea breeze and easterly
320 channel winds in WSBECEF ends up with a stagnation that in turn suppresses the heat advection
321 from the east.

322

323 The spatial average of ΔSCD_{R-NoV} in zone C1 is calculated to examine the influence of
324 channel-flow-induced heat advection on the ACLI (Figure 7). Apparently, it is aroused
325 significantly in daytime but not at nighttime. Heat advection could soar the ACLI up to
326 2.62 W m⁻². Under the WSBECEF regime, the heat flux from Zone V is relatively low, and there
327 is considerable time lag (about an hour) between outdoor temperature and AC load due to the
328 heat storage in massive building envelope. Afterward, under the ECF when the heat flux from
329 Zone V is larger, ΔSCD_{R-NoV} responds instantaneously to the diurnal $\Delta T2_{R-NoV}$ variation (Figure
330 7).

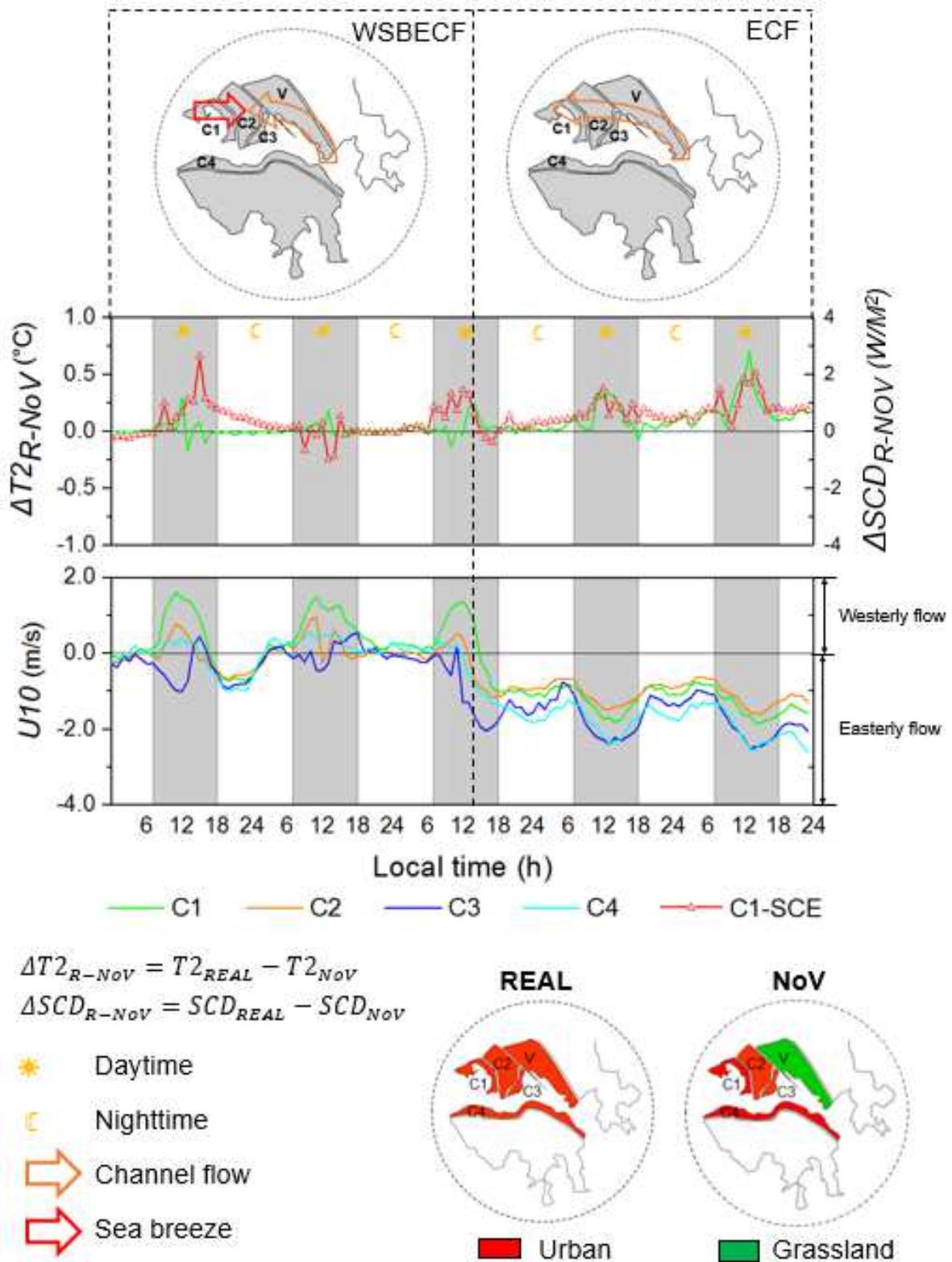


Figure 7. Diurnal variation of the spatial average of the differences in (a) 2-m temperature $\Delta T2_{R-NoV}$; (b) sensible cooling load ΔSCD_{R-NoV} ; and (c) 10-m U-component wind velocity $U10$ induced by Zone V urban areas for the flow patterns WSBECF and ECF.

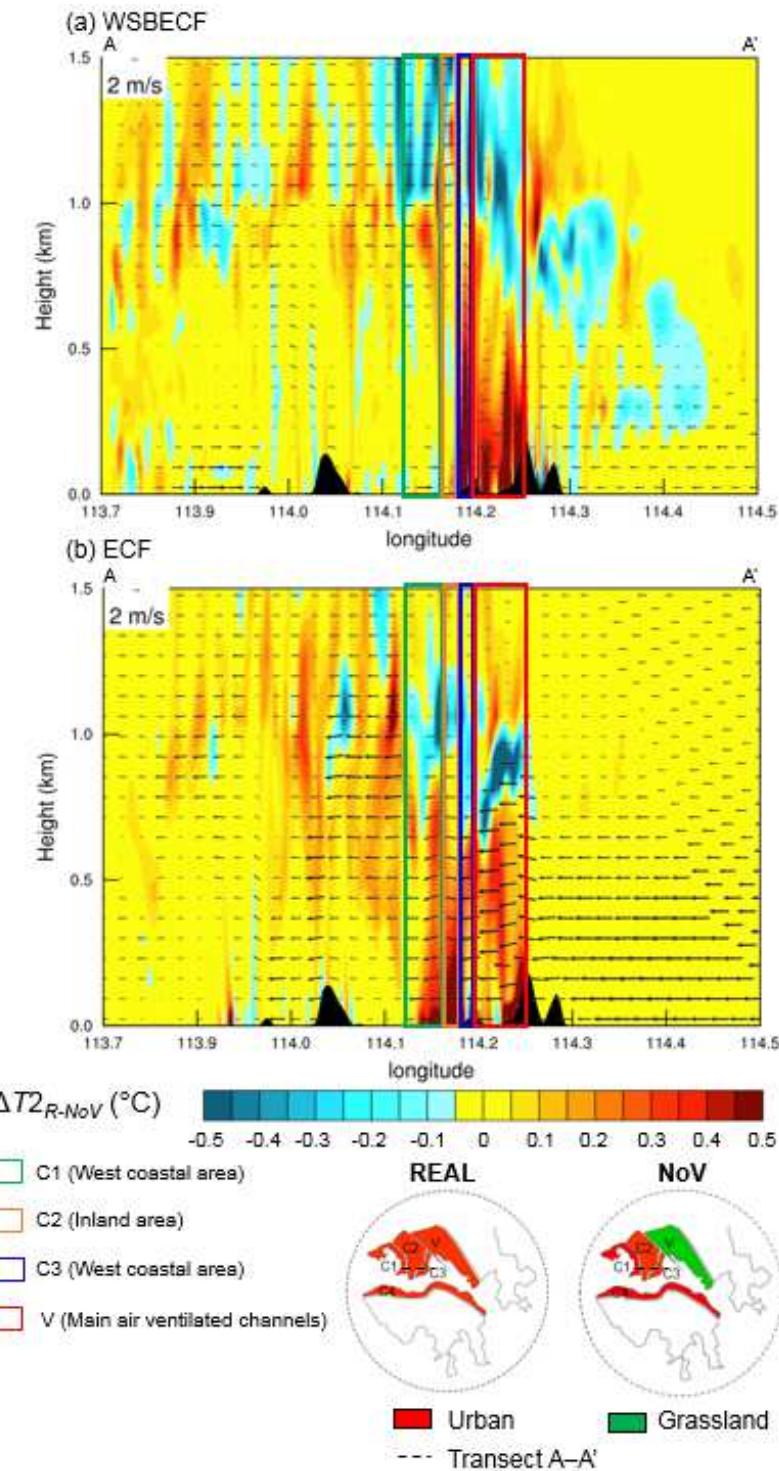


Figure 8. Vertical east-west cross section (transect A–A' in Figure 1) of the WRF-BEP/BEM model simulated wind velocity (m sec^{-1} ; vectors) and the air temperature difference ($\Delta T_{R-\text{NoV}}$) between REAL scenario and scenario 4 (NoV) at 1400 LST for the flow patterns (a) WSBECEF and (b) ECF.

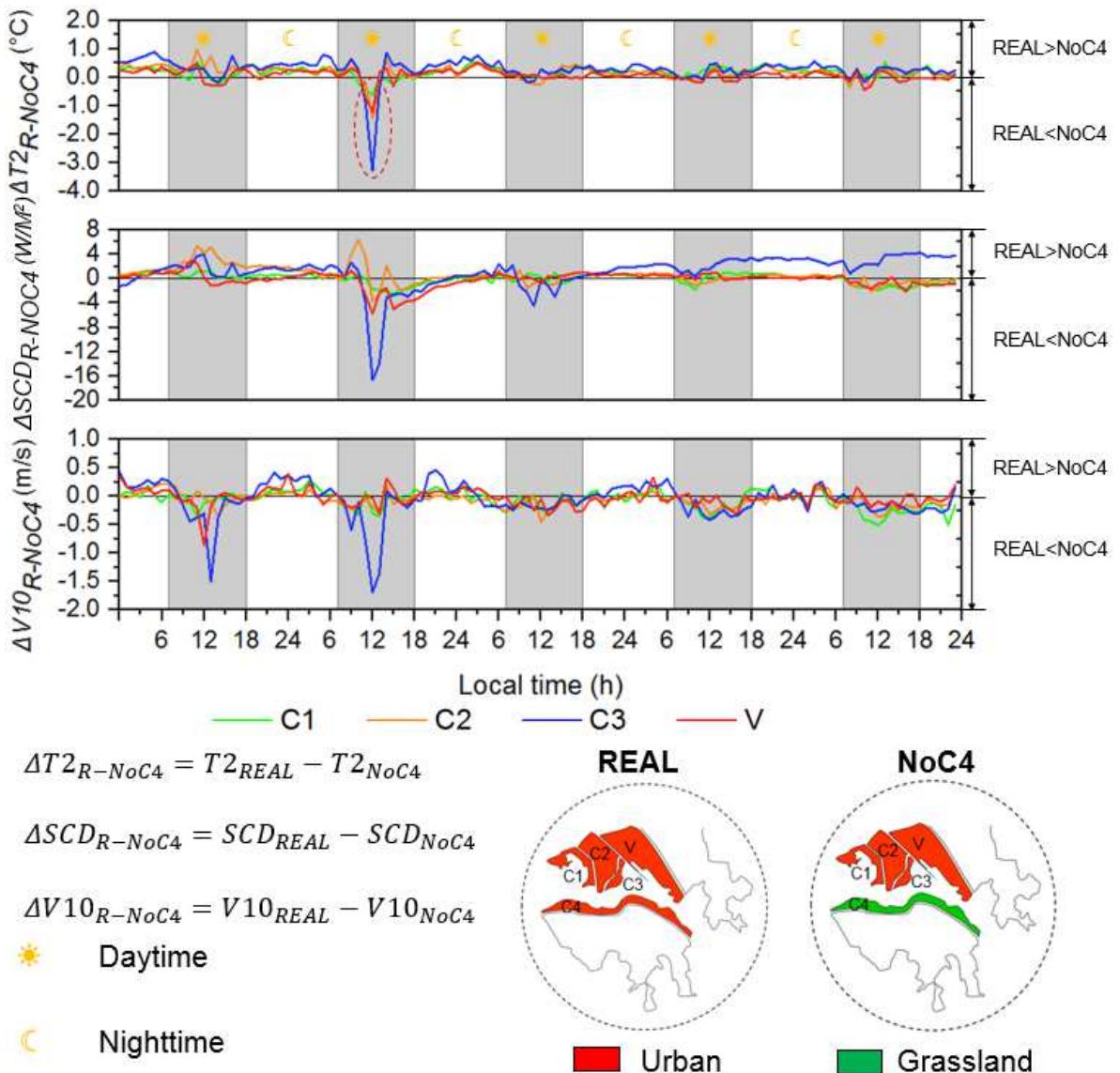


Figure 9. Diurnal variation of the spatial average of (a) 2-m temperature $\Delta T_{2R-NoC4}$; (b) sensible cooling load ΔSCD_{R-NoC4} ; and (c) 10-m V-component of wind velocity $V10_{R-NoC4}$ induced by Zone C4 urban areas.

331

332 3.3 Urban-induced Local Wind

333 To test the sensitivity of urban climate to the surrounding urban-induced local flows,
 334 the changes in $T2$ ($\Delta T_{2R-NoC4}$) and $V10$ ($\Delta V10_{R-NoC4}$, V-component of wind velocity or southerly

wind) between REAL and scenario 5 (NoC4; Table 2), are analyzed. In the NoC4 scenario, the UHI in the foothill C4 zone is switched off by replacing all the urban areas to grassland. The effect of C4-urban-induced local flows on the thermal environment of other zones (C1 to 3 and V) is investigated. Figure 9 compares the diurnal variation of the spatially averaged $\Delta T_{2R-NoC4}$ of C1 to 3 and V. The UHI in C4 tends to reduce $V10$ ($\Delta V10_{R-NoC4} < 0 \text{ m sec}^{-1}$) and promote $T2$ ($\Delta T2_{R-NoC4} > 0 \text{ }^{\circ}\text{C}$) in daytime in other urban zones. $T2$ could increase by $0.9 \text{ }^{\circ}\text{C}$ while $V10$ could decrease beyond 0.86 m sec^{-1} . Compared with NoC4, the UHI in C4 zone in REAL induces a larger temperature difference between C4 zone and its surrounding vegetation/water surfaces (Figure 10). These temperature differences induce upslope flows [55] and urban-rural circulation over areas with uphill/downhill (U/D) winds and in C4 zones (marked in Figure 3), respectively, leading to characteristic local flows. Besides, the southerly (cooler) sea breeze developed under prevailing wind rises over the hills in HK Island that interacts with the local flows on the leeward side (right over C4). Eventually, it results in elevated turbulence levels (turbulence kinetic energy $TKE \approx 3 \text{ m}^2 \text{ sec}^{-2}$) and stagnation locally. In contrast, in NoC4 scenario (Figure 10b), the southerly sea breeze no longer stagnates over C4 but penetrates farther inland to other urban zones (C1 to 3 and V). Subsequently, the penetrating sea breeze cools down the temperatures ($\Delta T2_{R-NoC4} > 0 \text{ }^{\circ}\text{C}$) that promotes the (northerly) wind speeds ($\Delta V10_{R-NoC4} < 0 \text{ m sec}^{-1}$) in NoC4 than REAL. These findings indicate that the rugged terrains and foothill urban areas could couple upslope flows and urban-rural circulation. These local flows could further result in the convergence and stagnation of cooling sea breeze. In the worst scenario, ceasing the sea breeze would degrade the city ventilation, leading to UHI problems in the downwind areas.

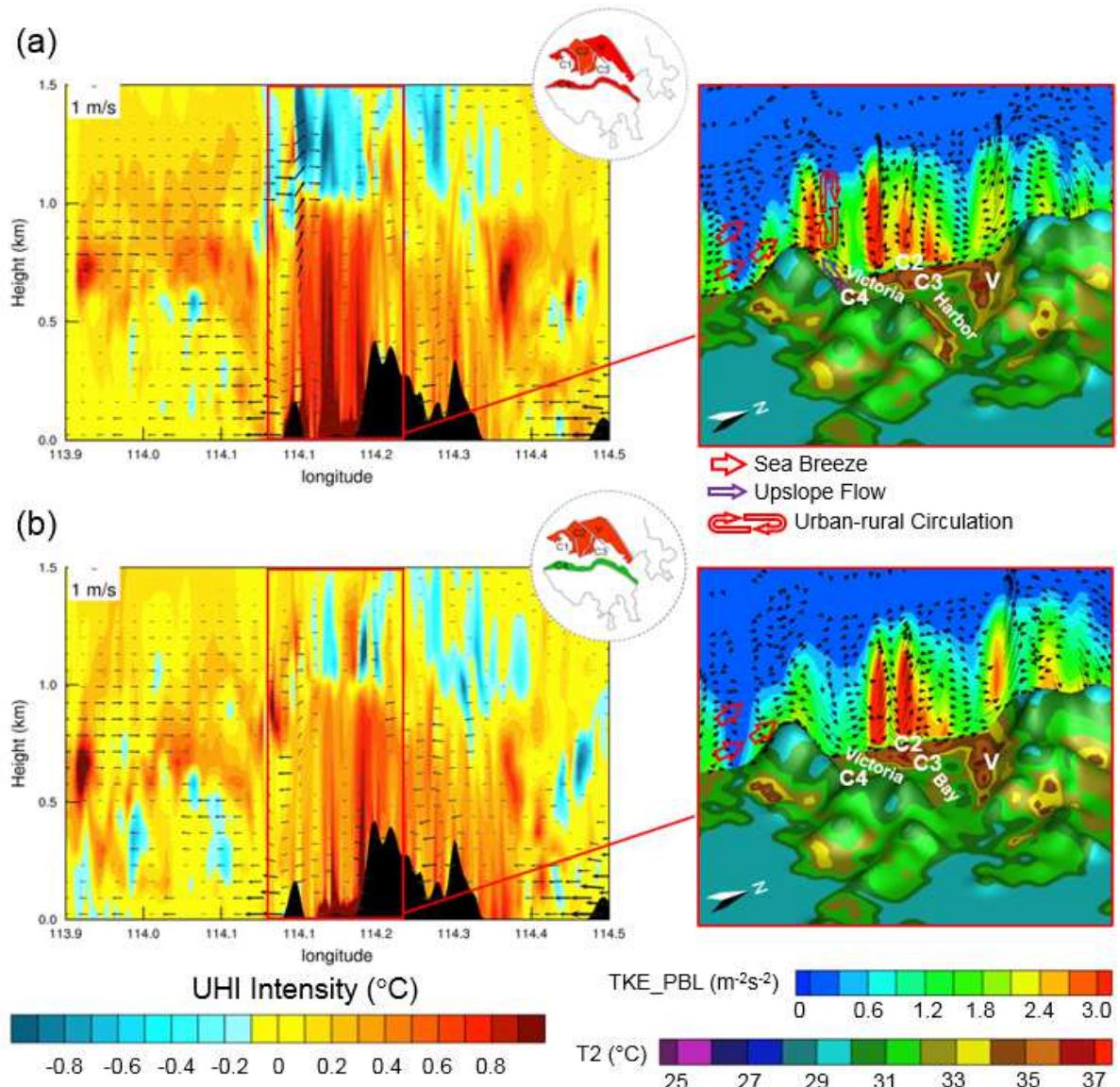
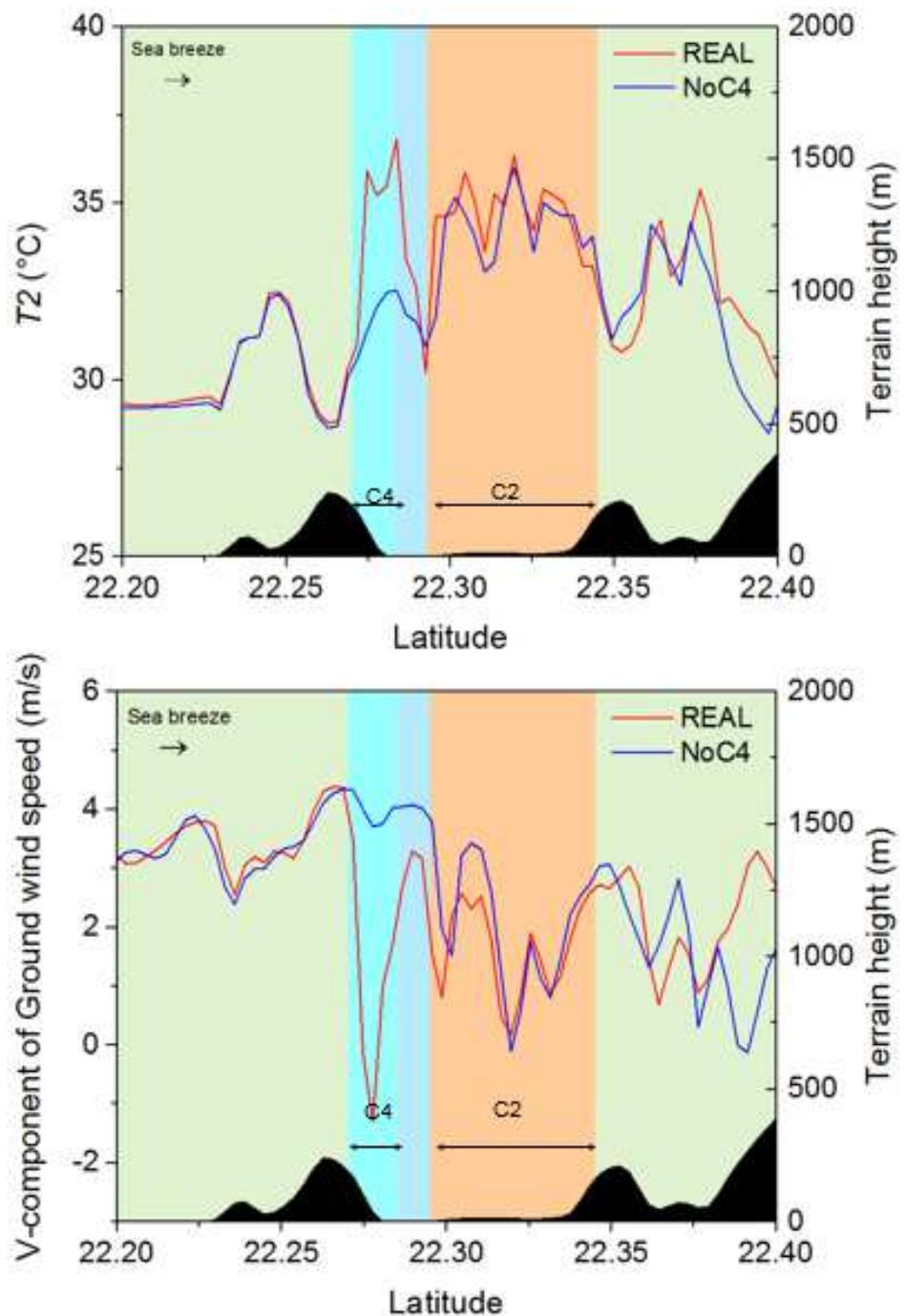


Figure 10. Vertical south-north cross section (transect C-C' in Figure 1) of the WRF-BEP/BEM model simulated velocity (m sec^{-1} ; vectors), urban heat island UHI intensity (shaded contours on the left vertical planes), turbulence kinetic energy TKE ($\text{m}^2 \text{ sec}^{-2}$; shaded contours on the right vertical planes), and the 2-m temperature T_2 (shaded contours on the surface) at 1400 LST for (a) REAL scenario and (b) scenario 5 (NoC4).

357

358

359 The urban-induced upslope flows are only significant in daytime but not at nighttime.
360 Figure 11 shows the T_2 and V-component of ground-level wind speed (*GWS*) along a south-
361 north transect (A-A' in Figure 1) at 1400 LST on June 25, 2016 when the temperature was
362 peaked in the heatwave event ($T_2 = 35.5$ °C) [40]. Here, *GWS* signifies the V-component of
363 wind velocity at 50-m elevation where *it* was less affected by the buildings. In daytime, *GWS*
364 in the REAL test drops sharply over Zone C4 that is 2.40 m sec⁻¹ slower than its NoC4
365 counterpart over the downwind inland areas (C2). At nighttime, however, both tests have
366 comparable *GWS* over Zone C2. The intense daytime solar radiation elevates the sensible heat
367 flux over Zone C4. The thermally induced turbulence at the upper atmospheric boundary layer
368 (about 1,000-m elevation; Figure 10) constrains the sea-breeze penetration. The hotter daytime
369 T_2 in Zone C2 in REAL is attributed to the poor ventilation. In contrast, the lower sensible heat
370 flux at nighttime and the associated weaker vertical motion over Zone C4 impact insignificantly
371 the sea-breeze penetration. The nocturnal $\Delta T_{2R-NoC4}$ (positive) could be attributed to the heat
372 advection from Zone C4 to Zone C2.


373

374 On the other hand, the abrupt, negative $\Delta T_{2R-NoC4}$ (REAL < NoC4, red dashed circle in
375 Figure 9) could be induced by the weakened easterly channel winds that in turn worsens the
376 city ventilation. According to the ECF mechanism elaborated in Section 3.1.2, UHI plays an
377 important role that is switched off hypothetically in NoC4. Hence, the (easterly) channel winds
378 are not as strong as those in case REAL. As a result, poor ventilation dominates occasionally.

379

380

(a) Daytime

(b) Nighttime

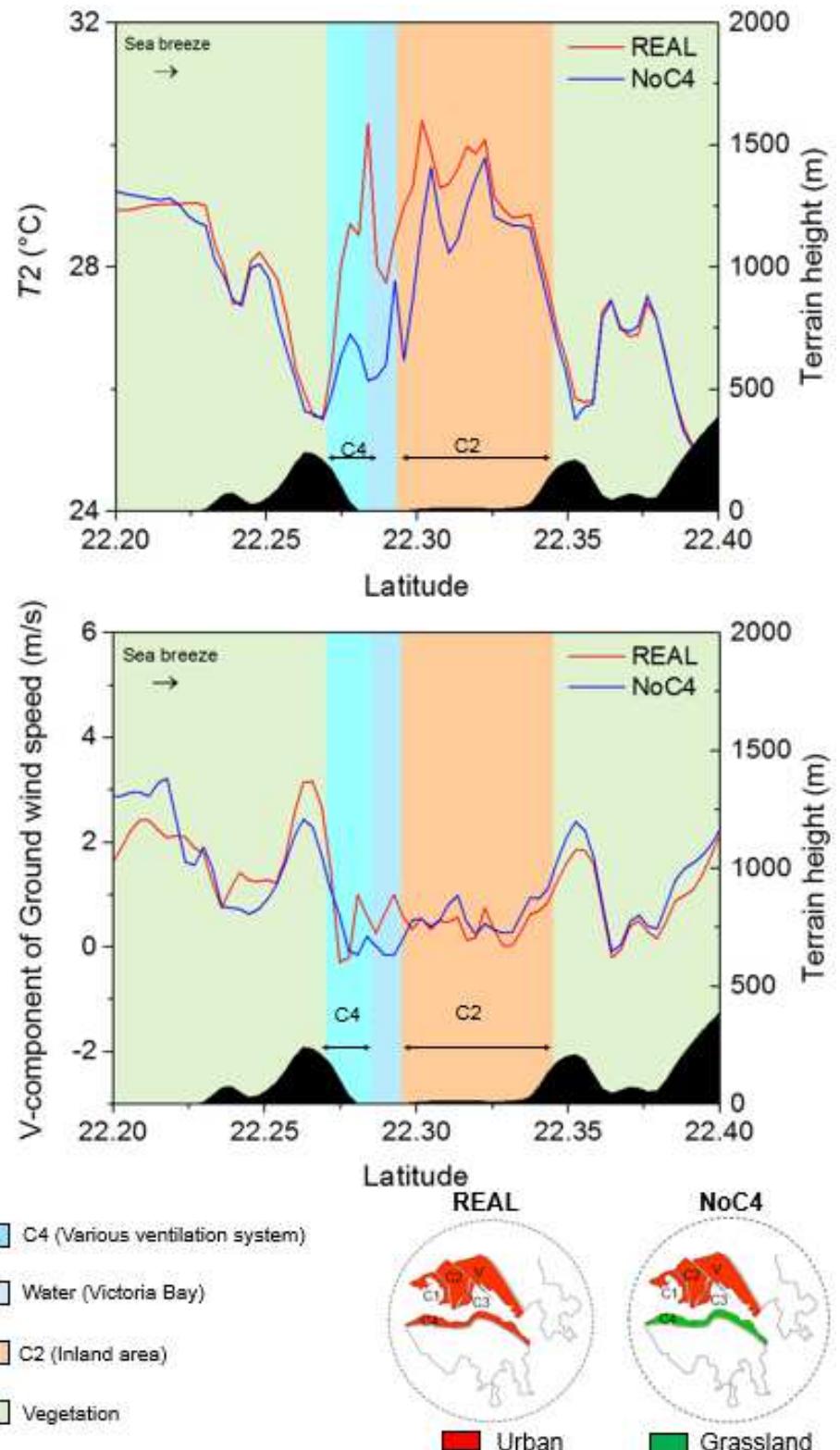


Figure 11. 2-m temperature T_2 , ground-level wind speed GWS , and terrain height along the transect B-B' at (a) 1400 LST and (b) 0400 LST on June 25, 2016.

381 Energy impact in response to local flows over Zone C4 is further tested by the difference
382 in sensible cooling demand (ΔSCD_{R-NoC4}) between the cases REAL and NoC4 (Figure 9).
383 Analogous to $\Delta T2_{R-NoC4}$, it is found that ΔSCD_{R-NoC4} is positive (REAL > NoC4) most of the
384 time, while abrupt, negative ΔSCD_{R-NoC4} due to weakened easterly channel winds and
385 infrequent poor ventilation. Upwind, urban-induced local flows would soar the ACLI as much
386 as 6.41 W m^{-2} in the downwind urban areas. The diurnal variation of ΔSCD_{R-NoC4} is consistent
387 with that of $\Delta T2_{R-NoC4}$. Whereas, there is delayed response of ΔSCD_{R-NoC4} to the change in $\Delta T2_{R-}$
388 $NoC4$. It is mainly because of the time lag between outdoor temperatures and building energy
389 consumption discussed previously (Section 3.2).

390

391 The synergistic warming effect of UHI, sea breeze, and mountainous terrain has been
392 reported elsewhere. Alike this study, it was found that the winds are blocked by urban heating
393 on the mountain leeward side using an idealized WRF model [56]. Whereas, our current
394 findings offer more insight. First of all, we unveiled different representative wind patterns and
395 the associated mechanism. In this paper, the UHI-mountain-induced stagnation of upstream sea
396 breeze inhibits its cooling capability in downstream urban areas instead of resulting in foehn-
397 like winds. Secondly, we emphasize the interaction of urban zones rather than consolidating
398 them as a whole because upstream urban zones might stagnate the inland penetration of cooling
399 sea breeze. Finally, our current results are based on real weather conditions that are extended
400 to building energy consumption.

401

402 **4. Conclusions**

403 In this study, the maps of LCZ and building category (LCZBC) of HK are integrated
404 into a multi-layer WRF-BEP/BEM model. It is then used to investigate the coupling among
405 rough terrain, UHI, land-sea breeze, and the associated local winds in a coastal city.
406 Furthermore, the sensitivity of inland urban temperature and AC load to the surrounding
407 mountainous terrain and UHI during a heatwave event (June 23 to 28, 2016) in HK is tested.

408 The key findings are summarized as follows:

409

410 1. Mountain blockage promotes the 2-m temperature T_2 by 1 °C to 2 °C in the foothill areas
411 (zones A-E; Figure 3). The increase in T_2 is mainly attributed to two factors. The first factor
412 is inhibited sea-breeze penetration by mountains which restrains the cooling effect offered
413 by maritime winds. The second factor is wind stagnation and the subsequent heat
414 accumulation induced by mountains downwind the urban areas. Mountainous terrain could
415 also arouse ACLI (about 5 W m⁻² higher). In compact, high-rise cities where the heat trap
416 is reinforced, ACLI is more sensitive to the mountain-induced extreme temperatures.

417

418 2. Both downwind UHI and channeling effect of mountains could be essential to channel-flow
419 development. Downwind UHI could accelerate the 10-m U_{10} and 50-m U_{50} wind speeds
420 as much as 1.45 m sec⁻¹ (54.32%) and 1.66 m sec⁻¹ (50.26 %), respectively.

421

422 3. Channel winds would result in heat advection, elevating UHII (0.7 °C higher in daytime
423 and 0.2 °C at nighttime) downwind the urban areas. The stronger channel winds are, the

424 higher the temperature increases. Moreover, horizontal flows, such as sea breeze from the
425 opposite direction, could suppress channel-flow-induced heat advection. Besides, heat
426 advection could promote the ACLI as much as 2.62 W m^{-2} . Compared with weak channel-
427 wind pattern, ACLI is more sensitive to heat advection that responds more quickly to
428 outdoor temperatures in stronger channel winds. The time lag between temperature and
429 ACLI is negligible if the channel wind speed is faster than 2 m sec^{-1} .

430

431 4. UHI in foothill areas would interact with mountains, resulting in upslope flows and UHI
432 circulation. These local flows could stagnate cooling sea breeze, slow down the winds (as
433 much as 0.8 m sec^{-1}), and increase the temperature (about $0.9 \text{ }^{\circ}\text{C}$) in downwind inland areas.
434 Urban-induced upslope flows are only significant in daytime but not at nighttime. Daytime
435 solar radiation induces large sensible heat flux and intense turbulence on the leeward side
436 of mountain, which in turn block sea-breeze penetration. Whereas, the local flows are too
437 weak to affect sea-breeze incursion at nighttime. Moreover, upwind urban-induced local
438 flows could raise the ACLI as much as 6.41 W m^{-2} in downwind urban areas.

439

440 In brief, we demonstrate the synergy of urban-heat-island circulation, coastal winds,
441 local winds, and complex terrain on urban warming and building energy consumption. A few
442 representative wind patterns were developed thereafter. Their physical significance and the
443 mechanism behind are elaborated. These wind patterns could occur in other coastal cities
444 surrounded by hilly terrain such as San Francisco, Vancouver, Beijing or Taipei. The current
445 findings could provide useful references to researchers and practitioners.

446 **Acknowledgments**

447 This research is conducted in part using the research computing facilities and/or
448 advisory services offered by Information Technology Services (ITS), The University of Hong
449 Kong (HKU). Technical support from Ms. Lilian Y.L. Chan, Mr. W.K. Kwan, and Mr. Bill
450 H.T. Yau is appreciated. This study is partly supported by the Hong Kong (HK) Research
451 Grants Council (RGC) Theme-based Research Scheme (TRS)T24-504/17-N, the RGC
452 Collaborative Research Fund (CRF) C7064-18G and RGC CRF C5108-20G as well as the
453 RGC General Research Fund (GRF) 17209819 and 17211322. X-X Li acknowledges the
454 support by Guangdong Basic and Applied Basic Research Foundation (Grant No.
455 2021A1515011890). The authors are very thankful for the constructive comments raised by
456 the two anonymous reviewers. Their insightful reviews are detailed and helpful to improve the
457 manuscript.

458

459 **References**

460 [1] IEA, The Future of Cooling in China, Delivering on action plans for sustainable air
461 conditioning, (2019) <https://www.iea.org/reports/the-future-of-cooling-in-china>.

462 [2] IEA, The Future of Cooling, Opportunities for energy- efficient air conditioning, (2018)
463 <https://www.iea.org/reports/the-future-of-cooling>.

464 [3] B. Stone Jr, E. Mallen, M. Rajput, C.J. Gronlund, A.M. Broadbent, E.S. Krayenhoff, G.
465 Augenbroe, M.S. O'Neill, M. Georgescu, Compound Climate and Infrastructure Events:
466 How Electrical Grid Failure Alters Heat Wave Risk, Environmental Science & Technology,
467 55 (10) (2021) 6957-6964.

468 [4] J. Katzfey, H. Schlünzen, P. Hoffmann, M. Thatcher, How an urban parameterization affects
469 a high - resolution global climate simulation, *Quarterly Journal of the Royal*
470 *Meteorological Society*, 146 (733) (2020) 3808-3829.

471 [5] A.L. Hirsch, J.P. Evans, C. Thomas, B. Conroy, M.A. Hart, M. Lipson, W. Ertler, Resolving
472 the influence of local flows on urban heat amplification during heatwaves, *Environmental*
473 *Research Letters*, 16 (6) (2021) 064066.

474 [6] L. Leo, H. Fernando, S. Di Sabatino, Near-surface flow in complex terrain with coastal and
475 urban influence, *Environmental Fluid Mechanics*, 15 (2) (2015) 349-372.

476 [7] H. Liu, J.C. Chan, An investigation of air-pollutant patterns under sea–land breezes during
477 a severe air-pollution episode in Hong Kong, *Atmospheric Environment*, 36 (4) (2002)
478 591-601.

479 [8] H. Liu, J.C. Chan, Boundary layer dynamics associated with a severe air-pollution episode
480 in Hong Kong, *Atmospheric Environment*, 36 (12) (2002) 2013-2025.

481 [9] R. Bassett, X.M. Cai, L. Chapman, C. Heaviside, J.E. Thorne, Methodology to separate
482 urban from regional heat advection by use of the Weather Research and Forecasting
483 mesoscale model, *Quarterly Journal of the Royal Meteorological Society*, 143 (705) (2017)
484 2016-2024.

485 [10] F.Y. Cheng, Y.T. Wang, M.Q. Huang, P.L. Lin, C.H. Lin, P.H. Lin, S.H. Wang, B.J. Tsuang,
486 Boundary layer characteristics over complex terrain in central Taiwan: observations and
487 numerical modeling, *Journal of Geophysical Research: Atmospheres*, 127 (2) (2022)
488 e2021JD035726.

489 [11] F.N. Ribeiro, A.P. de Oliveira, J. Soares, R.M. de Miranda, M. Barlage, F. Chen, Effect of

490 sea breeze propagation on the urban boundary layer of the metropolitan region of Sao
491 Paulo, *Atmospheric Research*, 214 (2018) 174-188.

492 [12] J. Yang, Y. Wang, B. Xue, Y. Li, X. Xiao, J.C. Xia, B. He, Contribution of urban ventilation
493 to the thermal environment and urban energy demand: Different climate background
494 perspectives, *Science of the Total Environment*, 795 (2021) 148791.

495 [13] Y. Olivo, A. Hamidi, P. Ramamurthy, Spatiotemporal variability in building energy use in
496 New York City, *Energy*, 141 (2017) 1393-1401.

497 [14] L. Frayssinet, L. Merlier, F. Kuznik, J.-L. Hubert, M. Milliez, J.-J. Roux, Modeling the
498 heating and cooling energy demand of urban buildings at city scale, *Renewable and
499 Sustainable Energy Reviews*, 81 (2018) 2318-2327.

500 [15] C.H.H. Wong, M. Cai, C. Ren, Y. Huang, C. Liao, S. Yin, Modelling building energy use
501 at urban scale: A review on their account for the urban environment, *Building and
502 Environment*, 205 (2021) 108235.

503 [16] R. Pokhrel, N.D. Ramírez-Beltran, J.E. González, On the assessment of alternatives for
504 building cooling load reductions for a tropical coastal city, *Energy and Buildings*, 182
505 (2019) 131-143.

506 [17] F. Salata, S. Falasca, V. Ciancio, G. Curci, P. de Wilde, Climate-change related evolution
507 of future building cooling energy demand in a Mediterranean Country, *Energy and
508 Buildings*, 290 (2023) 113112.

509 [18] Y. Arima, R. Ooka, H. Kikumoto, T. Yamanaka, Effect of climate change on building
510 cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM
511 data, *Energy and Buildings*, 114 (2016) 123-129.

512 [19] F.B. Errebai, D. Strelbel, J. Carmeliet, D. Derome, Impact of urban heat island on cooling
513 energy demand for residential building in Montreal using meteorological simulations and
514 weather station observations, Energy and Buildings, 273 (2022) 112410.

515 [20] Z. Jandaghian, U. Berardi, Analysis of the cooling effects of higher albedo surfaces during
516 heat waves coupling the Weather Research and Forecasting model with building energy
517 models, Energy and Buildings, 207 (2020) 109627.

518 [21] I. Adilkhanova, M. Santamouris, G.Y. Yun, Coupling urban climate modeling and city-
519 scale building energy simulations with the statistical analysis: Climate and energy
520 implications of high albedo materials in Seoul, Energy and Buildings, 290 (2023)
521 113092.

522 [22] L. Shen, H. Li, L. Guo, B.-J. He, Thermal and energy benefits of rooftop photovoltaic
523 panels in a semi-arid city during an extreme heatwave event, Energy and Buildings, 275
524 (2022) 112490.

525 [23] S. Garshasbi, A. Khan, M. Santamouris, On the building cooling energy penalty of
526 photovoltaic solar panels in Sydney, Energy and Buildings, (2023) 113259.

527 [24] H. Campanico, P.M. Soares, R.M. Cardoso, P. Hollmuller, Impact of climate change on
528 building cooling potential of direct ventilation and evaporative cooling: A high resolution
529 view for the Iberian Peninsula, Energy and Buildings, 192 (2019) 31-44.

530 [25] F. Salamanca, A. Krpo, A. Martilli, A. Clappier, A new building energy model coupled
531 with an urban canopy parameterization for urban climate simulations—part I. formulation,
532 verification, and sensitivity analysis of the model, Theoretical and applied climatology,
533 99 (3) (2010) 331-344.

534 [26] F. Salamanca, A. Martilli, A new building energy model coupled with an urban canopy
535 parameterization for urban climate simulations—Part II. Validation with one dimension
536 off-line simulations, *Theoretical and Applied Climatology*, 99 (3) (2010) 345-356.

537 [27] F. Salamanca, M. Georgescu, A. Mahalov, M. Moustaoui, M. Wang, B. Svoma, Assessing
538 summertime urban air conditioning consumption in a semiarid environment,
539 *Environmental Research Letters*, 8 (3) (2013) 034022.

540 [28] I.D. Stewart, T.R. Oke, Local climate zones for urban temperature studies, *Bulletin of the*
541 *American Meteorological Society*, 93 (12) (2012) 1879-1900.

542 [29] C. Shu, A. Gaur, L.L. Wang, M. Bartko, A. Laouadi, L. Ji, M. Lacasse, Added value of
543 convection permitting climate modelling in urban overheating assessments, *Building and*
544 *Environment*, 207 (2022) 108415.

545 [30] K. Nakajima, Y. Takane, Y. Kikegawa, K. Yamaguchi, Improvement of WRF–CM–BEM
546 and its application to high-resolution hindcasting of summertime urban electricity
547 consumption, *Energy and Buildings*, 296 (2023) 113336.

548 [31] R. Du, C.-H. Liu, X.-X. Li, C.-Y. Lin, Effect of local climate zone (LCZ) and building
549 category (BC) classification on the simulation of urban climate and air-conditioning load
550 in Hong Kong, *Energy*, 271 (2023) 127004.

551 [32] HKCSD, Population Estimates, (2021) <https://www.censtatd.gov.hk/en/scode150.html>.

552 [33] D. Hinrichsen, *Coastal waters of the world: trends, threats, and strategies*, Island Press,
553 1999.

554 [34] UNFPA, The state of world population, Chapter 5 (Urbanization and sustainability in the
555 21st Century). (2013) http://www.unfpa.org/swp/2007/english/chapter_5/.

556 [35] L. Shi, Z. Luo, W. Matthews, Z. Wang, Y. Li, J. Liu, Impacts of urban microclimate on
557 summertime sensible and latent energy demand for cooling in residential buildings of
558 Hong Kong, Energy, 189 (2019) 116208.

559 [36] C. Lou, H. Yang, Y. Li, N.h. and Cheung, Energy audit of buildings: a case study of a
560 commercial building in Causeway Bay of Hong Kong, HV&AC, 2006 (36-5) (2006) 44-
561 50.

562 [37] CLP, CLP Power Launches Smart Power Consumption Plan to Support Hong Kong's
563 Transformation into a Smart City, (2017) [https://www.clpgroup.com/content/dam/clp-
564 group/channels/media/document/2017/20170615_tc.pdf.coredownload.pdf](https://www.clpgroup.com/content/dam/clp-group/channels/media/document/2017/20170615_tc.pdf.coredownload.pdf).

565 [38] R. Du, J. Song, X. Huang, Q. Wang, C. Zhang, O. Brousse, P.W. Chan, High-resolution
566 regional modeling of urban moisture island: Mechanism and implications on thermal
567 comfort, Building and Environment, (2021) 108542.

568 [39] L.G.R. Santos, V.K. Singh, M.O. Mughal, I. Nevat, L.K. Norford, J.A. Fonseca,
569 Estimating building's anthropogenic heat: a joint local climate zone and land use
570 classification method, in: eSIM Conference 2021, 2020.

571 [40] HKO, The Weather of June 2016
572 <https://www.hko.gov.hk/en/wxinfo/pastwx/mws2016/mws201606.htm>, (2016)
573 <https://www.hko.gov.hk/en/wxinfo/pastwx/mws2016/mws201606.htm>.

574 [41] Y. Wang, Y. Li, S. Di Sabatino, A. Martilli, P. Chan, Effects of anthropogenic heat due to
575 air-conditioning systems on an extreme high temperature event in Hong Kong,
576 Environmental Research Letters, 13 (3) (2018) 034015.

577 [42] P. Bougeault, P. Lacarrere, Parameterization of orography-induced turbulence in a

578 mesobeta--scale model, Monthly weather review, 117 (8) (1989) 1872-1890.

579 [43] S.-Y. Hong, J. Dudhia, S.-H. Chen, A revised approach to ice microphysical processes for
580 the bulk parameterization of clouds and precipitation, Monthly weather review, 132 (1)
581 (2004) 103-120.

582 [44] F. Chen, J. Dudhia, Coupling an advanced land surface–hydrology model with the Penn
583 State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity,
584 Monthly weather review, 129 (4) (2001) 569-585.

585 [45] J.S. Kain, J.M. Fritsch, A one-dimensional entraining/detraining plume model and its
586 application in convective parameterization, Journal of Atmospheric Sciences, 47 (23)
587 (1990) 2784-2802.

588 [46] J. Dudhia, Numerical study of convection observed during the winter monsoon experiment
589 using a mesoscale two-dimensional model, Journal of Atmospheric Sciences, 46 (20)
590 (1989) 3077-3107.

591 [47] E.J. Mlawer, S.J. Taubman, P.D. Brown, M.J. Iacono, S.A. Clough, Radiative transfer for
592 inhomogeneous atmospheres: RRTM, a validated correlated - k model for the longwave,
593 Journal of Geophysical Research: Atmospheres, 102 (D14) (1997) 16663-16682.

594 [48] HKPlanD, Urban climatic map and standards for wind environment - Feasibility Study.,
595 (2012).

596 [49] Y.Y. Yan, Surface wind characteristics and variability in Hong Kong, Weather, 62 (11)
597 (2007) 312-316.

598 [50] HKO, Information of Weather Station, (2022) <https://www.hko.gov.hk/en/cis/stn.htm>.

599 [51] J.-F. Miao, L. Kroon, J. Vilà-Guerau de Arellano, A. Holtslag, Impacts of topography and

600 land degradation on the sea breeze over eastern Spain, Meteorology and Atmospheric
601 Physics, 84 (3) (2003) 157-170.

602 [52] C. Zhang, Q. Wang, P.W. Chan, C. Ren, Y. Li, The effect of background wind on
603 summertime daily maximum air temperature in Kowloon, Hong Kong, Building and
604 Environment, 210 (2022) 108693.

605 [53] S.H. Yim, J.C. Fung, A.K. Lau, S.C. Kot, Developing a high - resolution wind map for a
606 complex terrain with a coupled MM5/CALMET system, Journal of Geophysical Research:
607 Atmospheres, 112 (D5) (2007).

608 [54] Y. Wang, S. Di Sabatino, A. Martilli, Y. Li, M. Wong, E. Gutiérrez, P. Chan, Impact of land
609 surface heterogeneity on urban heat island circulation and sea - land breeze circulation in
610 Hong Kong, Journal of Geophysical Research: Atmospheres, 122 (8) (2017) 4332-4352.

611 [55] L. Yang, Y. Li, City ventilation of Hong Kong at no-wind conditions, Atmospheric
612 Environment, 43 (19) (2009) 3111-3121.

613 [56] C. Zhang, Q. Wang, P.W. Chan, Y. Li, Potential “downstream blocking” synergistic
614 mechanism for urban warming in Kowloon Peninsula, Hong Kong, Urban Climate, 49
615 (2023) 101517.