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Abstract—In modern Internet of electric energy, i.e., networked
power systems, data-driven schemes based on advanced machine
learning methods have shown high potential in system emergency
stability control, e.g., undervoltage load shedding (UVLS) against
the short-term voltage stability (SVS) problem. However, how to
efficiently and adaptively select the most effective UVLS sites
for online SVS enhancement is still a challenging task. Faced
with this issue, this paper develops an intelligent short-term
voltage trajectory sensitivity index (VTSI) prediction scheme for
adaptive UVLS site selection. Specifically, the scheme is realized
by designing a powerful structure-aware recurrent learning
machine (SRLM), which systematically combines the emerging
graph convolutional network (GCN) with the recurrent long
short-term memory algorithm. By doing so, the SRLM is not only
fully aware of the non-Euclidean structure of the power grid,
but also capable of amply capturing temporal features during
SVS dynamics. Consequently, it manages to implement efficient
and precise VTSI prediction, thereby reliably identifying critical
UVLS sites in various scenarios. Numerical case studies on the
Nordic test system illustrate the efficacy of the proposed scheme.

Index Terms—Deep learning, emergency control, graph convo-
lution, short-term voltage stability, trajectory sensitivity, under-
voltage load shedding.

I. INTRODUCTION

S a representative paradigm of Internet of energy, modern

electric power systems have been significantly upgraded
with diverse advanced Internet of things (IoTs) technologies
[1]-[3], yet it is still of paramount concern to ensure system
security and stability during daily operation [4], [5]. Specif-
ically, with the rapid growth of electric load demands in
receiving-end areas, today’s IoT-enabled power systems have
to be tensely operated near their stability limits during peak-
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load hours. In urban load centers, with a rising proportion
of dynamic loads, e.g., industrial motors and air condition-
ers, system operation is largely threatened by the short-term
voltage stability (SVS) problem [6], [7]. Concretely, when
transient faults occur, those dynamic loads with fast recovering
behaviors would draw abnormally high reactive power from
the system, leading to fault-induced delayed voltage recov-
ery (FIDVR) [8], [9] or even voltage instability [10], [11].
Considering the dynamic loads’ undesirable effect on inducing
SVS issues, system-wide dynamic stability assessment needs
to be reliably carried out soon after transient faults to predict
whether potential instability would occur [12]-[14]. More
importantly, remedial control actions should be rapidly taken
once such emergency stability issues arise [15], [16].

In terms of emergency SVS control, among various kinds of
corrective alternatives, undervoltage load shedding (UVLS) is
the last resort but one of the most effective actions extensively
used for system stabilization in practice [17]. The existing
UVLS approaches for SVS control can be generally divided
into the following two classes.

The first class is to shed loads based on fixed if-then rules
[18]-[20]. For example, the threshold-based UVLS schemes
widely utilized in practical grids curtail fixed proportions of
loads by inspecting if individual bus voltages drop below a cer-
tain threshold over a preset time span [18]. Yet such schemes
may be lack of adaptability and cause unnecessary load loss
in practice due to fixed threshold settings in their UVLS
rules. In recent years, some enhanced schemes have been
developed to flexibly adjust the UVLS rules, e.g., dynamic
UVLS amount assignment [19] and adaptive UVLS triggering
via induction motor (IM) speed estimation [20]. However, as
some of their parameters are still set to fixed values, they may
have inadequate adaptability in complicated SVS scenarios.
Recently, an adaptive UVLS scheme has been designed in [21]
by designing particle swarm optimization (PSO)-based fuzzy
controllers. while this scheme can be efficiently implemented,
the PSO-based parameter setting may get trapped in local
optima, leading to excessive load curtailment.

The other class belongs to data-driven solutions [9], [22]—
[24]. In particular, with the availability of massive high-
resolution system responsive data acquired by phasor mea-
surement units (PMUs) [25], [26], advanced machine learning
(ML) and/or deep learning (DL) technologies have been suffi-
ciently leveraged to design data-driven UVLS schemes. To list
a few, the oblique decision tree (DT) algorithm is employed in
[22] to derive an adaptive UVLS scheme based on post-fault
system responses. In [9], the kernel extreme learning machine



is exploited to carry out online UVLS on the basis of pre-fault
system states. To implement confidence-aware UVLS, a DL-
enabled Gaussian process learning model is proposed in [27].
Recently, by combining the DL technique with reinforcement
learning, the deep reinforcement learning (DRL) method has
been introduced to develop highly adaptive UVLS schemes
[23], [24]. Compared with conventional rule-based schemes,
these data-driven solutions have high potential to remarkably
improve the reliability and adaptability of online UVLS in
diverse emergency SVS situations.

Nonetheless, there exists a common defect in most of these
UVLS schemes [18]-[20], [22]-[24], [27]. With no attention
to the impact of shedding loads at different buses on system
voltage recovery, they fix the sites (load buses) of UVLS
execution. As a result, UVLS actions may be taken at buses
with trivial effects on SVS enhancement, leading to a high risk
of excessive load curtailment. Although the event-based UVLS
scheme in [9] can implicitly determine the best UVLS sites for
a presumed event, it might fail to do so when faced with new
events. The fuzzy UVLS scheme in [21] can automatically
determine the UVLS sites as well, yet it does not explicitly
differ the criticality of different buses, which may trigger
undue UVLS actions at too many load buses. To enhance
the adaptability of online UVLS to diverse SVS events in
practice, it is imperative to adaptively differ the criticality of
individual load buses and thus select the most critical ones
to help efficiently achieve voltage recovery with minimal load
loss.

In fact, as verified in dynamic var planning against short-
term voltage instability [28]-[30], the most effective control
sites for SVS enhancement can be identified via voltage
trajectory sensitivity (VTS) analysis. With load power at
individual load buses perturbed one by one, the trajectory
sensitivities of bus voltages to load change at each bus can be
numerically estimated by observing the trajectory difference
with/without perturbation. However, as multiple time-domain
(T-D) simulations are needed to obtain the initial/perturbed
voltage trajectories, the estimation procedure would induce
high computational costs. Besides, with intricate structures and
diverse unforeseen operating conditions in practical grids, the
short-term VTS would change in different SVS scenarios. Both
factors are likely to limit the applicability of numerical VTS
analysis in emergency SVS control, where online decisions
should be promptly and adaptively made in various compli-
cated situations. Although VTS analysis can also be performed
in an analytical way [31], the strict requirement on system
model assumption could limit its capability and reliability in
large-scale grids. In this regard, how to reliably and efficiently
perform VTS estimation in complicated emergency situations
remains an unsolved challenge in practice.

To tackle this challenging yet practical issue, this paper
develops an intelligent short-term voltage trajectory sensitivity
index (VTSI) prediction framework for adaptive UVLS im-
plementation. Particularly, by combining the emerging graph
convolutional network (GCN) with the promising long short-
term memory (LSTM) algorithm, a powerful structure-aware
recurrent learning machine (SRLM) is designed to predict
VTSI in a highly efficient and reliable way. With both

structural (spatial) characteristics and temporal features of the
system fully learned by the SRLM, it is capable of correctly
identifying the most influential load buses for UVLS against
diverse SVS conditions and events. The main contributions
and merits of this paper include:

1) This work for the first time develops an intelligent data-
driven VTSI prediction framework that can be leveraged
to efficiently and reliably select the most critical UVLS
sites in diverse emergency situations. Hopefully, it would
further boost the adaptability of existing UVLS schemes.

2) Being aware of the non-Euclidean structure of the given
power grid, a novel SRLM is designed to fully learn
the inherent spatial-temporal characteristics behind wide-
area system dynamics. With such a powerful learning
architecture, the SRLM is able to achieve highly reliable
VTSI prediction in various complicated SVS scenarios.

3) As demonstrated by numerical experiments, the proposed
framework has high potential in practical application con-
texts, being robust to unknown structural errors/changes
and PMU measurement noises. Expectedly, these desirable
features would make it more applicable in practice.

The remainder of the paper is organized as follows. The
problem of VTS analysis and VTSI prediction for adaptive
SVS control is first described in Section II. Then, Section III
presents the details of the proposed SRLM. Afterward, exten-
sive numerical tests on the Nordic test system are reported
in Section IV to verify the SRLM’s performances. Finally,
concluding remarks are summarized in Section V.

II. PROBLEM DESCRIPTION

A. Numerical VTS Analysis

Broadly speaking, trajectory sensitivity analysis is carried
out by perturbing a specific dynamic system around its
nominal trajectory [31]. With small changes (perturbations)
imposed on system parameters, it is able to directly determine
the trajectory deviation from the nominal one. This can further
help characterize the relative importance of different param-
eters in changing system dynamics. Taking short-term VTS
analysis for instance, it quantifies the sensitivities of voltage
trajectories to active/reactive load power changes at individual
buses [28]-[30]. By doing so, the most effective load buses
can be selected as the control sites to mitigate the SVS
problem in transient periods. In particular, given a receiving-
end system with M buses for SVS monitoring, the VTS of
bus ¢ w.r.t. active power change at bus j (1 <<¢,7 < M) can
be numerically estimated by

Vi _ Vilpjo + Apj,t) —

Op; Ap;
where Apj; is a small perturbation of active load power at bus
Js pjo is the initial active load power at bus j; V;(p;jo+Ap;, t)
and V;(pjo, t) are the voltage trajectory perturbed by Ap; and
the initially nominal voltage trajectory with no perturbation.
Note that, when the active load power at bus j is perturbed,
its counterpart, i.e., the reactive power at bus j, is perturbed
proportionally. Unless otherwise stated, V;(p;o + Ap;,t) and
Vi(pjo,t) will be briefly expressed as ViApj (t) and V;(t) in

Vi(pjo, t)
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Fig. 1. Illustration of voltage trajectory sensitivity.

the sequel.

Here g—;/f has a time-varying nature. If the time instant of
imposing the perturbation varies, the perturbed trajectories will
change accordingly. As shown in Fig. 1, with a small load
curtailment of 50 MW at ¢t =0.9 s, 1.4 s and 1.9 s, respectively,
three distinct perturbed trajectories are observed, thus resulting
in different VTS. In practical grids involving multiple rounds
of load power changes, e.g., multi-round UVLS, the VTS
needs to be re-calculated in new rounds of changes.

B. VTSI Prediction for Adaptive SVS Control

Based on (1), the effect of the load change at bus j on
voltage recovery of bus ¢ in the transient time frame can be
directly estimated. Further, given an observation time window
(OTW) with length Ty, and a sampling interval At for PMU-
based time series (TS) trajectory acquisition, the VTSI w.r.t.
Ap; can be calculated as [28], [30]:

N. M Ap;
1 VA () = Vi)
TSI, ~ —— B 2
VTSI~ g5 D [ g @
z=11i=1 - t=t,
where N, = Ty, /At is the total number of sampling points in

the OTW. Intuitively, VT'SI; can be deemed as the average
area difference between the perturbed and nominal voltage
trajectories (e.g., the shaded orange area in Fig. 1) of all the
M buses (in a normalized scale) within the OTW. In this
regard, VI'SI; can be used to estimate the overall impact
of perturbing the load power at bus j on the overall voltage
recovery of the M buses. If UVLS is taken as the major
countermeasure for emergency SVS control, the VTSI values
of all the buses can be calculated and sorted to select the most
effective load buses for UVLS execution. However, if the VTSI
is applied to online UVLS site selection in practical emergency
situations, it would suffer from the following dilemma:

1) Due to the need for multiple T-D simulations to obtain
perturbed/nominal voltage trajectories from each bus, the
procedure of VTSI computation would incur heavy compu-
tational burdens. Consequently, this makes numerical VTSI
calculation intractable in online contexts.

2) With the inevitability of online operation changes and
unforeseen events, the VTSI values may vary from scenario
to scenario. In this respect, online VTSI estimation rather
than offline analysis should be carried out in real time, so as
to adaptively respond to various unexpected SVS scenarios.

To address these tangled challenging issues, this paper
develops an intelligent VTSI prediction scheme. Assisted by
a well-designed SRLM, it is able to efficiently and reliably
predict VTSI values in diverse SVS scenarios. How the SRLM
is realized to implement VTSI prediction is detailed below.

III. PROPOSED SRLM FOR VTSI PREDICTION

The main architecture of the proposed SRLM is illustrated
in Fig. 2. It is carried out via two phases: 1) VTSI dataset
preparation; and 2) structure-aware trajectory feature learning.

A. VTSI Dataset Preparation

For the given receiving-end system with M buses, consider-
ing various possible operating conditions and a representative
contingency/event list provided by system operators, batch T-
D simulations are performed to generate n SVS scenarios.
All the scenarios are integrated as an SVS case repository.
Since these scenarios contain initial system trajectories with
no perturbation, they are taken as nominal cases. For each
nominal case, numerical perturbation is separately performed
at each load bus to obtain a series of perturbed cases. Assum-
ing there are m (m < M) load buses in the system, a small
amount of load curtailment, denoted by Py, is taken at bus j
(1 < j <'m), which results in Ap; = —Fpey. Considering the
potential need for multi-round UVLS-oriented SVS control in
practice, the perturbation Ap; is set at different time instants,
c.g., T1 =t.+ AT, T2 =t.+ 2AT and T3 =t.+ 3AT
for three-round UVLS, where t. is the time instant of fault
clearance and AT is the time interval between two successive
UVLS actions. In this way, 3m perturbed cases are obtained
from each nominal one via T-D simulations. All the perturbed
cases are further gathered as a perturbed case repository.

After that, TS data acquisition and VTSI calculation are
performed to collect a VTSI dataset from the above reposi-
tories. For a certain nominal case, three OTWs with length
Twin = AT are employed to acquire multiple TS trajectories
from the M buses. Given the kth (1 < k < 3) OTW within
the time slot of T} — AT ~ T}, sequential responses of
bus voltages, injected active power and reactive power, i.e.,
{V, P, @}, are collected from each bus to form multiplex TS:

X ={Vi(t), Va(t), ..., Var (t), Py (t), Pa(t), ..., Par(t), 3)
Q1(1), Q2(t), -, Qu(t)} (T — AT <t <Ty)

where {V;(t), P;(t), Q;(t)} are the nominal TS acquired from
bus i (1 < ¢ < M). Then, voltage trajectories subject to the
perturbation at ¢ = T}, are utilized to estimate the correspond-
ing VTSI values. In particular, with the OTW set in the time
span of Ty, ~ Ty + AT, VTSI values of the m load buses are
numerically calculated via (2) (with Ty, < t, < T+ AT). For
the remaining (M — m) buses with no load, since no UVLS
action can be taken as these buses, their VTSI values are set
to 0 by default. All the buses’ VTSI values estimated from the
kth-round perturbation are collected as

Y, = [VTSIi, VT SIag, ..., VT SIni] @)

Taking X and Yj as the pairwise input and output for
VTSI prediction, a VTSI instance is formed as {Xj,Y:}.
By processing all the n SVS cases one by one, 3n VTSI
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Fig. 2. Overall architecture of the proposed SRLM.

instances are produced and further gathered as a VTSI dataset.
To eliminate the adverse effect of different ranges of individual
variables on subsequent learning procedures, all the TS values
of {V, P,@} in the inputs are scaled into the range of [0, 1]
via min-max normalization. For VTSI values in the outputs,
they are normalized into [-1, 1] in a different manner: all the
positive and negative VTSI values are grouped together and
separately mapped into the ranges of O~1 and -1~0 based on
min-max normalization. By doing so, the normalized VTSI
would inherit the physical meaning of the raw values indicat-
ing the positive/negative effects of load changes on regional
voltage recovery. The normalized dataset is represented as
S = {(ms,yi) | for z; = {zi};™*, 1 <i < 3n}.

B. Structure-Aware Trajectory Feature Learning

Taking S as the data source, in-depth feature learning is
carried out to infer the mapping relationships between x; and
y;, based upon which a data-driven VTSI prediction model
would be derived. In particular, by combining two powerful
DL algorithms, i.e., GCN and LSTM, the inherent spatial-
temporal features of the system are fully learned from regional
TS trajectories in a structure-aware manner. Taking the voltage
trajectories for instance, how spatial-temporal feature learning
is implemented via GCN and LSTM is illustrated in Fig. 3.
More details about how the two key DL algorithms GCN
and LSTM are leveraged to realize spatial-temporal feature
learning are presented below.

1) GCN-Based Spatial Feature Learning: Unlike the tra-
ditional convolutional neural network (CNN) specializing in
learning spatial correlations in Euclidean domains, e.g., two-
dimensional images, GCN is an emerging DL technique that
has been demonstrated to be competent in handling irregular
networked spaces or non-Euclidean graph structures [32]-
[34]. In a practical power grid, as individual buses (nodes)
are generally networked together via transmission lines in an
irregular manner, it can be treated as a graph with complicated
nodal dynamic behaviors and structural correlations between
individual nodes [35]. From this viewpoint, the GCN algorithm
naturally fits well with the need for grasping inherent structural

2. Structure-Aware Trajectory Feature Learning

characteristics of the power grid [36], [37]. Hence, it is utilized
for structural feature learning in this paper.

First of all, by incorporating the data obtained in the 1st
phase of VTSI dataset preparation with the network structure
information, structural learning data to be fed into the GCN for
spatial feature learning are formed. Specifically, for the M-bus
power grid, its network structure is characterized as a graph
with an adjacency matrix A = [a;;]arx - In the given power
grid, as the transmission line admittances represent the struc-
tural connections between individual buses [38]-[40], such
admittance values are quite suitable for non-Euclidean network
structure representation in GCN-based spatial feature learning.
Thus, the entry a;; is estimated based upon admittance values:

{IYMI, if i # j
aij:

0, otherwise

&)

Here |Y;;| is the magnitude of the mutual admittance of the
transmission line connecting buses ¢ and j. Essentially, A can
be taken as a bridge that connects the wide-area network struc-
ture with local dynamics at individual buses. As illustrated in
Fig. 3, with the grid structure represented by an adjacency
matrix-based graph, system-wide voltage values acquired from
different buses’ trajectories at three representative time instants
(t=0,0.25 s, and 0.5 s, respectively) can be correspondingly
represented by three graphs. With different nodal colors stand-
ing for different voltage values at respective buses, the three
graphs present structural voltage distributions of the grid. By
feeding such graph data obtained from different time instants
into a GCN, system-wide spatial features w.r.t. networked
voltage distributions would be learned. Before detailing how
the GCN is constructed, the concept of graph Laplacian that
enables spectral graph convolution is first introduced here. In
particular, based on the adjacency matrix A, the normalized
graph Laplacian is described by

L=1I,—-D Y?AD™'/? (6)

where I, is the identity matrix of size M; D is a di-
agonal matrix with D;; = > ; @ij- Let the eigenvalues of
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Fig. 3. Illustration of spatial-temporal feature learning with GCN and LSTM.

L be denoted as {\ éVI ~1 and the corresponding eigen-
vectors are represented by {u;}3’~*. From the perspective
of graph signal processing [41], the matrix of eigenvectors
U = [ug,u1,...,up—1] can be deemed as the Fourier
basis to diagonalize L, which yields L = UAU T where
A = diag ([\o, A1, ..., Aar—1]). For a certain snapshot of
the M-bus {V,P,Q} TS responses, which is denoted as
v € RMX3 ¢ = UTv and v = Uv are taken as the
graph Fourier transform and the inverse counterpart [41] on
the grid. Following this concept, spectral graph convolution
on the graph signal v is conducted via spectral filtering [32]:

V=ggxv=gg(L)v= gg(UAUT)’U = Ugg(A)UT'v 7

where YV € RM*3 is the convolution result; gy = diag(f) is a
graph filter, with 6 denoting a group of Fourier coefficients. Es-
sentially, gg can be understood as a function of the eigenvalues
of L, i.e., gg(A). Considering the heavy computational burden
of the raw graph convolution in (7), a simplified version with
much higher computational efficiency is proposed in [32] by
approximating g (L) with truncated Chebyshev polynomials:

K-1 ~
V=grv=g(Lyvr)  T(Lv  ®)

where 0, € R and T;(L) € RM*M are the kth-order
Chebyshev coefficient and polynomial, respectively; L =

2L /Amax — I is the normalized Laplacian. The Chebyshev

polynomial T (L) can be recursively computed by
1, k=0

L, k=1

2LT}_1(L) — Tj—»(L), k>2

Ti(L) = 9)

Note that the approximate graph convolution in (8) has a
K-localized receptive field, where K denotes the kernel size.
Taking K = 3 for instance, as shown in Fig. 3, the information
collected from the buses with at most K — 1 = 2 hops from
the central bus is utilized for graph convolution. Based on
(8), a GCN can be constructed by connecting multiple graph
convolution neurons together to sufficiently learn the inherent
structural correlations within the grid.

After GCN-based spatial feature learning from individual
graphs, the learned hidden states at different time instants
are fed into LSTM-based neurons to further mine temporal
features hidden behind system-wide sequential trajectories, as
presented in what follows.

2) LSTM-Based Temporal Feature Learning: The above
graph convolution focuses on structural feature learning from
single snapshots of the grid’s dynamics. To capture system
temporal characteristics behind TS trajectories, the LSTM al-
gorithm with high potential in temporal representation learning
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from TS data [42] is further considered for feature learning.
Specifically, by incorporating the GCN technique with the
LSTM algorithm [34], a composite method called graph con-
volutional LSTM (GCLSTM) is introduced in this paper. As
shown in Fig. 4(a), a GCLSTM cell consists of an input gate
14, an output gate oy, a memory cell ¢; and a forget gate f;.
All of these components collaborate with each other to derive
sequential hidden state h; from the temporal input x;;. In fact,
it shares similar internal working mechanisms with a standard
LSTM unit, except that graph convolution is operated on x;;
and h; to yield structure-aware h;; and c;1, as depicted in
Fig. 4(b). Mathematically, the comprehensive operation in the
GCLSTM cell can be described as

iy =0 (Waix @i + Wh xhy 1 + Weici1 + b;) (10)

fi=0Wapxxiyy +Wyprhi_y +Wepe +by) (1)
¢ =fi®ci1+ 1 ©tanh (Wi x iy + Wyexhy_1 + b,)
(12)

0; =0 (Waox @it + Wi x hy_1 + Weoei + by) (13)
h; = o; © tanh (¢;) (14)

where W, and Wy, (x € {4, f,c,0}) are the Chebyshev
coefficient matrices to be learned; x denotes the graph convolu-
tion described in (8); W, (x € {i, f,0}) is the weight matrix
linking ¢; to other components ; b, (x € {i, f,c,o0}) stands
for the bias parameters; ® represents element-wise product;
o(k) =1/(1+ e ") is the sigmoid activation function.

In fact, the GCLSTM can be regarded as a variation of
the base LSTM, where the conventional multiplication by
weight matrices is replaced by graph convolution with ker-
nels in the form of Chebyshev coefficient matrices. In this
regard, graph convolution is essentially embedded into the
LSTM unit to perform convolution for the structural learning

data and the hidden states at different time instants during
LSTM-enabled temporal correlation learning. With such a
combinatorial learning mechanism, the GCLSTM not only
learns temporal correlations from the sequential inputs, but
also makes the learning procedure be aware of the structural
(spatial) characteristics of the grid. As a result, the hidden state
h; would comprehensively capture networked spatial-temporal
features from the structural system dynamics.

To enhance the learning capability, multiple GCLSTM
layers can be stacked for in-depth feature learning. A fully
connected layer is further attached behind the GCLSTM layers
to map the hidden states to the eventual output, i.e., VTSI
values. Let the mapping relationship along all these neural
layers be represented by H(x;). A linear activation function
is employed to derive the ultimate prediction, i.e., §; = H(x;).
With emphasis on regressive prediction, the objective of the
whole network is to minimize the per-instance loss function
below:

min £ = min (g; — yi)2 (15)

To augment the whole SRLM’s generalization performance,
the dropout trick randomly dropping out neural units [42] is
introduced into the GCLSTM training procedure. After the
training procedure is finished, the SRLM derives a data-driven
VTSI prediction model for online VTSI prediction.

C. Online VTSI Prediction

During online SVS monitoring, an OTW with both its length
and sliding step set to AT is employed to sequentially acquire
TS trajectories from individual buses via PMUs after fault
clearance. Assuming a multi-round UVLS scheme is readily
available for SVS control, the SRLM is dedicated to assisting
the scheme via adaptive UVLS site selection. Specifically, with
multiple windows of {V, P, Q} TS separately collected and fed
into the SRLM, it predicts VTSI values before each round of
UVLS execution. For a certain UVLS round, all the load buses
with positive VTSI prediction values are sorted in descending
order, and the first m’ (m’ < m) buses are selected as the
control sites for load curtailment. As system responses in
different OTWs may lead to different VTSI values, the SRLM
would be able to enhance the UVLS scheme’s performance
by adaptively selecting the most critical control sites.

For the sake of evaluating the prediction performances of
the SRLM, three statistical metrics are calculated. In particular,
with nest SVS cases provided for online test, three-round
UVLS actions result in N = 3n. VTSI instances in total. Let
the predicted and actual VTSI values of instance ¢ (1 < i < N)
be ¥ = [Ji1,Yiz, - Yim] and y; = [yi1, Yio, -, Yins), the
mean absolute error (MAE), root mean square error (RMSE)
and reliability of UVLS site selection are estimated as

1 NV M
MAE = 20=> 0 >0 i —vgl  (16)
RMSE = \/MN Z 1 Yi) 17
Ry = Zw o(i,m') N o(y;,m")] /m' x 100%  (18)
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Fig. 5. Single-line diagram of the Nordic test system.

where ¢(*,m’) is the sorting function retrieving the indices
of the m’ load buses with the largest positive VTSI values,
and 1[a] is a counting function that counts the total number
of elements in the set a.

IV. CASE STUDY

A. Simulation Setting and Case Generation

The comprehensive performance of the SRLM-based pre-
diction scheme was tested on the Nordic test system. This is a
simplified 77-bus system of the actual Swedish and Nordic
power grid [43], as shown in Fig. 5. It has been recently
recommended by an IEEE PES task force for voltage stability
research [44]. Following the system description in [43], the
system was modeled and numerically simulated in PSD-BPA,
a commercial power grid simulation package extensively used
in China. Focusing on the SVS issue, all the loads in the
system were modeled as composite loads with IM and static
ZIP loads in parallel. In the system, the heavily loaded area
called Central (see the shaded area in Fig. 5) consumes more
than 55% of the total electric power, and it was chosen as the
major receiving-end region for SVS monitoring. Assuming all
the 13 130-kV and 400-kV buses in this area were deployed
with PMUs, TS responses of {V,P,Q} in SVS dynamics
were sequentially acquired from these buses via PMUs during
online monitoring. Among them, the 11 load buses were taken
as candidate UVLS sites, as highlighted in Fig. 5.

Taking into account various representative operating points

TABLE I
PRIMARY PARAMETER SETTING FOR SRLM TRAINING

Parameter Symbol Value
Kernel size for graph convolution K 3
No. of nodes for graph convolution M 13
No. of neurons in the 1st GCLSTM layer nr1 64
No. of neurons in the 2nd GCLSTM layer nro 32
Learning rate « 0.001
Dropout probability Ddrop 50%
Batch size ng 64
No. of epochs ng 500

(50 ones), typical dynamic load proportions (60%, 70%, 80%),
diverse transient fault locations (15 ones) and different fault
clearing times (t. = 0.2 s or 0.3 s), 4500 SVS scenarios
were generated via T-D simulations in PSD-BPA. For each
scenario, three shots of post-fault perturbations in the form of
load curtailment were separately applied to the 11 load buses
for VTSI estimation. With pairwise {V, P, Q} trajectories and
VTSI values extracted from all the scenarios, 13500 VTSI
instances were obtained. The main parameters during case
generation were set to: M = 13, m = 11, Py = 50 MW,
At =0.01 s, Tyin = AT =0.5 s and N, = 50.

The above VTSI dataset with 13500 cases was divided into
three groups, including a training set for offline learning (9000
cases), a validation set for offline validation (2000 cases) and a
testing set for online testing (2500 cases). Note that the testing
set was separated from the whole dataset by deterministic
splitting. For the remaining cases, they were partitioned into
the training and validation sets via random sampling with no
replacement. In this way, the testing cases would contain SVS
scenarios that are totally unseen by offline learning, so as
to better demonstrate the generalization performances of the
SRLM in unforeseen conditions. For SRLM construction, two
GCLSTM layers were stacked to build the learning machine
for VTSI prediction. In terms of SRLM training, the learning
parameters were set on the basis of the authors’ empirical tests,
with the primary parameter setting summarized in Table 1. The
RMSProp algorithm [42] was employed as the optimizer to
implement iterative SRLM training.

B. Comprehensive Learning Performances

1) Hlustration of VTSI Prediction: Before verifying the
overall performance of the SRLM, how it performs on VTSI
prediction is illustrated here with a case randomly chosen
from the testing set. The actual and predicted VTSI values of
this case are presented in Fig. 6. As can be seen, the SRLM
achieves highly precise VTSI prediction, with all the predicted
values slightly deviating from the actual ones. In addition,
the relative ranking order of all the predicted VTSI values
remains 100% consistent with the actual order. Hence, when
UVLS sites are determined on the basis of the sorting order of
predicted VTSI values, those buses with high positive impacts
on regional voltage recovery would be reliably selected.

2) Overall Prediction Results: With each of the train-
ing/validation/testing cases fed into the SRLM, its prediction
performances are comprehensively evaluated, as summarized
in Table II. For the reliability metric, the number of buses
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Fig. 6. VTSI prediction result of a randomly chosen case (with VTSI values
rescaled into the raw range).

TABLE II
COMPREHENSIVE VTSI PREDICTION PERFORMANCES

Dataset MAE RMSE Rer/%
Training set (9000) 0.0114 0.0168 98.58
Validation set (2000) 0.0117 0.0170 98.21
Testing set  (2500) 0.0118 0.0173 97.96

selected for UVLS was set to m’ = 5. Clearly, the SRLM
is able to maintain high prediction precision on all the three
datasets, with the MAE and RMSE indices kept below 0.012
and 0.018, respectively. As for assisting UVLS site selection,
the critical load buses can be correctly selected with a high
reliability of around 98% even for the testing cases not seen
by offline learning. Further, the prediction error distributions
of all the validation and testing cases are statistically drawn in
Fig. 7. Over 98% of the prediction errors fall into the range of
[-0.05, 0.05], with a highly concentrated distribution around 0.
For the worst cases, the largest absolute error is less than 11%
of the normalized VTSI range (0~1). These distributions again
imply the SRLM’s desirable VTSI prediction performances.
3) Comparative Study: For the purpose of further illus-
trating the advantage of the proposed SRLM, a comparative
study was carried out here by comparing it with some rep-
resentative DL/ML methods. In particular, three conventional
ML methods, including multilayer perceptron (MLP) based
neural network, support vector machine (SVM) and classifi-
cation and regression tree (CART), and three representative
DL algorithms, i.e., CNN, LSTM, and ConvLSTM (with a
combination of conventional CNN and LSTM) [45], were
also implemented for VTSI prediction. Since the first three
comparative methods with shallow learning structures cannot
handle multi-dimensional TS data, all the sampling values
in a given OTW were taken as independent dimensions of
inputs for regressive learning. Besides, as their outputs are
limited to single values, specific VTSI prediction models have
to be separately customized for each of the load buses. For
the CNN, LSTM, and ConvLSTM algorithms, as they are
compatible with multi-dimensional TS inputs and vectorized
outputs, no additional data preprocessing was needed. All
the training/validation cases generated in Section IV-A were
fed into these methods for offline training, and their online
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Fig. 7. Error distribution of VTSI prediction.

TABLE III
COMPARISON OF VTSI PREDICTION PERFORMANCES ON TESTING CASES

Method MAE RMSE Rei/%
Proposed 0.0118 0.0173 97.96
MLP 0.0278 0.0390 87.71
SVM 0.0269 0.0386 89.19
CART 0.0296 0.0424 83.87
CNN 0.0210 0.0323 92.50
LSTM 0.0203 0.0311 94.17
ConvLSTM 0.0189 0.0292 96.64

prediction performances on the same testing set with 2500
unforeseen cases are summarized in Table III.

Evidently, none of these competitors defeat the proposed
SRLM. Specifically, the VTSI prediction errors of the three
shallow learners, i.e., MLP, SVM and CART, are more than
120% larger than that of the SRLM, leading to a low re-
liability of less than 90%. This is mainly caused by their
learning manner that simply treats all the sampling values
as independent features. Consequently, the inherent spatial-
temporal correlations between networked buses during SVS
dynamics are totally omitted, thus resulting in degraded
VTSI prediction performances. On the other hand, the CNN,
LSTM, and ConvLSTM methods perform better than those
shallow learners, with the overall reliability remaining above
92%. Among these three DL-based alternatives, ConvLSTM
achieves the best VTSI prediction performance, being able
to reliably identify more than 96.5% of the critical UVLS
sites. In fact, this is because its deep neural structures with the
combination of CNN and LSTM are able to learn the spatial-
temporal correlations between successive sampling points of
wide-area dynamics in the specific power grid. Nonetheless, as
such correlations do not naturally capture the inherent spatial-



TABLE IV
STATISTICS OF COMPUTATIONAL EFFICIENCIES OF DIFFERENT METHODS

Offline Offline com- Model Online VTSI

Method training putational storage estimation
time/s memory/MB  space/MB time/s

Proposed 9897.5237 2543.793 16.887 0.0038
MLP 69.5852 96.862 2.458 0.0021
SVM 61.6371 89.389 3.646 0.0023
CART 48.5407 73.735 2.682 0.0022
CNN 1571.5113 1183.043 5.168 0.0030
LSTM 2868.3285 1363.842 7.872 0.0033
ConvLSTM  4332.3744 2086.961 13.284 0.0034
Numerical - - - 102.2883

Note 1: The 2nd column refers to the offline time consumption of
data-driven VTSI prediction model training; the 3rd column shows
the computational memory usage during VTSI prediction model
training; the 4th column represents the consumed storage space to
save the trained VTSI prediction model; the 5th column denotes the
average computation time of online VTSI estimation for the 2500
testing cases.

temporal characteristics within the non-Euclidean structural
grid, it still falls behind the SRLM by a certain degree. This
also reveals the potential of graph learning in enhancing struc-
tural feature learning in practical power grids. Since practical
grids often present complicated spatial-temporal dynamics, the
SRLM sufficiently learning both structural characteristics and
temporal correlations would be more applicable in practice.

4) Computational Efficiency: To evaluate the computational
efficiency of the SRLM, its time and space complexities during
both offline model training and online application for VTSI
prediction were tested with four metrics, including offline
training time, offline computational memory, model storage
space, and online VTSI estimation time (see Note 1 below
Table IV for detailed explanations) [46]. In addition to the
SRLM, the computational efficiencies of the six comparative
methods involved in Table III were also examined here for
comparison. All the computation tasks were conducted in
Python 3.6 with the TensorFlow backend. A PC configured
with a 3.60-GHz*8 Intel Core i7-7700 CPU and an NVIDIA
GeForce GTX-1080 GPU was used to fulfill these computation
tasks. To verify the advantage of these ML-based methods in
enhancing the online application efficiency, T-D simulation-
based numerical VTS estimation that directly estimates VTSI
values for online testing cases in a numerical way was also im-
plemented. Table IV summarizes the computational efficiency
test results of all the methods.

Overall, the proposed SRLM has the highest offline time
and space complexities among all the ML-based methods. Yet
it should be mentioned that the SRLM’s offline computational
complexities are still affordable, with the training procedure
completed in no more than 2.8 hours and the computational
memory consumption being less than 2.6 GB. Besides, despite
the fact that the offline training efficiency of the SRLM is not
very high, this does not essentially affect its online application
efficiency. In fact, with its prediction model occupying less
than 20 MB for storage, it can perform online VTSI prediction
in a highly efficient way by directly feeding TS data into the
prediction model. As a result, it issues the VTSI prediction
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Fig. 8. VTSI prediction performance with network parameter errors.

results in less than 4 ms on average after the completion of
TS data acquisition. This would largely contribute to timely
UVLS decision making in urgent conditions. In contrast,
although the numerical VTS analysis alternative does not
involve offline computation, it takes nearly 2 min to estimate
the VTSI values for a single online testing case via multiple
T-D simulations. For the remaining ML-based schemes, they
have highly competitive online application efficiencies and
relatively low offline computational complexities. Yet con-
sidering that the proposed SRLM is able to achieve more
reliable VTSI prediction without essentially sacrificing the
online efficiency, the SRLM would be more helpful in practical
emergency situations.

C. Impact of Structural Discrepancies

As power network modeling errors are often inevitable,
the network discrepancies between offline simulation envi-
ronments and online operation contexts in practice cannot
be ignored. Taking into account such structural discrepancies,
random errors following the normal distribution N (0, 0%) were
imposed onto transmission line parameters during offline case
generation. In particular, the standard deviation o; was set to
o1 = 2%, 4%, 6%, 8% and 10% to simulate different levels
of line parameter errors. The adjacency matrix A for graph
convolution [see Section III-B.1)] was re-calculated accord-
ingly to account for such errors. The SRLM was re-trained
with cases generated from such discrepant networks, and its
VTSI prediction performances in practical online contexts
represented by the testing cases with no structural errors are
depicted in Fig. 8. As can be observed, the SRLM manages
to maintain satisfactory performances against structural errors.
Even if the error level is as high as 10%, it is able to select
the most critical UVLS sites with high reliability (> 96.5%).

Moreover, considering unforeseen structural discrepancies
caused by network changes during online monitoring, the
SRLM’s online performances were further tested with un-
known topological changes. In particular, two groups of N —1
and N — 2 topological changes were generated by randomly
disconnecting transmission lines in the system. Following
the simulation settings in Section IV-A, 2500 new testing
cases were produced for each of the groups. The SRLM’s
VTSI prediction performances on these new testing cases are
summarized in Table V. It is found that the SRLM remains
relatively robust to such topological changes, with the overall



TABLE V
VTSI PREDICTION PERFORMANCES WITH TOPOLOGICAL CHANGES

Condition MAE RMSE Rei/%
Normal 0.0118 0.0173 97.96
N-1 0.0123 0.0181 97.43
N -2 0.0188 0.0306 94.86
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Fig. 9. VTSI prediction performance with PMU measurement noises.

reliability kept above 97% and 94.5% in totally unknown
N —1 and N — 2 conditions. This verifies that the SRLM can
tolerate relatively severe structural discrepancies during online
application, being competent in practical changing conditions.

D. Robustness to PMU Measurement Noises

Considering the unavoidable PMU measurement noises in
practice, the performances of the SRLM under practical noisy
measurement contexts were examined here. Specifically, PMU
measurement noises were generated by adding random noises
with distribution N(0,03) to the raw {V,P,Q} TS of the
2500 online testing cases produced in Section IV-A. By
specifying o9 as 0.5%, 1%, 1.5%, 2%, 2.5% and 3%, different
levels of measurement noises were simulated. Fig. 9 presents
the SRLM’s performances under these noise levels. As can
be found, the SRLM can hold acceptable VTSI prediction
precision under different noise levels. Even for the extremely
stringent condition with g5 = 3% (corresponding to absolute
noises as large as +£9% based on the 3¢ rule), it can maintain
the reliability above 94%. In fact, if the PMU measurement
precision is in accordance with the normal IEEE standard [47],
the SRLM would be able to firmly keep its reliability above
97.5%. Hence, the SRLM is expected to work well in practical
measurement contexts with normal noise levels.

E. Potential in Enhancing Online SVS Control

The above tests have exhibited the excellent performances
of the proposed SRLM on online VTSI prediction. To further
demonstrate its potential in helping enhance online SVS
control, VTSI-assisted UVLS is illustrated with a randomly
chosen online testing case. For simplicity, the threshold-based
UVLS scheme shedding fixed proportions of loads (8%, 12%
and 12% for three rounds) [20] was adopted here. Note that,
instead of curtailing loads at all the load buses, which often
causes excessive load loss in practice, here UVLS is executed
at the m’ (m’ = 5) load buses with the largest positive VTSI
prediction values. Meanwhile, the UVLS strategy that selects
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Fig. 10. Representative example of UVLS with the help of VTSI-based
control site selection. (Vgrop — average voltage drop w.r.t. steady-state voltage
levels at individual buses; Pjoss — total amount of load curtailment)

the five buses with the heaviest loads to perform UVLS was
considered for comparison. Fig. 10 depicts the voltage profiles
of the chosen testing case with different UVLS strategies.
Without UVLS action, the system experiences FIDVR after
transient fault clearance, with an average voltage drop of more
than 0.1 pu. With one-round UVLS actions, all the buses’
voltages are recovered at a much higher speed, as shown in
Fig. 10(b)-(c). Yet it should be noticed that the UVLS strategy
based on VTSI prediction is able to better mitigate transient
voltage drops while curtailing 32% fewer loads than the
strategy shedding loads at heaviest loaded buses. With special
attention to the two buses undergoing the lowest voltage levels
(see dotted lines in Fig. 10), it can be seen that the latter
strategy achieves slower voltage recovery and regains slightly
lower steady-state voltages. This example indicates that the
SRLM has high potential in helping an off-the-shelf UVLS
scheme select the most critical sites to achieve fast voltage
recovery at the cost of curtailing loads as few as possible.



TABLE VI
VTSI PREDICTION PERFORMANCES IN RENEWABLE ENERGY CONTEXTS
(WITH WIND POWER)

Dataset MAE RMSE Rei/%
Training set (9000) 0.0126 0.0192 98.23
Validation set (2000) 0.0131 0.0195 98.00
Testing set  (2500) 0.0133 0.0196 97.85

F. Applicability in Renewable Energy Contexts

The test results reported in the above subsections involve
SVS issues in the presence of conventional synchronous gener-
ators within the Nordic test system. In fact, with no limitation
to the types of generators or loads, the proposed SRLM
can also be applied to power systems with renewable power
generation if the uncertainty and variability of renewable
energy sources (RESs) are sufficiently considered during the
process of offline VTSI dataset preparation. To demonstrate
the applicability of the SRLM in renewable energy contexts,
additional tests were carried out here by replacing some of
the power plants in the Nordic test system with renewable
wind farms. Specifically, the following generators in Fig. 5
were replaced by wind turbines: {gl, g2, g3, g5, g6, g7, g9,
¢l0, gl1, g12}. By doing so, RESs take up 35% of power
generation in the system. Based on the test setup in existing
studies on data-driven power system stability monitoring with
RESs [48], the generation outputs of these wind turbines were
set to randomly vary from O to their rated capacities, so as to
account for the uncertainty and variability of RESs. Based
on the case generation procedure described in Section IV-
A, all the training, validation, and testing datasets for VTSI
prediction were re-generated by incorporating these new set-
tings related to RESs. Correspondingly, the SRLM was rebuilt,
and its VTSI prediction performances on the newly generated
datasets are presented in Table VI.

Clearly, the SRLM still achieves satisfactory performances
in the context of high RES penetration. It maintains the VTSI
estimation errors w.r.t. M AE and RMSE at relatively low
levels of less than 0.015 and 0.02, respectively. With such a
high precision, it manages to reliably identify more than 97.8%
of the critical load buses for UVLS implementation. Hence,
once the RES generation is considered in the offline procedure
of learning data preparation, the proposed SRLM has high po-
tential to adapt well to high renewables contexts. Nonetheless,
how the penetration level of RESs in the system influences the
performance of the proposed SRLM deserves more systematic
investigations. Also, considering the significant volatility of
RES generation in different months and seasons, advanced DL
techniques like transfer learning may be introduced to further
enhance the performance of the proposed SRLM.

V. CONCLUSION

For the sake of adaptively selecting the most effective UVLS
sites for power system online SVS control, this paper develops
an intelligent SRLM-based scheme to predict short-term VTSI
in a reliable and efficient way. By carefully incorporating the
emerging GCN technique with the powerful LSTM algorithm,

the SRLM is able to sufficiently learn the inherent structural
and temporal features of a given power system from various
SVS dynamics. Such a superior learning capability contributes
to its high VTSI prediction precision during online appli-
cation. Extensive numerical tests on the Nordic benchmark
system demonstrate that the proposed scheme achieves much
better VTSI prediction performances than conventional meth-
ods. Besides, it exhibits desirable robustness to practical im-
perfect conditions, e.g., unexpected structural errors/changes
and PMU measurement noises. With the most critical sites
for UVLS implementation reliably identified, it shows high
potential in enhancing online SVS control. Note that the
applicability of the SRLM is not limited to adaptive control
site selection. In relevant future research, the SRLM can
be extended to further optimize UVLS amounts for more
systematic data-driven SVS control. Besides, how to work out
more systematic solutions to address practical conditions like
PMU data losses and high renewable energy penetration can
be taken as future research directions.
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