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Synchronization of Lur’e Networks via
Heterogeneous Unknown Interconnections

Fan Zhang, Yuanlong Li, Weiguo Xia, Tao Liu, Wenwu Yu

Abstract—This paper deals with synchronization of Lur’e
networks diffusively coupled through heterogeneous unknown
relative-state interconnections over connected undirected graphs.
While the node nonlinearities are identical, unknown and incre-
mentally sector-bounded, the edge nonlinearities are different,
unknown and sector-bounded. These Lur’e nonlinearities can be
regarded as model uncertainties or interconnection constraints.
The S-Lemma and LMI techniques are employed following the
absolute stability theory of Lur’e systems. In contrast to the
case of homogeneous linear relative-state interconnections, here
the obtained synchronization criterion is given by two isotypic
LMIs, which involve the smallest and respectively the largest
nonzero Laplacian eigenvalues. Finally, numerical simulations are
presented to illustrate the effectiveness of the theoretical results.

Index Terms—Lur’e network, synchronization, heterogeneous
unknown interconnection, (incremental) sector-boundedness,
LMI.

I. INTRODUCTION

Synchronization of Lur’e networks has been extensively
studied in the related fields, see [1]–[8] for instance. It draws
much attention due to the fact that Lur’e systems can represent
chaotic circuits, biochemical oscillators, and flexible joint
robotic manipulators etc [9], and synchronization of Lur’e
networks can be applied in secure communication [10], image
encryption [11], and power grids [12], [13].

In [1], synchronization of connected undirected Lur’e net-
works via static linear relative-state interconnections was stud-
ied. Through dynamic linear relative-output interconnections,
synchronization of undirected and directed Lur’e networks
was studied successively in [2], [5]. These works handle
unknown input/output coupled MIMO Lur’e nonlinearities at
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nodes under incremental sector-boundedness and require no
leader. In other results on synchronization of Lur’e networks,
the Lur’e node nonlinearities are SISO or input/output decou-
pled MIMO under slope-restrictedness and usually a leader
is required, see for example [6], [14]. It should be noted
that, slope-restrictedness is just a special case of incremental
sector-boundedness. To the best of our knowledge, the latter
is the most general assumption on the node nonlinearities in
the context of Lur’e networks. Hence, in the study of Lur’e
networks, it is natural to move forward along the works [1],
[2], [5].

Besides linear interconnections, nonlinear ones were also
studied in Lur’e networks. There are two types of nonlinear
interconnections. One uses linear relative information feedback
to design nonlinear interconnections for synchronization, see
e.g. [7], [14]. The other has to confront nonlinear relative
information feedback and to design suitable nonlinear in-
terconnections, see e.g. [15], [16]. For example, a second
type nonlinear interconnection was considered in [4], where a
leader was employed to synchronize the Lur’e network subject
to hybrid impulses. Certainly, there are also works involving
both types of nonlinear interconnections, see e.g. [17]–[19].
Note that, the nonlinear interconnections therein have the
passivity-like property.

Since the first type nonlinear interconnection has been
mostly studied in Lur’e networks, the second type will be of
interest in this paper. In fact, nonlinear interconnections via
saturated feedback [20] or quantized feedback [8] belong to the
second type. In addition, the sector-boundedness approach is
often exploited to handle saturation and quantization in control
system design. This inspires us to consider sector-bounded
interconnections for synchronization of Lur’e networks, which
can lead to a protocol suitable for more types of nonlinear
interconnections.

Synchronization of dynamic networks via sector-bounded
nonlinear interconnections has been explored to some extent.
Output synchronization of a network of SISO linear systems
was studied via slope-restricted nonlinear relative-output inter-
connections in [21], [22], where the absolute stability theory
in the frequency domain was utilized. The same author con-
sidered delayed slope-restricted interconnections for single-
integrator node dynamics in [23]. Also for single-integrator
node dynamics, a kind of odd and increasing nonlinear in-
terconnection works, which is in fact slope-restricted [24].
In [25], [26], the fully distributed synchronization problem
of linear networks was studied through slope-restricted inter-
connections. However, the nonlinear interconnection function
is used in the synchronization protocol therein and must be
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known exactly, which is not required in this paper. A network
of stable LTI node dynamics was considered in [27], where
the nonlinear interconnection function is sector-bounded but
input/output decoupled.

In this paper, the node dynamics is described by the Lur’e
system with an incrementally sector-bounded unknown nonlin-
earity, and the interconnection nonlinearities are heterogeneous
but also unknown and only required to be sector-bounded. All
the nonlinearities are not required to be input/output decoupled
either. Here, these nonlinearities in fact denote all those within
the corresponding sectors and cannot be approximated by
for example neural networks. Moreover, it turns out that the
systems matrix of the node dynamics is not required to be
stable. Third, no leader is needed. Different from the static
linear relative-state interconnection case [1], here two isotypic
LMI synchronization conditions are obtained, which involve
the smallest and respectively the largest nonzero Laplacian
eigenvalues. This is similar to the dynamic linear relative-
output interconnection case [2].

The reminder of this paper is organized as follows. Together
with some preliminaries, the problem of interest is formulated
in Section II. Section III presents a sector-bounded syn-
chronization protocol design for connected undirected Lur’e
networks. Its Lyapunov analysis is postponed to the Appendix.
A numerical simulation example is given in Section IV to
illustrate our obtained theoretical results. Finally, Section V
closes this paper along with some concluding remarks.

II. PROBLEM FORMULATION

Throughout this paper, we use standard notations. R denotes
the field of real numbers. Rm denotes the set of m×1

real column vectors. Rm×n denotes the space of m×n real
matrices. (·)T denotes the transpose of a real matrix. The
Kronecker product of two matrices M1 and M2 is denoted
by M1⊗M2 . diag(m1,··· ,md) denotes a block diagonal matrix
with elements mb , b=1,··· ,d , on its diagonal. IN denotes the
N×N identity matrix. 0 denotes a zero matrix of compatible
dimension. We define that 1N≜[1,1,··· ,1]T1×N .

Let G be a simple, connected undirected graph with N ( ≥2 )
nodes to represent the network topology. The eigenvalues of
its Laplacian matrix L can be ordered as λ1=0<λ2≤···≤λN .
Moreover, there exists an orthogonal matrix U=

[
1√
N

1N ,U2

]
,

where U2∈RN×(N−1) , such that UTLU=diag(0,λ2,··· ,λN ) . It is
easily checked that UT

2 U2=IN−1 and U2UT
2 =IN− 1

N 1N1T
N .

In this paper, we consider a network of N heterogeneous
Lur’e systems described by

ẋi=Axi−Ef(Cxi)+Bψi(ui), i=1,2,··· ,N, (1)
where xi(t)∈Rn and ui(t)∈Rm are the node state required
to reach synchronization with neighbors and respectively
the diffusive coupling control input to be designed. The
system matrices A∈Rn×n , B∈Rn×m , C∈Rs×n , E∈Rn×s are
constant and given. The function f(·):Rs 7→Rs represents an
unknown nonlinearity that is assumed to be incrementally
sector-bounded within a known sector:

Definition 1: Let Sn,S̄n∈Rs×s be real symmetric matrices
and S̄n−Sn be positive definite. Then, f(·) is called incremen-
tally sector-bounded within the sector [Sn,S̄n] if it satisfies

[f(ρ)−f(ϱ)−Sn(ρ−ϱ)]
T
[f(ρ)−f(ϱ)−S̄n(ρ−ϱ)]≤0 (2)

for all ρ(t),ϱ(t)∈Rs .
The function ψi(·):Rm 7→Rm is also an unknown nonlinearity
and assumed to be sector-bounded within a known sector:

Definition 2: Let Se,S̄e∈Rm×m be real symmetric matrices
and S̄e−Se be positive definite. Then, ψi(·) is called sector-
bounded within the sector [Se,S̄e] if it satisfies

(ψi(ν)−Seν)
T
(ψi(ν)−S̄eν)≤0 (3)

for all ν(t)∈Rm .
Through local relative-state interconnections, the diffusive

coupling control input is given by
ui=K

∑N
j=1 aij(xi−xj), (4)

where [aij ]N×N is the adjacency matrix associated with the
graph G , K∈Rm×n is the coupling gain matrix to be designed
such that xi(t)−xj(t)→0 as t→∞ , i=1,2,··· ,N , j ̸=i , for any
initial states, any f(·) within the sector [Sn,S̄n] , and all ψi(·) ’s
within the sector [Se,S̄e] , namely the Lur’e network (1) with
(4) reaches synchronization.

III. MAIN RESULTS

In this section, we present our main results.
Theorem 1: Consider a connected undirected graph G .

If there exists a positive definite matrix Q∈Rn×n , a matrix
H∈Rm×n and two positive real numbers α , β such that the
following two LMIs

[A− 1
2E(Sn+S̄n)C]Q+Q[A− 1

2E(Sn+S̄n)C]
T
+α

2 EE
T

+ 1
2λi[B(Se+S̄e)H+HT (Se+S̄e)BT ]+ β

2BB
T

CQ

λiH

QCT λiH
T

−2α(S̄n−Sn)
−2

0

0 −2β(S̄e−Se)
−2

 < 0, i=2,N (5)

hold, then the Lur’e network (1) with (4) achieves synchro-
nization, where K:=HQ−1 .

The proof is postponed to the Appendix.
Remark 1: Note that, the two LMIs (5) involve the smallest

and respectively the largest nonzero Laplacian eigenvalues,
similarly to some synchronization results for example [27].
In fact, the requirement of the smallest and the largest
nonzero Laplacian eigenvalues is equivalent to that of only
the smallest one. Both of them need to know the Laplacian
matrix. In addition, the coupling gain matrix K is computed
offline. Then the implementation is no more complex than
the synchronization protocol for Lur’e networks via linear
relative-state interconnections, see [1]. Certainly, the feasibility
decreases.

Remark 2: By using the S-Lemma, (11) in the Appendix is
equivalent to

[
A− 1

2E(Sn+S̄n)C+
λi
2 B(Se+S̄e)K

]
Q+ β

2BB
T+

Q
[
A− 1

2E(Sn+S̄n)C+
λi
2 B(Se+S̄e)K

]T
+α

2 EE
T

λiKQ

CQ

λiQK
T QCT

−2β(S̄e−Se)
−2

0

0 −2α(S̄n−Sn)
−2

 < 0.
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It follows that, the two LMIs (5) have feasible solutions only
if the pair (A− 1

2E(Sn+S̄n)C, 12B(Se+S̄e)) is stabilizable, rather
than the pair (A,B) . This is exactly the reason that A is not
required to be stable.

Remark 3: Using the quadratic Lyapunov function and LMI
techniques, Theorem 1 has conservatism, which is inevitable.
In the absolute stability theory, the Lur’e-type Lyapunov
function together with for example Zames-Falb multipliers is
often used to reduce the conservatism. So it is possible to
reduce the conservatism of Theorem 1 as well. This is an
interesting problem for the future research.

If the node dynamics is described by the LTI system
ẋi=Axi+Bui, i=1,2,··· ,N, (6)

then we have the following corollary:
Corollary 1: Consider a connected undirected graph G .

If there exists a positive definite matrix Q∈Rn×n , a matrix
H∈Rm×n and a positive real number β such that the following
two LMIs AQ+QAT+ β

2BB
T+

1
2λi[B(Se+S̄e)H+HT(Se+S̄e)BT ]

λiH
T

λiH −2β(S̄e−Se)
−2

<0, i=2,N (7)

hold, then the linear network (6) with (4) achieves synchro-
nization, where K:=HQ−1 .
Proof. The proof can be performed similarly to that of Theo-
rem 1 and omitted here. □

IV. NUMERICAL SIMULATIONS

In this section, a given Lur’e network interconnected
through specific heterogeneous sector-bounded nonlinearities
will be studied over an unweighted undirected circle of 5
nodes. Its smallest and largest nonzero Laplacian eigenvalues
are computed to be λ2=1.382 and respectively λ5=3.618 .

Here, the node system matrices are randomly generated
in MATLAB and given by A=[−0.8320,1.5686,1.2797;−2.0802,

−0.6835,−4.8451;4.8406,−3.3283,−3.9378] , B=[−1.2759;−3.0188;

−0.1031] , C=[−1.6051,4.5163,4.2033] , E=[−4.4732;2.3786;−2.3088] .
The node nonlinearity is chosen to be f(y)=|0.5y+1|−|0.5y−1| ,
which is a saturation function and lies in the sector [0,1] ,
see Fig. 1. The interconnection nonlinearities are chosen
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Fig. 1. Plots of f(·) and ψ1(·)
to be ψi(u)=u+

1
i sinu , i=1,2,3,4,5 , which lie respectively

in the sectors [0.7828,2] , [0.8914,1.5] , [0.9276,1.3333] ,
[0.9457,1.25] , [0.9566,1.2] , see the plot of ψ1 in Fig. 1.
We take the largest sector [0.7828,2] to cover all these
interconnection nonlinearities. So the assumption on the
same sector makes sense. It is easily checked that the pair
(A− 1

2E(Sn+S̄n)C, 12B(Se+S̄e)) is stabilizable, where Sn=0 ,
S̄n=1 , Se=0.7828 , S̄e=2 .

Then, by using the LMI Control Toolbox in MATLAB,
we can compute feasible solutions to the two LMIs
(5): α=0.0181 , β=0.2874 , H=[0.074,0.234,0.0673] , Q=

[0.0828,0.1091,−0.1058;0.1091,0.2121,−0.1578;−0.1058,−0.1578,0.1436] .
Hence the coupling gain matrix can be computed to be
K:=HQ−1=[51.7757,17.5743,57.9442] .

Finally, we choose the initial states randomly and plot the
corresponding state trajectories of the 5 nodes in the left figure
in Fig. 2. In the right figure, we plot the synchronization
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Fig. 2. State trajectories & synchronization errors
errors xi(k)−x̄ik , where x̄ik=

1
5

∑5
i=1 xi(k) , i=1,2,3,4,5 , k=1,2,3 .

Clearly, the network reaches synchronization.

V. CONCLUSIONS

We have achieved synchronization for connected undirected
Lur’e networks via sector-bounded heterogeneous unknown
interconnections in this paper. This work has generalized
some results on synchronization in the presence of nonlinear
interconnections and also leaves some interesting problems.

A possible future topic is to study synchronization of
directed Lur’e networks via sector-bounded heterogeneous un-
known interconnections. The relations between the asymmetric
Laplacian matrix and the nonlinearities can not be decoupled
easily. Another one is to study the case of sector-bounded
heterogeneous unknown interconnections without full state
information. Unfortunately, absolute stabilization by sector-
bounded unknown partial state feedback is still an open
problem and gives no clue to synchronization. Moreover,
network synchronization via sector-bound heterogeneous un-
known interconnections deserves more attention subject to
various constraints for example time-delays and cyber-attacks.
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APPENDIX

Proof of Theorem 1. Before moving on, we define
ϕi(ui):=S̄eui−ψi(ui) , i=1,2,··· ,N , which obviously satisfies the

sector-boundedness condition
ϕT
i (ui)[ϕi(ui)−(S̄e−Se)ui]≤0 (8)

for all ui(t)∈Rm . That is, the unknown nonlinearity
ϕi(·):Rm 7→Rm lies in the sector [0,S̄e−Se] . Hence the ith Lur’e
system becomes ẋi=Axi−Ef(Cxi)−Bϕi(ui)+BS̄eui , which re-
sults in the following compact form:

ẋ=(IN⊗A)x−(IN⊗E)F (x)−(IN⊗B)Φ(u)+(IN⊗BS̄e)u,

where x=[xT
1 ,x

T
2 ,··· ,x

T
N ]

T , F (x)=[fT(Cx1),f
T(Cx2),··· ,fT(CxN )] ,

u=[uT
1 ,u

T
2 ,··· ,u

T
N ]

T , Φ(x)=[ϕT
1(u1),ϕ

T
2(u2),··· ,ϕT

N(uN )]
T . Moreover,

we have u=(L⊗K)x and thus get that
ẋ=(IN⊗A+L⊗BS̄eK)x−(IN⊗E)F (x)−(IN⊗B)Φ(u). (9)

Let x̂=(UT⊗In)x and x̄=(UT
2 ⊗In)x . Then the synchronization

error dynamics is obtained as
˙̄x= (IN−1⊗A+Λ̄⊗BS̄eK)x̄− (10)

(IN−1⊗E) (UT
2 ⊗Is)F (x)︸ ︷︷ ︸

F̄ (x)

−(IN−1⊗B) (UT
2 ⊗Im)Φ(u)︸ ︷︷ ︸

Φ̄(u)

,

where Λ̄:=diag(λ2,··· ,λN ) . It is well known that (9) is synchro-
nized if and only if (10) is stabilized [1].

Consider the Lyapunov function candidate V (x̄)=x̄T (IN−1⊗
P )x̄ , where P :=Q−1>0 , which is obviously positive definite
and radially unbounded. The time derivative of V (x̄) along the
trajectories of (10) is given by

V̇ (x̄)

= 2x̄T (IN−1⊗P )[(IN−1⊗A+Λ̄⊗BS̄eK)x̄−(IN−1⊗E)F̄−(IN−1⊗B)Φ̄]

[ x̄T F̄T Φ̄T ]

=


IN−1⊗(PA+ATP)+

Λ̄⊗(PBS̄eK+KT S̄eB
TP)

−IN−1⊗PE −IN−1⊗PB

−IN−1⊗ETP 0 0

−IN−1⊗BTP 0 0


[ x̄T F̄T Φ̄T ]T .

Meanwhile, it follows from Lemma 4 in [1] that
[ x̄T F̄T ][

IN−1⊗CT (SnS̄n+S̄nSn)C −IN−1⊗CT (Sn+S̄n)

−IN−1⊗(Sn+S̄n)C 2IN−1⊗Is

]
[ x̄T F̄T ]T ≤ 0,

[ x̄T F̄T Φ̄T ]

⇔

 IN−1⊗CT (SnS̄n+S̄nSn)C −IN−1⊗CT (Sn+S̄n) 0

−IN−1⊗(Sn+S̄n)C 2IN−1⊗Is 0

0 0 0


[ x̄T F̄T Φ̄T ]T ≤ 0.

On the other hand, by means of (8), we have that
ΦT{Φ−[IN⊗(S̄e−Se)]u}=∑N

i=1 ϕ
T
i [ϕi−(S̄e−Se)ui]≤0,

⇔ ΦT (UUT⊗Im){Φ−[IN⊗(S̄e−Se)]u}≤0,

⇔ [(UT⊗Im)Φ]
T{(UT⊗Im)Φ−[UT⊗(S̄e−Se)]u}≤0,

⇔
[(

1√
N

1T
N⊗Im

)
Φ
]T{(

1√
N

1T
N⊗Im

)
Φ−

[
1√
N

1T
N⊗(S̄e−Se)

]
u
}



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

+Φ̄T{Φ̄−[UT
2 ⊗(S̄e−Se)]u}≤0,

⇔
[(

1√
N

1T
N⊗Im

)
Φ
]T(

1√
N

1T
N⊗Im

)
Φ+Φ̄T{Φ̄−[UT

2 ⊗(S̄e−Se)]u}≤0

due to the fact that
[

1√
N

1T
N⊗(S̄e−Se)

]
u=

[
1√
N

1T
NL⊗(S̄e−Se)K

]
x=0,

⇒ Φ̄T{Φ̄−[UT
2⊗(S̄e−Se)]u}≤−

[(
1√
N

1T
N⊗Im

)
Φ
]T(

1√
N

1T
N⊗Im

)
Φ≤0,

⇔ Φ̄T{Φ̄−[UT
2 L⊗(S̄e−Se)K]x}≤0,

⇔ Φ̄T{Φ̄−[UT
2 LU⊗(S̄e−Se)K]x̂}≤0,

⇔ Φ̄T{Φ̄−[(0(N−1)×1,UT
2 LU2)⊗(S̄e−Se)K]x̂}≤0,

⇔ Φ̄T{Φ̄−[Λ̄⊗(S̄e−Se)K]x̄}≤0,

[ x̄T Φ̄T ]

⇔

[
0(N−1)×(N−1)⊗0n×n −Λ̄⊗KT (S̄e−Se)

−Λ̄⊗(S̄e−Se)K 2IN−1⊗Im

]
[ x̄T Φ̄T ]T ≤ 0,

[ x̄T F̄T Φ̄T ]

⇔

 0(N−1)n×(N−1)n 0 −Λ̄⊗KT (S̄e−Se)

0 0 0

−Λ̄⊗(S̄e−Se)K 0 2IN−1⊗Im


[ x̄T F̄T Φ̄T ]T ≤ 0.

By using the S-Lemma, V̇ (x̄) is negative definite for any
incrementally sector-bounded f(·) within [Se,S̄e] and for all
sector-bounded ϕi(·) ’s within [0,S̄n−Sn] if there exist two
positive real numbers ᾱ and β̄ such that

IN−1⊗(PA+ATP)+
Λ̄⊗(PBS̄eK+KT S̄eB

TP)
−IN−1⊗PE −IN−1⊗PB

−IN−1⊗ETP 0 0

−IN−1⊗BTP 0 0


−ᾱ

 IN−1⊗CT (SnS̄n+S̄nSn)C −IN−1⊗CT (Sn+S̄n) 0

−IN−1⊗(Sn+S̄n)C 2IN−1⊗Is 0

0 0 0


−β̄

 0(N−1)n×(N−1)n 0 −Λ̄⊗KT (S̄e−Se)

0 0 0

−Λ̄⊗(S̄e−Se)K 0 2IN−1⊗Im

 < 0

holds, which is equivalent to
IN−1⊗(PA+ATP)+Λ̄⊗(PBS̄eK+KT S̄eB

TP)
−ᾱIN−1⊗CT (SnS̄n+S̄nSn)C

ᾱIN−1⊗(Sn+S̄n)C−IN−1⊗ETP

β̄Λ̄⊗(S̄e−Se)K−IN−1⊗BTP

ᾱIN−1⊗CT (Sn+S̄n)
−IN−1⊗PE

β̄Λ̄⊗KT (S̄e−Se)
−IN−1⊗PB

−2ᾱIN−1⊗Is 0

0 −2β̄IN−1⊗Im

 < 0,

⇔

 IN−1⊗(PA+ATP)+Λ̄⊗(PBS̄eK+KT S̄eB
TP)

−ᾱIN−1⊗CT (SnS̄n+S̄nSn)C

ᾱIN−1⊗(Sn+S̄n)C−IN−1⊗ETP

ᾱIN−1⊗CT (Sn+S̄n)−IN−1⊗PE

−2ᾱIN−1⊗Is

]

+ 1
2β̄

[
β̄Λ̄⊗KT (S̄e−Se)−IN−1⊗PB

0

]
[

β̄Λ̄⊗(S̄e−Se)K−IN−1⊗BTP 0
]
< 0,

⇔


IN−1⊗(PA+ATP)+ 1

2β̄
IN−1⊗PBBTP+

1
2 Λ̄⊗[PB(Se+S̄e)K+KT (Se+S̄e)BTP ]−

ᾱIN−1⊗CT (SnS̄n+S̄nSn)C+ β̄
2 Λ̄2⊗KT (S̄e−Se)

2
K

ᾱIN−1⊗(Sn+S̄n)C−IN−1⊗ETP

ᾱIN−1⊗CT (Sn+S̄n)−IN−1⊗PE

−2ᾱIN−1⊗Is

]
< 0,

⇔IN−1⊗
{
P [A− 1

2E(Sn+S̄n)C]+[A− 1
2E(Sn+S̄n)C]

T
P
}
+ (11)

1
2 Λ̄⊗[PB(Se+S̄e)K+KT (Se+S̄e)BTP ]+ ᾱ

2 IN−1⊗CT (S̄n−Sn)
2
C

+ β̄
2 Λ̄2⊗KT (S̄e−Se)

2
K+ 1

2β̄
IN−1⊗PBBTP+ 1

2ᾱ IN−1⊗PEETP<0.

Let H:=KQ . Then (11) becomes
IN−1⊗

{
[A− 1

2E(Sn+S̄n)C]Q+Q[A− 1
2E(Sn+S̄n)C]

T
}
+

1
2 Λ̄⊗[B(Se+S̄e)H+HT (Se+S̄e)BT ]+ ᾱ

2 IN−1⊗QCT (S̄n−Sn)
2
CQ

+ 1
2β̄
IN−1⊗BBT+ β̄

2 Λ̄2⊗HT (S̄e−Se)
2
H+ 1

2ᾱ IN−1⊗EET<0,

⇔


IN−1⊗

{
[A− 1

2E(Sn+S̄n)C]Q+Q[A− 1
2E(Sn+S̄n)C]

T
}
+

1
2Λ̄⊗[B(Se+S̄e)H+HT(Se+S̄e)BT ]+β

2 IN−1⊗BBT+α
2 IN−1⊗EET

IN−1⊗CQ

Λ̄⊗H

IN−1⊗QCT
Λ̄⊗HT

−2αIN−1⊗(S̄n−Sn)
−2

0

0 −2βIN−1⊗(S̄e−Se)
−2

 < 0,

where α:=1/ᾱ and β:=1/β̄ ,

⇐


[A− 1

2E(Sn+S̄n)C]Q+Q[A− 1
2E(Sn+S̄n)C]

T
+

1
2λi[B(Se+S̄e)H+HT (Se+S̄e)BT ]+ β

2BB
T+α

2 EE
T

CQ

λiH

QCT λiH
T

−2α(S̄n−Sn)
−2

0

0 −2β(S̄e−Se)
−2

 < 0, i=2,··· ,N,

which hold due to (5) and the convexity property of LMIs
along with λi=(1−γ)λ2+γλN , 0≤γ≤1 , i=2,··· ,N . □


