Stretchable e-skin and transformer enable high-resolution morphological
reconstruction for soft robots
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Many robotic tasks require knowledge of the exact 3D robot geometry. However, this remains extremely challenging in soft
robotics because of the infinite degrees of freedom of soft bodies deriving from their continuum characteristics. Previous studies
have only achieved low proprioceptive geometry resolution (PGR), thus suffering from loss of geometric details (e.g. local
deformation and surface information) and limited applicability. Here, we report an intelligent stretchable capacitive e-skin to
endow soft robots with high PGR (=3,900) bodily awareness. We demonstrate that the proposed e-skin can finely capture a wide
range of complex 3D deformations across the entire soft body through multi-position capacitance measurements. The e-skin
signals can be directly translated to high-density point clouds portraying the complete geometry via a deep architecture based
on transformer. This high PGR proprioception system providing millimeter-scale, local and global geometry reconstruction
(2.322£0.687 mm error on a 20x20x200 mm soft manipulator) can assist in solving fundamental problems in soft robotics,
such as precise closed-loop control and digital twin modelling.

Introduction

The neuro-proprioceptive system of animals mediates the perception of the body’s geometry, constituting the prerequisite for
precise and fast limbs coordination during locomotion and interaction with the environment.! Similarly, the dexterous manipu-
lation of intelligent robots relies on the body’s geometry estimation from the artificial proprioception system. Within the frame
of conventional rigid robots, existing sensing technology already provides viable solutions to implementing body’s geometry
estimation that meets the requirements of even the most agile and complex robotic platforms. This is due to the inherent
predictability of the rigid-body system, whose finite degrees of freedom allow the full geometry to be defined by a bounded set
of measurable parameters (such as joint angle and link length). However, the development of artificial proprioception systems
for highly deformable structures, such as soft robots, remains a fundamental challenge, severely restricting the understanding of
soft robot behaviour and, ultimately, the capability to perform precise closed-loop control.?3

The highly deformable nature of soft robots represents their asset as well as their drawback. The bodily compliance of soft robots
may provide an answer to the limits of conventional robots with respect to safety, adaptability and operational flexibility,* > thus
highlighting their spontaneous vocation for biomedical applications,’® human-robot interaction®!! as well as their employment
in unstructured, potentially cluttered scenarios. However, this very feature also gives infinite degrees of freedom to a soft body.
It is infeasible to completely describe the 3D morphology of a soft system with only a limited set of parameters.* 2 The number
of independent parameters used by a soft proprioception system to describe the body geometry determines the smallest size of
geometric variations that can theoretically be detected and presented by the system. Generally, the greater the number of inde-
pendent parameters, the finer and more accurate the geometric variations can be described. Therefore, we define the number of
such independent parameters as the proprioceptive geometry resolution (PGR). Soft proprioception systems with higher PGR are
desirable for soft robotics as they can endow soft systems with more comparable bodily awareness to rigid robots, thus enabling
more natural interaction with humans (e.g., real-time 3D geometry of a soft robot can be visually observed without the line
of sight, allowing users to operate robots intuitively even in occlusion environments) and underpinning precise closed-loop control.

To the best of our knowledge, there is no off-the-shelf high PGR soft proprioception system. Previous studies are focused on
low PGR proprioception, limiting their capability to preserve geometric details (e.g., local deformation and surface information)
and their usage in practical application scenarios (see detailed comparison in Supplementary Table 1) 312729 For example,
combined with the mathematical model of the soft robot under investigation, an optical fibre-based proprioception system can



successfully reconstruct the 3D geometry based on two parameters ', i.e., global bending and twisting angles (PGR=2). How-
ever, the low PGR fails to describe local geometric variations (e.g., bending of a robot segment) and is only applicable to a fixed
bending direction and twisting axis (see Supplementary Fig.1). Some recent studies attempt to build soft proprioception systems
with higher PGR by optimizing sensor design, introducing advanced machine learning algorithms (e.g., long short-term memory
networks, LSTM) and employing 3D motion capture devices (e.g., tracking cameras).® 217 Redundant cPDMS sensors with
LSTM can estimate 3D coordinates of a soft finger tip (PGR=3).12 The simplified 3D geometry (described by 9 parameters) of
a trunk-shaped soft robot can be recovered through 12 conductive silicone-based piezoresistive sensors distributed on the robot
body (PGR=9).2 The 3D deformation of a 4-chamber pneumatic membrane (described by 49 visual markers) is reconstructed
using LSTM and integrated optical sensors (PGR=147).17 Despite these recent advances, obtaining high PGR across a wide
range of complex deformations remains unrealized.

Here we propose a high PGR (=3,900) proprioception system to confer full-geometry, millimeter-level bodily awareness to soft
robots. The proprioception system encapsulates an intrinsically stretchable capacitive e-skin (SCAS) and a purpose-designed
neural architecture (i.e., the capacitance-to-deformation transformer, C2DT). Inspired by 3D electrical capacitance tomography
(ECT),?! the SCAS has four different functional layers (see Fig.1a) and employs a redundant planar skin electrode layout (see
Fig.1la and b) that forms a sequence of capacitors sensitive to deformations across distal and proximal locations, allowing it to
detect geometric variations across the entire soft body. The C2DT based on self-attention mechanism?? explores the dependency
over the e-skin signals and directly translates the measurements to the point cloud of the morphology (see Fig.1c). The syner-
gistic combination of the SCAS and C2DT can achieve accurate (2.322+0.687 mm error on a 20x20x200 mm soft manipulator)
and high PGR (=3,900; 1,300 points in each point cloud) 3D shape reconstruction under complex deformations, which is one or
two orders of magnitude improvement over previous methods (see Supplementary Table 1 for comparison). The proposed system
does not require mathematical modelling of the robot under investigation. Therefore, it theoretically should be agnostic to the
shape of the soft body, and has the potential to be extended to soft robotic platforms with unprescribed morphology. This high
PGR proprioception capability can assist in solving the most fundamental challenges in soft robotics, such as precise closed-loop
control in complex tasks, thereby facilitating their widespread adoption.

Results

Design of the e-skin in virtual environment

Different from conventional parallel capacitive sensors frequently used in many previous studies,>'® the design of SCAS is in-
spired by 3D electrical capacitance tomography (ECT) sensor and its sensing strategy.?! 3D ECT has demonstrated that the
capacitance readout of a boundary electrode pair is related to the permittivity of the medium within the sensitive region, and
its geometry. In soft robot proprioception, the permittivity remains constant. The change of capacitance primarily reflects
geometric variations and, therefore, can be used to infer local and global deformations.

We first design the SCAS in the virtual environment and quantify its performance, before its physical implementation. The
virtual SCAS has a redundant layout of planar stretchable electrodes (the 64-electrode SCAS) to characterize the 3D deformation
of the entire soft body (see Supplementary Fig.2). We implement 3D solid mechanics and electrostatics coupling field (3D-SECF)
simulation to simultaneously model the e-skin response and soft body deformation. Considering the need to test the broadest
range of possible deformations that are not achievable in a fully internally actuated system, we adopt a square cylindrical soft
manipulator actuated by external forces as the testbed. Supplementary Fig.2a shows the geometric structure and electrode
layout of the 3D-SECF model.

Any two SCAS electrodes can form a capacitor and the capacitance is sensitive to electrode deformations. The 64-electrode
SCAS can theoretically produce 2,016 independent capacitance readouts in one measurement frame (select 2 electrodes to form a
capacitor, i.e., C§4 =2,016). We only record capacitances formed by electrodes in the same layer and those between two adjacent
layers to ensure that they are practically measurable. Each SCAS measurement frame comprises 392 independent capacitance
readouts (see Methods solid mechanics and coupling field simulation and Supplementary Fig.2 for measurement strategy details).
We argue that capacitances formed by these non-redundant combinations of SCAS electrodes contain sufficient information to
portray full-geometry deformations as their receptive fields cover the entire soft body.

Dynamic 3D-SECF simulation allows to mimic a wide range of deformations and corresponding e-skin responses. We therefore
generate a large-scale virtual proprioception dataset containing 39,334 samples (see Methods solid mechanics and electrostatics
coupling field simulation for details). Each sample consists of a 3D point cloud with 1,716 points representing the deformation
and corresponding 392 capacitance readouts. The deformations are driven by different external force loads, which can be divided



into four different categories according to the types of external force loads, i.e., the compound deformation of elongation and
twisting L(; ), pure bending L( y), two-phase twisting and bending L, () and the compound deformation of twisting and
bending L(x,y,-). Simulation results show that SCAS signals can reflect the soft robot geometric variation under various complex
deformations (see Supplementary Fig.3), indicating its feasibility as proprioceptors. We then leverage the virtual proprioception
dataset to quantify the SCAS performance in high PGR full-geometry 3D deformation reconstruction. The results are utilized
to optimize the design of the physical SCAS and learning-based proprioception algorithms.

Capacitance-to-deformation transformer

We employ 3D dense point clouds to represent the full-geometry morphology of the soft robot arm. We then consider deformation
reconstruction as a set-to-set problem, mapping a SCAS signal set consisting of 392 capacitance readouts to its corresponding
point set (a point cloud) in 3D space. Therefore, we propose a capacitance-to-deformation transformer (C2DT) based on self-
attention mechanism?? that is widespread in natural language processing?®?* and computer vision?®2% and shows superior
performance in solving set-to-set problems. The framework of the C2DT is shown in Fig.2a. C2DT infers the displacement
of each point in the source point cloud (the one without deformation) from the proprioceptive information contained in SCAS
signals. Given characteristics of electric field distribution, we hypothesize that capacitances from different electrode pairs convey
different geometrical structure information. This is critical for the network to effectively distil discriminative proprioceptive
representations from capacitance readouts.?” We therefore design a special position encoding process in the C2DT to generate
geometrical representations based on positions of individual electrode pairs (see Methods for more details).

We train a C2DT using the virtual proprioception dataset by minimizing the loss function consisting of the squared distance term
of visual markers (of which point-to-point correspondences are known) and the Chamfer distance term of the remaining points
(of which point-to-point correspondences are unknown); see Methods for details of the loss function, visual markers and training.
The reconstruction results show superior PGR (i.e., 5,148; 1,716 points represents the 3D geometry of the robot), accuracy (i.e.,
1.379+1.048 mm, see Supplementary Table 2) and are able to capture the whole range of complex deformations tested (see Fig.2b,
Supplementary Fig.3 and Supplementary Video 1). We employ four error metrics to quantitatively evaluate the performance of
C2DT, i.e., the average distance (AD), the maximal distance (MD), the Chamfer distance?® (CD) and the Hausdorff distance?’
(HD); see Methods for expressions of these metrics. We train several C2DTs with different hyperparameters and compare their
performance to determine an optimized network structure. The quantitative results are shown in Supplementary Table 2. We
find that the C2DT with 6 transformer layers outperforms the other candidates. The AD error achieved with this setup is as low
as 1.379+1.048 mm, comparable to the accuracy achieved with RGB-D cameras frequently used as ground truth in the relevant
research.??

We implement ablation studies of the C2DT with 6 transformer layers to better understand the role of each loss term and position
encoding. The results are shown in Fig.2b, Supplementary Fig.3 and Supplementary Table 3. We observe that the C2DT cannot
learn correct point-to-point correspondences without including visual markers in training. This phenomenon is illustrated in
Fig.2b, where the points in the region of interest of the source point cloud are not mapped into the correct corresponding region
using the C2DT w/o markers. Although reconstructions show similarities with the ground truth by minimizing the Chamfer
distance term, point-to-point errors remain large. We also identify that by retaining only the squared distance term of the visual
markers during training, local distortions arise in a set of frames of reconstructions. This indicates that the Chamfer distance
term can benefit the geometrical quality of the reconstructions. Finally, we observe poor convergence when attempting to train
the network after removing the position encoding part. We visualize the position representations of the trained C2DT through
t-SNE39 (Supplementary Fig.4) and see that after position encoding, the electrode pairs with high geometrical correlation tend
to cluster together, and the electrode pairs geometrically far apart are also far apart in the feature space. It suggests that our
position encoder can generate distinctive geometric representations based on the locations of the input electrode pairs.

The redundant SCAS design validates its feasibility in the virtual environment. However, the high density of markers and elec-
trodes poses practical challenges to the fabrication and experimentation of the physical system. In order to reduce complexity
while maintaining proprioception performance, we investigate the impact of the number of markers and electrode layout on
the performance of the C2DT. The results of this analysis, shown in Fig.2c, prove the accuracy improvement from increasing
the number of markers plateaus at 16. It provides evidence that a small set of markers is sufficient for the C2DT to establish
correct point-to-point correspondences. Similarly, the reconstruction performance improves with the density of electrodes, but
the improvement is minimal after the number of electrodes exceeds a certain value (e.g., 32), as illustrated in Fig.2d. These
results highlight a favorable trade-off between reconstruction accuracy and electrode/markers units, confirming that it is safe to
sacrifice a minute part of performance to simplify the fabrication and deployment of the SCAS.



Fabrication and characterization of the e-skin

Based on the conclusions from the above investigation, we design a physical SCAS with 32 electrodes, consisting of 8 4-electrode
SCAS modules. This design balances the full-geometry reconstruction performance with fabrication complexity. We fabricate
multiple 4-electrode SCAS modules in parallel using established elastomer processing technologies.3! The electrodes are made of
carbon black (CB) dispersed elastomers. However, this material is unsuitable for wires and interfaces due to its high resistance
and non-linear, irreversible conductivity response under deformation.3?33 Therefore, Eutectic Gallium 75.5% Indium 24.5%
(EGaln) is employed to fabricate the wires and interfaces due to its high conductivity (3.4 x 107 S m™!) and stable response
to deformation. The fabrication process is presented step by step in Supplementary Fig.5a, and additional details regarding
materials and fabrication are reported in Methods.

The 4-electrode SCAS module (20x120 mm) consists of 4 different functional layers (Fig.1a and 3a), i.e., the protective substrate
(thickness: 0.39 mm), the electrode layer (0.08 mm), the isolation layer (0.24 mm), and the sealing layer (0.3 mm). We engrave
microchannels for wires (width: 0.5 mm) and connections (3x2 mm) on the isolation layer using a laser machine. Then the sealing
layer is bonded to the outward surface of the isolation layer. We inject the EGaln ink into the micro-channels. The CB electrodes
and EGaln wires are connected by vertical interconnect holes. The relative capacitance response of a 40% strain ranges from 16%
to 19%, depending on the activated electrode pairs (the platform for cycling characterization is shown in Supplementary Fig.7a).
The response curves show excellent linearity and consistency over multiple cycles (more than 500 cycles in Supplementary Fig.7b
and c). For comparison, we characterize a SCAS with CB wires using the same approach (see Supplementary Fig.7d and e). As
Fig.3b illustrates, the SCAS with EGaln wires is superior to its CB wires counterpart in terms of sensitivity (larger responses
under the same deformations), linearity (no distortions in response curves) and cycling stability (does not shift after 500 cycles
of stretches).

We uniformly deploy 8 4-electrode SCAS modules on the surface of a soft manipulator with the size of 20x20x240 mm (see
Supplementary Fig.5b; 40 mm in height for the interface area which is not reconstructed). The 32-electrode SCAS, consisting
of 8 SCAS modules, connects to an in-house developed data acquisition system>* to measure capacitance values. We use two
oppositely placed RGB-D cameras (Azure Kinect) to capture real-time, ground-truth 3D deformations of the robot in the colour
point cloud format from two complementary views, and then fuse them in a single coordinate system. We dye the sides of
the robot arm white as its original transparency negatively impacts the quality of data collected by RGB-D cameras. Sixteen
yellow visual markers are placed to encourage the network to learn correct point-to-point correspondences during training (see
Supplementary Fig.5¢). The experiment platform (see Supplementary Fig.8) can synchronously record capacitance and point
cloud data at a frame rate of around 30 fps.

The reliability of the SCAS allows us to record capacitance readouts frames (each frame comprises 76 independent readouts) when
the robot arm is subject to arbitrary external loading applied via the bottom holder over a long period (we intermittently collect
about 1,220 s of deformation data during a 10 h experiment). To demonstrate the superiority of our approach, we implement
a random sequence of complex deformations, including omnidirectional bending, omnidirectional elongation, twisting around
an arbitrary axis and their compound deformations (Fig.3c), during the experiment. In most frames, point clouds collected by
cameras can not represent full-geometry 3D deformations due to missing points caused by inevitable visual occlusion. We fill
points by @ shape reconstruction3® for the frames with minor missing point issues and directly filter the frames that have severe
occlusion. Then we obtain a total of 30,973 frames of data (see Methods for details of data acquisition and preprocessing). A
set of samples in this dataset is shown in Fig.4a and Supplementary Fig.9.

Real-world high PGR proprioception

The challenge of real-world high PGR proprioception is exacerbated by the relatively poor quality of point clouds (restricted
by the accuracy of cameras, occlusion, light conditions), noise in the SCAS signals, and imperfect synchronization between
different devices. In order to compensate for these added sources of inaccuracy, we enhance the C2DT framework by increasing
the number of input frames (N; adjacent frames of SCAS readouts) and introducing a regularization term in its loss function
to limit the distance change between neighbouring points before and after deformation. We train several C2DTs with different
input frame numbers using the filtered real-world dataset. The full-geometry reconstruction performance improves as the input
frames number increases and achieves the minimum error at 3 adjacent input frames (Fig.4b). This improvement indicates that
increasing the number of input frames can reduce the negative impacts of noise in SCAS signals and asynchronization between
devices. The temporal correlation among adjacent frames can also be considered favorable for deformation reconstruction. A
representative set of reconstructions of the C2DT with 3 input frames is shown in Fig.4c and Supplementary Video 2. The results
achieve 2.322+0.687 mm for the CD metric (Supplementary Table 4) with the PGR of 3,900 (i.e., 1,300 points in each point
cloud). Compared to simulation results, some elaborate geometrical features of reconstructed deformations in certain frames are



less obvious, especially for those related to twisting (Supplementary Video 3). This is mainly because the ground truth point
clouds acquired by RGB-D cameras cannot reach the quality of point clouds synthesized by 3D-SECF simulation.

According to the ablation study (Supplementary Fig.10), visual markers play a similar role in physical and virtual environments,
facilitating the network to learn correct point-to-point correspondences. We also observe that adding the neighbour regularization
term can slightly improve the reconstruction quality (Supplementary Table 4). The position encoding part is crucial to extract
useful proprioceptive information from physical SCAS signals. Similar to its contribution in the training with the simulation
dataset, position encoding can assign discriminative high-dimensional representations to different electrode pairs based on their
geometrical structures (Supplementary Fig.11).

Discussion

We presented a proprioception system that could visualize high PGR, 3D full-geometry deformations of soft robots. It is empow-
ered by an intrinsically stretchable capacitive e-skin (SCAS) that leverages capacitances formed by the combinations of planar
boundary electrodes, and an end-to-end neural architecture to translate SCAS signals directly into point clouds. While we
demonstrated the advancement of this proprioception system on complex deformations, several issues remain to be addressed to
fully exploit its potential.

The SCAS fabrication involves manual operation (e.g., liquid metal injection, sealing layer attachment, interface to sensing elec-
tronics), leaving room for performance improvement. Although calibration of sensor readouts can, to a certain extent, mitigate
this issue, a desirable solution would require automated manufacturing technologies, such as direct writing of liquid metal and
3D printing of soft materials. Furthermore, the thickness of the SCAS is about 1 mm, which is suitable for demonstrating
high PGR proprioception in our soft robot testbed (20x20x200 mm) and other similar proprioception scenarios. However, more
advanced fabrication approaches 363% could be adopted to extend the proposed framework to other application domains, such
as skin-interfaced wearable devices.

While this work focuses on proprioception induced by external forces applied to the tip of the robot, real-world operation entails
many other kinds of stimuli from the environment. These stimuli, in turn, may be the source of soft body deformations (e.g.,
compression) and involve peripheral information (e.g., temperature, texture). Due to the capacitive nature of SCAS, it can, in
principle, simultaneously detect several distinct types of external stimuli, such as tactile mapping and permittivity of the objects
in the proximity of the robot. The SCAS signals could be interfered, and the accuracy of the shape reconstruction might drop
when external stimuli occur. Two possible solutions for this issue are envisaged. First, a stretchable conductive layer that is
grounded can be integrated to the top of the SCAS, shielding the external electrical interference. In addition, sensitivity to
external stimuli provides an opportunity to measure them. More advanced data interpretation algorithms could be developed to
decouple deformation and external stimuli information from SCAS signals, which however could be highly challenging. Integrat-
ing multi-modal sensors into the SCAS framework has the potential to alleviate this issue and enhance the capability to detect
multiple external stimuli simultaneously.

We also point out that the C2DT belongs to the paradigm of supervised learning that requires abundant labelled data for train-
ing. A notorious problem is that the acquisition of labelled data is expensive, time-consuming and in some cases even impossible.
For instance, point clouds of compression-induced deformations cannot be easily collected through vision-based methods due to
inevitable occlusion. The proposed coupling field simulation can generate a large number of high-quality labelled training sam-
ples. However, the gap between virtual and physical environments leads to performance deterioration if the network is trained
only on the simulation dataset. Sim-to-real transfer are considered as the potential solution. The development and application
of sim-to-real approaches suitable for soft robot proprioception can significantly increase the value of the simulation data and
reduce the cost of real-world data acquisition.

Notwithstanding the above limitations, the proposed proprioception system can achieve real-time (30 fps), high PGR(=3,900)
full-geometry deformation reconstruction with high accuracy (2.322+0.687 mm CD error) under complex deformations. This
level of proprioception represents a step change over previous attempts and is beyond existing proprioception systems. Notably,
the system has the potential to be extended to different types of soft bodies through a straightforward learning process without
requiring a priori knowledge. Implementing such high PGR, full-geometry proprioception is essential for perceiving full-body
status and achieving precise closed-loop control of soft robots, the key to breakthroughs in performing complex tasks.



Methods

Solid mechanics and electrostatics coupling field simulation

The coupling field simulation is implemented in COMSOL Multiphysics to simultaneously generate virtual SCAS sensing data
and deformation data to demonstrate the effectiveness of the proposed method. The object of study is a square soft robot arm
made of silicone (length: 100 mm, width: 100 mm, height: 1000 mm, see Supplementary Fig.2a). An array of 64 electrodes
(8 x 8) is placed on the surface of the robot arm to form a 64-electrode SCAS. For simplicity, each electrode is set as a 105
X 30 mm flat surface without thickness. The distance between two adjacent electrodes on the same side is 20 mm both hori-
zontally and vertically. The distance between each edge and the nearest electrode is 10 mm. Relevant material properties are
set as follows: Young’s modulus E = 4.15 MPa, Poisson’s ratio v = 0.022, density p = 1.28x10% kg m~2, relative permittivity &, = 3.

We implement 956 different episodes in the simulation to produce a virtual soft robot proprioception dataset. Each episode
mimics a time-continuous deformation process and is discretized into about 40 frames. In each frame, the deformation and
the corresponding capacitance readouts of the SCAS are recorded. We apply four different types of loads to generate various
complex deformations: 1. the compound deformation of elongation and twisting L, ,): A torsion force and a pulling force along
the z-axis are simultaneously applied to the tip of the robot arm; 2. pure bending L, y): A pulling force in the x-y plane is
applied on the tip of the arm; 3. two-phase twisting and bending Ly (,y): A torsion force is applied on the tip of the arm in
the first r frames (r ranging from 6 to 16), and then a pulling force in the x-y plane is applied on the tip while maintaining the
twisting state; 4. the compound deformation of twisting and bending Ly y ): A torsion force and a pulling force in x-y plane
are applied to the tip at the same time. Each deformation is represented by a 3D point cloud with 1,716 points. Examples are
shown in Supplementary Fig.3. Since it is impractical to ascertain the exact point-to-point correspondences of all points between
two different deformations in the physical world, we resort to a scheme that can be realistically implemented. We only select 64
points as visual markers, whose correspondences are available during network training and the correspondences of the remaining
points are only used in testing for evaluation (see Supplementary Fig.2a).

Theoretically, any two electrodes can form a capacitor. The SCAS with 64 electrodes can produce 2,016 independent capacitance
readouts in each measurement frame. However, many of them are extremely small and cannot be reliably measured in the real
world. Therefore, only capacitances of electrode pairs in the same layer and capacitances of certain electrode pairs between
two adjacent layers are recorded. Supplementary Fig.2b shows all 28 electrode pairs in the first layer that form measurable
independent capacitors. Supplementary Fig.2c shows all 24 electrode pairs between the first and second layers that form measur-
able independent capacitors. Following this sensing scheme, the SCAS can generate 392 independent capacitance readouts per
measurement frame. Each readout is calibrated as follows: ¢ = (¢’ = Cemp)/Cemp, Where ¢ is the calibrated capacitance readout;
¢’ is the original readout and cemp is the readout without deformation. Examples of calibrated capacitance readouts are shown
in Supplementary Fig.3.

A total of 39,334 frames (956 episodes) of deformations and capacitance readouts are generated through the coupling field
simulation, of which 2,319 frames (53 episodes) are with L, ,); 12,552 frames (300 episodes) are with L, y); 12,269 frames (303
episodes) are with L, () and 12,194 frames (300 episodes) are with Ly y ).

C2DT for the virtual SCAS

In general, the C2DT is a deep model (Fig.2a) that is able to deform the source point cloud Py to approximate the target point
cloud P based on the measurement characteristic tensor (¢, Qc,, Q.,). Here Py € RNr*3 is the point cloud without deformation;
N, is the number of points in Py, which is 1,716 in this case; P € RNp*3 and P € RN»*3 are the ground truth and reconstructed
point clouds with a specific deformation respectively; ¢ € R¥=X1 is the corresponding calibrated capacitance readouts vector; N,,
is the number of readouts in ¢ with the value of 392 in this case; Q., € RV»*3 and Q,, € RN»*3 are the coordinates of electrodes
to generate c.

The C2DT architecture consists of two parts, i.e., encoding and decoding. The input of the encoding part is ¢, Q., and Q.,. Q.,
and Q., are considered as positional signals that can help distinguish different elements in ¢. They pass through the multi-layer
perceptron (MLP) f,(-) to obtain the geometrical representations of individual electrodes. We next choose an element-wise max
function to integrate the two electrode representations into the final geometrical representations for electrode pairs as the capac-
itance is independent of the order of electrodes according to the reciprocal theorem. The MLP f.(-) maps ¢ to high-dimensional
representations, and the sum of capacitive and geometrical representations is the input of the transformer encoder E(-) with the
length of N,,. For the decoding part, Py is first fed to the MLP f;(:), and then multi-head attention is implemented over the
outputs of f;(-) and E(-) through the transformer decoder D(:). The MLP f;(-) is used to map the output sequence of D(-) to



the displacement of each point, and the reconstruction P is obtained by adding it to Pj.

P is expected to be as close as possible to the target point cloud P. This goal is achieved by minimizing the following loss
function:

NV r
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where P, € RN-*3 represents the remaining points; p] € R? is the coordinates of the j'* remaining point; p’ € R3? is the
coordinates of the i visual marker; N, and N, are the numbers of the visual markers and the remaining points respectively; P
is the distribution of P; 1; and A5 are the weights of the squared distance term of the visual markers and the Chamfer distance
term of the remaining points, respectively.

The structures of subnetworks of the C2DT are as follows:

e fi: Linear(3, hem)—ReLU — LayerNorm(hey,) — Linear(hem, dmodel) — ReLU — LayerNorm(dpmoder)
e f,: Linear(3, hem) — ReLU — LayerNorm(hem) — Linear(hem, dmodel)

e f.: Linear(1,hen) — ReLU — LayerNorm(hey,) — Linear(hom, dmodel)

e f4: Linear(dmodel, 3) — axTanh

e E: LayerNorm(dmodel) — Transformer.EncoderLayer(dmodel, dit; 7, Pdrop)®Me-layer

e D: TranSformer'MutualLayer(dmodel7 dffa h7 Pdrop)®nm—layer - TranSformer~DeCOderLayer(dmodel7 dﬂ"v h7 Pdrop)®nd—layer

where hem =32, dmode1 =128, a=1.2, dg=256, h=8, Parop=0.1, nelayer=3, Am-layer—1 and ng.1ayer—2. Linear layers in f, and f. do
not have learnable biases while others have. The LayerNorm in E takes the sum of capacitive and geometrical representations
as input. Transformer.EncoderLayer and Transformer.DecoderLayer are exactly the same with the original transformer.?? We
remove the first self-attention cell of Transformer.DecoderLayer and use the remaining part as Transformer.MutualLayer because
P remains constant. Transformer.EncoderLayer®ne jayer represents a stack of ne.ayer Transformer.EncoderLayer.

We split the virtual proprioception dataset into three exclusive parts, i.e., training, validation and testing sets. The training set
includes 22,517 frames (548 episodes), of which 1,334 frames (31 episodes) are with L, ,), 7,204 frames (172 episodes) are with
L(x.,y), 6,980 frames (173 episodes) are with L, (ry) and 6,999 frames (172 episodes) are with Ly y ). The validation set includes
9,721 frames (236 episodes), of which 550 frames (12 episodes) are with L, ), 3,093 frames (74 episodes) are with Ly ), 3,098
frames (76 episodes) are with L, () and 2,980 frames (74 episodes) are with L(y y ). The testing set includes 7,096 frames
(172 episodes), of which 435 frames (10 episodes) are with L, ), 2,255 frames (54 episodes) are with Ly y), 2,191 frames (54
episodes) are with L, () and 2,215 frames (54 episodes) are with Ly y ).

Quantifying the range of deformations can assist in evaluating the reconstruction performance. However, it is challenging to
characterize the range of complex deformations using only several parameters, such as bending angle and/or elongation displace-
ment. Otherwise, a low PGR proprioception system would be sufficient to provide accurate geometry reconstruction. Here we
characterize the deformation range using 1) the range of coordinates of points; 2) the maximum displacement of the centroid.
In the simulation, the coordinates of testing samples are in the range of [-724.27, 728.68] mm in the x-direction, [-742.15, 743.66]
mm in the y-direction, and [-728.09, 487.95] mm in the z-direction. Note that we set the centroid of the point cloud without
deformation as the origin. The maximum displacement for the centroid is 341.92 mm.

The C2DT is implemented in Python and PyTorch packages.?® We use the Adam*’ optimizer (8;=0.9, B2=0.98, e=1077) to
update learnable parameters and minimize £. We set the initial learning rate of 0.001, which we decay by a factor of 1.2 every
15 epochs. We compute 4; and A5 as follows: A; = 1/3(AN,, +2N,.), A3 = 1/3(AN,, +2N,.), where A = max(1, 300 — 2 * (epoch — 1)).
We clip the gradient with the threshold of 0.5 and train the C2DT using the training set for 300 epochs with a batch size of 24.
Each epoch takes about 9 min on 3 Nvidia Quadro P5000. We save the network with the least validation loss as our final model.



We quantitatively evaluate the performance of the C2DT through 4 error metrics, i.e., the average distance (AD), the maximal
distance (MD), the Chamfer distance (CD) and the Hausdorff distance (HD):
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We compare the performance of C2DTs with different hyperparameters and the results are shown in Supplementary Table 2.
To understand the impact of each loss term and position encoding on the performance, we also implement ablation studies. We
remove the squared distance term and the Chamfer distance term respectively and perform the same training procedure to obtain
results of the C2DT w/0 markers and the C2DT w/0 Chamfer distance. The reconstructed point clouds and values of these
metrics are shown in Fig.2b, Supplementary Fig.3 and Supplementary Table 3. We also try to train the network without the
position encoding part, but it is unable to converge. The position representations of the trained C2DT is visualized through t-
SNE?° and presented in Supplementary Fig.4, which can help discover the geometrical correlation among different electrode pairs.

We also investigate the performance of C2DTs with different numbers of visual markers and different electrode layouts using the
same method to guide the sensor and network design in the real world. The results are shown in Fig.2c and d.

SCAS fabrication, characterization and deployment

The 32-electrode SCAS comprises 8 modular 4-electrode SCASs. Each SCAS module has 4 different functional layers, i.e.,
the protective substrate, the electrode layer, the isolation layer and the sealing layer. We fabricate each SCAS module layer
by layer. The steps are shown in Supplementary Fig.5a: i) We mix Smooth-on Ecoflex 00-30 part A (1.0) and part B (1.0)
and pour it on a glass plate. Then we use a TQC Sheen micrometer film applicator to flatten the silicone and cure it for 3
min at 100°C. ii) We first mix Imerys Enasco 250P conductive carbon black (0.2) with isopropyl alcohol (2.0), after which the
uncured silicone mixture (2.0) is added and we stir them for 3 min. A layer of uncured conductive silicone is coated on the
protective substrate and is cured for 3 min in a 100°C oven. iii) We use a 40 W Aeon MIRA 5 laser machine to pattern CB
electrodes. The parameters are set as follows: 28% Power, 300 mm s~! Speed and 0.05 mm Interval. The planar size of each
electrode is 21 X 6 mm, which is one-fifth of the one studied in the simulation. iv) We use the same method as in step i to
fabricate a silicone membrane for the isolation layer on the top of the electrode layer. v) Two rounds of engraving are performed
with 20.5% Power, 300 mm s~! Speed and 0.05 mm Interval to generate micro channels of liquid metal wires and connections
to readout electronics. Four rounds of engraving are conducted with the same parameters to generate vertical interconnect
holes. The planar size of readout connections and vertical interconnect holes is 3 X 2 mm, and the width of wires is 0.5 mm.
Then we cut the rectangular area of the modular SCAS with 19.5% Power and 25 mm s™! Speed and remove the remaining
part. vi) We fabricate a new silicone membrane following step i, and we uniformly coat a very thin layer of uncured silicone
mixture on its surface as adhesive. Then we bond the SCAS cut in step v with the membrane. The curing takes about 4 h
under room temperature to ensure high-quality bonding. vii) We inject Eutectic Gallium 75.5% Indium 24.5% (EGaln, Sigma
Aldrich) ink from readout connections, and meanwhile exhaust the air in microchannels through the vertical interconnect holes.
viii) We obtain the final modular 4-electrode SCAS. The planar size of the SCAS module is 120 x 20 mm, of which 100 x 20
mm is the area of the electrodes, and 20 X 20 mm is the interface to readout electronics. The layer thicknesses are 0.39 mm,
0.08 mm, 0.24 mm and 0.3 mm, respectively. Since the fabrication is easy to scale up, we manufacture 5 SCAS modules in parallel.

To characterize the response of the SCAS module and verify the superior performance of EGaln wires compared with CB wires,
we attach a 4-electrode SCAS with CB wires and a 4-electrode SCAS with EGaln wires on the front and back sides of a segment
of the square cylinder silicone structure (20x20x140 mm) and cyclically stretch them using a Nema23 stepper motor with a
SFU1605 ball screw (see Supplementary Fig.7a). Each cycle takes 20 s, and the SCASs are strained by up to 40%. The entire



test takes about 3 h (more than 500 cycles). Relative capacitance readouts of each SCAS are illustrated in Supplementary
Fig.7b-e. The results show that the SCAS with EGaln wires has better sensitivity (larger response under the same deformation),
linearity (no distortions in response curves) and cycling stability (no drift after 500 cycles).

We cast a square cylinder robot arm (Ecoflex 00-30) with the size of 20 x 20 x 240 mm which is one-fifth of the one in the
simulation. The extra 40 mm in height is the interface area for driving the deformation, connecting to electronics and bonding
with the fixed ceiling. We bond 8 4-electrode SCAS modules on its surface to form the 32-electrode SCAS (see Supplementary
Fig.5b). The soft robot and SCAS are fabricated with the same material (Ecoflex 00-30), which allows them to be firmly merged,
with no modulus mismatch, by using uncured Ecoflex 00-30 silicone as adhesive. The unity of the material enables the robot and
SCAS to be considered as a whole system during experiments, thus minimizing the effect of SCAS on the original robot motion
and deformation. Supplementary Fig.6 shows the adhesion between the SCAS and the robot under various deformations. No
separation or dislocation was observed in all cases. The transparency of silicone adversely impacts the quality of the point clouds
collected by RGB-D cameras based on the time-of-flight principle. We therefore coat a silicone layer with white Smooth-on
Silc Pig Silicone Pigments for better reflection. We also attach 16 yellow dots as visual markers to assist network training with
correspondence information. We cover the interface to readout electronics with black acrylic tape to reduce its interference in
point cloud collection (see Supplementary Fig.5c). Individuals electrodes are indexed and accessible from the readout electronics.

Experimental setup

The experiment platform consists of the soft robot arm equipped with the 32-electrode SCAS, the readout electronics, two
Microsoft Azure Kinect RGB-D cameras*' and a laptop installed with a customized software to control the readout electronics
and record data from the cameras and the SCAS (see Supplementary Fig.8). The readout electronics is based on a 32-electrode
ECT system that supports arbitrary switching schemes.?* Its capacitance measurement resolution is 3 fF, and the signal to noise
ratio of all 32 channels is above 60 dB.

The two cameras are placed directly opposite and in a straight line with the robot arm to capture its 3D deformations from two
complementary views in real time. The deformations are saved and represented via the colour point cloud format. The data
recording of the cameras and readout electronics is synchronized. The frame rate can reach about 30 fps if we only record the
point cloud and capacitance data. It will decrease to around 20 fps if RGB images are also recorded.

Experimental data acquisition and preprocessing

In real-world experiments, we manually manipulate the hand holder bonding to the bottom of the robot arm to induce a variety
of complex deformations, including omnidirectional bending, twisting around an arbitrary axis, omnidirectional elongation and
their compound deformations (see Fig.3c, Supplementary Fig.9b and c¢). Meanwhile, we synchronously record the SCAS and
cameras data (i.e., capacitance readouts, colour point clouds, and sometimes RGB images). We collect 36,465 frames (about
1,220 s) of experimental data. In this real-world dataset, the first 36,013 frames (about 1,200 s) record only the capacitance
readouts and colour point clouds; the last 452 frames (about 20s) also save the RGB images with a reduced frame rate.

The 32-electrode SCAS can produce 76 capacitance readouts in a single frame, which are calibrated using the same method as
in the simulation. The point clouds from the two cameras are fused in one coordinate system using the chessboard calibration
method.#?43 The raw data is noisy and contains many meaningless background points, making it unusable for direct training.
We clean and preprocess the data using Matlab to selectively retain only the points on the surface of the robot arm. The points
on the black acrylic tape and red holders are eliminated via colour-filtering. In order to further reduce the negative impact of
noise and outliers, we filter out regions whose local point densities are lower than a preset threshold. Due to inevitable visual
occlusion, in many frames the cleaned point clouds cannot completely represent 3D deformations. To alleviate this issue, further
preprocessing is required prior to training. We implement average grid downsampling with a 4 mm box gird filter at first for
computational efficiency. Then we reconstruct @ shapes®® on the basis of the downsampled point clouds to alleviate the issue
of incomplete representation. The triangular meshes of the alpha shapes are subdivided three times, and vertexes are extracted
as new point clouds with supplementary points. In our C2DT framework, the numbers of points in the source and target point
clouds are expected to be the same. In order to meet this requirement, we first implement average grid downsampling with a 4
mm box gird filter and then use farthest point sampling** to eventually select 1,300 points in each point cloud.

We extract yellow visual markers from cleaned point clouds before downsampling and « shape reconstruction based on the RGB
information of each point. We create a graph according to one frame of marker points. The connection of each two points in the
graph is determined by their distance. The threshold of connected distance is 6 mm. Each connected subgraph with more than
10 points is considered as a visual marker, and the average of the coordinates of all points in a subgraph is used to represent the



marker position. The number of extracted visual markers is not always 16 due to camera occlusion. It is almost impossible to
automatically obtain point-to-point correspondences of visual markers under our current experimental setup. We therefore align
visual markers layer-to-layer. The 16 visual markers can be divided into 4 layers, and each layer includes 4 markers. We create a
graph based on one frame of coordinates of extracted markers with the connected distance threshold of 26 mm. Each subgraph
is a layer of markers. The permutation of the layer is determined by the relative position in the y-axis of the fused coordinate
system among all 4 layers. We delete all abnormal frames for which the number of extracted markers is larger than 16 and/or
the number of layers is not equal to 4. We fill the layers for which the number of markers is less than 4 with (0,0,0) to ensure
all layers have the same number of points, which can improve the computational efficiency during training. Furthermore, we
remove the frames with critically missing points issues because of the low quality of their reconstructed a shapes. The number of
markers in individual layers indicates the severity of missing points. The frames with at least 2 markers in all layers are retained
while others are dismissed.

Upon the above filtering process, a total of 30,973 frames of data remains available for analysis. We randomly inspect a sample
of 500 frames out of the dataset and do not find serious missing points issues.

C2DT for the physical SCAS

The basic framework of C2DT in the real-world experiment is analogous to that in the simulation. However, some modifications
are required due to the difference between the real and virtual environments. First, the loss function in simulation is no longer
applicable, as in our experiments the point-to-point correspondences of visual markers are not available. Instead, we propose a
modified loss function as follows.

N; Niy, Ny
L£*=Ep. p{alzz[d(mk Py) - Sk, +d(pl Py - Sk | + 42 Y [d(pL P + d(p]. By
k=1 j=1
») ZZ Bl = pP s — 64 j,l)2'SJ'J i il s ) g
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The first term of £* counts the Chamfer distance between the reconstruction and the ground truth of markers layer-by-layer,
where P;, € RNw*3 is the coordinates of the visual markers in the [; layer; pfk € R3 is the coordinates of the i" point in Py, ;
d(ﬁfk,Plk) is the squared distance between ﬁ;k and the nearest point in Py, ; N; is the number of layers; Nj, is the number of
marker in each layer and the values of N; and Nj, are 4 in this case. When computing the loss, we only need to consider the
marker points extracted in the data preprocessing and ignore the padding points. Note that all points in PAlk are marker points
as they are generated by the network based on the corresponding capacitance readouts and the source point, which does not

include padding points. In order to eliminate the effect of padding points during training, we synthesize masks Sk I and S’;;g as
follows.

) S’g<’2r is set to 1 if pl is a marker point. S . is set to O if pl is a padding point.

) Sféig is set to 1 if P;, does not include any padding points, otherwise Sféig is set to 0.

The second term in L* is exactly the same as its simulation counterpart that counts the Chamfer distance between the re-
construction and ground truth of the remaining points. The third term is a regulamzer that encourages the distance between
neighbouring points to not change significantly before and after deformations, where pr is the I'" neighbour of p7; s/ is the
distance between the corresponding two points in the source point cloud; 64 and 6,, are coeflicients of thresholds. We count the
loss only if the neighbour distance in the reconstruction falls outside the preset range. We achieve this with masks Sﬁl’l and Sﬁ’l
as follows.

° Sé’l is set to 1 if |15£ - ﬁi’l|2 —6q- 50t < 0, otherwise Sé’l is set to 0.
o Si’l is set to 1 if Iﬁﬁ AJ l|2 — 6, - s > 0, otherwise Si’l is set to 0.

The number of input frames in the physical world is not constant to 1. In contrast, the C2DT takes several (N;) adjacent frames
as its input. The first linear cell in f, is therefore modified to Linear(N;,hem). The hyper-parameters of the C2DT are set as:
hem=32, dmode1=64, dg=128, h=4, Parop=0.1, Ne-layer=2, Nm-layer—1 and ng.1ayer=1. The network is trained and evaluated using
almost the same procedure as presented earlier.

We split the real-world dataset into three exclusive parts. The first 26,711 frames (about 1,020 s) are used for training (20,693
frames) and validation (6,018 frames), and the last 4,262 frames (about 200 s) are used for testing. The coordinates of testing
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samples are in the range of [-141.01, 129.99] mm in the x-direction, [-98.41, 190.91] mm in the y-direction, and [-100.28, 111.73]
mm in the z-direction (the centroid of the point cloud without deformation is set as the origin). The maximum displacement for

the centroid is 72.38 mm. We set 6,=0.5 and §,,=2. We compute A1, A3 and A3 as follows: 1; = 1/[4 Zf{v:’l Z[I.\:/’f S'r‘éig+S'(;’2ir)+2Nr]7
Ao = 1/[AZ B (Sksy + Sen) +2N,), Ag = 1/10[Z ) 3 (S47 + S37)], where 4 = max(1,300 — 10 * (epoch — 1)). Tn total, we

run 200 epochs with a batch size of 39 and retain the network with the least validation loss. We implement ablation studies to
evaluate the effect of individual loss terms (see Supplementary Fig.10) and quantitatively evaluate reconstructions with CD and
HD metrics, which do not require point-to-point correspondences (Supplementary Table 4). Finally, we visualize the position
representations of individual electrode pairs via t-SNE to illustrate the geometrical correlation between different capacitance
readouts (Supplementary Fig.11).
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Figure 1: Design of the SCAS and the pipeline for full-geometry, high PGR 3D deformation reconstruction
of soft robots. a, The entire SCAS that can cover the whole soft robot arm consists of multiple SCAS modules. Each module
has 4 functional layers, i.e., the protective substrate (0.39 mm), the electrode layer (0.08 mm), the isolation layer (0.24 mm) and
the sealing layer (0.3 mm). The soft electrodes are made of carbon black (CB) dispersed elastomers. Eutectic Gallium 75.5%
Indium 24.5% (EGaln) is employed to fabricate the wires and interfaces. The multi-position skin electrode combinations can
form a sequence of capacitors. Geometric variations in the proximity of the electrode pair lead to the change in the corresponding
capacitance. The readout electronics can record capacitance values of a selected set of electrode pairs at approximately 30 fps.
b, Snapshots of the soft arm in different states (undeformed, twisting and the compound deformation of bending and twisting).
¢, Data collected by the readout electronics is fed into a deep net and translated to a high PGR representation (point cloud) of
the 3D robot shape.

Figure 2: High PGR 3D deformation reconstruction based on the virtual dataset a, The architecture of the C2DT
that infers the displacement of each point in the source point cloud (without deformation) from the SCAS capacitance readouts.
In the encoding part, the network encodes the input capacitance readouts and the geometrical structure information of electrode
pairs to a high-dimensional space and feeds them to the transformer encoder to distil proprioceptive information. In the decoding
part, the network manages to assign a correct displacement to each point in the source point cloud based on the output sequence
of the encoding part. See Methods for more implementation and architecture details. b, A set of examples of reconstructions
generated by different C2DTs. The colour of each point in reconstructions indicates the distance from the corresponding point
in the ground truth. The region of interest is the middle section in the source point cloud. The points in the region of interest
(marked in black) should be mapped into the middle section in reconstructions if C2DTs learn correct point-to-point correspon-
dences. We can observe apparent shifts in the reconstructions of the C2DT w/o markers. ¢, The performance of the C2DT
under 4 different numbers of markers (mean+standard deviation on 7,096 testing samples). d, The performance of the C2DT
under 4 different electrode layouts (meanzstandard deviation on 7,096 testing samples).

Figure 3: Characterization of the SCAS. a, 4-electrode SCAS modules with EGaln (centre) and CB (right) wires. Left,
the cross-section of the module with EGaln wires under a 40x digital microscope. b, Relative capacitance response curves of the
two SCAS modules to a 40% periodic linear stretch. The SCAS with EGaln wires shows better sensitivity, linearity and cycling
stability than its CB wires counterpart. c, A representative set of complex deformations that appear in our experiment.
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Figure 4: Real-world high PGR proprioception. a, The curves of calibrated capacitance readouts of the SCAS dur-
ing a period of about 20 s in the experiment. Each readout is calibrated as follows: ¢ = (¢’ = cemp)/Cemp, Where ¢ is the
calibrated capacitance readout; ¢’ is the original readout and cemp is the readout without deformation. b, The performance of
C2DTs, which take different numbers of adjacent frames as inputs (mean+standard deviation on 4,262 testing samples). ¢, A
representative set of examples of high PGR 3D deformation reconstruction.
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