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Understanding the role of eye movement consistency in face
recognition and autism through integrating deep neural
networks and hidden Markov models
Janet H. Hsiao 1,2,3✉, Jeehye An 1, Veronica Kit Sum Hui1, Yueyuan Zheng 1 and Antoni B. Chan 4

Greater eyes-focused eye movement pattern during face recognition is associated with better performance in adults but not in
children. We test the hypothesis that higher eye movement consistency across trials, instead of a greater eyes-focused pattern,
predicts better performance in children since it reflects capacity in developing visual routines. We first simulated visual routine
development through combining deep neural network and hidden Markov model that jointly learn perceptual representations and
eye movement strategies for face recognition. The model accounted for the advantage of eyes-focused pattern in adults, and
predicted that in children (partially trained models) consistency but not pattern of eye movements predicted recognition
performance. This result was then verified with data from typically developing children. In addition, lower eye movement
consistency in children was associated with autism diagnosis, particularly autistic traits in social skills. Thus, children’s face
recognition involves visual routine development through social exposure, indexed by eye movement consistency.
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INTRODUCTION
Although prior research has suggested that the eyes are the most
diagnostic features in face recognition1 (i.e., features with the
most information for identifying faces correctly) and adults who
look at the eyes more often during recognition have better
recognition performance2–5, in children the frequency of looking
at the eyes does not predict better performance6. Also, children
with autism spectrum disorders (ASDs) did not differ from
matched controls in the frequency of looking at the eyes in
viewing static faces (or dynamic faces without gaze and speech
cues)7 regardless of their poorer recognition performance6. Thus,
factors other than looking at the eyes/diagnostic information may
play a more important role during the early stages of learning.
Adults are shown to have observer-specific fixation behaviour in

face recognition that persists over time, and deviation from this
visual routine results in suboptimal performance8. This phenom-
enon may be because visual routines facilitate the extraction of
learned diagnostic features through perceptual learning9. In
contrast, children may not have developed a visual routine (i.e.,
consistent sequence of eye fixation locations) that is as consistent
as that in adults. Consequently, they may have a poorer ability to
extract diagnostic features, resulting in poorer recognition perfor-
mance than adults. Children may learn to develop a visual routine
through discovering diagnostic features, sequencing, encoding, and
repeating the learned strategy. This process may depend on their
selective attention and executive function abilities and amount of
face recognition experience through social interaction. Thus,
inconsistent eye movement behaviour across trials in children
may reflect the difficulty in discovering and extracting diagnostic
features to develop a visual routine due to cognitive ability
limitations and insufficient experience in face recognition through
social interaction. In this case, even if one’s eye gaze lands on
diagnostic features during recognition, poor performance may still

result. Accordingly, for early learners such as children, their eye
movement consistency across trials may be a better predictor for
recognition performance than eye movement pattern (i.e., where
and the order of the locations they look). Since ASD is characterised
by a lack of social motivation10 and reduced attention to faces in
social scenes across developmental stages11–16, children with ASD
may also have lower eye movement consistency in face recognition
than matched controls due to reduced face exposure or face
recognition experience.
Here we tested these hypotheses through both computational

and experimental examinations. Computational modelling
enables the manipulation of factors that are difficult to control
in human subjects, such as the maturation difference between
children and adults. It also offers explanations and predictions for
human behaviour. We then conducted human studies to examine
the predictions.
The advance of deep neural networks (DNNs) has revolutio-

nised the research on automatic face recognition17 and cognitive
modelling18. For example, DNNs trained for face recognition are
shown to have a highly organised face similarity structure that can
potentially account for decades of research on perceptual
representations of faces19. Nevertheless, DNNs typically assume
that all aspects of the input can be processed simultaneously for
efficiency and accuracy. This differs significantly from how
humans recognise visual objects through a sequence of eye
fixations (i.e., by processing bits of information sequentially). Some
researchers have attempted to take eye fixations into account by
using bottom-up salience-based measures for eye fixation
selection20. Similarly, a static attention mechanism has been used
with DNNs for face recognition21 or facial expression recogni-
tion22, in order to accentuate the more useful featural information
for the task. Nevertheless, such models are unable to account for
how the locations and the order of the eye fixations are learned.
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More recent models simulate top-down visual attention by using
the internal representation of a DNN at previous time steps to
predict the next attended location/object for image caption-
ing23,24. However, their attention mechanism has been developed
mainly for object detection in a cluttered scene using bottom-up
processing of the input image. Similarly, Mnih et al.25 proposed a
recurrent network for visual attention for finding digits in a
cluttered image. The recurrent networks used in these works are
bottom-up attention mechanisms that use the image features to
drive the attention process, but are difficult to interpret due to the
black-box nature of the recurrent network. To our knowledge, no
previous model has implemented a top-down attention mechan-
ism for learning a sequence of fixations for visual object
recognition through integrating information across multiple
fixations using deep learning.
Here we proposed a novel computational model that combines

a DNN and a hidden Markov model (HMM) to learn eye movement
strategies including both sequences of eye fixation locations and
associated attention window sizes (global/local attention) for
recognition. This DNN+HMM model integrates perceptual repre-
sentation and eye movement pattern learning: The DNN learns
optimal perceptual representations under the guidance of an
attention mechanism summarised in an HMM, and the HMM learns
optimal eye movement strategies through feedback from the DNN.
In contrast to previous approaches where the attended location of
the DNN can be anywhere in the stimulus without an interpretable
model for a person’s strategy, here we assume that fixations occur
within person-specific regions of interest (ROIs) to reflect the
idiosyncratic eye movement behaviour during recognition that has
been reported in the literature8,26. We also include constraints of
human perception, such as saccade noise and visual-spatial acuity
of the retina, into our DNN+HMM model. HMM is a statistical time-
series model commonly used to model eye movement data. In
particular, the Eye Movement analysis with Hidden Markov Models
(EMHMM) method has recently been proposed for summarising
and quantifying an individual’s eye movement pattern27–31.
Specifically, a person’s eye movements can be modelled in terms
of both person-specific ROIs and transitions among the ROIs using
an HMM (Fig. 1). The hidden states of the HMM correspond directly
to the ROIs, in contrast to some other approaches where hidden
states represent cognitive states26,32. Parameters are estimated
directly from data using a variational Bayesian approach that can
automatically determine the optimal number of ROIs of the model.
Individual HMMs can be clustered using the variational hierarchical
EM algorithm33 to reveal representative patterns among the
individuals. Differences among individual HMMs can be assessed
quantitatively using data likelihoods, which reflect similarities
among individual patterns. Thus, this method is particularly
suitable for examining the relationship between eye movements
and other measures2–5,34–43.
EMHMM has been applied to face recognition research and

uncovered several novel findings not revealed by other methods.
For example, EMHMM clustering results revealed ‘nose-focused’
and ‘eyes-focused’ eye movement patterns in adult face

recognition2. The eyes-nose pattern is associated with better
recognition performance2–5 whereas the nose-focused pattern is
associated with a decline in executive function and visual
attention ability in older adults36 (Fig. 1). Also, adults have
preferred visual routines for face recognition that are unaffected
by real-time mood changes4. Thus, to examine how well the DNN
+HMM model could account for eye movement behaviour in
human learning, we trained the model to recognise faces (Fig. 2).
During learning, the model generates a sequence of fixations,
including location and spatial frequency (SF) scale to simulate
attention window, according to the HMM. The attention window is
simulated by applying a Gaussian mask centred on the fixation
location and SF scale to the input image. The masked image is fed
into the multi-scale convolutional neural network (CNN) to extract
features at different SFs. Features across fixations are aggregated
over time to form the visual short-term memory (VSTM). At each
time step/fixation, a multi-layer perceptron (MLP) uses the current
visual memory to perform face recognition (predict the face
identity). The losses/errors of the predictions across fixations are
combined for training, with a higher weight given to the first
fixation to simulate recognition with as few fixations as possible.
During training, the HMM and DNN (CNN+MLP) simultaneously
learn the most appropriate sequence of fixations and perceptual
representations. We encourage the model to modify fixation
locations as opposed to changing MLP weights by imposing more
penalties on weight changes than fixation changes.
Here we hypothesised that when we trained the DNN+HMM

model to perform face recognition, well-trained models with
converged performance level would be able to account for adults’
data, where eyes-focused patterns (as opposed to nose-focused
patterns) are associated with better recognition performance. In
contrast, in partially trained models at an early learning stage
simulating children, higher eye movement consistency across
trials (as measured in entropy of the HMM44) may better predict
recognition performance than eye movement pattern. To verify
model predictions, we recruited typically developing (TD) children
as participants and examined whether their face recognition
performance was better predicted by eye movement consistency
across trials than eye movement pattern. We also compared eye
movement pattern and consistency between TD children and
children with ASD to examine whether they differed in eye
movement consistency instead of pattern.

RESULTS
DNN+HMM modelling
Figure 3 shows an example model after training. This example
model looks at the face centre using global attention (low SF, large
cross size), and then the eyes using local attention (medium SF,
medium cross size). The CNN features selected in the MLP are
visualised via the weight magnitudes of the first MLP layer,
showing the use of global features on the eyes and nose, and local
features on the eyes.

Fig. 1 Representative eye movement patterns in face recognition discovered through EMHMM. The left panel shows the eyes-focused
pattern, whereas the right panel shows the nose-focused pattern (Chan et al., 2018).
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Fig. 2 Details of DNN+HMM. a DNN+HMM for face recognition. An HMM (top) generates a sequence of fixations with location and attention
window size information. A Gaussian centred on each fixation location/attention window masks the input image, which is then fed into a
multi-scale convolutional neural net (CNN) to extract image features. The extracted features are aggregated with the previously extracted
features, forming the visual short-term memory representation. After each fixation, a classifier (multi-layer perceptron, MLP) uses the current
memory representation to predict the face identity. Finally, the loss functions on each prediction are combined to form the multi-task loss for
training. b Details for the CNN and MLP architectures.
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We applied clustering to obtain two representative patterns for
well-trained (adult) models at epoch 500, and two representative
patterns for partially trained (child) models at epoch 100 (Fig. 4a).
The well-trained models exhibited an eyes-focused (pattern A) and
a nose-focused eye movement pattern (pattern B), which differed
significantly: the eyes-focused group’s data log-likelihood given
the eyes-focused HMM was higher than that given the nose-
focused HMM, t(36)= 15.82, p < 0.001, d= 2.60; similarly for the
nose-focused group, t(42)= 7.25, p < 0.001, d= 1.11. The partially
trained models exhibited similar representative eye movement
patterns that also differed from each other (test on the eyes-
focused group, t(31)= 7.15, p < 0.001, d= 1.26; test on the nose-
focused group, t(47)= 15.91, p < 0.001, d= 2.30), albeit with much
larger ROIs. In the well-trained models, those with pattern A (eye-
focused) exhibited higher accuracy than pattern B (nose-focused),
t(78)= 3.33, p= 0.001, d= 0.75, MA= 0.534, MB= 0.500, and
accuracy was positively correlated with AB scale, p < 0.001,
R2= 0.161 (Fig. 4b, left). In contrast, the patterns A and B of
partially trained models did not differ in accuracy on the validation
data, t(78)= 0.72, p= 0.475, d= 0.16, MA= 0.464, MB= 0.457; the
AB scale was not correlated with accuracy, R2= 0.161, p= 0.711.
Thus, eye movement pattern was correlated with accuracy in well-
trained models, but not partially trained models.
Finally, we examined eye movement consistency (Fig. 4b, right).

The entropy of partially trained models was negatively correlated
with accuracy, p < 0.001 R2= 0.205. In contrast, well-trained
models did not show a correlation between entropy and accuracy,
as most well-trained models have converged to consistent, low
entropy patterns.

Human participant study one: typically developing children
EMHMM revealed two representative eye movement patterns in
face recognition in children through clustering all participants’
HMMs (Fig. 5a): the eyes-focused pattern (n= 37) mainly switched
between the two eyes, with occasional fixations at the face centre,
whereas the nose-focused pattern (n= 50) had more dispersed
ROIs at the face centre. The two patterns differed significantly:
data from the eyes-focused group had a larger log-likelihood to be
generated by the eyes-focused HMM than the nose-focused HMM,
t(36)= 16.04, p < 0.001, d= 2.64, 95% CI= [1.32, 3.96]; similarly for
the nose-focused group, t(49)= 4.89, p < 0.001, d= 0.69, 95%
CI= [0.35, 1.04]. We quantified individual patterns’ similarities
along the eyes- and nose-focused pattern dimension using the EN
scale (E –N)/(|E|+ |N|), where E and N stand for the data log-
likelihood of the eyes- and nose-focused HMM respectively.
ANCOVA was used on recognition performance D’ with eye
movement pattern as a between-subject variable and age as a
covariate. Participants adopting the two patterns did not differ in
performance, F(1, 83)= 0.31, p= 0.58. There was no correlation
between EN scale and performance with age controlled,
r(83)= 0.12, p= 0.26. (Fig. 5b, d). In contrast, when we divided
participants into high and low eye movement entropy groups
using a median cut-off, those with low entropy performed better,
F(1, 83)= 5.54, p= 0.021, η2p = 0.063, 90% CI= [0.01, 0.16] (90% CI

instead of 95% CI is reported for F-tests since F-tests are one-
sided45), and entropy was correlated with performance with age
controlled, r(83)=−0.29, p= 0.007 (Fig. 5c).
Among the cognitive ability measures, face recognition

performance was correlated with the flanker effect in correct RT,
r(86)= 0.23, p= 0.030, 95% CI= [0.02, 0.42]. To examine whether
eye movement entropy or flanker effect was a better predictor for
recognition performance, a three-stage hierarchical regression
was conducted with age and the flanker effect entered before eye
movement entropy, and entropy significantly explained additional
variance, ΔR2= 0.06, F(1, 82)= 5.78, p= 0.018, 90% CI= [0.01,
0.16] (Table 1). Tests for multicollinearity indicated a low level of
multicollinearity among entered variables.
We then examined what cognitive abilities best accounted for

consistency and pattern of children’s eye movements through
stepwise hierarchical multiple regression analysis with age
entered as a covariate at the first step. Tests indicated a low
level of multicollinearity among the variables. Eye movement
pattern/EN scale was best predicted by verbal one-back D’,
R2= 0.075, F(1, 79)= 3.19, p= 0.047, 90% CI= [0.01, 0.19]. In
contrast, eye movement entropy was best predicted by flanker
effect in correct RT, β=−0.29, t=−2.67, p= 0.009, and Tower of
London (TOL) % of completed trials, β= 0.25, t= 2.36, p= 0.021;
R2= 0.013, F(3, 78)= 3.75, p= 0.014, 90% CI= [0.00, 0.04]. Thus,
eye movement pattern was related to working memory, whereas
eye movement consistency was associated with selective atten-
tion and executive function.

Human participant study two: typically developing children
vs. children with ASD
The modelling results above suggested eye movement consis-
tency in face recognition may be related to the amount of face
exposure through social interaction. Thus, children with ASD may
have lower eye movement consistency than TD children due to
lower autistic traits in social skills. We recruited children with ASD
and age and IQ-matched TD children. Independent sample t-test
analysis revealed a significant difference between ASD and TD
children in AQ Total score, t(42)= 6.27, p < 0.001, d= 1.89, 95%
CI= [1.17, 2.60] (MASD= 90.00, SD= 16.32; MTD= 62.91, SD=
12.02), AQ Social Skills, t(42)= 4.47, p < 0.001, d= 1.35, 95%
CI= [0.69, 2.00] (MASD= 16.82, SD= 4.66; MTD= 10.64, SD= 4.51),
AQ Attention Switching, t(42)= 5.07, p < 0.001, d= 1.53, 95%
CI= [0.85, 2.20] (MASD= 18.27, SD= 3.95; MTD= 13.05, SD= 2.79),
AQ Communication, t(42)= 7.04, p < 0.001, d= 2.12, 95% CI=
[1.37, 2.86] (MASD= 21.23, SD= 3.87; MTD= 11.86, SD= 4.90), and
AQ Imagination, t(42)= 4.49, p < 0.001, d= 1.35, 95% CI= [0.69,
2.00] (MASD= 17.50, SD= 4.63; MTD= 11.23, SD= 4.64). The two
groups did not differ in AQ Attention to Detail score (p= 0.98;
MASD= 16.18, SD= 4.85; MTD= 16.14, SD= 4.70).
EMHMM revealed again an eyes-focused pattern and a nose-

focused pattern through clustering all participants’ HMMs (Fig. 6a).
The two patterns differed significantly: data from the eyes-focused
group had larger data log-likelihood given the eyes-focused HMM
than the nose-focused HMM, t(27)= 8.817, p < 0.001, d= 1.67,

Fig. 3 Example of a DNN+HMM after training. Ellipses represent the fixation ROIs (2 SD contours of the Gaussian emissions). The cross
represents the attention window size, where larger windows correspond to using lower spatial frequencies (SFs).
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95% CI= [0.83, 2.50]; similarly for the nose-focused group,
t(15)= 4.913, p < 0.001, d= 1.23, 95% CI= [0.61, 1.84]. Consistent
with our hypothesis, independent sample t-tests revealed that the
ASD children (M= 10.13, SD= 0.58) had significantly higher
overall entropy than TD children (M= 9.74, SD= 0.55),
t(42)= 2.24, p= 0.015, d= 0.68, 95% CI= [0.06, 1.28], but they
(M= 0.005, SD= 0.04) did not have lower EN scale than TD
children (M= 0.16, SD= 0.03), t(42)=−1.06, p= 0.147, d=−0.32,
95% CI= [−0.91, 0.27] (Fig. 6b). Correlation analysis testing a
positive correlation between overall entropy with AQ subscales
showed that it was only observed with AQ Social Skills,
r(42)= 0.36, p= 0.009, 95% CI= [0.07, 0.59], but not other AQ

subscales. In addition, we replicated our earlier findings: partial
correlation analysis controlling for age and IQ showed that face
recognition performance was correlated with eye movement
consistency r(42)=−0.538, p < 0.001, 95% CI= [−0.72, −0.29], but
not eye movement pattern, r(42)=−0.183, p= 0.247, 95% CI=
[−0.46, 0.12].

DISCUSSION
In human visual object recognition, it has long been assumed that
looking at diagnostic features leads to better recognition
performance3. However, typically we can only attend to features

Fig. 4 DNN+HMM modelling results. a Representative HMMs for (top) partially trained (100 epochs) and (bottom) well-trained models
(500 epochs). b Entropy vs. AB scale and entropy vs. accuracy for (top) partially trained and (bottom) well-trained models.
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one at a time, and thus recognition requires eye fixation planning.
Recent research has shown that adults exhibit person-specific eye
movement patterns in face recognition, and deviation from such
visual routines can impair performance8. While it suggests the
importance of visual routines, how eye movement consistency
contributes to performance has been overlooked in the literature.
Here we aimed to fill this gap by testing the hypothesis that
during early learning when visual routines are not well developed
for the task, inconsistent eye fixations, even if landing on
diagnostic regions, can signify difficulty in discovering and
extracting diagnostic features to develop a visual routine due to
cognitive ability limitations and insufficient experience in face
recognition through social interaction, leading to suboptimal
performance. Thus, at this stage, eye movement consistency,

instead of the eye movement pattern, predicts recognition
performance. It may also reflect reduced face-viewing experience
through social interaction, a characteristic of ASD11–16. Once a
suboptimal routine is formed, it can become difficult to change.
Indeed, adult face recognition performance has limited plasticity
for improvement through training46, and this phenomenon may
be related to adults’ well-developed, stable visual routine for face
recognition.
We adopted both computational and experimental approaches

to examine this hypothesis. Building upon the success of DNN in
accounting for perceptual representations and HMM in modelling
eye movement behaviour in human face recognition, we
proposed a unified learning model, DNN+HMM, with a DNN
and an HMM jointly learning perceptual representations and eye

Fig. 5 Data from typically developing children. a The eyes-focused (top) and nose-focused (bottom) representative strategies derived by
clustering, and recognition performance between b eyes- vs. nose-focused groups and c low vs. high entropy groups. The centre line of the
box shows the median of D’ and the lower and upper boundaries show the first and third quartile, respectively. The whiskers reach the
minimum and the maximum from the first and the third quartile within a 1.5 interquartile range. d Recognition performance was correlated
with overall eye movement entropy, but not eye movement pattern (EN scale).
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movement strategies simultaneously. In contrast to previous
approaches of simulating bottom-up visual attention in DNNs,
the proposed model integrates DNN with an interpretable,
learnable top-down model of visual attention that learns eye
movement strategies for object recognition through interacting
with the DNN. The model’s output eye movement behaviour thus
is summarised in an HMM and can be directly compared with
human data using the EMHMM approach.

Through training DNN+HMM models to recognise faces and
clustering the individual HMMs to discover representative eye
movement patterns, we showed that the model not only is able to
account for the advantage of eyes-focused eye movement pattern
in adult face recognition, but offers a computational explanation
on why this advantage was not well observed in children as early
learners. Specifically, DNN+HMM showed that during early
training, the model’s performance was well predicted by the
consistency of eye fixation behaviour across trials (as measured in
entropy), but not by eye movement pattern (i.e., where they look
and the order of where they look). This result suggested that at
this stage, some models may have fixations at diagnostic features
with an inappropriate attention window size, resulting in
suboptimal performance and a lower likelihood of selecting the
same location in the next trial. Once an optimal fixation location
and attention window size combination were selected, it was
likely to be selected again, leading to more consistent eye
movements across trials. Thus, consistency of fixation selection
across trials was well associated with performance, whereas
having fixations on diagnostic features was not. When this process
continued, models with difficulty discovering optimal feature
location and attention window size combinations might end up
with a suboptimal eye movement pattern. Thus, in fully trained
models, all models converged to a similar level of eye movement
consistency (Fig. 4), and performance became better predicted by
eye movement pattern.

Table 1. Summary of hierarchical regression analysis.

β t R R2 ΔR2

Step 1 0.19 0.036 0.036

Age 0.19 1.78

Step 2 0.29 0.086 0.046*

Age 0.17 1.56

Flanker effect in correct RT 0.22 2.12*

Step 3 0.38 0.15 0.060*

Age 0.15 1.47

Flanker effect in correct RT 0.17 1.66

Entropy −0.25 −2.40*

*p < 0.05.

Fig. 6 Data from ASD children and comparisons between ASD and TD children. a The eyes-focused (left) and nose-focused (right)
representative strategies derived by clustering. The image on the left includes the ellipses showing ROIs as 2-D Gaussian emissions. The image
in the middle shows the ROI assignments of the raw fixations. The image on the right shows the corresponding heatmap. The transition
matrix table shows transition probabilities among the ROIs. Priors show the probabilities that a fixation sequence starts from the ellipse. b ASD
children had lower eye movement consistency (higher overall entropy) than TD children. The centre line of the box shows the median of
overall entropy and the lower and upper boundaries show the first and third quartile, respectively. The whiskers reach the minimum and the
maximum from the first and the third quartile within a 1.5 interquartile range. In contrast, they did not differ from TD children in eye
movement pattern (EN scale).
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This DNN+HMM demonstrates well the important role of eye
movement consistency in face recognition learning. In particular, it
offers computational explanations and predictions for human
learning with a better control over potential confounding factors,
such as maturation difference between children and adults. The
results of the well-trained models matched well with previous
studies showing that adults’ eye movement pattern was predictive
of recognition performance3,36. To examine the effect of eye
movement consistency in adults, we reanalysed the data in two of
the studies. Multiple regression analysis using data from Chuk
et al.3 showed that recognition performance was best predicted
by eye movement pattern, R2= 21.8%, p= 0.001, and adding
consistency did not significantly account for additional variance,
ΔR2= 0.002, p= 0.726. Similarly, using data from Chan et al.36,
recognition performance was correlated with eye movement
pattern, r=−0.25, p= 0.041, but not consistency. Thus, eye
movement consistency predicts children’s (early learners’) perfor-
mance, whereas eye movement pattern predicts adults’ (experts’)
performance. Figure 7 shows the decrease in eye movement
consistency by age when combining adults’ data in Chuk et al.3

and children’s data in the current study.
In addition, in our human data, children’s eye movement

consistency was best predicted by executive function abilities;
similarly, adults’ eye movement pattern was associated with
executive function abilities36. These findings suggest that
executive function abilities may underlie this learning process,
affecting eye movement consistency in children and being
reflected in eye movement pattern in adults. It also suggests that
deficits in executive functions may underlie face recognition
difficulties. Note however that while children’s face recognition
performance improves gradually with age into adulthood,
general cognitive abilities (IQ, or general intelligence) have been
shown to be poor predictors of face recognition performance47.
Perceptual representation development of faces, as indexed by
holistic face processing (a hallmark of face processing expertise),
has also been shown to mature in early childhood48,49 and thus
could not account for the continuous performance improvement
in children. Our results suggest that children’s continuing
performance improvement into adulthood may result from
visual routine development. Our modelling results also suggest
that insufficient experience in face recognition, which may result
from reduced social interaction, is associated with low eye
movement consistency. Consistent with this finding, our human

data showed that children with ASD had lower eye movement
consistency than age-matched controls, and eye movement
consistency was particularly associated with AQ Social Skills.
Thus, low eye movement consistency in processing faces may
provide a new early biomarker of ASD that can be obtained
through a cost-effective and community-viable eye tracking
method50. Also, children with face-processing difficulties, such as
those with ASD, may benefit from training that aims to facilitate
the development of visual routine for faces. Future work will
examine these possibilities.
In the DNN+HMM, the novel attention mechanism simulated by

an HMM enables the DNN to account for eye movement
behaviour in human learning. In deep learning, recurrent networks
have been commonly used for learning tasks involving sequential
processing51. In contrast, the use of an HMM to summarise
sequential information processing as required in human vision
enhances the explainability of the DNN. The importance of
explainable AI, particularly those using deep learning methods,
has been emphasised in recent years52,53. The joint learning
between DNN and HMM allows the HMM to provide explanations
of sequential information processing in the DNN with high
explicitness, where learning already involves self-explaining54. This
demonstrates the possibility of combining DNNs with cognitive
models that are typically used for explaining human behaviour
(such as the HMM used in the EMHMM approach) to enhance their
interpretability. Note however that our approach is in contrast to
some previous methods that twin a black-box AI system with
another AI system with higher interpretability to provide
explanations, where there is little interaction between the two
systems55,56. A joint learning mechanism enables interactions
between the two systems (the predictor and the explainer), and
thus could potentially enhance the faithfulness and stability of the
explanation system54.
In the current study, our computational modelling approach

to simulating human behaviour unavoidably involved abstrac-
tion away from biological details to better capture crucial
information processing principles underlying behaviour, and
thus may not be able to reflect some nuanced individual
differences among neurodiverse populations. For example, to
focus our examinations on the interaction between DNN and
HMM during learning, the transition matrix and prior were fixed
so that the ROI sequence was deterministic. Future work may
allow the transition matrix and prior to be learned by using
Gumbel-Softmax reparameterization57 of these probability
models so that the ROI sequences will be generated according
to the prior and transition matrix. Also, in the current study, the
focus is on learning the top-down attention with the DNN.
Future work may also consider incorporating bottom-up
processing so that the attention is guided by both bottom-up
and top-down information. For example, the entries of the
transition matrix can be dynamically generated via an MLP with
the previously attended features as input. This model would still
be interpretable since the transition probabilities can be
examined given the input. We may train a face-space embed-
ding using triplet loss17 to facilitate generalisation with a large
number of face labels. Another assumption made in our
modelling study was participants’ eye movement strategy did
not change throughout the face recognition task. In cases where
participants’ strategy may change in response to cognitive state
changes, such as making a decision that involves comparisons
across multiple options or long exploration or evaluation
processes, the strategy changes can be better captured by a
switching hidden Markov model (SHMM)58. Thus, we may
replace the HMM in the current DNN+HMM with an SHMM to
better capture individual differences in a cognitive state change.
These may enhance the model’s cognitive plausibility in future
studies. We may also use images of faces in different
orientations to more realistically simulate face recognition in

Fig. 7 Eye movement consistency changes by age in face
recognition. We combined children’s data in the current study
and adults’ data in Chuk et al. (2017). In both studies, the presented
face size was 8° of visual angle in width.
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real-life scenarios in both modelling and human participant
studies, as using only two-dimensional frontal-view face images
was another limitation of the current study.
In conclusion, through joint learning between DNN and HMM to

account for eye movement behaviour in face recognition, we
show that learning to recognise faces initially involves developing
a consistent visual routine. As the result, children’s face recogni-
tion performance is better predicted by eye movement consis-
tency across trials rather than eye movement pattern, in contrast
to adult face recognition. Also, reduced face viewing during social
exposure, a characteristic of ASD, can be indexed by eye
movement consistency during face processing. The DNN+HMM
provides a theoretical framework for understanding the role of eye
movement pattern and consistency in a learning task, with
important implications for ways to enhance learning in both
healthy and clinical populations.

METHODS
Computational modelling
As shown in Fig. 2, the DNN+HMM model involves joint learning
between a DNN and an HMM. In summary, the HMM generates a
sequence of fixations, including location and SF scale to simulate
the attention window, according to its initial probabilities,
transition matrix, and emission densities (assumed to be
Gaussians). The attention window of each fixation is simulated
by applying a Gaussian mask, centred on each fixation location/
scale, to the input image, with one masked image generated for
each SF scale. The masked images are fed into a multi-scale CNN
to extract image feature maps at different SFs, which are then
aggregated over time to form the VSTM. At each time step, an
MLP uses the current VSTM to predict the face class. The MLP face
classifier is shared across the time steps. Finally, the loss functions
of the predictions across time steps are combined for training.
During training, the HMM and CNN simultaneously learn the most
appropriate sequence of fixations and perceptual representations
from these fixations for face recognition.
We trained 80 models with different initialisations, representing

80 simulated individuals, using the aligned Labelled Faces in the
Wild dataset (LFW-a)59. We selected the 100 most frequent people
in the dataset (3651 images), and used 90% of the data for training
and 10% for validation. Each greyscale image was scaled to 64
pixels wide. Each ROI of the HMM is modelled as a Gaussian
distribution over spatial location and SF, from which fixations are
sampled. We simulated saccade noise by adding Gaussian noise
(SD= 0.375°, 3 pixels60) to each fixation. Three SFs are used, 8, 16,
and 32 cycles/face, which is the optimal SF range for face
recognition61, with attention window sizes equivalent to 4° to 1° of
visual angle (32–8 pixels) to simulate global/local attention. The
attention window was simulated as a Gaussian mask centred at
the fixation location (SD= half window size) and SF. The SF
attention process was implemented as a multi-scale CNN applied
to an image pyramid of down-sampled images, with the original
image used for extracting high SF information and smaller images
for low SF information. For each SF, there are two convolutional
layers of 3 × 3 filters with 8 and 16 channels, respectively. Both
convolutional layers used rectified linear unit (ReLU) activation
functions, and 1 × 1 striding keeping only convolutional outputs
where all inputs are on the image (i.e., ‘valid’ mode). The multi-
scale CNNs are shared across fixations.
We assumed three fixations in sequence for recognition to

match previous human subject studies27,36,62, as early fixations
are shown to be more important for recognition3,62. More
specifically, Chuk et al.3 showed that participants’ face recogni-
tion performance was better predicted by the eye movement
pattern from the first three fixations than by later fixations. For
simplicity, we assumed a deterministic sequence for each

individual. After the first fixation, each additional fixation updated
an internal VSTM representation by taking the maximum
between the two feature maps. In this way, each fixation updates
the VSTM with the visual features with the strongest activations.
The internal representation was decoded into a face class using a
shared MLP classifier (two layers, 40 and 100 neurons). The first
MLP layer used ReLU activation, while the second used softmax
activation (producing class probabilities as the output). Overall,
the model made three classifier predictions: from the first
fixation, first two fixations, and all three fixations. Cross-entropy
loss was applied to each prediction. The final loss was the
weighted sum of these individual losses to make the first fixation
the most informative, simulating face identification with as few
fixations as possible. To encourage the model to move fixation
locations (i.e., ROIs) towards informative features, the classifica-
tion layers were regularised so that increasing the classifier
weight on an informative feature has more penalty than moving
a fixation towards the feature (which increases the strength of
the image feature). Each convolution filter in the CNN was
constrained to have a unit norm so that the attention mechanism
is the only way to increase the strength of features. The fixation
locations were also regularised to have a ‘centre’ bias63. The
model is initialised with 3 large ROIs with random locations, and
the HMM and CNN are jointly trained using the Adam optimizer64

for 500 epochs. Model training was repeated 80 times with
different random initialisations, with each trained model repre-
senting one simulated individual’s eye gaze strategy (HMM) and
perceptual representation (CNN). The model was implemented
using Keras and Tensorflow for Python, and run on a Windows PC
with i7-8700K GPU, 32 GB RAM, and NVIDIA GeForce RTX2080
GPU. The CNN contains 3744 parameters, while the MLP contains
2,902,060 parameters.
We assessed the models’ eye movement behaviour after

different numbers of training epochs. Eye movement consistency
was assessed using the HMM’s overall entropy (Cover and
Thomas, 2006). Entropy is a measure of predictability: higher
entropy indicates more random eye movements. Eye movement
pattern was assessed using EMHMM. Specifically, all individual
HMMs were clustered to discover two representative patterns
pattern A and B. Then, for each individual HMM, we defined AB
scale as (A – B)/(|A|+ |B|), where A and B referred to the model’s
data log-likelihood of patterns A and B, respectively. Each model’s
similarity along the contrast between patterns A and B was
quantified using AB scale4,5,34–43.

Human studies
Since our participants were children under 12 years old, written
informed consent was obtained from their parents or legal
guardians, and written informed assent was obtained from all
participants. Participants recruited were from independent sam-
ples. The methods were performed in accordance with relevant
guidelines and regulations and approved by the Human Research
Ethics Committee of the University of Hong Kong.

Human participant study one: typically developing children
Participants were 89 primary school students (40 females) from
Hong Kong, aged 6–11 (M= 7.84, SD= 1.01). They had normal or
corrected to normal vision, and were reported to have no face
recognition problems or cognitive deficits. They performed face
recognition and cognitive ability tests (see below) with the order
counterbalanced. All tasks were conducted using E-prime 2.0
(Psychology Software Tools). According to a power analysis, the
minimum required sample size for linear multiple regression
(predicting face recognition performance) with two predictors
(eye movement pattern and entropy) and a medium effect size
(f2= 0.15, α= 0.05, power= 0.8) is 68.

J.H. Hsiao et al.

9

Published in partnership with The University of Queensland npj Science of Learning (2022) 28



Face recognition task. The stimuli consisted of 64 coloured
frontal-view Asian adult face images with a neutral expression
(half female). Half of them were young adult faces whereas the
others were older adults. They were scaled and aligned to
maintain the same inter-pupil distance, and cropped according to
the face shape. They also had no extraneous features such as
glasses, and were unfamiliar to the participants.
The task consisted of two blocks, each with a study and a test

phase. In the study phase, participants viewed 16 faces one at a
time, each for 3 s, and were instructed to remember them. In the
recognition phase, participants were presented with the 16 old
and 16 new faces one at a time and asked to judge whether they
saw the face in the study phase by a button response. The face
was shown until the response. Each trial began with a central
fixation. A face was then presented either on the left or right of
the screen (determined randomly). With a 60 cm viewing distance,
the face spanned 8° of visual angle, and the face centre was 9° of
visual angle away from the screen centre. Different images were
used in the two blocks. Participants’ eye movements were
recorded using an SMI RED-n Scientific eye tracker (SensoMotoric
Instruments GmbH). The right eye was tracked with 60 Hz
sampling rate. A chinrest was used to minimise head movement.

Flanker task. The flanker task was used to measure visual
selective attention ability65. Each stimulus consisted of a target
arrow pointing to either right or left, two flanker arrows to the
target’s left, and two flanker arrows to the target’s right. Congruent
stimuli had flankers pointing in the same direction as the target,
whereas incongruent stimuli had flankers pointing in the opposite
direction to the target. Each trial began with a fixation cross at the
centre of the screen for 1 s. Then a stimulus was presented for 1 s
or until response. Participants judged the target arrow direction by
pressing a key. The task consisted of two blocks of 60 trials each.
The flanker effect in accuracy congruentacc � incongruentaccð Þ and
correct RT (� congruentRT � incongruentRTð Þ) were measured. A
larger value indicated a larger interference effect due to
incongruent flankers.

Spatial/verbal one-back tasks. Spatial/verbal one-back tasks66

were used to assess working memory. In the spatial one-back
task, in each trial, a blue square was presented either above, to the
right, to the left, or below a fixation cross for 500 ms, with an inter-
trial interval of 2500ms. Participants responded whether the
square was at the same location as the previous trial by pressing a
button. The task consisted of three blocks, with 21 trials in each
block (7 target trials and 14 no-target trials), summing up to 63
trials in total. The verbal one-back task had a similar procedure
except that participants viewed a number presented at the screen
centre instead of a blue square. The numbers used were 2, 3, 4, 5,
6, 7, and 8. Numbers 1 and 9 were excluded to prevent confusion
with the numbers 7 and 6, respectively. D-prime and correct RT
were measured.

Trail making test. Trail making test67 was used to assess visual
attention and task-switching abilities. In part A, participants
connected 25 circles from number 1 to 25 in a sequential order.
In part B, participants connected numbers (1–12) and alphabets
(A–L) alternatively in a sequential order. The tasks were given on
two separate sheets of paper. The completion time and the
number of errors were recorded.

Tower of London (TOL) test. TOL test68 was used to assess
planning and problem-solving abilities. Participants were pre-
sented with a start state (with three pegs and three beads) and a
goal state and were instructed to move beads in the start state
one at a time to reach the goal state using the least number of
moves. They had a maximum of 120 s to answer each problem.
There were ten trials with increasing difficulty. The percentage of

completed trials, average number of excess moves, and correct RT
were measured.
Note that among the 89 participants, two children could not

finish the face recognition and TOL task, and one child could not
finish the one-back task. These were recorded as missing data.

Eye movement analysis with hidden Markov models (EMHMM)
The EMHMM method27 was used to analyse eye movement data.
In the literature, substantial individual differences in eye move-
ment in cognitive tasks have been reported8,26. The EMHMM
approach aims to reflect these individual differences in the data
analysis and provide a quantitative measure of eye movement
pattern that takes both spatial (i.e., where participants look) and
temporal (i.e., the order of where they look) into account. It
assumes that current eye fixation in a visual task is conditioned on
the previous fixation; thus, eye movements may be considered a
Markovian stochastic process, which can be better understood
using HMMs. In this approach, each participant’s eye movement
data in the task are summarised in an HMM, which consists of
both person-specific ROIs and transitions among the ROIs. The
HMMs are summarised using a variational Bayesian approach to
automatically determine the number of ROIs from a pre-set range.
The individual HMMs can then be clustered into groups according
to their similarities33 to reveal representative eye movement
patterns in the population. Similarity between individual patterns
can be quantitatively assessed by estimating the likelihood of the
pattern being generated by the representative pattern HMMs.
Thus, EMHMM provides quantitative measures of eye movement
pattern similarities among individuals. Here, each participant’s eye
movement data in the test phase of the face recognition task was
summarised into an HMM. To match the modelling procedure
(which also matched previous human participant studies3,27,36,62),
we used the first three fixations in each trial to train the HMM.
Then, following previous studies4,5,34–43, we clustered all HMMs
into two representative patterns, pattern A and B, and calculated
the log-likelihood of each individual’s eye movements being
generated by the two pattern HMMs. We then calculate AB scale
as (A – B)/(|A|+ |B|), where A and B referred to the model’s data
log-likelihood of patterns A and B, respectively. Thus, each
participant’s eye movement pattern similarity along the contrast
between patterns A and B can be quantified using AB scale. Note
that we used AB scale to quantify eye movement pattern for both
human data and the DNN+HMM modelling data, so that the
results could be directly compared.
When training individual HMMs, we used 1–6 ROIs as the pre-

set range. Each individual model with a specific number of ROIs
was trained for 100 times, and the model with the highest data
log-likelihood was selected for the analysis. Following previous
studies3–5,34–43, in generating representative HMMs from cluster-
ing, we used the median number of ROIs among the individual
models. The clustering algorithm was run for 100 times with a
different initialisation, and the result with the highest data log-
likelihood was used in the analysis.
In addition to the log-likelihoods for measuring eye movement

pattern similarities, similar to the DNN+HMM modelling data
analysis, we calculated each HMM’s overall entropy44 as a measure
of eye movement consistency. Entropy is a measure of predict-
ability: higher entropy indicates a less predictable or more random
eye movement pattern, and a lower entropy value reflects a more
predictable or consistent pattern.

Human participant study two: typically developing children
vs. children with ASD
Following previous studies using EMHMM to compare eye
movement measures between two participant groups2,3, we
aimed to recruit 24 students with ASD from local primary schools
and through private behavioural therapists’ referrals. As reported

J.H. Hsiao et al.

10

npj Science of Learning (2022) 28 Published in partnership with The University of Queensland



by the parents, these students were diagnosed by a clinical
psychologist or psychiatrist. Two ASD participants were excluded
from the study due to their inability to complete the face
recognition task and low cognitive abilities. Thus, 22 students with
ASD (8 females) completed the experiment. We also recruited 22
age-matched TD students (4 females) from local primary schools
and private tutorial centres. Participants’ age was from 6 to 11
(M= 8.70, SD= 1.50). Data from the 44 participants were
analysed. No significant differences were found between the TD
and ASD group in chronological age, t(42)= 0.30, p= 0.95
(MTD= 8.77, SD= 1.51; MASD= 8.64, SD= 1.53), and non-verbal
intelligence as measured using Raven’s Standard Progressive
Matrices69, t(42)= 1.09, p= 0.77 (MTD= 112.82, SD= 14.67;
MASD= 107.68, SD= 16.54). To test whether the ASD group had
significantly lower eye movement consistency than the TD group
using one-tail t-test, the required sample size is 42 assuming a
large effect size d= 0.8, alpha= 0.05, power= 0.8. Participants
first completed the Raven’s Standard Progressive Matrices test69,
followed by the face recognition task. During the administration of
the task, the parent/guardian of the participant completed the
questionnaire Autism Spectrum Quotient: Children’s Version (AQ-
Child; Chinese version translated by M. C. Lai70).

Raven’s standard progressive matrices. Raven’s standard progres-
sive matrices were used to assess participants’ non-verbal
intelligence. It consisted of five sets of 12 multiple-choice items
and was administered in paper-and-pencil format. Participants were
instructed to identify the missing piece of a visual geometric design
in each item. Items were arranged with increasing level of difficulty.

AQ-Child. AQ-Child is a 50-item parent-report questionnaire,
which aims at quantifying autistic traits in children aged 4–11
years old. Parents rate their level of agreement on a four-point
Likert scale representing different areas of autistic traits. Five areas
associated with ASD were identified—social skills, attention
switching, attention to detail, communication, and imagination.
There are ten items in each area. A cut-off total score of 76 or
above indicates a possible risk of ASD. In this study, the total AQ
score (AQ Total) and the sub-scores in the five areas of autistic
traits including AQ Social Skills, AQ Attention Switching, AQ
Communication, AQ Imagination, and AQ Attention to Detail were
used in data analysis.

Face recognition task. The stimuli contained 40 coloured frontal-
view Asian face images (half female) similar to those in ‘Human
participant study one’. The procedure and apparatus of the task
followed those in ‘Human participant study one’, except that it
consisted of only one block of a study and a test phase, in which
participants were asked to recall 20 old faces among 20 new faces.
The design consisted of a between-subject independent

variable, ASD diagnosis (ASD vs. TD). The dependent variables
included face recognition performance (D’), eye movement
pattern, and eye movement consistency/entropy, using the
EMHMM methods. Similar to the analysis conducted in ‘Human
participant study one’, each participant’s eye movement data were
summarised into an HMM. All 44 individual HMMs were then
clustered according to similarities to discover two representative
eye movement patterns. For generating representative pattern
HMMs, we used the median number of ROIs among the individual
HMMs, which was 3. We then calculated each participant’s data
log-likelihood given the representative HMMs and calculated the
eyes-nose scale. We also calculated each participant’s HMM’s
overall entropy as the measure of eye movement consistency.
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