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Spontaneous Threshold Lowering Neuron using
Second-Order Diffusive Memristor for Self-Adaptive Spatial
Attention

Yang Jiang, Dingchen Wang, Ning Lin, Shuhui Shi, Yi Zhang, Shaocong Wang, Xi Chen,
Hegan Chen, Yinan Lin, Kam Chi Loong, Jia Chen, Yida Li, Renrui Fang, Dashan Shang,*
Qing Wang,* Hongyu Yu,* and Zhongrui Wang*

Intrinsic plasticity of neurons, such as spontaneous threshold lowering (STL)
to modulate neuronal excitability, is key to spatial attention of biological
neural systems. In-memory computing with emerging memristors is expected
to solve the memory bottleneck of the von Neumann architecture commonly
used in conventional digital computers and is deemed a promising solution to
this bioinspired computing paradigm. Nonetheless, conventional memristors
are incapable of implementing the STL plasticity of neurons due to their
first-order dynamics. Here, a second-order memristor is experimentally
demonstrated using yttria-stabilized zirconia with Ag doping (YSZ:Ag) that
exhibits STL functionality. The physical origin of the second-order dynamics,
i.e., the size evolution of Ag nanoclusters, is uncovered through transmission
electron microscopy (TEM), which is leveraged to model the STL neuron.
STL-based spatial attention in a spiking convolutional neural network (SCNN)
is demonstrated, improving the accuracy of a multiobject detection task from
70% (20%) to 90% (80%) for the object within (outside) the area receiving
attention. This second-order memristor with intrinsic STL dynamics paves the
way for future machine intelligence, enabling high-efficiency, compact
footprint, and hardware-encoded plasticity.

1. Introduction

The brain features different plasticity of both synapses and
neurons. Although the former is commonly regarded as the
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dominant form of neuroplasticity relevant
to learning and memory, nonsynaptic, for
example, intrinsic plasticity through mod-
ification of neuronal excitability also plays
an important role. One of such mecha-
nisms is the spontaneous threshold low-
ering (STL), where the threshold potential
at which an action potential is triggered
can be lowered by the regulation of voltage-
gated channels on the initial segment of ax-
ons, thus it is easier for the neuron to fire,
influencing all incoming synaptic inputs.
The intrinsic STL plasticity plays an impor-
tant role in a number of learning protocols
like spatial attention, fear conditioning and
odor conditioning.[1,2] For example, a hy-
perpolarized shift of voltage-gated sodium
(Nav) channel activation lowers the spiking
threshold and increases intrinsic excitabil-
ity of hippocampal CA1 pyramidal neurons
to speed up learning.[3] Similarly, due to
the slow activation kinetics of voltage-gated
potassium channel Kv7.2, the downregu-
lation of another voltage-gated potassium

channel Kv1 reduces the spiking threshold and effectively raises
attention to the auditory neurons losing auditory inputs.[4] An-
other representative example is the formation of spatial attention
in vision system as illustrated in Figure 1a. The frequently-firing
STL neurons of the receptive field define the area of interest,
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Figure 1. Spontaneous threshold lowering neuron using YSZ:Ag-based second-order diffusive memristor for self-adaptive spatial attention. a) In vision
system, the frequently firing STL neurons of the receptive field define the area of interest, where the threshold of the neurons in the area of interest
decreases more and forms spatial attention in a self-adaptive way. b) Schematic of the metal-insulator-metal (MIM) structure of a Au/YSZ:Ag/Au/Ti
memristor with second-order switching dynamics, which is employed to model STL neurons. The evolution of temporal dynamics of the YSZ:Ag mem-
ristor shows a gradually decreasing switching delay (electric STL behavior) that reduces from ≈100 μs down to ≈30 μs over 30 DC sweeps cycles (i.e., 10
DC cycles per pulse test). c) Consecutive 50 DC voltage sweeps cycles with positive bias from 0 to 1.1 V followed by 50 DC sweeps cycles with negative
bias from 0 to −1 V, showing repeatable bidirectional threshold switching behavior with an ON/OFF ratio over 106. d) Fitting curve of the switching delay
as a function of the accumulated pulse width extracted from (b). The switching delay reduced with the accumulated pulse width, indicating spontaneous
threshold lowering (STL) and the existence of the second state variable.

where the threshold of the neurons in the area of interest de-
creases more and forms spatial attention in a self-adaptive way.
The widely evidenced excitability of STL-regulated neurons can
greatly benefit the adaptation of biological neural systems to com-
plex environments.

Hardware neuromorphic computing may leverage such neu-
ron plasticity of the human brain for artificial intelligent systems

in the era of big data and Internet of Things. In-memory com-
puting is expected to solve the memory bottleneck of the von
Neumann architecture commonly used in conventional digital
computers. The Moore’s law[5] and Dennard scaling[6] that fu-
eled the past development of complementary metal oxide semi-
conductor (CMOS) for decades cannot sustain their pace as the
transistor size is close to its physical limit, rendering technology

Adv. Sci. 2023, 10, 2301323 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301323 (2 of 11)

 21983844, 2023, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202301323 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [09/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advancedscience.com

node shrinking less effective.[7,8] This makes the complexity of
CMOS computers difficult to parallel that of the brain, where the
latter consists of 1012 neurons and 1015 associated synapses.[9]

Meanwhile, traditional digital computers are based on the von
Neumann architecture with physically separated processing and
memory units. The frequent and massive data shuttling between
these units incurs large time and energy overheads. In contrast,
the neurons and synapses of the brain collocate information stor-
age and processing, which makes the human brain consume only
20 W.[10] Thus, a brand new computing hardware is in demand
to implement STL neurons to unleash the power of the brain-
inspired computing paradigm.

Emerging memristors[11–26] are two terminal circuit elements
that could change their resistance in response to electrical stim-
ulation, regarded as one of the most promising contenders for
hardware neuromorphic computing.[27–40] The memristors are
not only scalable and 3D stackable thanks to their simple de-
vice structure, but also process information right at where it
is stored through “compute-in-physics” that can emulate synap-
tic plasticity and neural integrate-and-fire in an energy efficient
manner.[41,42] Such memristor-based synapses and neurons can
work together, like how the synapses and neurons interact in
the brain, to physically implement spiking neural networks.[43–47]

However, how to endow the memristor neurons with plasticity
remains challenging for brain-inspired learning, since majority
memristors are first-order dynamic systems governed by a single
state variable.[48,49]

A second-order memristor may naturally fulfil the
requirement.[50–52] Unlike the first-order memristor, the second
order dynamic system possess two distinct and interdependent
state variables, governed by two first-order (or an equivalent
second-order) differential equations to describe their respective
dynamics,[53–55] which can be mathematically written as

I (t) = G (w, s, V, t) V (t) (1)

dx
dt

= f (w, s, V, t) (2)

where w and s are the two state variables that are physically en-
coded to the memristor (such as filament length and tempera-
ture). The interplay between the two dynamic state variables w
and s equip the memristor with concurrent long-term and short-
term dynamic behaviors, offering the capability to model com-
plex dynamic behaviors of biological neurons such as periodic ac-
tion potential, spiking number adaption as well as the STL.[52,56]

In this work, we experimentally demonstrated a second-order
volatile memristor using yttria-stabilized zirconia with Ag doping
(YSZ:Ag) for hardware implementing STL neurons (Figure 1b)
at a small hardware overhead, which mimicked neural intrin-
sic plasticity and boosted the performance of spiking neural net-
works (see Table S3 in the Supporting Information). The physical
origin of the STL dynamics, the size evolution of Ag nanoclus-
ters, was investigated using transmission electron microscopy
(TEM).[57–59] Biomimicking self-adaptive spatial attention mech-
anism in a spiking convolutional neural network (SCNN) was
proposed using this YSZ:Ag second-order memristor-based STL
neuron, which improved the accuracy of multiobject detection of
handwritten digits from 70% to 90% for the object within the area

of interest (first spike) and 20% to 80% for the object outside the
area of interest (second spike).[60] In addition to the advantages
in speed and energy efficiency, such second-order memristor STL
neurons may pave the way for future machine intelligence based
on the emerging neuromorphic device and algorithm.

2. Results

2.1. Experimental Demonstration of the Second-Order Volatile
Memristor

The metal–insulator–metal (MIM) structure, consisting of
Ti/Au/YSZ:Ag/Au crossbars illustrated in Figure 1b, was fab-
ricated. The YSZ:Ag functional layer was grown on the sub-
strate using co-sputtering deposition, with a Ti/Au dual layer bot-
tom electrode (BE). (see the Experimental Section). As shown
in Figure 1c, the as-deposited Ti/Au/YSZ:Ag/Au MIM crossbar
junction was in the high resistance state (HRS) or the insulat-
ing state, with a pico-ampere leakage current. The device mani-
fests forming-free threshold resistive switching owing to the Ag
nanoparticles randomly dispersed within the functional layer.
These particles form a conducting path once the applied volt-
age exceeds a threshold. This contrasts with the conventional
nonvolatile memristors with Ag top electrodes.[26,61–64] For ex-
ample, an applied voltage above an apparent threshold (≈0.8 V)
increased the current of our memristor abruptly to the 10 μA
compliance set by an external semiconductor parameter analyzer,
switching the device to a low resistance state (LRS). The mem-
ristor spontaneously relaxed back to the HRS once the applied
voltage dropped to zero, illustrating the volatile nature of the de-
vice. The observed bidirectional volatile switching was symmetric
and repeatable under opposite bias polarities. Such a non-polar
switching roots on the symmetric device structure. The mem-
ristor showed no apparent deterioration after consecutive 50 DC
voltage sweeps with positive bias from 0 to 1.1 V, followed by an-
other 50 DC sweeps with negative bias from 0 to −1 V. A repre-
sentative cycle was highlighted in blue and red under negative
and positive bias, respectively. The negative (positive) SET volt-
ages spanned from −0.5 (0.7 V) to −0.8 V (0.9 V), due to the in-
evitable stochasticity associated with filament formation. The de-
vice was able to conduct a large current of 10 μA while still retain-
ing volatility. In addition, a maximum ON/OFF ratio of 106 was
demonstrated with a small OFF-state current ≈10−11 A around
0 V.

Ag-based diffusive memristors of the first-order dynamics
have been used to model the leaky integrate-and-fire neurons
since they accumulate incoming voltage spikes and produce out-
put current spikes when the accumulated stimulation exceeds
a threshold. In addition, the YSZ:Ag memristor neuron has an
additional dimension in its state space (second-order memris-
tor), the modulation of the neuron threshold, which is capable of
generating complex temporal dynamics such as spiking number
adaptation and STL as shown in Figure 1b. The dynamical behav-
ior of YSZ:Ag memristor was studied by applying ≈1.5 V/1 ms
square voltage pulses and measuring corresponding current re-
sponses. The device, in series with a resistor to prevent the mem-
ristor from hard breakdown, first underwent a threshold switch-
ing to the LRS around 100 μs after the onset of the pulse. Such
an incubation delay originates from the growth and clustering

Adv. Sci. 2023, 10, 2301323 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301323 (3 of 11)

 21983844, 2023, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202301323 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [09/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advancedscience.com

of Ag nanoparticles that bridge the two electrodes. The chan-
nel formation was reflected by the abrupt surge of the current
by several orders of magnitude, which saturated as the chan-
nel reached a steady state. Upon the end of the voltage pulse,
the memristor relaxed back to its HRS over a characteristic time
around 500 μs, revealing the spontaneous rupture of the con-
ductive filaments. In addition, the observed switching delay and
relaxation were dependent on the history of electrical stimula-
tion. For example, with increasing voltage stimulus, the switch-
ing delay time gradually reduced to ≈30 μs while the relaxation
time rose to ≈1.3 ms after 30 DC sweeps (i.e., 10 DC sweeps
was applied after each pulse test). This delay can be regarded
as a reduction of spike firing threshold, a manifestation of the
second-order dynamics. As such, the gradual reduction of incu-
bation time of the YSZ:Ag memristor upon each incoming volt-
age spike mimicked the STL of a leaky integrate-and-fire neuron
as shown in Figure 1b. The fitting curve of switching time delay
with accumulated pulse width extracted from Figure 1b is shown
in Figure 1d. The switching delay reduces with the accumulated
pulse width, an indication of the lowering of threshold voltage,
which implies the existence of the second state variable in addi-
tion to the one governs the conductance (such as the size of con-
duction channel), a unique feature of second-order memristors.
Such history dependent dynamic responses of the YSZ:Ag mem-
ristor also share resemblance with that of biological neurons that
show complex STL behaviors.

X-ray photoelectron spectroscopy (XPS) was carried out to ana-
lyze the chemical composition of this YSZ:Ag-based second order
memristor. The binding energies of O 1s peaks indicate that Zr
and Y of the switching layer have a valence state of +4 and +3,
respectively, which corresponds to oxide compositions ZrO2 and
Y2O3. The quantitative analysis of the O 1s spectrum suggests a
ZrO2/Y2O3 ratio of ≈2 (Figure S1a, Supporting Information).[65]

The chemical state of Ag embedded in YSZ layer is revealed by
Figure S1b (Supporting Information), where the Ag 3d spectrum
was deconvoluted to a single doublet with binding energies of
368.1 eV for Ag 3d5/2 and 374.2 eV for Ag 3d3/2.[66] The position
of Ag 3d peaks suggested that the Ag was metallic, which was cor-
roborated by high-resolution transmission electron microscopy
(HRTEM) micrographs of embedded Ag nanocrystals in the fol-
lowing section. The large sliver concentration in YSZ:Ag facil-
itates the forming-free volatile threshold switching. Moreover,
the characterizations revealed ≈16 at.% Y dopant concentration
in yttria-stabilized-zirconia (ZrO2:Y), or equivalently Y0.16ZrOx.
Figure S1c,d (Supporting Information) are the corresponding
spectrums of Zr 3d and Y 3d, respectively. It is observed that the
Zr 3d3/2 and Zr 3d5/2 peaks were located at 184.3 and 181.8 eV,
respectively, with a spin–orbit splitting of 2.5 eV, while the Y 3d3/2
and Y 3d5/2 peaks were of binding energies 158.9 and 156.8 eV,
respectively, with a spin–orbit splitting of 2.1 eV, consistent with
literature reports.[67]

2.2. Physical Microscopic Origin of Inherent Threshold Lowering
Dynamic

In order to unravel the underlying switching mechanism of
the observed second-order memristive dynamics, the bias-
history dependent delay and relaxation, a planar structured

Ti/Au/YSZ:Ag/Ti/Au memristor with 2 nm/20 nm thick Ti/Au
electrodes and a nanojunction was fabricated for TEM inspection
as shown in Figure 2a.[57] The TEM samples shared the identi-
cal metal–insulator–metal junction with that of vertically stacked
memristors. The planar memristor shared similar electrical char-
acteristics with the Ti/Au/YSZ:Ag/Au crossbar memristor. The
DC I–V characteristics of the device under positive sweeping volt-
ages was shown in Figure 2b. Like that of the crossbar memris-
tor, when the applied voltage crossed a threshold (Vth) ≈2.5 V,
the device switched to its LRS. Once the bias dropped below a
hold voltage (Vhold) ≈0.5 V, the device switched back to the HRS
from LRS. The observed repeatable cyclic threshold switching be-
tween the two states, with an increased operating voltage due to
a larger separation between electrodes, indicated that the cross-
bar and planar memristors possess the same switching mecha-
nism. The threshold and hold voltages of the device were both
dynamic, spanning an increased interval ≈2 and ≈1 V, respec-
tively. The memristor withstood a reduced ON-state current of
100 nA. The device exhibited decent repeatability under consecu-
tive DC voltage sweeps, as no visible deterioration was observed
(see Figure 2b where a representative switching cycle was labelled
in red). Therefore, the planar YSZ:Ag memristor provided a cred-
ible platform to probe the switching mechanism of the crossbar
memristors where the active switching regions were not easily
accessible.

The evolution of the device microstructures was observed in
Figure 2c,e (more microscopic observations at different mag-
nifications are with Figure S2 in the Supporting Information),
which shows the nanogaps between the two electrodes in an as-
deposited planar memristor and the same device after electrical
operations. These TEM images are consistent with the early ob-
servation that the device operates on the formation and rupture
of metallic filaments due to the underlying redox reactions and
cation transport.[68,69] Specifically, when a constant positive volt-
age was applied across the nanogap, Ag atoms, such as those with
the positively biased electrode, will be oxidized to Ag+ cations.
Assisted by local temperature rise due to Joule heating and the
external electric field, the Ag+ cations will diffuse and drift be-
fore being reduced and nucleated on the downstream adjacent Ag
particles or electrode, the so-called bipolar electrode effects.[68,70]

Such a process will significantly impact the distribution of Ag in
the nanogap, which may be critical for the observed second-order
memristive dynamics. For example, large Ag clusters of ≈25 nm
in the as-deposited memristor (Figure 2d) broke into a collection
of smaller nanocrystalline Ag particles of ≈10 nm after receiv-
ing the electrical stimulus (Figure 2f). The observed morpholog-
ical changes in Figure 2e may be explained as follows. The fila-
ment growth first took place on the anode side. Given the sput-
tered YSZ was a poor electrolyte, the Ag+ ion mobility and redox
rate are limited. During subsequent growth, the small amount of
Ag+ ions might migrate over a short distance within the dielectric
film before they were reduced by capturing incoming free elec-
trons. Such reduction is likely to occur at the edge of the existing
filament, because of the geometric enhancement of the electric
field by the filamentary protrusion. In this case, the Ag precip-
itates were formed near the anode and will serve as a patch for
its expansion. This repeated ionization, short-distance transport
and reduction process eventually led to filament growth from
the anode towards the cathode during cyclic programming with
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Figure 2. Electrical characteristics of threshold switching and microstructural evolution of an Ti/Au/YSZ:Ag/Ti/Au planar junction. a) Schematic illus-
tration of the planar structure device, the Ti/Au electrode is 2 nm/20 nm thick. The YSZ with clustered Ag nanoparticles within the gap was the active
switching region under bias. b) The DC current–voltage curves of the device in 89 consecutive positive DC sweeps. When the applied voltage crossed a
threshold (Vth) ≈2.5 V, the device switched to the LRS. Once the voltage is below a hold voltage (Vhold) ≈0.5 V, the device switched back to the HRS. The
threshold and hold voltages of the device were both evolving. c–f) TEM observation of the threshold switching process. The as-deposit device featured
large Ag clusters of ≈25 nm in (c) and (d). DC sweeps broke Ag clusters into small Ag nanoparticles of ≈10 nm in (e) and (f), forming a cone shape
percolation path. g) HRTEM of the blue and green box region in (e). The insets are fast Fourier transforms of the red boxes, indicating the crystalline
nature of Ag nanoparticles.

positive DC sweeps. As a result, the nanogap region interfacing
with the cathode had the narrowest width in a forward cone filled
with Ag nanoparticles, or filamentary residuals, in Figure 2e and
thus would be most critical during device operations. Since the
size of Ag nanoparticles and their separation gradually reduced
over time, this results in the observed reduction of switching de-
lay time, which contrasted to the conventional electrochemical
metallization (ECM) model for solid electrolytes[71,72] and the va-
lence change model due to the redistribution of anions.[58,65,73,74]

Upon the cease of applied voltage, the Ag filament incurred
additional surface energy compared to that of Ag nanoparti-
cles, generating extra chemical potential gradients according
to the Gibbs–Thomson effect, starting to coalesce. This led to
surface diffusion of Ag atoms towards their minimum energy
positions,[75] assisted by the residual heat, upon the cessation of
the electrical power. In addition, the dissolution of the filament
was also influenced by the observed Nernst potential, the diffu-
sion potential, together with the Gibbs–Thomson effect, which
constitutes the nanobattery effect.[47,53,76,77] Eventually, the Ag fil-
ament broke into a series of Ag nanoparticles separated by gaps at

nanometer scale (see Figure 2e,f). The crystalline nature of these
Ag nanoparticles was confirmed by high-resolution TEM images
(see Figure S3 in the Supporting Information) along with the fast
Fourier transfer (FFT) pattern, as shown in Figure 2g, where the
lattice fringes were attributed to the (111) plane of Ag. The resid-
ual Ag conductive filament was not completely bridging the two
electrodes over the dielectric, which accords with the experimen-
tal observation that the HRS was reinstated after the removal of
the switching voltage. It is worth noting that the final residence of
Ag nanoparticles depended on the interfacial energy between Ag
and the host dielectric, mobility of Ag atoms in the host matrix,
the thinness of the dielectric layer and the ambient temperature.
In case of a relatively small interfacial energy between Ag and the
host dielectric, low mobility, thick dielectric layer, and fast tem-
perature decay, the Ag atoms might only be able to migrate to
local energy-minimal positions within the dielectric layer rather
than a global energy minimization configuration of the system,
leading to nanoparticles of smaller dimensions. In addition, after
the initial rupture of the filament at the narrowest region near the
filament/cathode interface, the rest of the filament was no longer
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Figure 3. Energy-dispersive X-ray spectroscopy (EDS) analysis of the Ti/Au/YSZ:Ag/Ti/Au planar junction memristor. a,c) Scanning transmission elec-
tron microscopy (STEM) images of the as-deposited and post-tested junction gap region where the Ag clusters and nanoparticles are located. b,d)
EDS elemental mapping of Ag, Zr, Y, and O of the region highlighted by the red dash box in (a) and (c), respectively. e,f) EDS point spectrums of the
corresponding cross label marks in (a) and (c), respectively.

electrically connected to the cathode under the positive bias, re-
sulting in less-efficient redox processes. As a result, a substantial
portion of filament still remained intact, which could facilitate
subsequent regrowth of filament and impede its rupture. This
is especially significant if the interfacial energy between Ag and
host dielectric (e.g. YSZ) is relatively small, so repetitive pulses
led to the accumulation of small Ag nanoparticles within the
nanogap and a gradual increase in switching speed, consistent
with the observation shown in Figure 1d. (see more evidence on
the threshold switching and STL mechanisms in Note S1 of the
Supporting Information) This second-order memristive dynam-
ics property, bearing a strong resemblance with that of synaptic

and neuron plasticity, in particular the STL, was revealed for the
first time using TEM in electrochemical metallization cells and
provided insights for the design of higher-order volatile memris-
tors.

The chemical information of the observed filaments, such
as their compositions and chemical states, were also examined
through analytical TEM. The scanning transmission electron
microscopy (STEM) images and energy dispersive X-ray spec-
troscopy (EDS) elemental maps revealed the spatial distribution
of elements in the device. The bright field STEM images clearly
show that the large Ag clusters (white round-shape spots in
junction gap) in Figure 3a of the as-deposited device broke into
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Figure 4. Second-order YSZ:Ag memristors-based spontaneous threshold lowering (STL) neurons for spatial attention in a spiking convolutional neural
network (SCNN). a) YSZ:Ag second-order memristors were used to implement the STL neurons. b) The architecture of the SCNN. The shallow feature
layer consists of four channels (K0, K1, K2, and K3) and the output layer consists of ten nodes (O0 to O9). See Notes S4 and S5 for details. c) Threshold
potential maps of the feature layer neurons (left column in each epoch) and spiking maps of the four channels of feature layer neurons (rest columns in
each epoch) at epoch 0, 2, 4, and 8. Here each inference propagation is divided into three time steps, t1, t2, and t3. d) The spiking maps of the output
layer neurons at epoch 0, 2, 4, and 8. e) The classification accuracy of the first spike (for the object within the area of interest) and the second spike (for
the object outside the area of interest) without (dashed line)/with (solid line) STL neuron.

smaller Ag nanoparticles that are distributed uniformly between
the top electrode and bottom electrode, forming a cone shape Ag
nanoparticle percolation path after electrical operations as shown
in Figure 3c. Compared to the Ag elemental mapping of the as-
deposited memristor in Figure 3b, there was no observation of
any obvious aggregation of Ag elements at the same gap loca-
tion in the post-test device. Instead, the Ag was more evenly dis-
tributed within the junction gap according to the Ag mapping in
Figure 3d, consistent with the aforementioned switching mecha-
nism. Different from the redistribution of Ag element, the distri-
butions of Zr and Y elements remain unchanged (see Figure S4
in the Supporting Information for other elemental mapping).
They were uniformly distributed in both as-deposited and post-
tested devices, suggesting both Zr and Y were immobile back-
bones of the dielectric host matrix. It is also observed that the
distribution patterns of O and Ag were similar. A possible ex-
planation is that the introduction of Y3+ dopants into the ZrO2
matrix created a large number of oxygen vacancies according to
the reaction Y→Y′Zr+1/2VO. When a positive bias voltage was
applied, the electrochemical reactions between Ag+ and O va-
cancies might lead to the formation of silver oxide, as such the
Ag and O element would share similar elemental distributions.
However, further experiment is needed to justify this hypothe-
sis. To precisely probe the composition of the Ag nanoparticles
and background dielectric, EDS point spectrum analysis was car-

ried out. The spectrum analysis confirmed the atomic and weight
fractions of Ag, Zr, Y as summarized in Tables S1 and S2 in
the Supporting Information. Comparing the spectrum 1 and 2
in Figure 3e,f (see more point spectrums in Figure S5 in the
Supporting Information), the counts of Ag atoms significantly
reduced after the cyclic programming, consistent with the pro-
posed switching mechanism.

2.3. SCNN with Spatial Attention for Multiobject Detection

The human visual system features a spatial attention mech-
anism that can deal with a large receptive field with limited
neurons.[78,79] The brain cortex, effectively functioning as an ob-
ject detector receiving a subset of the receptive field, pays atten-
tion to individual objects in complex backgrounds regardless of
their spatial locations.[79] The key to this spatial attention is the
STL vision neurons (see Note S2 in the Supporting Informa-
tion for details on STL and spatial attention), which can be ef-
fectively simulated using our second-order YSZ:Ag memristors.
Since the resistive switching threshold (or SET voltage) of the
memristor can be lowered by incoming voltage spikes, this ef-
fectively replicates the lowering of the threshold potential of the
soma, as shown in Figure 4a. Here we simulate a memristor-
based SCNN with spatial attention shown in Figure 4b using two

Adv. Sci. 2023, 10, 2301323 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301323 (7 of 11)
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energy-efficient coding schemes, the spiking regulation scheme
that a shallow feature neuron spike at most once in an inference
propagation and the lateral inhibition scheme that resets all the
output neuron membrane potential if any output neuron spikes
(see Note S4 in the Supporting Information for the details of the
SCNN with self-adaptive spatial attention). We consider the case
where multiple objects (e.g., handwritten digits) simultaneously
appear in different corners of the receptive fields, as shown in
Figure 4b left. These objects appear in different corners of the re-
ceptive field at different frequencies (e.g., one of the two objects
always appears in the left-up corner of the square receptive field,
see Figure S6 in the Supporting Information for the examples of
the dataset). The part of the receptive field where the object ap-
pears frequently is the area of interest. The synaptic connections
(weights) of the spatial attention-based SCNN model have been
preoptimized and stay fixed during the course of inference (see
Note S3 in the Supporting Information for the optimization of
the synaptic weights of the SCNN). Figure 4c shows the threshold
map and the spike map of the shallow feature layer at different in-
ference epochs. At the beginning of the inference (i.e., epoch 0),
the thresholds of all neurons in the shallow feature layers are the
same, thus neurons responding to different parts of the recep-
tive field (corresponding to different letters) spike at the same
time (i.e., all neurons spike at t3), as shown in the spiking fea-
ture map (in blue/yellow color map) of Figure 4c. This makes the
downstream object detector less capable to recognize different
objects, known as the “binding problem”, because the simulta-
neous presence of features at different spatial locations confuses
the downstream object detector.[80] Subsequently, in epoch 2, 4,
and 8, the threshold of memristor-based visual neurons start to
decrease due to inherent STL. Those within the area of interest
(e.g., upper left area) decrease more than that of the rest, induc-
ing earlier spiking of neurons in this part of the receptive field
once stimulated. For instance, at epoch 2, the feature layer neu-
rons in the area of interest have lower thresholds, thus spiking
at time spike t2. On the contrary, the feature layer neurons out-
side the area of interest are with a relatively higher threshold, thus
spiking at t3. This results in temporal separation of features from
different spatial locations, or the spatial attention that focuses on
the area of interest in a self-adaptive manner, which overcomes
the “binding problem” in the traditional SCNN (see Note S5 in
the Supporting Information for SCNN internal state analysis).
As shown in Figure 4d, the corresponding output spikes of the
downstream object detector tend to appear in a shorter time com-
pared to the system with fixed threshold visual neurons, for ex-
ample, at epoch 8, the object detector first spike at t1 followed by
spiking at t2, thanks to the STL mechanism of neurons, which
also saves energy and time. In Figure 4e, solid lines show the ac-
curacy of the multiobject classification using STL neurons, which
is improved from 70% to 90% for the object in the area of interest
(first spike) and from 20% to 80% for the objects outside the area
of interest (second spike). In comparison, the dashed lines show
the accuracy of SCNN without STL neurons, which maintains
the same threshold for the entire inference period, resulting in
a constant low accuracy from Epoch 0. The ablation experiment
without STL neurons is discussed in detail in Note S7 in the Sup-
porting Information.

We further investigate the impact of STL, specifically the
threshold contrast (defined as the ratio between the thresh-
old of the memristors-based STL neurons that are outside and
within the area of the interest), on spatial attention performance.
Figure 5a shows the feature layer spiking maps of the SCNN un-
der different threshold contrasts, where the threshold contrasts
ranging from 2 to 20 lead to a clear temporal separation of fea-
tures and a significant accuracy increment, as shown in the right
part of Figure 5a. Notably, a larger threshold contrast leads to a
larger temporal separation, which may be more promising for
multiobject classification. The decreasing rate of the threshold
affects the number of epochs in realizing spatial attention, but
makes no difference in the eventual classification accuracy (see
Figure S7 in the Supporting Information). We also investigate
the advantage of spiking regulation and lateral inhibition. First,
we evaluate the SCNN with spiking regulation (i.e., each neuron
spikes at most once per input sample) in comparison to the one
without spiking regulation. As shown by the feature layer spiking
maps in Figure 5b, the spiking regulation reduces the number
of spikes for inference and avoids the influence of early feature
(e.g., the feature corresponding to the digit 7) on the later fea-
ture (e.g., the feature corresponding to the digit 6). In addition,
Figure 5c shows the effect of lateral inhibition (i.e., firing of a
neuron resets the membrane potentials of all other neurons in
the same layer.) of the SCNN output layer in comparison with
the one without lateral inhibition. The lateral inhibition helps
to produce temporally independent classification results at each
time step based on current spiking feature maps. Moreover, the
YSZ:Ag memristor-based neuron is relatively robust for the spa-
tial attention although there is inevitable stochasticity in the un-
derlying electrochemical reactions (see Note S6 in the Supporting
Information for detailed reliability and robustness analysis). As
such, the second-order YSZ:Ag memristor-based STL neurons,
paired with the spiking regulation and lateral inhibition, not only
improve multiobject classification accuracy thanks to the physi-
cally encoded spatial attention but also improves the speed and
efficiency of the SCNN by leveraging the spiking regulation and
lateral inhibition.

3. Conclusion

In summary, inspired by the neuronal excitability modulation
of biological neurons, we demonstrated an STL neuron using
second-order memristors for self-adaptive spatial attention. We
first showed the existence of the second state variable in the
YSZ:Ag-based memristor and explored its physical origin via
high-resolution TEM and EDS analysis. Then, we simulated the
SCNN made of YSZ:Ag memristor-based STL neurons for mul-
tiobject detection, which leverages the STL to form spatial at-
tention on the area of interest. The resultant temporal separa-
tion of features of different objects improves classification accu-
racy on multiple objects in the receptive field as well as the sys-
tem energy efficiency and speed. Such second-order memristors
not only overcome the scaling and von Neumann bottlenecks of
CMOS digital hardware but also possess rich and bio-plausible
dynamics for future machine intelligence.

Adv. Sci. 2023, 10, 2301323 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301323 (8 of 11)

 21983844, 2023, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202301323 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [09/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advancedscience.com

Figure 5. Impact of threshold contrast (defined as the ratio between the original and the lowered threshold of the memristors-based STL neuron),
spiking regulation (each neuron spikes at most once per input sample), and lateral inhibition (firing of a neuron resets the membrane potentials of all
other neurons in the same layer). a) SCNN shallow feature layer spiking maps under different threshold contrasts and the corresponding classification
accuracy. A larger threshold contrast leads to a larger temporal separation of features from different objects, benefiting multiobject classification. b)
SCNN shallow feature layer spiking maps with (left)/without (right) spiking regulation. Spiking regulation helps to eliminate the influence of early
spiking features over the later ones, improving classification accuracy and reducing inference energy. c) SCNN output layer membrane potential map
and spiking map with (left)/without (right) lateral inhibition scheme. Lateral inhibition scheme helps to eliminate the temporal correlation of features
at different time step, improving classification accuracy.

4. Experimental Section
Sample Preparation: YSZ:Ag-based Memristor Device Fabrication—

For the crossbar-structured diffusive memristor, a p-type (100) Si wafer
with 100 nm thermal oxide was used as the substrate. The standard pho-
tolithography and lift-off process were used to define the device size, fol-
lowed by electron beam evaporation of Ti (2 nm)/Au (20 nm) bottom elec-
trodes. Then a 10 nm thick blanket YSZ:Ag switching layer was deposited
by RF cosputtering in Ar and O2 mixed ambient at room temperature us-
ing a YSZ target and Ag target. Again, the standard photolithography and
lift-off process were applied to the 20 nm top Au electrodes which were
deposited by electron beam evaporation. Thanks to the good adhesion be-
tween the top Au layer and Ag particles scattered within the YSZ:Ag layer,
no extra adhesive metal interlayer was introduced. The nanogap planar
device shared the same substrate, bottom electrodes and dielectric layer
as the vertical diffusive memristor except a second layer of dielectrics was
then deposited with an increased thickness of ≈20 nm after the metal elec-
trodes.

Characterization: Electrical measurements—Electrical measurements
were performed with a Keysight B1500A semiconductor parameter ana-
lyzer using two of its modules, DC measurements were carried out using
the source and measure units (B1517A) and the B1530A waveform gen-
erator/fast measurement unit (WGFMU) was used to perform the pulsed
measurements. Using a two-probe (W tips) configuration, DC and pulse
voltages were applied between the top (anode) and bottom (cathode) elec-
trodes of the memristor and measured current through one of the mea-
surement units. For each data point of the cyclic programming measure-
ment, the crossbar memristor was in its high-resistance state at first, and
then a voltage pulse was applied across memristor in each cycle with the

same pulse amplitude (1.5 V), duration (1 ms), and finally read the corre-
sponding current response across the device to determine the change in
its dynamic performance induced by the pulse.

Transmission Electron Microscopy—High resolution scanning trans-
mission electron microscopy (STEM)/dispersive X-ray spectroscopy
(EDS) analysis was performed with a FEI Titan TEM at an accelerating
voltage of 300 kV.

Spatial Attention based SCNN Implementation: Stage 1: SCNN pre-
optimization. The convolutional kernels and object detector (i.e., dense
layer) were first optimized by the surrogate gradient descent in the PyTorch
framework (see Note S1 in the Supporting Information).[81]

Stage 2: SCNN inferencing with STL neurons. The SCNN consists of the
preoptimized convolutional kernels and object detector with STL neurons
(see Note S2 in the Supporting Information). The forward inference was
carried out on the multiobject dataset (see Figure S6 in the Supporting In-
formation), where the threshold potential of neurons decreases adaptively
to form spatial attention.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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