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Abstract

Let Ω ⋐ Cn be a bounded symmetric domain of rank ≥ 2 in its Harish-Chandra realization and
Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ being quasi-projective. By means
of Gauss-Bonnet type integral formulas and ergodicity theory of semisimple Lie groups, the first
author proved that any nonconstant Γ-equivariant holomorphic map F : Ω → D into a bounded
domain D is necessarily an embedding. Here we give a complete proof of the existence of an
extension of F−1 : F (Ω) → Ω to a bounded holomorphic map R : D → Cn, called the Extension
Theorem, with a proof that relies on Fatou’s theorem on admissible boundary values of bounded
holomorphic functions on Bm, noting that the fibers of a Cayley projection of Ω onto one of its
maximal boundary components are images of holomorphic isometric embeddings of some Bm. As
applications of a general form of the Extension Theorem we prove the Fibration Theorem for
holomorphic maps f : X = Ω/Γ → N , in which N is a quasi-compact complex manifold whose

universal covering space Ñ admits enough bounded holomorphic functions, whenever f induces an

isomorphism f∗ : Γ
∼=−→ Γ′ := π1(N) on fundamental groups, by proving that R(Ñ) ⊂ Ω and that

R descends to a retraction map ρ : N → X. Furthermore, requiring Ñ to be a bounded domain
D (on a Stein manifold), under the same hypothesis on f∗ but weakening quasi-compactness of N
to the hypothesis Volume(N,µN ) < ∞, µN being the Kobayashi volume form on N , we prove the

Isomorphism Theorem ascertaining that f : X
∼=−→ N is a biholomorphism. The novelty in the

proof lies in the use of the canonical complete Kähler-Einstein metric on the hull of holomorphy
D̂ ⊃ D and a result of independent interest showing that D̂−D is a priori of zero Lebesgue measure
under the hypothesis Volume(N,µN ) <∞.

1 Introduction

Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible
lattice, X := Ω/Γ. In [15], [17] and [34] Hermitian metric rigidity for the canonical Kähler-Einstein
metric was established. In the locally irreducible case, it says that the latter is up to a normalizing
constant the unique Hermitian metric on X of nonpositive curvature in the sense of Griffiths. This
led to the rigidity result for nonconstant holomorphic mappings of X into Hermitian manifolds of
nonpositive curvature in the sense of Griffiths, proving that up to a normalizing constant any such
holomorphic mapping must be an isometric immersion totally geodesic with respect to the Hermitian
connection.

With an aim to studying holomorphic mappings of X into complex manifolds which are of non-
positive curvature in a more generalized sense, for instance, quotients of arbitrary bounded domains
in Stein manifolds by torsion-free discrete groups of automorphisms, a form of metric rigidity was
established in [19] applicable to complex Finsler metrics, including especially induced Carathéodory
metrics (defined using bounded holomorphic functions). By studying extremal bounded holomorphic
functions in relation to certain complex Finsler metrics, rigidity theorems were established in [19] for
nonconstant holomorphic mappings f : X → N into complex manifolds N whose universal covers
admit sufficiently many bounded holomorphic functions. A new feature of the findings is that the
liftings F : Ω → Ñ to universal covers were shown to be holomorphic embeddings . (Here and in
what follows by a holomorphic embedding we mean an injective holomorphic immersion, and it is not
required that the image is a closed subset.) The latter result will be referred to as the Embedding
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Theorem. In the survey article [20] of the first author, a strengthening of the Embedding Theorem
was stated, as follows.

Theorem 1.1. (The Extension Theorem) Let Ω ⋐ Cn be a bounded symmetric domain of rank ≥ 2
in its Harish-Chandra realization, and Ω = Ω1 × · · · ×Ωm be the decomposition of Ω into a Cartesian
product of irreducible factors, Ωi ⋐ Cni in which ni := dim(Ωi). Let Γ ⊂ Aut(Ω) be a torsion-free
irreducible lattice, and X := Ω/Γ be the finite volume quotient (with respect to the canonical metric),
and π : Ω → X be the universal covering map. Let N be a complex manifold and τ : Ñ → N be its
universal covering map. Suppose f : X → N is a holomorphic map. Write F : Ω → Ñ for a lifting of
f , i.e., τ ◦F ≡ f . Assume furthermore that (X,N ; f) satisfies the following nondegeneracy condition:

(♣) : For each k (1 ≤ k ≤ m), there exists a bounded holomorphic function hk on Ñ and
an irreducible factor subdomain Ω′

k ⊂ Ω such that hk is nonconstant on F (Ω′
k).

Then, there exists a bounded holomorphic map R : Ñ → Cn such that R ◦ F = idΩ.

Theorem 1.1 gives a solution to the Extension Problem in the sense that it gives an extension of
the inverse map of the holomorphic embedding F : X → Ñ . We note moreover that the proof of
Theorem 1.1 is independent of the fact that F is an embedding, and it gives an alternative proof of
the Embedding Theorem of [19]. In fact, the existence of R : Ñ → Cn such that R ◦ F = idΩ implies
a fortiori that F is injective and immersive, yielding

Corollary 1.2. (The Embedding Theorem) F is a holomorphic embedding.

A complete proof of Theorem 1.1 for the case of polydisks was given in [20], and a sketch of the
proof for the general case was also given there. The key ingredients in [20] are Moore’s ergodicity
theorem and Korányi’s notion and existence theorem on admissible limits for bounded holomorphic
functions on bounded symmetric domains.

In this article, we give first of all a complete and a much simplified proof of Theorem 1.1 in which the
use of admissible limits for bounded holomorphic functions on bounded symmetric domains is reduced
by means of Cayley projections to the case where the domains are complex unit balls, which is more
elementary and more familiar to complex analysts. For the proof of Theorem 1.1 we have to show
that the identity map idΩ = F ∗R for some bounded holomorphic map R : Ñ → Cn, n := dim(Ω).
This motivates us to consider bounded holomorphic functions h = F ∗h1, where h1 ∈ H∞(Ñ), the
vector space of bounded holomorphic functions on Ñ , noting that h can be chosen to be nonconstant
by the nondegeneracy assumption (♣). In case Ω is irreducible (and of rank ≥ 2), a Cayley projection
is determined by a regular (cf. §4.4) pair (Φ,Ψ) of maximal boundary components (i.e., of rank r− 1,
or equivalently, lying on Reg(∂Ω)). For almost every Cayley projection ρΦ,Ψ : Ω → Φ we obtain by

taking admissible boundary values of h ∈ F := F ∗H∞(Ñ) a bounded holomorphic function sΦ,Ψ on

Φ such that ĥΦ,Ψ := ρ∗Φ,ΨsΦ,Ψ ∈ F . By the S1-averaging argument of H. Cartan, we produce from
ρ∗Φ,ΨsΦ,Ψ a nontrivial linear function on Ω. Writing Ω = G0/K, where G0 := Aut0(Ω) and K ⊂ G0

is the isotropy subgroup at 0 ∈ Ω, by a K-averaging argument, we show that idΩ = F ∗R for some
bounded holomorphic map R : Ñ → Cn, proving the Extension Theorem.

The Cayley projections ρΦ,Ψ are intimately related to nonstandard holomorphic isometric embed-
dings Bm ↪→ Ω constructed in Mok [24] by means of minimal rational curves. Fibers of the Cayley
projections ρΦ,Ψ : Ω → Φ are holomorphic isometric embeddings of unit balls and the existence of
boundary values sΦ,Ψ for almost every Cayley projection ρΦ,Ψ : Ω → Φ in the above follows from a
generalization of the classical Fatou’s Theorem to the unit ball (special case of Korányi [6]).

In all the averaging arguments, various group actions are applied to spaces of (vector-valued)
bounded holomorphic functions. Such group actions may produce functions which are not a priori
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inside the original spaces of functions under consideration. To resolve this problem, we observe that
ĥΦ,Ψ is invariant under a 1-parameter group of transvections and apply a density result which follows
from Moore’s ergodicity theorem.

As applications of the Extension Theorem, we derive rigidity results on irreducible finite-volume
quotients of bounded symmetric domains Ω of rank ≥ 2. This includes two principal results, viz.,
the Fibration Theorem and the Isomorphism Theorem, concerning the quotient X = Ω/Γ of Ω by a
torsion-free lattice Γ ⊂ Aut(Ω), as follows. Given a holomorphic mapping f : X → N into a quasi-

compact complex manifold N such that f∗ : π1(X)
∼=−→ π1(N) and such that (X,N ; f) satisfies the

non-degeneracy condition (♣), we prove that f is a holomorphic embedding and that there exists a
holomorphic fibration ρ : N → X such that ρ ◦ f ≡ idX , proving the Fibration Theorem (cf. Theorem
7.1). We note that in the special case where N is a compact Kähler manifold, the method for proving
strong rigidity in Siu [33] using harmonic maps applies to give a proof of the Fibration Theorem,
but our method applies in the quasi-compact case and without assuming N to be Kähler. For the
Isomorphism Theorem (cf. Theorem 7.2), we impose the hypothesis of the existence of a holomorphic

map f : X → N into an arbitrary quotient N of a bounded domain such that f∗ : π1(X)
∼=−→ π1(N)

and such that N is of finite intrinsic measure with respect to the Kobayashi volume form µN , and

prove that f : X
∼=−→ N is a biholomorphism. The novelty in the proof lies in using the existence of

canonical complete Kähler-Einstein metrics on bounded domains of holomorphy (on Stein manifolds),
a result due to [4] and [28], which allows one to enlarge the complex manifold N = D/Γ′ to a complete
Kähler manifold

(
N̂ , ωKE

)
and a result of independent interest showing that D̂−D is a priori of zero

Lebesgue measure under the hypothesis Volume(N,µN ) <∞.
The organization of the article goes as follows. In §2 the boundary component theory for bounded

symmetric domains of Wolf is briefly recalled. It serves to fix notations and recall several basic facts to
be used in later chapters. In §3, the concept of Cayley projections on an irreducible bounded symmetric
domain is introduced, and Cayley projections onto maximal boundary components are constructed via
the use of varieties of minimal rational tangents. The Cayley projection depends on a one parameter
group H ⊂ Aut0(Ω) of transvections and applies to any pair of maximal boundary components which
are regular in the sense that their topological closures are disjoint. In §4 we consider special product
subspaces P ⊂ Ω, P ∼= ∆ × Ω′, rank(Ω′) = r − 1, in preparation for Cauchy integral formulas for
almost all triples (Φ,Ψ, Z) consisting of a regular pair (Φ,Ψ) of maximal boundary components (Φ,Ψ)
and a distinguished section Z of the unique special product subspace P (Φ,Ψ) containing Φ and Ψ
in its closure. In §5, a well-known S1-averaging argument of H. Cartan is recalled. We will also
discuss a K-averaging argument. In §6, we give the proof of Theorem 1.1 (the Extension Theorem)
relying on averaging over Cayley limits of pull-backs of bounded holomorphic functions by F : Ω → Ñ
In §7 and §8 we give applications of Theorem 1.1 to rigidity problems on irreducible finite-volume
quotients of bounded symmetric domains of rank ≥ 2. In §7 we give statements of the applications,
viz., Theorem 7.1 (the Fibration Theorem) and Theorem 7.2 (the Isomorphism Theorem), discuss
comparison theorems on intrinsic metrics and intrinsic volume forms, and establish a lower bound for
the Kobayashi volume form on a bounded domain. In §8 we give proofs of Theorem 7.1 and Theorem
7.2, especially showing how a lower estimate of the Kobayashi volume form makes it possible to pass to
Kähler geometry by invoking the existence of canonical complete Kähler-Einstein metrics on bounded
domains of holomorphy.

The current article grew out on the one hand from a self-contained solution of the Extension
Problem made possible by the use of nonstandard holomorphic isometric embeddings of the complex
unit ball via the use of minimal rational curves given by [24], and on the other hand on applications
of the Extension Theorem to rigidity problems on X = Ω/Γ. The solution of the Extension Problem
constitutes a portion of the Ph.D. thesis of the second author written under the supervision of the
first author, while applications of the solution of the Extension Problem are due to the second author.
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The write-up of the article was delayed in part since a self-contained and complete proof relying on
[24] was only made available by the thesis of the second author. In the current article, the latter
proof is complemented by a self-contained geometric construction of the Cayley projection, a tool
of fundamental importance for the proof of Theorem 1.1, jointly written by both authors using the
geometric theory of varieties of minimal rational curves, and the full article has been thoroughly and
jointly rewritten.

2 Boundary Structure of Bounded Symmetric Domains

We start with some preliminaries on bounded symmetric domains in part to fix terminology and
notation. We are following essentially [35] and [1].

Let X0 be the underlying space of an irreducible Hermitian symmetric space (X0, h) of the semisim-
ple and noncompact type, G0 be the identity component of the group of holomorphic isometries of
(X0, h), equivalently the identity component of the group Aut(X0) of biholomorphic automorphisms
of X0. Then, X0 = G0/K, where K ⊂ G0 is the isotropy subgroup at a reference point x0 = eK ∈ X0.
Let g0 be the Lie algebra of G0, and k be the Lie algebra of K, so that we have the Cartan decompo-
sition g0 = k⊕ m0. For a real vector space V we write V C := V ⊗R C for its complexification. Write
g := gC0 and m = mC

0 . Then g = kC⊕m and gc = k⊕ im0 is a compact real form of g. Denoting by z ∈ k
the central element that induces the complex structure J = ad(z)|m on X0 as well as on its compact
dual X, we have the corresponding decomposition m = m+ ⊕ m− into (±i)-eigenspaces of J . Write
p = kC ⊕m−, which is a parabolic subalgebra of g consisting of nonnegative eigenspaces of ad(iz).

For Lie subalgebras of g, which are denoted by Gothic characters, the corresponding real analytic
subgroups in G will be denoted by capital Roman letters. By Borel embedding theorem, we have
a holomorphic embedding X0 = G0/K ↪→ X = G/P = Gc/K as an open orbit G0(xc) ⊂ X given
by gK 7→ g · xc , where xc := eP ∈ G/P . The topological boundary of X0 in X will be denoted
by ∂X0. There is also a complex analytic diffeomorphism of M+ × KC × M− ∼= U onto a dense
open subset U ⊂ G given by (m+, k,m−) 7→ m+km−, such that U ⊃ G0. This induces the Harish-
Chandra realization of the bounded symmetric domain Ω = ξ−1X0 ⋐ m+, where the embedding map
ξ : m+ → X = G/P is given by m 7→ exp(m)P . We will study the topological boundary ∂Ω of Ω in
m+ ∼= Cn.

Let t be a Cartan subalgebra of k. Then it is also a Cartan subalgebra in g0 and gc. The
complexification tC is a Cartan subalgebra of g. Let ∆ = ∆(g, tC) be a corresponding root system.
If µ ∈ ∆, the corresponding root space is denoted by gµ. Then g = tC ⊕

∑
µ∈∆(g,tC) gµ. Recall that

g = kC ⊕m. Either gµ ⊂ kC or gµ ⊂ m. If gµ ⊂ m, then µ is called a noncompact root. Denote by ∆+
M

the set of noncompact positive roots. We also have m = m+ ⊕m−. Fix a standard choice of ordering
of roots as in [35, Section 3] so that m+ =

⊕
{gµ : µ ∈ ∆+

M}.
For µ ∈ ∆, take hµ ∈ it so that 2µ(h)/⟨µ, µ⟩ = ⟨h, hµ⟩. Choose root vectors eµ ∈ gµ that are

normalized by [eµ, e−µ] = hµ. For each µ ∈ ∆+
M , define xµ,0 = eµ + e−µ and yµ,0 = i(eµ − e−µ).

Then {xµ,0, yµ,0 : µ ∈ ∆+
M} and {xµ = ixµ,0, yµ = iyµ,0 : µ ∈ ∆+

M} are R-basis of m0 and mc = im0

respectively. Note that the Lie algebra of the compact real form gc = k⊕mc. Two roots θ, ψ ∈ ∆ are
said to be strongly orthogonal if and only if θ±ψ ̸∈ ∆. Let Ψ ⊂ ∆+

M be a maximal strongly orthogonal
set, i.e., a set of mutually strongly orthogonal noncompact positive roots of g of maximal cardinality.
For each γ ∈ Ψ, cγ := exp(π4 yγ) ∈ Gc defines a partial Cayley transform. If Γ ⊂ Ψ, then cΓ :=

∏
γ∈Γ

cγ .

To each Γ ⊂ Ψ, there is a totally geodesic Hermitian symmetric subspace XΓ, 0 = GΓ, 0(x0) ⊂ X0. Note
that ∂X0 decomposes into G0 orbits of the form G0(cΨ−Γx0) =

⋃
k∈K

kcΨ−ΓXΓ, 0, where Γ ⊊ Ψ and

kcΨ−ΓXΓ, 0 is a boundary component of X0. Each kcΨ−ΓXΓ, 0 is a Hermitian symmetric space of the
noncompact type of rank |Γ|. Here G0(cΨ−Γx0) = G0(cΨ−Σx0) if and only if |Γ| = |Σ|. Thus ∂X0 =
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E0∪E1∪· · ·∪Er−1 as a disjoint union of G0 orbits Ei given by ξ−1kcΨ−ΓXΓ, 0 = ad(k) ·ξ−1cΨ−ΓXΓ, 0.
This also shows that the boundary components of Ω in m+ are bounded symmetric domains of rank
|Γ|. Identifying Ω = ξ−1X0 ⋐ m+ with X0 ⊂ X we also write ∂Ω = E0 ∪E1 ∪ · · · ∪Er−1. The regular
part Reg(∂Ω) of ∂Ω is exactly Er−1, which is a union of boundary components of maximal dimension.

For Γ ⊊ Ψ, the subset NΨ−Γ, 0 = {g ∈ G0 : gcΨ−ΓXΓ, 0 = cΨ−ΓXΓ, 0} ⊂ G0 is the normalizer
of the boundary component cΨ−ΓXΓ, 0 of X0 in X. The Boundary Group Theorem and Boundary
Flag Theorem [35, p.295, 299] say that NΨ−Γ, 0 is conjugate to NΨ−Σ, 0 in G0 if and only if |Γ| = |Σ|;
and since G is simple, NΨ−Γ, 0 are maximal parabolic subgroups of G0 and any maximal parabolic
subgroups of G0 is conjugate to NΨ−Γ, 0 for some Γ. Moreover, there is a K-equivariant fibration
π : G0(cΨ−Γx0) → G0/NΨ−Γ, 0 = K(cΨ−Γx0) and that K(cΨ−Γx0) is the moduli space of all rank |Γ|
boundary components of X0 in S.

In this article we will focus on boundary components of maximal dimension Φ ⊂ Reg(∂Ω) = Er−1.
Note that K acts transitively on the moduli space of Φ’s.

3 Cayley Projections

In preparation for the proof of Theorem 1.1 solving the Extension Problem 1.1, we prove in this section
a result constructing bounded holomorphic functions from their boundary values on maximal boundary
components, i.e., from a boundary component lying on Reg(∂Ω). For a bounded holomorphic function
continuous up to Ω, this is done by composing on the left by a holomorphic projection map first
defined by Korányi-Wolf, which we call the Cayley projection, accompanying the inverse of the first
partial Cayley transform. In [1, Chapter III, §3], Ash-Mumford-Rapoport-Tai gave a description of
the Cayley projection (which they called the “natural projection”) in group-theoretic terms. To make
our article self-contained and to link up with the nonstandard holomorphic isometries in [24] of the
complex unit ball constructed using varieties of minimal rational tangents, we will present a geometric
construction of Cayley projections with a description of their fibers in terms of minimal disks. For
our purpose we will apply Cayley projections to pull-backs of bounded holomorphic functions on the
complex manifold Ñ by the holomorphic mapping F : Ω → Ñ , for which it is not meaningful to
introduce any continuity assumption up to Ω. We will introduce the notion of Cayley limits of such
functions.

3.1 Geometric construction of Cayley projections from varieties of minimal ratio-
nal tangents

To define Cayley projections and describe how they are constructed, we will need some basic theory
on minimal rational curves in the setting of Hermitian symmetric spaces of the compact type, as can
be found for example in [7].

Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2 and S be the compact dual of
X0

∼= Ω so that Ω ⋐ Cn ⊂ S incorporates both the Harish-Chandra realization Ω ⋐ Cn and the Borel
embedding Ω ∼= X0 ⊂ S. By the polydisk theorem (cf. [35, p. 280]), there exists a maximal polydisk
P ∼= ∆r, r = rank(Ω), embedded into Ω as a totally geodesic complex submanifold, and moreover we
have Ω =

⋃
k∈K

kP .

The maximal polydisk P ⊂ Ω is obtained as follows. In the notation of §2, for µ ∈ ∆+
M write

g0[µ] := SpanR{xµ,0, yµ,0, ihµ}, which is a real Lie algebra isomorphic to su(1, 1), and denote by
G0[µ] ⊂ G0 the associated real Lie subgroup ∼= PSU(1, 1) in G0 = Aut0(Ω). Let Ψ ⊂ ∆+

M be
a maximal strongly orthogonal set of positive noncompact roots, and define the real Lie algebra
g0[Ψ] =

⊕
{g0[ψ] : ψ ∈ Ψ}, and correspondingly the real Lie subgroup G0[Ψ] ⊂ G0. Then, the orbit

of 0 = eK under G0[Ψ] gives a maximal polydisk P ⊂ Ω. Moreover, writing H0 ⊂ G0 for the stabilizer

5



subgroup of P ⊂ Ω, then the restriction of H0 to P induces the full automorphism group of P ∼= ∆r.
(In particular, all roots ψ ∈ Ψ are of the same length. They are in fact all long roots.) By a maximal
polydisk Q ⊂ Ω we mean a totally geodesic complex submanifold of maximal dimension biholomorphic
to a polydisk, and it is the complexification of a maximal totally geodesic flat subspace of Ω. The Lie
group G0 acts transitively on the set of maximal polydisks on Ω.

For any ψ ∈ Ψ, G0[ψ]·0 is a totally geodesic holomorphic disk on Ω and they are equivalent to each
other under the action of G0. In general a factor disk of a maximal polydisk Q ⊂ Ω will be referred
to as a minimal disk, and G0 acts transitively on the set of minimal disks on Ω. Given P = G0[Ψ]·0
and ψ ∈ Ψ, we have g0[ψ] = Rxψ,0 + Ryψ0 + iRhψ ⊂ Ceψ + Ce−ψ + Chψ =: g[ψ] ∼= sl(2,C). Writing
G[ψ] ⊂ G = Aut0(S) for the corresponding complex Lie subgroup, the orbit G0[ψ] ·0 in Ω gives a
minimal disk D(ψ), and the orbit G[ψ]·0 gives a minimal rational curve ℓ(ψ) ⊂ S, and D(ψ) ⊂ ℓ(ψ)
is the Borel embedding. Since G0 acts transitively on the set of minimal disks, for any minimal disk
D ⊂ Ω we always have D = ℓ∩Ω for a minimal rational curve ℓ on the compact dual manifold S of Ω.

Define

Vx :=
⋃{

ℓ : ℓ is a minimal rational curve on S passing through x
}
⊂ S.

We call Vx the cone at x swept out by minimal rational curves and x ∈ Vx its vertex. Associated to
minimal rational curves there is also the important notion of the variety of minimal rational tangents
(VMRT) on S at a point x ∈ S, to be denoted by Cx(S), defined by Cx(S) :=

{
[Tx(ℓ)] : ℓ ⊂

S is a minimal rational curve passing through x
}
. Writing Tx(ℓ) =: Cη, [η] ∈ PTx(S) is called a

minimal rational tangent, and η ∈ Tx(S) is called a minimal rational tangent vector.
Vx ⊂ S is a projective subvariety singular only at the isolated singularity x ∈ Vx. Vx may be

described in terms of the VMRT Cx(S), as follows. There is a holomorphic P1-bundle λ : P → Cx(S)
with a tautological holomorphic section σ : Cx(S) → P and a natural evaluation map µ : P → S
such that µ(λ−1([α])) is the minimal rational curve ℓ ⊂ S passing through x such that Tx(ℓ) = Cα.
We have Vx = µ(P), where σ(Cx(S)) is collapsed by µ, giving µ(σ(Cx(S)) = x.

For any point y ∈ Vx distinct from x, write ℓ for the minimal rational curve passing through both
x and y. We have TS |ℓ ∼= O(2)⊕O(1)p ⊕Oq. Write Pℓ := O(2)⊕O(1)p. Although the Grothendieck
summands are not uniquely determined, the filtration Tℓ ⊂ Pℓ ⊂ TS |ℓ is uniquely determined, where
Tℓ ∼= O(2). We call Pℓ ⊂ TS |ℓ the positive part of TS |ℓ. From the deformation theory of rational curves
we have Ty(Vx) = Pℓ. Note that for a point x′ ∈ ℓ distinct from x and y, Ty(Vx′) = Pℓ = Ty(Vx). In
other words, the cones Vx resp. Vx′ at x resp. x′ of minimal rational curves are tangent to each other
at the point y.

We will need to make use of canonical Kähler-Einstein metrics. In what follows on an irreducible
bounded symmetric domain U ⋐ CN we denote by gU the canonical Kähler-Einstein metrics on U
normalized so that the minimal disks are of constant Gaussian curvature −2. For U = Bn we will also
write gn for gBn . Thus, (Bn, gn) is of constant holomorphic sectional curvature −2.

Denote by R the curvature tensor of (Ω, gΩ). For χ ∈ T0(Ω) we denote by Hχ the Hermitian
bilinear form Hχ(ξ, η) := Rχχξη. Let now α ∈ T0(D) be a unit vector, hence α is a minimal rational
tangent vector of unit length. We have the decomposition of T0(Ω) into an orthogonal direct sum of
eigenspaces of Hα, viz., T0(Ω) = Cα ⊕ Hα ⊕ Nα values −2 resp. −1 resp. 0. Then, there exists a
(unique) totally geodesic complex submanifold Ω′

0 ⊂ Ω passing through 0 such that T0(Ω
′
0) = Nα.

Ω′
0 ⊂ Ω is biholomorphically an irreducible bounded symmetric domain Ω′ of rank r−1 embedded in a

Euclidean space by means of the Harish-Chandra embedding. We have a holomorphic totally geodesic
isometric embedding ν : ∆× Ω′ → Ω such that

ν(∆× {0}) = D and ν({0} × Ω′) =: Ω′
0 (1)

(cf.Mok-Tsai [26, Proposition 1.7]). A boundary component Φ ⊂ Reg(∂Ω) may be taken to be of the
form Φ = ν({eiθ} ×Ω′) =: Σ(θ) ∼= Ω′ for some θ ∈ R. In what follows we take the reference boundary
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component to be
Σ = ν({1} × Ω′). (2)

Let α ∈ T0(Ω) be a minimal rational tangent of unit length. We choose Harish-Chandra coordinates
(z1; z2, . . . , zp+1; zp+2, . . . , zn) = (z1; z

′; z′′) with ∂
∂zi
, 1 ≤ i ≤ n, corresponding to unit root vectors,

such that α = ∂
∂z1

, and such that the ordering of coordinates (z1; z
′; z′′) corresponds to the orthogonal

decomposition Cn = T0(Ω) = Cα ⊕Hα ⊕ Nα, Hα
∼= Cp, Nα

∼= Cq, 1 + p + q = n. We will call these
privileged Harish-Chandra coordinates.

There is an injective Lie algebra homomorphism sl(2;C) ↪→ g corresponding to an embedding of
Dynkin diagrams which restricts to the real form su(1, 1) ↪→ g0. Exponentiating we have a natural
injective group homomorphism

Θ : PSU(1; 1) ∼= Aut(∆) ↪→ Aut0(Ω) =: G0. (3)

The minimal disk ∆α := ∆×{(0; 0)} ⊂ Ω is the image of a Θ-equivariant totally geodesic holomorphic
embedding ι : ∆ → Ω of the Poincaré unit disk ∆ into Ω. The embedding ι extends to ι : P1 → S
(recalling that S ⊃ X0

∼= Ω is the compact dual of Ω) and we may require ι(0) = 0 ∈ Ω and
ι(1) = b0 := (1; 0; 0) ∈ Σ.

For Ω ⋐ CN and a point x ∈ Ω we denote by σΩx the involution on Ω as a bounded symmetric
domain. A boundary component Φ ⊂ ∂Ω is an open subset of the smallest affine linear subspace WΦ

containing it. Identifying WΦ with the complex linear subspace WΦ − 0Φ, where 0Φ ∈ Φ is the center
of Φ, i.e., the center of gravity of Φ with respect to the restriction of the Euclidean metric from CN , we
may regard Φ ⊂WΦ as a bounded symmetric domain on WΦ. For a point y ∈ Φ we denote by σΦy the

involution at y ∈ Φ. We also define Φ′ := σΩ0 (Φ) and call it the opposite boundary component of Φ with
respect to (the center) 0 ∈ Ω. In terms of the chosen Harish-Chandra coordinates (depending on the
choice of a minimal rational tangent α ∈ T0(Ω) of unit length), and given b = (eiθ; 0;w) ∈ Φ, w ∈ Ω′,
we call b′ = (−eiθ; 0;w) the opposite boundary point of b. Equivalently, the opposite boundary point
can be defined as σΩ0Φ′ (σ

Ω
0 (b)). (Compare with the description of the natural projection in [1, Chapter

III, §3].) Here σΩ0 (b) = (−eiθ; 0;−w), hence σΩ0Φ′ (σ
Ω
0 (b)) = σΩ0Φ′ (−e

iθ; 0;−w) = (−eiθ; 0;w) = b′. We

will write b = b(w), w ∈ Ω′. We have the reference point b0 = (1; 0; 0) on Σ ⊂ Reg(∂Ω) whose opposite
boundary point is b′0 = (−1; 0; 0) on Σ′ := ν({−1} × Ω′).

Let a ∈ Reg(∂Ω). Define Va := Va ∩ Ω. Then Va ⊂ Ω is a subvariety swept out by minimal disks,
which we describe more precisely, as follows. Let K be the irreducible component of the Chow space
Chow(S) consisting of minimal rational curves on S. We call K ⊂ Chow(S) the minimal rational
component on S. For x ∈ S, denote by Kx ⊂ K the projective submanifold consisting of minimal
rational curves passing through x. The tangent map τx : Kx → PTx(S), defined by τx([ℓ]) = [Tx(ℓ)],
maps Kx biholomorphically onto the VMRT Cx(S) ⊂ PTx(S) as defined in §3.1. For a ∈ Reg(∂Ω)
define Da ⊂ Ka by Da := {[ℓ] ∈ Ka : ℓ ∩ Ω ̸= ∅}, which is a priori a nonempty open subset in the
complex topology. Then Va = Va ∩ Ω =

∐
{ℓ ∩ Ω : [ℓ] ∈ Da} is a disjoint union of minimal disks

Dℓ := ℓ ∩ Ω ⊂ Ω satisfying a ∈ Dℓ.
Write D = {[ℓ] ∈ K : ℓ ∩ Ω ̸= ∅}. We have Da ⊂ D for any a ∈ Reg(∂Ω). The space D parametrizes

the set of minimal disks on Ω.

Remark 3.1. Strictly speaking we have the moduli space Ux of minimal rational curves marked at
x ∈ X, and the universal family ρ : U → K as a holomorphic P1-bundle, and the evaluation map
µ : U → X such that Ux := µ−1(x), and Kx := ρ(Ux). The tangent map is defined by τx(u) = [Tx(ℓ)] ∈
PTx(X), where u ∈ U is a minimal rational curve ℓ endowed with a marking at x. Here we are making
an identification of Ux with Kx, given that in the case of the Hermitian symmetric manifold X, at any

point x ∈ X we have a biholomorphism ρ
∣∣
Ux

: Ux
∼=−→ Kx ⊂ K of Ux onto Kx.
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3.2 Holomorphic isometric embeddings of the unit ball

In what follows we adopt the privileged Harish-Chandra coordinates (z1, · · · , zn) = (z1; z
′; z′′) intro-

duced in §3.1, immediately after (2) above according to T0(Ω) = Cα ⊕Hα ⊕Nα, α = ∂
∂z1

, and write

zi = xi +
√
−1yi as usual. Assume a ∈ Reg(∂Ω), [ℓ] ∈ Da and c ∈ ∂Dℓ ⊂ ∂Va be distinct from a. We

have

Lemma 3.2. ∂Va is smooth and strictly pseudoconvex at c.

Proof. Since G0 acts transitively on the space D of minimal disks on Ω, without loss of generality we
may take a = (1; 0; 0) = b0, ℓ to be the unique minimal rational curve ℓ0 on X passing through 0 ∈ Ω
such that T0(ℓ) = C ∂

∂z1
, hence Dℓ = {(z1; 0; 0) : |z1| < 1} = ∆ × {(0; 0)} =: D0. Since the parabolic

subgroup Pa of Aut(D0) ↪→ Aut0(Ω) = G0 fixing a acts transitively on ∂D0 − {a}, we may assume
c = (−1; 0; 0) = b′0.

For the cone Vx at x swept out by minimal rational curves, from the deformation theory of minimal

rational curves we have Tc(Va) = C ∂
∂z1

⊕ SpanC

{
∂
∂zi

: 2 ≤ i ≤ p+ 1
}
. On the other hand, c = b′0 =

(−1; 0; 0) is a smooth point of ∂Ω, and the line segment 0c is the shortest distance from 0 to ∂Ω
with respect to the Euclidean metric (as can be seen from the polydisk theorem), so that TR

c (∂Ω) is

the orthogonal complement of ∂
∂x1

, i.e., TR
c (∂Ω) = R ∂

∂y1
⊕Re

(
SpanC

{
∂
∂zi

: 2 ≤ i ≤ n
})

isometrically.

Now for any point p ∈ ℓ distinct from c, TR
c (Vp) ⊃ TR

c (ℓ) ⊃ R ∂
∂x1

, hence Vp intersects ∂Ω transversally
at c. For 0 ∈ ℓ ∩Ω, from the polydisk theorem it follows readily that V0 ∩ ∂Ω = Bn ∩ ∂Ω, so that ∂V0
is smooth and strictly pseudoconvex at c. Since Va is tangent to V0 at c, ∂Va is also tangent to ∂V0
at c, hence ∂Va is smooth and strictly pseudoconvex at c, as desired.

In order to construct Cayley projections geometrically we will apply the following classical result
of H. Cartan (cf. [29, p.78, Theorem 4])

Theorem 3.3. Let U ⋐ Cn be a bounded domain, and {γi : 1 ≤ i < ∞} be a sequence of automor-
phisms γi ∈ Aut(U) such that γi converge as a sequence of holomorphic maps into Cn, h := lim

t→∞
γi(z)

uniformly on compact subsets of U . Then, either h ∈ Aut(U), or h : U → ∂Ω.

We are now ready to construct and describe Cayley projections geometrically. Recall that Θ :
Aut(∆) ∼= PSU(1, 1) ↪→ Aut0(Ω) =: G0 is the injective group homomorphism defined in (3). We write
{θt : −1 < t < 1} ⊂ G0 for the 1-parameter subgroup of transvections.

Proposition 3.4. Let ψt ∈ Aut(∆) be given by ψt(z) :=
z+t
1+tz , t ∈ (−1, 1), and θt,Σ := Θ(ψt). Then,

ρΣ := lim
t→1

θt,Σ exists, and ρΣ : Ω → Σ is a holomorphic submersion onto the maximal boundary

component Σ = {(1; 0)} × Ω′ ⊂ ∂Ω. If b ∈ Σ, then ρΣ(x) = b for any x ∈ Vb′ = Vb′ ∩ Ω, where b′

is the opposite boundary point on Σ′ of b ∈ Σ with respect to 0, Σ′ being the opposite boundary of Σ
with respect to 0. Moreover, for each x ∈ Ω, there exists a unique b ∈ Σ such that x ∈ Vb′, so that
ρ−1
Σ (b) = Vb′ and the level sets Vb′ = ρ−1

Σ (b), b ∈ Σ, gives a decomposition of Ω into a disjoint union
Ω =

∐
{Vb′ : b′ ∈ Σ′} =

∐
{Vb′ : b ∈ Σ}.

Proof. For −1 < t < 1 write θt := θt,Σ. Since θt ∈ Aut0(Ω), by Montel’s theorem, there is a
subsequence {θtn}, tn → 1, such that θtn converges on compact subsets of Ω to a holomorphic map
ρ : Ω → Cn. Noting that limt→1 ψt(z) = 1 for any z ∈ ∆. Choosing Harish-Chandra coordinates and
the totally geodesic embedding of ∆ ↪→ Ω as described above, we have ρ(x0) = b0 ∈ Σ ⊂ ∂Ω. (Recall
that we take x0 = 0 and b0 = (1; 0; 0).) By a theorem of H. Cartan (Theorem 3.3 here), we know that
ρ : Ω → ∂Ω.

In what follows, by a holomorphic arc in Cn we will mean the holomorphic image of the unit
disk under a nonconstant holomorphic map. Let x ∈ Ω and assume that ρ(x) ̸= ρ(x0) = b0. There
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is a holomorphic map f : ∆ → Ω such that x0 = f(z0) and x = f(z1) for some z0, z1 ∈ ∆, i.e.,
x0 and x are connected by the holomorphic arc f(∆). Since ρ(f(z1)) = ρ(x) ̸= ρ(x0) = b0, the
holomorphic map ρ◦f : ∆ → CN is nonconstant, and ρ(x0) and ρ(x) are contained in the holomorphic
arc ρ(f(∆)). Recall from [35] that a boundary component is exactly a holomorphic arc component,
meaning that if two points are connected by a finite chain of holomorphic arcs, then they belong to
the same holomorphic arc component. Hence, for any point x ∈ Ω, we have ρ(x) ∈ Σ.

From the construction, θt ∈ Aut0(Ω) = G0, t ∈ (−1, 1), is a 1-parameter subgroup of transvections
of Ω. From the natural embedding G0 ↪→ G = Aut0(S), each θt extends to an automorphism of the
compact dual S. Since any automorphism µ ∈ Aut(S) preserves the set of minimal rational curves on
S as a set, we have µ(Vp) = Vµ(p) for any p ∈ S. In particular, we have µ(Vp) = Vp whenever µ(p) = p.
Now let b ∈ Σ and let b′ ∈ Σ′ be the opposite boundary point with respect to 0. Then, for t ∈ (−1, 1)
we have θt(b

′) = b′, hence θt(Vb′) = Vb′ , and θt(Vb′) = θt(Vb′ ∩ Ω) = θt(Vb′) ∩ θ(Ω) = Vb′ ∩ Ω = Vb′ , so
that {θt : t ∈ (−1, 1)}, restricted to Vb′ , acts as a 1-parameter group of automorphisms of Vb′ .

Now for b = (1; 0;w) ∈ Σ we have θt(z1; 0;w) =
(
z1+t
1+tz1

; 0;w
)
, hence ρ(0; 0;w) = lim

t→1
θt(0; 0;w) =

(1; 0;w) = b ∈ Σ. By Lemma 3.2, ∂Vb′ is smooth and strictly pseudoconvex at b. Hence there exists a
local plurisubharmonic peak function at b for ∂Vb′ . In other words, there exists an open neighborhood
U of b on Vb′ , and a plurisubharmonic function ψ on U such that ψ(b) = 0 and ψ(x) < 0 for any
x ∈ U ∩ Vb′ . Pick now any point y ∈ D0 = ∆× {(0; 0)}. Since ρ(y) = b, on some open neighborhood
W of y, ψ(ρ(z)) is defined and plurisubharmonic, and it takes a maximal value at y, implying that
ψ(ρ(z)) = 0 for any z ∈ W , so that ρ(z) = b for z ∈ W as ψ is a local peak function at b. Hence,
ρ(z) = b for any z ∈ Vb′ by the identity theorem for analytic functions. In other words, Vb′ ⊂ ρ−1(b).

We claim that for any x ∈ Ω there exists some b ∈ Σ such that x ∈ Vb′ . Since G0 acts transitively on
Ω, there exists β ∈ G0 such β(x) = 0. Consider the maximal boundary component β(Σ). By Wolf [35],
K ⊂ G0 acts transitively on the set of all boundary components of the same rank, hence there also exists
κ ∈ K such that κ(β(Σ)) = Σ. Then γ := κβ ∈ G0 is an automorphism of Ω such that γ(x) = 0 and
γ(Σ) = Σ. Since the origin 0 ∈ Ω and the boundary point b′0 = (−1; 0; 0) ∈ ∂D × {(0; 0)} ⊂ Reg(∂Ω)
belong to the same minimal rational curve, we have x ∈ Vγ−1(−1;0;0), i.e., there exists a point b ∈ Σ
such that x ∈ Vb′ := Vb′ ∩ Ω for the boundary point b′ opposite to b with respect to 0.

Note that ρ
∣∣
Ω′

0
: Ω′

0

∼=−→ Σ. Thus, ρ : Ω → Σ is surjective, and ρ is a holomorphic submersion onto

Σ. Up to this point ρ = lim
n→∞

θtn depends on the choice of the sequence tn → 1. Note that any point

x ∈ Ω belongs to Vb for a unique b ∈ Σ, we must have lim
n→∞

θtn(x) = b for any choice of tn → 1 and

the limit ρ does not depend on the choice of the sequence {tn}. It follows in fact lim
t→1

θt = ρ.

Finally, for distinct points b1, b2 ∈ Σ, we have Vb′1 ∩Vb′2 = ∅ since ρ(Vb′1) = {b1} ≠ {b2} = ρ(Vb′2). It

follows that ρ−1(b) is exactly equal to Vb′ , and we have a decomposition of Ω into a disjoint union of
level sets Vb′ , b

′ ∈ Σ′, of Ω, b′ being the opposite boundary point with respect to 0 of b ∈ Σ, as desired.
The proof of Proposition 3.4 is complete.

Remark 3.5. For the proof of Vb′ ⊂ ρ−1(b), the function x1 = Re(z1) is in fact a global peak function,
as follows from the proof of [25, Lemma 2.2.2]. Also, Vb′ ⊂ ρ−1(b) follows from the nonexistence of
holomorphic arcs on ∂Vb′ passing through b and from a slight generalization of Cartan’s result used
in which the bounded domain is replaced by a nonsingular bounded domain on a Stein space, which
follows from the proof of the said result in [29].

When Ω is an irreducible bounded symmetric domain of rank ≥ 2, beyond Proposition 3.4 the
subvarieties Va ⊂ Ω play an important role in this article. By [22] we have

Theorem 3.6. For any point a ∈ Reg(∂Ω), (Va, gΩ|Va) is biholomorphically isometric to the complex
unit ball

(
Bp+1, gp+1

)
.
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We examine now holomorphic isometries θ : Va
∼=−→ Bp+1 for an arbitrary given point a ∈ Reg(∂Ω).

For [ℓ] ∈ D , i.e., [ℓ] ∈ K and ℓ ∩ Ω ̸= ∅, Dℓ := ℓ ∩ Ω ⊂ Ω is a totally geodesic holomorphic
isometric image of the Poincaré disk. Moreover, from the monotonicity of holomorphic bisectional
curvatures (Dℓ, gΩ|Dℓ

) ↪→ (Va, gΩ|Va) is also totally geodesic. Hence, writing ∆ℓ := θ(Dℓ), we have

(∆ℓ, gp+1|∆ℓ
) ↪→

(
Bp+1, gp+1

)
. Writing θℓ := θ|Dℓ

, we have θℓ : Dℓ

∼=−→ ∆ℓ, ∆ℓ ⊂ Bp+1 is also
totally geodesic, i.e., ∆ℓ is a minimal disk on Bp+1, equivalently the nonempty intersection of a
projective line on Pp+1 with Bp+1. Regarding the boundary behavior of the holomorphic isometry

θ : (Va, gΩ|Va)
∼=−→

(
Bp+1, gp+1

)
near the vertex a of Va we have,

Proposition 3.7. For every [ℓ] ∈ Da, θℓ extends to a biholomorphism θ♯ℓ : ℓ
∼=−→ Λ, where Λ ⊂ Pp+1

is a projective line and ∆ℓ ⊂ Λ is the Borel embedding. There exists u ∈ ∂Bp+1 such that θ♯ℓ(a) = u

for every [ℓ] ∈ Da. Moreover, defining ∂♭Va =
∐

{∂Dℓ − {a} : [ℓ] ∈ Da}, θ : Va
∼=−→ Bp+1 extends

holomorphically to a biholomorphism θ♯ : W
∼=−→ U where W is a neighborhood of Va

∐
∂♭Va in S

and U is a neighborhood of Bp+1 − {u} in Pp+1. Furthermore, θ♯
∣∣
Va

∐
∂♭Va

extends continuously to

θ† : Va → Bp+1.

Proof. From the standard embedding PSU(1, 1) ↪→ PSL(2;C) the isomorphism θ|ℓ : Dℓ

∼=−→ ∆ℓ extends

to a biholomorphism θ♯ℓ : ℓ
∼=−→ Λ from the compact dual ℓ of Dℓ to the compact dual Λ of ∆ℓ.

For [ℓ] ∈ Da, write u(ℓ) := θ♯ℓ(a). We proceed to prove that u(ℓ) is independent of ℓ. Let
[ℓ1], [ℓ2] ∈ Da be distinct. For i = 1, 2 let γi : [0,∞) → Dℓi be a geodesic ray such that lim

t→∞
γi(t) = a.

Write δi(t) := δ(γi(t)) for the Euclidean distance from γi(t) to ∂Ω. Considering the inclusion map
ι : BN (γi(t); δi(t)) ↪→ Ω. From the Schwarz lemma applied to the inclusion map ι and the canonical
Kähler-Einstein metrics, we have

(†): There exists C > 0 such that gΩ(γi(t)) ≤ C
δi(t)2

ds2,

where ds2 stands for the standard Euclidean metric. Moreover, connecting ℓ1 to ℓ2 through a smooth
family {ℓ(s)}0<s<3 of minimal rational curves belonging to Da, ℓi = ℓ(i) for i = 1, 2, and hence obtain-
ing a smooth 1-parameter family of geodesic rays γs : [0,∞) → Va, Image(γs) ⊂ Dℓ(s), lim

t→∞
γs(t) = a,

the estimate (†) remains valid for γs for some constant C > 0 independent of s ∈ [1, 2]. It follows by
estimating the length of the curves µt : [1, 2] → Va defined by µt(s) = γs(t) that there exists C ′ > 0
such that Length(Image(µt)) < C ′ for t ∈ [0,∞).

Suppose there exist [ℓ1], [ℓ2] ∈ Da such that u(ℓ1) ̸= u(ℓ2). Then, σi := θ∗(γi), i = 1, 2, are geodesic

rays on ∆1 resp.∆2 such that lim
t→∞

d(σ1(t), σ2(t)) = ∞ from the estimate gp+1(y) ≥ c·ds2
δ(y;∂Bp+1)

for some

constant c > 0, where d stands for distances on
(
Bp+1; gp+1

)
, contradicting with the uniform bound

Length(θ∗µt) = Length(µt) ≤ C ′ for t ∈ [0,∞), proving by contradiction that u(ℓ) = u for some
u ∈ ∂Bp+1 and for all [ℓ] ∈ Da.

For the existence of neighborhoods W ⊃ Va
∐
∂♭Va and U ⊃ Bp+1 − {u} such that a holomorphic

extension θ♯ :W
∼=−→ U of θ exists, it suffices to take W =

∐
{ℓ : [ℓ] ∈ Da} and U = Pp+1 −H, where

H ⊂ Pp+1 is the projective hyperplane passing through u such that H is tangent to ∂Bp+1 at the

point u, given the existence of θ♯ℓ : ℓ
∼=−→ Λ as established above. It remains to prove that θ♯

∣∣
Va

∐
∂♭Va

extends continuously to θ† : Va → Bp+1.
Writing ∂♯Va := V a −

{
Va

∐
∂♭Va

}
= ∂Va − ∂♭Va, we claim that the extension θ† defined by

θ†
∣∣
∂♯Va

≡ u is continuous. Letting {xk}1≤k<∞ be a sequence of points on Va
∐
∂♭Va such that xk →

c ∈ ∂♯Va, we have to prove that θ♯(xk) → u. Given any point p ∈ ∂Dℓ − {a} ⊂ ∂♭Va, there exists
x ∈ Dℓ such that ∥θ♯(x) − θ♯(p)∥ ≤ 1

k , hence we may assume that xk ∈ Va for k ≥ 1. Suppose on
the contrary θ(xk) → u′ ̸= u. Since θ is in particular proper, we have u′ ∈ ∂Bp+1, hence u′ = θ♯(b)
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for some b ∈ ∂♭Va, and there exists a neighborhood O of b in Va such that θ♯|O : O
∼=−→ O′ for some

neighborhood O′ of u′ in Cp+1. We have θ♯(O∩Va) = O′∩Bp+1. We may assume that θ(xk) ∈ O′∩Bp+1

for k ≥ 1. Since θ is bijective it follows that xk ∈ O ∩ Va and hence xk → b, contradicting with the
assumption that xk → c /∈ ∂♭Va, proving the claim and completing the proof of the proposition.

Remark 3.8. There is a unique maximal boundary component Π ⊂ Reg(∂Ω) which contains a given
point a ∈ Reg(∂Ω). Writing SΠ for the Zariski closure of Π in S, SΠ is the compact dual of Π, and
Π ⊂ SΠ is the Borel embedding. Define V ′

a ⊂ SΠ as the cone on SΠ swept out by minimal rational
curves on SΠ containing the point a, and defining V ′

a := V ′
a ∩Π, it can be proven that the topological

boundary ∂Va in CN is the disjoint union of ∂♭Va and V ′
a.

Proposition 3.4 allows us to prove Theorem 1.1 (the Extension Theorem) by avoiding the technically
more difficult harmonic analysis for higher rank symmetric spaces (cf. Korányi [11], [12]) and use
instead Fatou-type results much more familiar to complex analysts for the rank-1 case of the complex
unit ball, and this will be the starting point of the next subsection.

Let Φ ⊂ Reg(∂Ω) be a maximal boundary component. Then, there exists k ∈ K such that
Φ = kΣ. If we define θt,Φ := kθt,Σk

−1, then we obtain ρΦ := lim
t→1

θt,Φ = kρΣk
−1, which is a holomorphic

submersion ρΦ : Ω → Φ. With the boundary component Φ′ = σΩ0 (Φ) opposite to Φ with respect to 0
as defined, Proposition 3.4 remains valid with Σ being replaced by Φ, ρΣ being replaced by ρΦ and
b′ ∈ Φ′ meaning the opposite point of b ∈ Φ with respect to 0 as defined by b′ = σΩ0Φ(σ

Ω
0 (b)).

Definition 3.9. The holomorphic submersion ρ = ρΣ : Ω → Σ in Proposition 3.4 onto Σ, or more
generally ρ = ρΦ = kρΣk

−1, ρ : Ω → Φ as in the last paragraph, is called a standard Cayley projection.

Remark 3.10. In [1] the standard Cayley projection was called the canonical projection, and it was
described in group theoretic terms. The properties of the standard Cayley projection as described in
Proposition 3.4 can be captured from [1, Chap. III, §3].

We proceed to describe more general Cayley projections ρΦ,c : Ω → Φ depending on the choice of
a maximal boundary component Φ ⊂ Reg(∂Ω) and the choice of an appropriate point c ∈ Reg(∂Ω).
The standard Cayley projection is the special case where, taking some point b ∈ Φ, c is taking to be
its opposite point b′ ∈ Φ′ on the opposite boundary component Φ′ with respect to 0 as defined above.
Recall from (1) that the construction of the standard Cayley projection starts with a holomorphic
totally geodesic embedding

ν : ∆× Ω′ ↪→ Ω (4)

where the image passes through the origin. Denote by

υ : Aut(∆)×Aut0(Ω
′) → G0 (5)

the group monomorphism accompanying the embedding ν : ∆× Ω′ ↪→ Ω. We have

Lemma 3.11. Let now a, c ∈ Reg(∂Ω) be distinct points. Let Φ resp.Ψ be the unique maximal
boundary component containing a resp. c. Assume that there exists [ℓ] ∈ D such that both a and c lie
on the boundary circle of the minimal disk Dℓ = ℓ ∩ Ω. Then, there exists g ∈ G0 such that gΣ = Φ,
gΣ′ = Ψ, g(a) = b0 = (1; 0; 0), g(c) = b′0 = (−1; 0; 0).

Proof. Since G0 acts transitively on the set of all minimal disks on Ω, there exists µ ∈ G0 such that
µ(Dℓ) = ν(∆× {0}) =: D0. In terms of privileged Harish-Chandra coordinates we have

∂D0 =
{
(eiθ; 0;w) : θ ∈ R, w ∈ Ω′

}
. (6)
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For θ ∈ R write Σ(θ) = ν
(
{eiθ} × Ω′). Since Σ(θ) is the unique maximal boundary component passing

through (eiθ; 0;w) ∈ ∂D0, we have µ(Φ) = Σ(θ1) and µ(Ψ) = Σ(θ2) such that eiθ1 ̸= eiθ2 . Since
Aut(∆) acts doubly transitively on ∂D0 there exists λ ∈ υ (Aut(∆)× {idΩ′}) such that λ(Σ(θ1)) = Σ
and λ(Σ(θ2)) = Σ′. Thus, writing γ = λ ◦ µ we have γ(Φ) = Σ and γ(Ψ) = Σ′. Since γ(Dℓ) = D0,
we have γ(a) ∈ ∂D0 ∩ Σ so that γ(a) = b0 = (1; 0; 0). Similarly, we have γ(c) ∈ ∂D0 ∩ Σ′ so that
γ(a) = b0 = (−1; 0; 0). Putting g = γ−1, we have established the lemma.

In the notation of Lemma 3.11, define now ξt := gθt,Σg
−1. Then, {ξt}−1<t<1 is a 1-parameter

group of transvections on Ω such that ξt converges as t→ 1 to a holomorphic submersion σ : Ω → Φ.
We may write ξt =: θt,Φ,c and σ =: ρΦ,c, which will be referred to as a Cayley projection. Clearly, ξt
and σ are determined by Φ and the unique boundary component Ψ containing c. We may therefore
also write the Cayley projection as ρΦ,Ψ, and θt,Φ,c as θt,Φ,Ψ, noting that ρΦ = ρΦ,Φ′ .

If u ∈ G0 satisfies uΣ = Σ, uΣ′ = Σ′, then u = υ(η, φ) for some η ∈ H0 and φ ∈ Aut0(Ω
′), where

H0 = {ψt : −1 < t < 1}. We have υ(H0 × {idΩ′}) = H, υ({id∆} ×Aut0(Ω
′)) =: G′

0 and H commutes
with G′

0. Thus for u = υ(η, φ), uθt,Σ,Σ′u−1 = ξθt,Σ,Σ′ξ−1, where ξ = υ(η, idΩ′) ∈ H and θt,Σ,Σ′ ∈ H
so that they commute with each other, and uθt,Σ,Σ′u−1 = θt,Σ,Σ′ . Now if the pair (Φ,Ψ) is given, and
g1, g2 are such that giΣ = Φ, giΣ

′ = Ψ for i = 1, 2, we must have g2 = g1u for some u preserving both
Σ and Σ′ as in the above. Since u preserves θt,Σ,Σ′ for t ∈ (−1, 1), we deduce that θt,Φ,Ψ = gθt,Σ,Σ′g−1

is well-defined independent of the choice of g satisfying gΣ = Σ, gΣ′ = Σ′, hence also the Cayley
projection ρΦ,Ψ : Ω → Φ is well-defined.

Noting that by convention θΣ = θΣ,Σ′ and ρΣ = ρΣ,Σ′ , we have proven

Proposition 3.12. The analogue of Proposition 3.4 remains valid when the pair (b, b′) is replaced by
(a, c), θt,Σ is replaced by θt,Φ,Ψ, and ρΣ : Ω → Σ is replaced by ρΦ,Ψ : Ω → Φ.

We reformulate the requirement on the pair of points (a, c) on Reg(∂Ω) as a property (%) on the
pair (Φ,Ψ) of maximal boundary components, as follows.

(%): There exists some point (a, c) ∈ Φ×Ψ such that a ∈ ∂♭Vc ∩ Φ.

When the pair (Φ,Ψ) of maximal boundary components of Ω satisfies the condition (%), we will simply
say that (Φ,Ψ) is a pair of maximal boundary components for which ρΦ,Ψ can be defined. It will be
shown in §4.4 that the condition (%) is equivalent to the condition Φ ∩Ψ = ∅.

3.3 Admissible limits in relation to Cayley projections

3.3.1 Admissible limits for Bn

We will need the notion of admissible limits in Bn in the sense of Korányi [10, 11] (cf. [30, section
5.4]), which will be recalled as follows.

Definition 3.13. For α > 1 and ξ ∈ ∂Bn, let Dα(ξ) := {z ∈ Bn : |1−⟨z,ξ⟩|
1−|z|2 < α

2 }, where ⟨·, ·⟩ is the

standard Hermitian inner product. Let f be a complex-valued function on Bn. We say that f has an
admissible limit (or boundary value) λ ∈ C∪ {∞} at ξ, or that f converges admissibly to λ at ξ if for
any α > 1 and any sequence {pn} ⊂ Dα(ξ) such that pn → ξ as n→ ∞, we have limpn→ξ f(pn) = λ.

Combining [6] and [10], we have the following generalization of the classical Fatou’s theorem:

Theorem 3.14. Let f be a bounded holomorphic function on Bn. Then f converges admissibly to
some bounded function g ∈ L∞(∂Bn) almost everywhere on ∂Bn

Suppose {ηt} ⊂ Aut(Bn) is a 1-parameter subgroup of transvections. It follows from the theorem of
Cartan (Theorem 3.3 here) and the strong pseudoconvexity of Bn that a subsequence of {ηt} converges
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uniformly on compact subsets to a constant function η : Bn → {ξ} ⊂ ∂Bn. Let p ∈ Bn. We claim
that the trajectory {ηt(p)} lies inside an admissible domain. First note that Dα(ξ) is invariant under
unitary transformations, so we only need to consider the boundary point ξ = e1 := (1, 0, . . . , 0) ∈ ∂Bn

and ηt(z) := ( z1+t1+tz1
,
√
1−t2

1+tz1
z2, . . . ,

√
1−t2

1+tz1
zn), (0 ≤ t < 1), for z = (z1, . . . , zn) ∈ Bn. Write w =

(w1, . . . , wn) = ηt(z). Note that

|1− ⟨w, e1⟩|
1− |w|2

=
|1− w1|
1− |w|2

=
|1 + tz1|
1 + t

|1− z1|
1− |z|2

:= β(t, z1)
|1− z1|
1− |z|2

,

where β is positive continuous on [0, 1]×∆. For each fixed p = (p1, . . . , pn) ∈ Bn, there exists Mp1 > 0
such that β(t, p1) < Mp1 <∞. So

{ηt(p) | 0 ≤ t < 1} ⊂ Dβp(e1), where βp = 2Mp1

|1− p1|
1− |p|2

.

If f is a bounded holomorphic functions, then lim
t→1

η∗t f(z) exists provided that the admissible limit of

f exists at e1. Now for each ξ ∈ ∂Bn, one obtains a corresponding 1-parameter subgroups {ηt,ξ} ⊂
Aut(Bn), for which a convergent subsequence converges to the constant map ηξ : Bn → {ξ}. Theorem
3.14 says that lim

t→1
η∗t,ξf(z) exists for almost all ξ ∈ ∂Bn.

3.3.2 Cayley limits

Let Ω be a bounded symmetric domain of rank r ≥ 2, and (Φ,Ψ) be a pair of maximal boundary
components, by Proposition 3.4 and the paragraph preceding Definition 3.9 we obtain the Cayley pro-
jection lim

t→1
θt,Φ,Ψ = ρΦ,Ψ : Ω → Φ, where {θt,Φ,Ψ} ⊂ Aut(Ω) is a 1-parameter subgroup of transvections.

In analogy to the notion of admissible limits on Bn, we have

Definition 3.15. Let h be a function defined on a bounded symmetric domain Ω of rank r ≥ 2.
Let {θt,Φ,Ψ}−1<t<1 ⊂ Aut(Ω) be the 1-parameter subgroup of transvections as defined in §3.1 so
that lim

t→1
θt,Φ,Ψ = ρΦ,Ψ : Ω → Φ is a Cayley projection. Then, for each point x ∈ Ω, we write

ĥΦ,Ψ(x) := lim
t→1

θ∗t,Φ,Ψh(x) := lim
t→1

h(θt,Φ(x)) if the limit exists, and call it the Cayley limit of h at x

with respect to ρΦ,Ψ. We say that the Cayley limit ĥΦ,Ψ exists on Ω if ĥΦ,Ψ = lim
t→1

θ∗t,Φ,Ψh in the sense

of uniform convergence on compact subsets of Ω.

Recall from §2 that the moduli space of boundary components Φ ⊂ Reg(∂Ω) = Er−1 is of the form
G0/N for some maximal parabolic subgroup N ⊂ G0.

Let (Φ,Ψ) be a pair of maximal boundary components for which ρΦ,Ψ is defined, in which case
(Φ,Ψ) = (gΣ, gΣ′) for some g ∈ G0. As in the description preceding Proposition 3.12, we write
ξt = gθtg

−1 = θt,Φ,Ψ for t ∈ (−1, 1) and for the 1-parameter subgroup {θt}−1<t<1 = Θ ⊂ G0 of
transvections. We have

Lemma 3.16. Fix h ∈ H∞(Ω). Suppose (Φ,Ψ) is a pair of maximal boundary components of Ω for

which ρΦ,Ψ is defined. Writing ∂♭Vc ∩ Φ =: {a(c)} assume that the admissible boundary values h♯a(c),c

and h♯c,a(c) both exist for almost all c ∈ Ψ. Then, for every point c ∈ Ψ the admissible boundary values

h♯a(c),c and h♯c,a(c) both exist. Moreover, ĥΦ,Ψ := lim
t→1

h ◦ ξt exists in the sense of uniform convergence

on compact subsets of Ω, given by ĥΦ,Ψ = ρ∗Φ,ΨsΦ,Ψ, where sΦ,Ψ ∈ H∞(Φ) is given by sΦ,Ψ(a) := h♯a,c,

for ∂♭Vc ∩ Φ = {a}.
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Proof. Since the Cayley projection ρΦ,Ψ can be defined, there exists g ∈ G0 such that (Φ,Ψ) =
(gΣ, gΣ′). Re-coordinatizing Ω by re-labelling g ·z as z, without loss of generality we may assume
(Φ,Ψ) = (Σ,Σ′).

By assumption, for almost all b′(w) = (b′; 0;w) ∈ Σ′, the admissible boundary value h♯b(w),b′(w)
exists. Since any subset of full Lebesgue measure of Ω′ is necessarily dense in Ω′ we can find a dense
sequence of points {wk}0≤k<∞ on Ω′ such that h♯b(wk),b′(wk)

exists for k ∈ N. Fix w ∈ Ω′ and let {zℓ}
be an arbitrary sequence of points on Vb′(w) converging admissibly to b(w). Write zℓ = (z1ℓ ; z

′
ℓ;w) in

privileged Harish-Chandra coordinates.
Let now {wτ(k)} be a subsequence of {wk} such that wτ(k) converges to w. By the standard 3ϵ

argument in the proof of Montel’s theorem involving Cauchy’s estimates for first derivatives, comparing
h(zℓ) = h(z1ℓ ; z

′
ℓ;w) with h(z

1
ℓ ; z

′
ℓ;wτ(k)) we conclude that h(zℓ) is also a Cauchy sequence and hence the

admissible boundary value h♯b(w),b′(w) also exists. It follows that for any admissible sequence of points

(z1ℓ ; z
′
ℓ;w) on Vb′(w), and defining hℓ(w) := h(z1ℓ , z

′
ℓ, w) we must have hℓ(w) converging to sΣ,Σ′(b(w))

for sΣ,Σ′(b(w)) := h♯b(w),b′(w).

Hence, for every point z0 ∈ Ω, and for any sequence tn ∈ (−1, 1) such that tn → 1 we have

lim
t→1

h(θti(z0)) = h♯b(w0),b′(w0)
where b(w0) = (1; 0;w0) = ρΣ,Σ′(z0). For a polydisk ∆n(z0; ϵ) ⋐ Ω, with

polyradii (ϵ, · · · , ϵ), ϵ > 0, expressing the holomorphic function h(θtn(z)) in z for z ∈ ∆n(z0; ϵ) in
terms of the Cauchy integral of its restriction to the distinguished boundary δ∆n(z0; ϵ), by dominated
convergence and by covering Ω by such polydisks with variable ϵ > 0 we conclude that h(θtn(z))
converges uniformly on compact subsets to a bounded holomorphic function of the form ĥΣ,Σ′(z) =

sΣ,Σ′(ρΣ,Σ′(z)), where sΣ,Σ′(b(w)) := h♯b(w),b′(w), implying at the same time that sΣ,Σ′ : Σ → C is a

bounded holomorphic function since sΣ,Σ′(b(w)) = ĥΣ,Σ′(0; 0;w), where b(w) = (1; 0;w) ∈ Σ, b′(w) =
(−1; 0;w) ∈ Σ′. Since the arguments work for any choice of ti → 1, we conclude that lim

t→1
θ∗t h =

ρ∗Σ,Σ;sΣ,Σ′ uniformly on compact subsets of Ω.
Finally, when t → −1 the above arguments show verbatim that h(ξt(z)) converges admissibly to

ρ∗Σ′,ΣsΣ′,Σ(b
′(w)) where sΣ′,Σ(b

′(w)) := h♯b′(w),b(w). The proof of the lemma is complete.

On a metric space (M,d) we say that two curves γi : [0,∞) → M are asymptotically coinci-
dent if and only if the following holds true: As s → ∞, there exists s′ depending on s such that
lim
s→∞

d(γ1(s), γ2(s
′)) = 0, and the same holds with γ1 and γ2 switched.

Given a holomorphic function h on Ω, a pair (Φ,Ψ) of maximal boundary components for which
the Cayley projection ρΦ,Ψ is defined, and given a ∈ ∂♭Vc, c ∈ Σ′, in principle the admissible boundary

value h♯a,c of h|Vc at a depends on Ψ. From estimates on intrinsic metrics we have nonetheless the
following result.

Proposition 3.17. Let [Φ] ∈ G0/N , and [Ψ1], [Ψ2] ∈ G0/N − {[Φ]} for which Cayley projections
ρi := ρΦ,Ψi, i = 1, 2, are defined. Suppose a ∈ Φ and ci ∈ Ψi for i = 1, 2. Assume that, for i = 1, 2,
lim
k→∞

ξ∗t h exists for all sequences {xk}0≤k<∞ on Vci converging admissibly to a, and denote the common

limit (for i fixed) by h♯a,ci(b). Then, h♯a,c1 = h♯a,c2. As a consequence, in the conclusion of Lemma 3.16
we have lim

t→1
θ∗t h = ρ∗Φ,ΨsΦ for sΦ ∈ H∞(Φ) independent of the choice of Ψ.

Proof. For i = 1, 2 we have in particular lim
t→1

h(θt,Φ,Ψi(0)) = h♯a,ci . There is a unique minimal rational

curve ℓi belonging to Da such that ci ∈ ℓi. Write Di := Dℓi = ℓi ∩ Ω. Writing γi(s) := θt(s),Φ,Ψi
(0),

where the geodesic distance between 0 and t(s) on the unit disk ∆ endowed with the Poincaré metric is
equal to s. Then, γi : [0,∞) → Ω is a geodesic ray parametrized by arc length such that lim

s→∞
γi(s) = a.

Denote by dΩ the distance function on (Ω, gΩ). We claim the validity of the following statement (♭).
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(♭): The two geodesic rays γ1 and γ2 are asymptotically coincident.

By Theorem 3.6 and Proposition 3.7, we have a biholomorphism θ : Va
∼=−→ Bp+1 which extends

to a continuous mapping θ† : Va → Bp+1. Moreover, θ†|Di
extends to a biholomorphism from ℓi

to the minimal rational curve Λi ⊂ Pp+1 containing ∆i such that, assuming Ψ1 ̸= Ψ2, we have
∆1 ∩∆2 = {u} for some point u ∈ ∂Bp+1. Denote by dVa the distance function on Va with respect to

gΩ|Va , and by δ the distance function on
(
Bp+1, gp+1

)
. Since θ : Va

∼=−→ Bp+1, for x, y ∈ Va we have
dΩ(x, y) ≤ dVa(x, y) = δ(θ(x), θ(y)). Thus, to prove the claim (♭) it suffices to show the validity of (♯),
as follows.

(♯): For any point u ∈ ∂Bp+1, any 2 geodesic rays µi : [0,∞) → Bp+1, i = 1, 2, converging to u must
be asymptotically coincident.

Note that µi must lie on a unique minimal disk ∆i.
Any two geodesic rays ν and ν ′ on the upper half plane H converging to some point p ∈ ∂H must be

tangent to each other at p. Given that on H the Poincaré metric is given by ds2H := 1
2Im(τ)2

Re(dτ⊗dτ),
it follows readily that ν and ν ′ are asymptotically coincident. Thus to prove the claim (♯), it suffices
to prove its validity for specific choices of geodesic rays µi : [0,∞) → ∆i.

The real unit ball Bp+1
R = Bp+1 ∩ Rp+1 is the fixed point set of the isometry with respect to(

Bp+1, gp+1

)
defined by z 7→ z, and it is thus a totally geodesic submanifold. We may assume u = e1 :=

(1, 0, · · · , 0) ∈ ∂Bp+1
R , and that, writing Πi for the complex affine line containing ∆i we have Π1 = Ce1,

Tu(Π2) = C(1, β2, · · · , βp+1). Applying a unitary transformation in the variables (z2, · · · , zp+1) we may
assume that (β2, · · · , βp+1) ∈ Rp.

Now for i = 1, 2 the intersection Li := ∆i ∩ Rp+1 of two totally geodesic submanifolds is a totally
geodesic curve on

(
Bp+1, gp+1

)
. As a set Li is an open line segment on Rp+1. Choose now the geodesic

rays µi : [0,∞) → Bp+1 such that µi([0,∞)) ⊂ ℓi ⊂ Bp+1
R and such that lim

s→∞
µi(s) = e1. On Bp+1

R we

have gp+1

∣∣
Bp+1
R

= 2
1−r2dσ

2
p +

2
(1−r2)2dr

2 in terms of spherical coordinates, where dσ2p is the spherical

metric on the unit sphere Sp = ∂Bp+1
R . For ϵ sufficient small ℓi ∩ ∂Bp+1

R (0; 1 − ϵ) is a unique point

xi(ϵ). There is a smooth curve λ(ϵ) joining x1(ϵ) to x2(ϵ) on the sphere ∂Bp+1
R (0; 1 − ϵ) such that

λ(ϵ) is of Euclidean length ≤ Cϵ for some fixed C > 0. On the other hand, since the restriction
of gp+1 to the sphere ∂Bp+1

R (0; 1 − ϵ) is given by 2
1−r2dσ

2
p for some constant C ′ > 0, we must have

Length (λ(ϵ); gp+1) ≤ C ′ ϵ√
ϵ
= C ′√ϵ→ 0 as ϵ→ 0, from which it follows that for 0 ≤ s <∞ there exists

s′ such that d(µ1(s), µ2(s
′)) → 0 as s → ∞, and the same is true when µ1 and µ2 are interchanged.

Hence, µ1 and µ2 are asymptotically coincident on Bp+1, proving the claim (♯).

We proceed now to deduce that the admissible boundary values h♯a,c1 = h♯a,c2 . We have h(γi(t)) →
h♯a,ci(b) for i = 1, 2 by assumption. As s→ ∞ choose now s′ depending on s so that dΩ(γ1(s), γ2(s

′)) =
ϵ(s) → 0 as s → ∞. Writing Γs : [0, ϵ(s)] → Ω for the geodesic curve parametrized by arc length
joining γ1(s) to γ2(s

′), for some constant C > 0 we have

h(γ2(s
′))− h(γ1(s)) =

∫ ϵ(s)

0
dh, hence

|h(γ2(s′))− h(γ1(s))| ≤ ϵ(s)sup
{
|dh(Γ′

s(t))| : t ∈ [0, ϵs
]
} ≤ C1ϵ(s) → 0

(7)

as s → ∞, where we have |dh(Γ′
s(t)| ≤ C1 for some C1 > 0 as a consequence of the Schwarz lemma

applied to the map h : (Ω, gΩ) →
(
∆(R); g∆(R)

)
assuming h(Ω) ⊂ ∆(R), and g∆(R) is the Poincaré

metric on ∆(R) of constant Gaussian curvature −2. From the choice of s′ clearly s′ → ∞ as s → ∞.

Hence from (7), we have h♯a,c1 = h♯a,c2 . Taking a ∈ Φ such that a ∈ ∂♭Vc1 ∩∂♭Vc2 . From sΦ,Ψi(a) = h♯a,ci
for a ∈ ∂♭Vci , i = 1, 2, and h♯a,c1 = h♯a,c2 whenever both admissible boundary values at a exists, it follows
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readily that sΦ,Ψ1 = sΦ,Ψ2 as holomorphic functions on Φ, and we may write sΦ := sΦ,Ψ1 = sΦ,Ψ1 as
given in the proposition, as desired. The proof of Proposition 3.17 is complete.

Remark 3.18. Although Proposition 3.17 is not needed for the proof of Theorem 1.1, we deem it
interesting to include the statement and its proof for its intrinsic value. It also serves to justify the
notation sΦ in place of sΦ,Ψ.

4 Parametrizing S1-families of Cayley Projections

4.1 The universal space

In order to parametrize all Cayley projections we consider first of all the set of all varieties Vc swept
out by minimal disks with vertices at c ∈ Reg(∂Ω). For a set A we write D(A) := {(a, a) : a ∈ A} for
the diagonal of A×A. Let

S := {(a, c) | c ∈ ∂♭Va − {a}} ⊂ Reg(∂Ω)× Reg(∂Ω)−D(Reg(∂Ω)).

Recall from §2 that the G0-orbit consisting of all rank r − 1 boundary components is exactly Er−1 =
Reg(∂Ω). Any boundary component of rank r − 1 is biholomorphic to a fixed irreducible bounded
symmetric domain Ω′ of rank r − 1. Such boundary components will also be referred to as maximal
boundary components of Ω. The moduli space of maximal boundary components Φ ⊂ Reg(∂Ω) is a
compact G0-homogeneous manifold, hence there is a maximal parabolic subgroup N ⊂ G0 such that
we have the fibration

π : Reg(∂Ω) → G0/N, π−1(gN) ∼= Ω′. (8)

Note that the fiber dimension of π is equal to dim(Ω′) = 2q, so that dim(G0/N) = dim(Reg(∂Ω)) −
dim(Ω′) = (2n− 1)− 2q = (2(p+ q + 1)− 2q = 2p+ 1. Here and in what follows “dim” means dimR.

Using the projection of the second factor in S, we get the following fibration:

π2 : S → Reg(∂Ω), π−1
2 (c) = ∂♭Vc ∼= ∂Bp+1 − {u}, u ∈ ∂Bp+1, (9)

where the latter isomorphism is a CR diffeomorphism between strictly pseudoconvex CR manifolds,
cf. Proposition 3.7. Note that a ∈ ∂♭Vc if and only if a and c lie on the boundary of a minimal disk
Dℓ = Ω ∩ ℓ belonging to D , hence it follows that a ∈ ∂♭Vc if and only if c ∈ ∂♭Va.

We have dim(S) = dim(Reg(∂Ω)) + dim(∂Bp+1) = (2n − 1) + (2p + 1) = 2n + 2p. On the other
hand we have a projection σ : S → G0/N defined by σ(a, c) = [Φ] ∈ G0/N where Φ ⊂ Reg(∂Ω) is the
unique maximal boundary component containing a. We have σ−1([Φ]) = {(a, c) : a ∈ Φ∩∂♭Vc}, hence
the fiber dimension of σ is 2q+2p+1, since for every c ∈ ∂♭Va we have a ∈ ∂♭Vc. The base dimension
of σ is dim(G0/N) = dim(S) − (2q + 2p + 1) = (2n + 2p) − (2q + 2p + 1) = 2(n − q) + 1 = 2p + 1,
which coincides with the computation of dim(G0/N) obtained using π : Reg → G0/N .

Let h be a bounded holomorphic function on Ω. For a point (a, c) ∈ S. Let Φ resp.Ψ be the unique

maximal boundary component containing a resp. c. From Proposition 3.7, we have θ♯ : Vc
∐
∂♭Vc

∼=−→
Bp+1−{u} for some point u ∈ ∂Bp+1. We consider the restriction of h to Vc, and we write h♯a,c = λ ∈ C
to mean that (θ−1)∗h has an admissible boundary value equal to λ at the point θ♯(b) ∈ ∂Bp+1 − {u}.
Given (a, c) ∈ S, for any point x ∈ Vc, ρΦ,Ψ(x) converges to a admissibly, hence lim

t→1
θt,Φ,Ψ(x) = h♯a,c.

Define now E ⊂ S to be the subset consisting of points (a, c) such that h♯a,c does not exist. By
Fatou’s theorem for the complex unit ball (Theorem 3.14 here), we know that E ∩ ∂♭Vc is a null set,
i.e., it is of zero measure with respect to any smooth volume form on ∂♭Vc. Provided that E is proven
to be a measurable set, we can apply Fubini’s theorem to π2 : S → Reg(∂Ω) to conclude that E ⊂ S is
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a null set. Applying the latter statement to the fibration σ : S → G0/N , we conclude that E∩σ−1([Φ])
is a null set on Φ for almost every [Φ] ∈ G0/N .

We will next give a general discussion on null sets in relation to a double fibration on a smooth
manifold, and then give a proof of the measurability of E in order to obtain admissible boundary
values on almost every maximal boundary component on Reg(∂Ω).

4.2 Null sets on the total space of a double fibration

Definition 4.1. Let M be a smooth manifold and E ⊂M . We say that E is a measurable subset of
M if and only if it is measurable with respect to some smooth (hence any) smooth volume form dµ on
M . E ⊂M is said to be a null set on M if and only if E ⊂M is measurable and Volume(E, dVh) = 0
for some (hence any) Riemannian metric h on M . A statement is said to hold true almost everywhere
on M if and only if it holds true for all points x ∈M lying outside some null set on M .

We have the following lemma concerning null sets on the total space of a double fibration which
follows readily from Fubini’s theorem.

Lemma 4.2. Let P be a smooth manifold which is the total space of a double locally trivial smooth
fibration πi : P → Bi, i = 1, 2. For bi ∈ Bi write F

i
bi

:= π−1
i (bi). Suppose E ⊂ P is a measurable

subset. Assume that for almost every base point b1 ∈ B1, E ∩F 1
b1

is a null set. Then, for almost every
base point b2 ∈ B2, E ∩ F 2

b2
⊂ F 2

b2
is a null set.

4.3 Measurability of the set of boundary points having admissible limits

Recall the double fibration π2 : S → Reg(∂Ω) and σ : S → G0/N , for which we have defined in §4.1 a
subset E ⊂ S ⊂ Reg(∂Ω)× Reg(∂Ω)−D(Reg(∂Ω)) in terms of nonexistence of admissible boundary
values of h.

Fix an arbitrary point u ∈ ∂Bp+1. For π2 : S → Reg(∂Ω), the fiber π−1
2 (c) = ∂♭Vc ∼= ∂Bp+1 − {u}.

When c ∈ Reg(∂Ω) is fixed we have by Proposition 3.7 a biholomorphism θ♯ : W
∼=−→ U , where

W ⊃ Vc
∐
∂♭Vc, U ⊃ Bp+1 − {u}. Write θ♭ := θ♯|Vc ∐ ∂♭Vc

: Vc
∐
∂♭Vc → Bp+1 − {u}, which extends

the biholomorphism θ : Vc
∼=−→ Bp+1. θ (and hence θ♭) is uniquely determined up to composition on

the left by an element ξ ∈ G′
0 = Aut(Bp+1) ↪→ Aut(Pp+1), where ξ(u) = u. Let Q ⊂ G′

0 be the
isotropy subgroup at u, so that G′

0/Q
∼= ∂Bp+1. By Proposition 3.7, θ♭ admits a continuous extension

θ† : V
∼=−→ Bp+1. Vary c over Reg(∂Ω) and write Hc for the set of biholomorphisms ηc : Vc

∼=−→ Bp+1

such that η†(c) = u (where we use the same convention for extensions of ηc as we did for θ =: θc),
then for c1, c2 ∈ Reg(∂Ω) we have Hc2 = g∗21Hc1 for some g21 ∈ G′

0. Defining H := {(c, η) : η ∈ Hc}, it
follows readily that the canonical projection onto the first factor τ : H → Reg(∂Ω) defines naturally
on H the structure of a real analytic locally trivial fiber bundle with fibers isomorphic to the space of
biholomorphisms from Vb0 to Bp+1 whose continuous extension to Vb0 maps b0 to u.

DefiningB := {(x, c) ∈ Ω× S : c ∈ Reg(∂Ω), x ∈ Vc}, we write λ : B → Reg(∂Ω) for the projection
to the second Cartesian factor of Ω× S. If for each c ∈ Reg(∂Ω) we choose on some neighborhood Oc

of c in Reg(∂Ω) a real analytic section of τ : H → Reg(∂Ω) over Oc, then we obtain a trivialization
over Oc of λ : B → Reg(∂Ω) as Bp+1 × Oc, hence λ : B → Reg(∂Ω) is a real analytic locally trivial
fiber bundle with fibers isomorphic to Bp+1. Considering the typical fiber of λ as Bp+1 ⊂ Pp+1, we
have an associated real analytic fiber bundle µ : P → Reg(∂Ω) with typical fiber ∼= Pp+1, P ⊃ B,
and δ : ∂B → Reg(∂Ω) with typical fiber ∼= ∂Bp+1, ∂B being the boundary of B in P. Since the
subgroup Q ⊂ G′

0 = Aut(Bp+1) fixes u, the fiber bundle δ : ∂B → Reg(∂Ω) admits a canonical section
σ : Reg(∂Ω) → ∂B defined by setting σ(c) to be the point in ∂(λ−1(c)) corresponding to the point
u fixed by Q, and π2 : S → Reg(∂Ω) can be realized as an open subset of δ : ∂B → Reg(∂Ω) by
removing the the image of σ.
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Note that on [0, 1] × [0, 1] there exists a non-measurable subset Σ such that Σ ∩ {t} × [0, 1] is of
zero Lebesgue measure (cf. Sierpiński [32]). In order to apply Lemma 4.2 to our situation of E ⊂ S,
for lack of a proper reference we proceed to prove the a priori measurability of E and hence that it is
a null set. Consider the complex unit ball Bm, m ≥ 1. We give a proof of the measurability of the set
where admissible limits exist, not just for a single bounded holomorphic function, but for a family of
such functions, as follows.

For notational convenience, in the following lemma, given a bounded measurable function h on Bm
and ξ ∈ ∂Bm, the admissible limit lim{h(x) : x → ξ admissibly} will be denoted by h♯(ξ) in place of

h♯ξ.

Lemma 4.3. Let U ⊂ Bs be a connected open set and h : U×Bm → C be a bounded continuous function
such that h|{u}×Bm : Bm → C is a holomorphic function. For (u, x) ∈ U × Bm write hu(x) := h(u, x).

Define A :=
{
(u, ξ) ∈ U × ∂Bm : h♯u(ξ) exists

}
. Then, A ⊂ U × ∂Bm is a measurable subset. As a

consequence, E := (U × ∂Bm)−A is a null set on U × ∂Bm.

Proof. We will prove the measurability of A ⊂ U × Bm assuming only that h : U × Bm → C is a
bounded continuous function. Fix ξ0 ∈ ∂Bm. For a continuous function f on Bm, σ ∈ U(m + 1)
and ξ ∈ ∂Bm, f converges admissibly at σ(ξ0) if and only if f ◦ σ converges admissibly at ξ0. For
ξ ∈ ∂Bm choose a locally closed (2m−1)-dimensional smooth submanifold Σ ⊂ U(m+1) diffeomorphic
to a Euclidean domain such that the mapping U(m + 1) → ∂Bm defined by σ 7→ σ(ξ0) maps Σ
diffeomorphically onto a neighborhood of ξ on ∂Bm. Thus, replacing h by h′ : (U × Σ) × Bm → C
defined by h′((u, σ), x) = h(u, σ(x)), to prove the measurability of A ∈ U × ∂Bm it is sufficient to
prove that the set A′ of all points where h′u′ : B

m → C converges admissibly at ξ0, u
′ = (u, σ), is a

measurable subset of U ′ = U × Σ. We will now change notations so that U, h, u will mean U ′, h′, u′

respectively and the problem is reduced to proving that the set A′ ⊂ U where hu : Bm → C converges
admissibly at ξ0 is a measurable subset of U .

Recall that hu : Bm → C converges admissibly at ξ0 to c if and only if for any α > 1 and
for any sequence of points {yℓ}0≤ℓ<∞ on Dα(ξ0) converging to ξ0 we have lim

ℓ→∞
h(u, yℓ) = c. Take

ξ0 = (1, 0, · · · , 0). Let {xk}0≤k<∞ be a dense sequence of points on Bm. Fix α > 1. For each positive

integer n define Dn
α(ξ0) =

{
z = (z1, · · · , zm) ∈ Dα(ξ0) : |z1 − 1| < 1

n

}
. Define now sβn : U → R by

sβn(u) = sup{|h(u, xk)− h(u, xℓ)| : xk, xℓ ∈ Dn
α(ξ0)}. When n is fixed, sαn(u) is the limit of a bounded

non-decreasing sequence of nonnegative continuous functions, hence the monotone pointwise limit
sαn(u) must be bounded and measurable. As n → ∞, sαn(u) is non-increasing, and the monotone

pointwise limit sα(u) = lim
n→∞

sβn(x) ≥ 0 exists as a bounded measurable function on U . Now sα(u) = 0

if and only if h(u, xk) is a Cauchy sequence, i.e., if and only if lim
k→∞

h(u, xk) =: h♯(u) exists. Since hu

is continuous, by the density of {xk}0≤k<∞ in Ω it follows that for any sequence {yℓ}0≤ℓ<∞ lying on
Dα(ξ0), we have lim

ℓ→∞
h(u, yℓ) = h♯(u). Define A′

α ⊂ U to be the zero set of sα : U → R. It follows

that A′ =
⋂{

A′
βk

}
for any increasing sequence of real numbers βk diverging to ∞, hence A′ ⊂ U is a

measurable subset.
In the setting of the lemma we have proven that A ⊂ U × ∂Bm is measurable for any bounded

continuous function h on U × Bm, hence also its complement E in U × Bm is measurable. When hu
is holomorphic on Bm for each u ∈ U , by Theorem 3.14 the set E ∩ ({u} × Bm) is of zero Lebesgue
measure. Applying Fubini’s theorem to the characteristic function χE we deduce that E ⊂ U ×Bm is
of zero Lebesgue measure, proving the lemma.

Recall that h ∈ H∞(Ω) is given, and E ⊂ S ⊂ Reg(∂Ω)×Reg(∂Ω)−D(Reg(∂Ω) is the subset of all

(a, c) ∈ S such that h♯a,c does not exist. We will write Sadm(h) := {(a, c) ∈ S such that h♯a,c exists} =
S − E.
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We define s : S → S by s(a, c) := (c, a), and for a subset A ⊂ S we write A′ = A ∩ s(A). Observe
that A′ ⊂ S is of full measure whenever A ⊂ S is of full measure. In particular, (Sadm(h))

′ ⊂ S is of
full measure. For notational convenience we will write S ′

adm(h) for (Sadm(h))
′.

Define G0,adm(h) ⊂ G0 to consist of all elements g ∈ G0 such that (g ·b0, g ·b′0) ∈ Sadm(h). Writing
τ : G× S → S for the action of G0 on S, and τa,c(g) := (g · a, g · c), then G0,adm(h) = τ−1

b0,b′0
(Sadm(h))

for the reference pair of points (b0, b
′
0) ∈ S. Since G0 act transitively on S, τb0,b′0 : G0 → S is a locally

trivial smooth fibration. Since Sadm(h) ⊂ S is of full measure, by Fubini’s theorem G0,adm(h) ⊂ G0 is
also of full measure. We also write G′

0,adm(h) := τ−1
b0,b′0

(S ′
adm(h)), and again G′

0,adm(h) ⊂ G0 is of full

measure for the same reason.

4.4 Regular pairs of maximal boundary components

We say that the pair (Φ,Ψ) ∈ G0/N ×G0/N is a regular pair (of maximal boundary components) if
and only if the condition (%) after Proposition 3.12 is satisfied, equivalently, that for some c0 ∈ Ψ,
∂♭Vc0 ∩Φ ̸= ∅. By Lemma 3.11, this happens if and only if there exists g ∈ G0 such that gΦ = Σ and
gΨ = Σ′, implying that (Φ,Ψ) is a regular pair if and only if (Ψ,Φ) is a regular pair. Moreover, (Φ,Ψ)
is a regular pair if and only if for any point c ∈ Ψ, ∂♭Vc ∩ Φ = {a(c)} for a unique point a(c) ∈ Φ.
Denote by

C ⊂ G0/N ×G0/N

the set of regular pairs (Φ,Ψ) of maximal boundary components, and write E := (G0/N ×G0/N)−C .
In what follows we will refer to a maximal boundary component Φ as [Φ] when it is necessary to
think of the maximal boundary component as a point (an element) in the moduli space G0/N of
such objects, and when we adopt set-theoretical notations such as in the statement “[Φ] ∈ G0/N”.
The same notational convention has been and will be applied to objects in moduli spaces that we
encountered throughout the article. We have

Lemma 4.4. G0 acts transitively on C by α(g, ([Φ], [Ψ])) = ([gΦ], [gΨ])). Moreover, a pair (Φ,Ψ) of
maximal boundary components on ∂Ω is a regular pair if and only if Φ ∩ Ψ = ∅. As a consequence,
E ⊊ G0/N ×G0/N is a proper (real) algebraic subset. In particular C is an open (and dense) subset
in G0/N ×G0/N of full measure.

Proof. (Φ,Ψ) is a regular pair of maximal boundary components on ∂Ω if and only if there exists
g ∈ G0 such that (gΦ, gΨ) = (Σ,Σ′), hence by definition G0 acts transitively on C . Moreover, for a
pair (Φ,Ψ) we have Φ ∩Ψ = g−1(Σ ∩ Σ′) = ∅.

Conversely, suppose Φ ∩ Ψ = ∅. Let c ∈ Ψ and denote by {xk}0≤k<∞ a sequence of points on Ω
such that xk → c as k → ∞. By Proposition 3.4 there is a unique point ak ∈ Φ such that xk and ak
lie on some minimal rational curve ℓk on the Hermitian symmetric space S dual to Ω, Ω ⊂ S being
the Borel embedding. Passing to a subsequence if necessary we may assume that xk → c, ak → a ∈ Φ
and ℓk converges in K to some minimal rational curve ℓ passing through c and a.

Suppose ℓ∩Ω ̸= ∅. Pick x ∈ ℓ∩Ω. Noting that for any minimal rational curve Λ passing through
0, Λ∩ ∂Ω ⊂ Reg(∂Ω), as can be seen from Λ∩Ω ⊂ Bn(0; 1), and noting also that G0 acts transitively
on Ω, we conclude that ℓ ∩ Ω ̸= ∅ implies

a ∈ Φ ∩ Reg(∂Ω) = Φ,

so that (Φ,Ψ) belongs to C . If however ℓ∩Ω = ∅, then the germ of ℓ at c must lie on Reg(∂Ω). Since
the germ of any holomorphic curve through c lying on Reg(∂Ω) must lie on the maximal boundary
component passing through c, hence ℓ ∩ Ω must be a closed disk lying on Φ, and it follows that
a ∈ Φ ∩ Ψ, contradicting with the hypothesis Φ ∩ Ψ = ∅, and we conclude that Φ ∩ Ψ = ∅ implies
(Φ,Ψ) is a regular pair of maximal boundary components.

19



For the last statement, with respect to the Borel embedding Ω ⊂ S into the compact dual S of
Ω, write SΦ ⊃ Φ resp. SΨ ⊃ Φ for the Zariski closure of Φ resp.Ψ in S. Then, Φ ⊂ SΦ and Ψ ⊂ SΨ
are Borel embeddings. If (Φ,Ψ) is a regular pair, then SΦ ∩ SΨ = ∅ as can be seen in the case
(Φ,Ψ) = (Σ,Σ′), given the embedding P1 × SΣ ⊂ S, ∆ × Ω ⊂ P1 × SΣ being the Borel embedding.
Denote by Q the irreducible component of the Chow space Chow(S) to which the cycle [SΣ] belongs.
Then we have the embedding β : G0/N ↪→ Q as a closed (real) algebraic submanifold defined by
β([Φ]) := [SΦ] ∈ Q. Let B ⊂ Q × Q be the subset consisting of pairs of cycles (W,Z) such that
W ∩ Z ̸= ∅. Then, ([W ], [Z]) ∈ B if and only if there exists a point in (W × Z) ∩ D(Q), hence by
the proper mapping theorem and the fact that C is nonempty, B ⊂ Q × Q is a proper algebraic
subset, and E = β−1(β(G0/N × G0/N) ∩ B) is a proper algebraic subset of G0/N × G0/N , hence
E ⊂ G0/N × G0/N is a closed null set, and C ⊂ G0/N × G0/N is an open subset of full measure,
hence also a dense subset, as desired. The proof of Lemma 4.4 is complete.

4.5 Special product subspaces equipped with distinguished sections

Definition 4.5. Write P0 = ν(∆×Ω′) ⊂ Ω. A submanifold P ⊂ Ω is called a special product subspace
in Ω if and only if P = gP0 for some g ∈ G0.

Since G0 acts transitively on C , given any pair (Φ,Ψ) belonging to C there exists g ∈ G0 such
that gΣ = Φ and gΣ′ = Ψ.

Write ∂†P0 := ν(∂∆ × Ω′) ⊂ ∂P0, and for P = gP0 write ∂†P := g(∂†P0). We also write
P = P (Φ,Ψ) for the special product subspace of Ω corresponding to ([Φ], [Ψ]) ∈ C . Considering the
case where (Φ,Ψ) = (Σ,Σ′), we have

Lemma 4.6. Let u ∈ G0 be such that uΣ = Σ and uΣ′ = Σ′. Then uP0 = P0.

Proof. For any point b(w) = (1; 0;w) ∈ Σ, its opposite point with respect to 0 is b′(w) = (−1; 0;w),
and we have ∂♭Vb(w)∩Σ′ = b′(w), ∂♭Vb′(w)∩Σ = b(w). For w ∈ Ω′ denote by Λ(w) = (−1, 1)×{0}×{w}
the unique geodesic curve lying on a minimal disk having boundary points b(w) and b′(w). For w ∈ Ω′,
g(D(w)) must be a minimal disk having u(b(w)) =: b(w̃1) and u(b

′(w)) = b′(w̃2) in its closure. Thus,
b′(w̃2) ∈ ∂♭Vb(w̃1) and we must have w̃2 = w̃1 =: w̃, hence u(Λ(w)) = Λ(w̃) and by complexification
u(D(w)) = u(D(w̃)) so that u(P0) = P0, as desired.

Suppose giΣ = Φ and giΣ
′ = Ψ for i = 1, 2. Then g2 = g1u for some u ∈ G0 such that u

restricts to an automorphism on P0, and such that u(1; 0;w) = (1; 0; w̃) and u(−1; 0;w) = (−1; 0; w̃),
where w̃ = φ(w) for some φ ∈ Aut(Ω′). Any automorphism σ of P0 satisfying σ(1, w) = (1, φ(w)) and
σ(−1, w) = (−1, φ(w)) must be of the form σ(z1;w) = (σ1(z1), σ2(w)), and it follows that u(z1; 0;w) =
(ηt(z1), 0;φ(w)) for the transvection ηt(z1) =

z1+t
1+tz1

for some t ∈ (−1, 1).
For the reference pair of regular maximal components (Σ,Σ′), and the associated special product

subspace P0 = ν(∆ × Ω′), noting that Σ,Σ′ ⊂ ∂∆ × Ω ⊂ ∂†P0, we define an accompanying subset
SP0;Ω′

0
:= {(bθ(w), b′θ(w)) : θ ∈ R, w ∈ Ω′} ⊂ S. The natural projection ε : SP0;Ω′

0
→ D(Ω′) realizes

SP0;Ω′
0
as a trivial S1-bundle, and we may regard SP0;Ω′

0
as a Cartesian product S0 × D(Ω′) where

S0 ⊂ ∂∆× ∂∆ is defined as S0 = {(eiθ,−eiθ) : θ ∈ R}.
In general, given any pair (P,Z) consisting of a special product subspace P ⊂ Ω and a distinguished

section Z ⊂ P , there exists g ∈ G0 such that gP0 = P and gΩ′
0 = Z. Now, if the latter equalities

are satisfied for both g = g1 and g = g2, then g2 = g1u for some group element u ∈ G0 such that
uP0 = uP0 and uΩ′

0 = Ω′
0. Clearly, any such element u ∈ G0 must satisfy u(z1; 0;w) = (eiθz1; 0;φ(w))

for some θ ∈ R and some φ ∈ Aut(Ω′) =: G′
0. Since SP0,Ω′

0
is invariant under any such group element

u ∈ S1 × G′
0, the subset SP,Z := gSP0,Ω′

0
= {(g · x, g · y) : (x, y) ∈ SP0,Ω′

0
} is independent of the

particular choice of g ∈ G0 satisfying gP0 = P and gΩ′
0 = Z. This gives a uniquely defined subset

SP,Z ⊂ S. The latter subset will now be used to prove the following lemma.
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Lemma 4.7. Fix h ∈ H∞(Ω). Then, for almost all g ∈ G0 the following holds true. For almost all
θ ∈ R, both (gΣ(θ), gΣ′(θ)) and (gΣ′(θ), gΣ(θ)) are regular pairs of h-admissible maximal boundary
components.

Proof. Let M be the moduli space of all special product subspaces P ⊂ Ω. Fix the reference special
product subspace P0 = P (Σ,Σ′), and denote by R ⊂ G0 the stabilizer subgroup of P0. Then, M =

G0/R as a homogeneous space. Let M̃ be the moduli space of pairs (P,Z), where Z ⊂ P is a
distinguished section, and denote by R̃ ⊂ R ⊂ G0 the subgroup of all P0-stabilizing automorphisms
fixing Ω′

0 ⊂ P0 (as a set). We have R̃ = S1 ×G′
0.

Writing SP0,Ω′
0
= {((eiθ; 0;w), (−eiθ; 0;w) : θ ∈ R, w ∈ Ω′}. When (P,Z) = (gP0, gΩ

′
0), we define

SP,Z := {(g ·b, g · b′) : (b, b′) ∈ SP0,Ω′
0
. If g′ ∈ G0 also satisfies (P,Z) = (g′P0, g

′Ω′
0), then g

′ = gu for

some u ∈ G0 preserving P0 such that uΩ′
0 = Ω′

0, implying that u(z1; 0;w) = (eiθz1; 0;φ(w)) for some
θ ∈ R and some φ ∈ G′

0, and it follows readily that u preserves SP0,Ω′
0
. It follows that SP,Z is well

defined independent of the choice of g ∈ G0 satisfying (P,Z) = (gP0, gΩ
′
0)

To each (P,Z) belonging to M̃ we associate now the subset SP,Z ⊂ S as defined. Since g ∈ G0

fixes both P0 and Ω′
0 if and only if it fixes SP0,Ω′

0
, M̃ also serves as the moduli space of SP,Z ⊂ S.

Consider the universal family χ : P → M̃ of M̃, P ⊂ S × M̃, as a moduli space in the latter
sense, and denote by µ : P → S the associated evaluation map. We apply Lemma 4.2 to the total
space P of a double fibration. Define P ′

adm(h) := µ−1(S ′
adm(h)). By Fubini’s theorem, P ′

adm(h) is of

full measure in P. By Fubini’s theorem again for almost all SP,Z belonging to M̃, SP,Z ∩ P ′
adm(h)

is of full measure in SP,Z . Write M̃′
adm(h ⊂ M̃ for the subset consisting of all [SP,Z ] ∈ M̃ such that

χ−1([SP,Z ]) ∩ P ′
adm(h) is of full measure. Then, M̃′

adm(h) ⊂ M̃ is of full measure. For each member

[SP,Z ] ∈ M̃, SP,Z ∩ S ′
adm(h) is of full measure in SP,Z if and only if [SP,Z ] ∈ M̃′

adm(h).

Finally R̃ = S1×G′
0 acts transitively on SP0,Ω′

0
, G0 acts transitively on P. Consider the reference

point (b0, b
′
0) ∈ SP0,Ω′

0
. Suppose u ∈ G0 fixes each of P0, Ω

′
0 ⊂ P0 and (b, b′) ∈ SP0,Ω′

0
, then u(z1; 0;w) =

(eiθ0z1; 0;u
′(w)) ∈ R̃ = S1×G′

0 for some θ0 ∈ R and u′ ∈ G′
0, and it satisfies u(b0) = b0 and u(b

′
0) = b′0,

forcing eiθ0 = 1. It follows that P = G0/K
′, where K ′ is the isotropy subgroup of G′

0
∼= Aut(Ω′) at

0 ∈ Ω′
0.

Denote by ω : G0 → G0/K
′ the canonical projection, and write G♯0,adm(h) := ω−1(P ′

adm(h)).

Then, by Fubini’s Theorem G♯0,adm(h) ⊂ G0 is of full measure, as desired. The proof of Lemma 4.7 is
complete.

Remark 4.8. We could define Padm(h) = µ−1(Sadm(h)) and define Madm(h) by replacing P ′
adm(h)

in the definition M′
adm(h) by Padm(h), but only the symmetrized versions P ′

adm(h) and M′
adm(h)

are needed in the article.

Recall that given ([Φ], [Ψ]) ∈ C we have the special product subspace P (Φ,Ψ) consisting of mini-
mal disks D(w) parametrized by w ∈ Ω′ and the subset Λ(Φ,Ψ) ⊂ P (Φ,Ψ) consisting of geodesic
curves Λ(w) on D(w) with the two limit points lying on Φ resp.Ψ. Consider triples (Φ,Ψ, Z)
where (Φ,Ψ) is a regular pair of maximal boundary components and Z is a distinguished section

of P (Φ,Ψ) lying on Λ(Φ,Ψ). The moduli space C̃ of triples (Φ,Ψ, Z) is related to M̃, as follows.

For each triple (Φ,Ψ, Z) belonging to C̃ we can associate the pair (P (Φ,Ψ), Z) belonging to M̃,
written ([P (Φ,Ψ)], [Z]) = α([Φ], [Ψ], [Z]). Writing (Φ,Ψ, Z) = (gΣ, gΣ′, gΩ′

0), we have an S1-family
of triples (gΣ(θ), gΣ′(θ), gΩ′

0), θ ∈ R, and we have α([Φ′], [Ψ′], [Z ′]) = ([P (Φ,Ψ)], [Z]) if and only if

(Φ′,Ψ′, Z ′) = (gΣ(θ), gΣ′(θ), gΩ′
0) for some θ ∈ R. Thus, we have a natural map α : C̃ → M̃ realizing

C̃ as a circle bundle over M̃.
G0 acts transitively on C̃ since the 1-parameter group of transvections ψt(z) =

z+t
1+tz , t ∈ (−1, 1) on

∆, embedded as a subgroup H ⊂ G0, acts transitively on ν((−1, 1) × {0}) preserving P0. Moreover,
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(gΣ, gΣ′, gΩ′
0) = (Σ,Σ′,Ω′) if and only g ∈ G′

0, hence C̃ = G0/G
′
0 as a homogeneous space.

To each triple (Φ,Ψ, Z) belonging to C̃ we define SΦ,Ψ,Z := Sβ([Φ],[Ψ],[Z]) = SP (Φ,Ψ),Z . From Lemma
4.7 we have readily

Lemma 4.9. Fix h ∈ H∞(Ω). Then, for almost every g ∈ G0, SgΣ,gΣ′,gΩ′ ∩ S ′
adm(h) ⊂ SgΣ,gΣ′,gΩ′ is

of full measure.

We adopt the following terminology concerning h-admissibility.

Definition 4.10. Fix h ∈ F . A regular pair (Φ,Ψ) of maximal boundary components is said to be
h-admissible, written ([Φ], [Ψ]) ∈ Cadm(h) if and only if for almost all c ∈ Ψ, and writing ∂♭Vc ∩ Φ =:

{a(c)}, the admissible boundary value h♯a(c),c exists. For a triple (Φ,Ψ, Z) consisting of ([Φ], [Ψ]) ∈ C

and a distinguished section Z of the special product subspace P (Φ,Ψ) such that Z ⊂ Λ(Φ,Ψ), we
say that ([Φ], [Ψ], [Z]) ∈ C̃ is h-admissible, written ([Φ], [Ψ], [Z]) ∈ C̃adm(h) if and only if SΦ,Ψ,Z ∩
S′
adm(h) ⊂ SΦ,Ψ,Z is of full measure.

We denote by S : C → C by S([Φ], [Ψ]) := ([Ψ], [Φ]), and, for a subset A ⊂ C we also write
A′ = A ∩ S(A). Writing C ′

adm(h) for (Cadm(h))
′, we have ([Φ], [Ψ]) ∈ C ′

adm(h) if and only if both

(Φ,Ψ) and (Ψ,Φ) are h-admissible, i.e., if and only if both h♯a(c),c and h
♯
c,a(c) exist for almost all c ∈ Ψ.

Concerning h-admissible triples, we have

Lemma 4.11. Fix h ∈ H∞(Ω). Then, for almost every g ∈ G0, the triple (gΣ, gΣ′, gΩ′
0) is h-

admissible.

Proof. Given g ∈ G0, SgP0,gZ ∩ S ′
adm(h) ⊂ SgP0,gZ is of full measure if and only if g ∈ G♯0,adm. But

now SgΣ,gΣ′,gΩ′
0
= SgP0,gΩ′

0
, hence the triple (gΣ, gΣ′, gΩ′

0) is h-admissible if and only if g ∈ G♯0,adm(h),

and the proof of the lemma is completed by recalling from the proof of Lemma 4.7 that G♯0,adm ⊂ G0

is of full measure.

Note that the statements ([Φ], [Ψ], [Z]) ∈ C̃adm(h) and ([Φ], [Ψ]) ∈ Cadm(h) are not related to each
other in any obvious way.

5 Averaging Arguments for Holomorphic Maps

In this section, we discuss averaging arguments on vector-valued bounded holomorphic maps, which
will be applied in the proof of Theorem 1.1 to the linearization of properly chosen Cayley projections
of bounded holomorphic maps.

5.1 A theorem of H. Cartan

The following statement is a classical result on holomorphic maps defined on bounded circular domains
due to H. Cartan (cf. [3]).

Theorem 5.1. Let Ω ⋐ Cn be a bounded complete circular domain. Suppose F : Ω1 → Cm is a
holomorphic map. Then

F (z) = e−iθF (eiθz), ∀eiθ ∈ S1,∀z ∈ Ω1,

if and only if F is a linear transformation Cn → Cm.

Proof. Write F = (F 1, · · · , Fm). For 1 ≤ k ≤ m, expanding both sides of F k(z) = e−iθF k(eiθz) as
Taylor series at 0 ∈ Ω, grouping all monomials of the same total degree together, and comparing term
by term after the regrouping, we obtain from the identity theorem for holomorphic functions that F
is a linear transformation, as desired.
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5.2 Linearization of holomorphic maps on complete circular domains

We are going to construct S1-equivariant maps from given holomorphic maps by taking averages with
respect to a natural S1-action and obtain linear transformations as a consequence of Theorem 5.1, as
follows.

Lemma 5.2. Suppose S : Ω → Cm is a holomorphic map defined on a complete circular domain Ω.
Define

S̃(z) :=

∫ π

−π
eiθS(e−iθz)

dθ

2π
.

Then, S̃ is S1-equivariant in the sense that S̃(eiθz) = eiθS̃(z) for all θ ∈ R. Hence, S̃ is a linear
transformation.

5.3 K-equivariant holomorphic maps on Ω = G/K

Let Ω ⋐ Cn be an irreducible bounded symmetric domain in its Harish-Chandra realization. We have
Ω = G0/K as a homogeneous space, where G0 = Aut0(Ω), K ⊂ G0 being the isotropy subgroup at
0 ∈ Ω. K is a closed subgroup of the unitary group U(n), and as such it acts on Cn as a group
of unitary transformations. The set of all maximal boundary components of Ω, i.e., all boundary
components of rank r−1 form an orbit Reg(∂Ω) = Er−1 = G0(cΓx0) for some partial Cayley transform
cΓ, cf. §2. Geometrically the orbit Reg(∂Ω) is a disjoint union of boundary components which are
biholomorphically isomorphic bounded symmetric domains. Let Φ ⊂ ∂Ω be an arbitrarily chosen
maximal boundary component and write Reg(∂Ω) =

∐
k∈K

kΦ. (Recall that each boundary component

is of the form ξ−1kcΨ−ΓXΓ, 0 = ad(k)ξ−1cΨ−ΓXΓ, 0). Recall that G0 acts transitively on the set of all
maximal boundary components, which is in one-to-one correspondence with G0/N for some parabolic
subgroup N ⊂ G0. For k ∈ K, let Λ : Ω → Cn be a bounded holomorphic map. Let (kΛ) : Ω → kΦ
be defined by (kΛ)(z) := k(Λ(z)) for each z ∈ Ω, recalling that K acts on Cn as a group of linear
transformations. We have

Lemma 5.3. Let Ω ⋐ Cn be an irreducible bounded symmetric domain in its Harish-Chandra realiza-
tion. Let Λ : Ω → Cn be a bounded holomorphic map. Take dµ(k) to be the Haar measure on K of
unit volume and define

Λ̃(z) :=

∫
K
kΛ(k−1z)dµ(k).

Then Λ̃ : Ω → Cn is either the zero map or a nonzero constant multiple of the identity map idΩ.

Proof. For any element k0 ∈ K we have

Λ̃(k0z) :=

∫
K
kΛ(k−1(k0z))dµ(k) =

∫
K
k0(k

−1
0 k)Λ((k−1

0 k)−1(z))dµ(k)

= k0

∫
K
kΛ(k−1(z))dµ(k) = k0

(
Λ̃(z)

) (10)

so that Λ̃ : Ω → Cn is a K-equivariant holomorphic map between domains in Cn. Because the center
of K is S1, K = (S1 ×Ks)/Z, where Ks is the semisimple part of K, Ks = exp(ks), ks := [k, k], and
Z ⊂ S1 ×Ks is a finite group. By Fubini’s Theorem Λ̃ can be performed by first integrating over S1

and then over Ks. By Lemma 5.2, Λ is the restriction to Ω of a linear transformation on Cn. Moreover,
since the isotropy subgroup K acts irreducibly on T0(Ω) ∼= Cn, by the Schur lemma, the map Λ̃ can
either be 0 or a nonzero constant multiple of the identity map.
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For our purpose, we need to make sure that such a K-averaging process produces a non-zero map.
Another technical issue in the proof of Theorem 1.1 involving the averaging argument is that such
an averaging process may a priori produce functions outside the algebra under consideration. These
problems can be addressed by some density arguments, cf. [21, p.26 Lemma 3], which will be taken
up in the next section in the key arguments come from Moore’s ergodicity for lattices on semisimple
groups and on density arguments resulting therefrom.

6 The Solution to the Extension Problem

Let X be a smooth manifold, and G be a Lie group. Suppose µ is a smooth volume form on X and G
acts on X by a smooth group action α : G×X → X. We say that G acts ergodically on (X,µ) if and
only if for any G-invariant measurable subset A ⊂ X we have either µ(A) = 0 or µ(X −A) = 0. Note
that we do not require that µ is invariant under the action of G, but clearly for any g ∈ G, µ(A) = 0
if and only if µ(gA) = 0 since G necessarily acts on X as a group of diffeomorphisms on X given by
g · x = α(g, x).

6.1 Moore’s ergodicity theorem and its applications

For the proof of Theorem 1.1, we need Moore’s ergodicity theorem in the following form (cf. [37,
Theorem 2.2.6], ).

Theorem 6.1. Let G =
∏
Gi be a connected semisimple real Lie group, where each Gi is a connected

non-compact simple Lie group with finite center. Let Γ ⊂ G be an irreducible lattice. Let H ⊂ G be a
noncompact closed subgroup. Then, H acts ergodically on Γ\G.

We need the following lemma (cf. Zimmer [37, Proposition 2.1.7]]) regarding H-orbits in Γ\G.

Lemma 6.2. In the notation of Theorem 6.1, there exists a subset E ⊂ Γ\G of zero measure such
that the H-orbit xH ⊂ Γ\G is dense in Γ\G whenever x ∈ (Γ\G)− E.

Returning to our situation of a bounded symmetric domain Ω ⋐ Cn, we denote by ϖ : Aut0(∆
r) →

Aut0(Ω) = G0 the canonical group homomorphism. We have

Lemma 6.3. Let Ω be a bounded symmetric domain of rank r ≥ 2 and Γ ⊂ Aut0(Ω) = G0 be a torsion-
free irreducible lattice, X := Ω/Γ. Let P ⊂ Ω be a maximal polydisk of Ω, which induces a canonical
embedding Aut(∆r) ↪→ Aut0(Ω). Write ηt(z) =

z+t
1+tz so that, writing θt = ϖ(id∆r−1 , ηt), H := {θt :

−1 < t < 1} ↪→ Aut0(Ω) = G0 is a noncompact 1-parameter closed subgroup of transvections. Suppose
g ∈ G0 and the coset ΓgH is dense in Γ\G0. Then, there exists a discrete sequence {γk} ⊂ Γ such
that γk =

(
gθtkg

−1
)
δk for some δk ∈ Aut0(Ω) and tk ∈ (−1, 1) satisfying δk → idG0 and either tk → 1

or tk → −1.

Proof. We assume first of all that Ω = G0/K is an irreducible bounded symmetric domain.
By the hypothesis ΓgH is dense in Γ\G0. For two subsets A,B ⊂ G0 we write A·B := {ab ∈ G0 :

a ∈ A, b ∈ B}. Then ΓgH is dense in Γ\G0 if and only if Γ·g ·H is dense in G0. We will not make a
clumsy notational distinction between ΓgH ⊂ Γ\G0 as a subset of right cosets and Γ·g·H as a subset
of G0, writing both as ΓgH. (In the text of the proof, the latter will actually mean a subset of G0.)

Let g̃ ∈ G0. Then, there exists µℓ ∈ Γ and ϵℓ ∈ G0 satisfying ϵℓ → idG0 as ℓ→ ∞ such that

µℓgθsℓ = ϵℓg̃ (11)

Taking inverses we have

θ−sℓg
−1νℓ = g̃−1ϵ′ℓ; hence g̃θ−sℓg

−1νℓ = ϵ′ℓ , (12)
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where νℓ := (µℓ)
−1 and ϵ′ℓ := (ϵℓ)

−1, and note that θ−1
t = θ−t for t ∈ (−1, 1). Let k > 0 be an integer.

Choose now g̃k such that g̃k /∈ ΓgH. For each positive integer k we have in analogy to (12)

µℓ,kgθsℓ,k = ϵℓ,kg̃k , (13)

where we write µℓ,k to indicate its dependence on k, etc. Fixing k we have ϵℓ,k → idG0 as ℓ → ∞.
Now we have

(gθ−sℓ,kg
−1)νℓ,k = (gg̃k

−1)(g̃kθ−sℓ,kg
−1)νk,ℓ = (gg̃k

−1)ϵ′k,ℓ , (14)

Choose a sequence g̃k on G0 such that g̃k /∈ ΓgH and such that g̃k → g as k → ∞. Let α : (−1, 1) →
(−∞,∞) be a strictly increasing diffeomorphism such that, writing θt = σα(t), {σt′ : −∞ < t′ < ∞}
gives a re-parametrization of H so that σ : R → H is a group homomorphism, i.e., σ0 = idΩ,
σa+b = σaσb for a, b ∈ R. Define Ik := {σt′ : t′ ∈ [−k, k]}For each γ ∈ Γ, γg · Ik is a closed subset
of G0. Since Γ ⊂ G0 is discrete, Γg · Ik ⊂ G0 is a closed subset. Hence, with respect to an auxiliary
Riemannian metric on G0, g̃k is at a positive distance from Γg ·Ik. Hence there exists a positive integer
ℓ(k) such that ϵℓ(k),k is close enough to idG0 so that ϵℓ(k),kg̃k /∈ Γg · Ik. It follows therefore from (9)
that |α(sℓ(k),k)| > k. For each positive integer k define now tk := sℓ,k ∈ (−1, 1) so that |α(tk)| > k,

γk = νℓ(k),k, δk := (gg̃k
−1)ϵ′ℓ(k),k → idG0 as k → ∞. We have

gθ−tkg
−1γk = δk hence γk = (gθtkg

−1)δk , (15)

where |α(tk)| > k, γk ∈ Γ and δk → idG0 as k → ∞.
For −1 < t < 1 we sometimes write ξt = gθtg

−1, so that Ξ = {ξt : t ∈ (−1, 1)} is a 1-parameter
group of transvections fixing Φ = gΣ and Ψ = gΣ′ and flowing from Ψ to Φ

Assume now that Ω is reducible, and Ω = Ω1 × · · · ×Ωm, m ≥ 2, is the decomposition of Ω into a
product of irreducible bounded symmetric domains, and Γ ⊂ Ω is an irreducible lattice. For 1 ≤ i ≤ m
write Gi := Aut0(Ωi), so that G0 = G1 × · · · ×Gm. Suppose now g = (g1, · · · , gm) ∈ G0 is such that
ΓgH is dense in G0, where H is a 1-parameter group of transvections arising from a minimal disk of
one of the irreducible factors Ωi, 1 ≤ i ≤ m, then we perform exactly the same argument as in the
locally irreducible case by freezing the variables belonging to the other irreducible factors. The proof
of the lemma is complete.

Remark 6.4. At the end of the proof, note that although θt only acts on Ω1, so that one may write
ξt = (ξ1t , idG2 · · · , idGm), the group elements γk ∈ Γ obtained of the form γk = (γ1k , γ

2
k , · · · γmk ) where,

for 2 ≤ i ≤ m, γik are in general non-identity elements close to and converging to idGi . Since the
proof of the locally reducible but global irreducible case of Theorem 1.1 can be obtained by arguing
factor by factor according to the decomposition of Ω as in the above, we will from now on restrict
our arguments to the case where Ω is irreducible and of rank ≥ 2 except at the end of the proof of
Theorem 1.1.

Lemma 6.5. In the notation of Lemma 6.3 and its proof, assuming that ΓgH is dense in G0, there
exists a discrete sequence of group elements γk ∈ Γ such that the sequence of holomorphic maps γk(z)
on Ω either converges to the Cayley projection ρgΣ,gΣ′, or to the Cayley projection ρgΣ′,gΣ

Proof. As t → 1, (gθtg
−1)(z) = gθt(g

−1(z)) → gρΣ,Σ′(g−1(z)). The latter is a Cayley projection with
image being on gΣ and with vertices in gΣ′, i.e, ρgΣ,gΣ′ . On the other hand, as t → −1, (gθtg

−1)(z)
converges to gρΣ′,Σ(g

−1(z)) = ρgΣ′,gΣ by exactly the same argument.

6.2 The algebra F of pull-backs of bounded holomorphic functions by F : Ω → Ñ

We define now F to be the algebra of bounded holomorphic functions on Ω obtained by pulling back
bounded holomorphic functions on Ñ by F : Ω → Ñ , i.e., F = F ∗H∞(Ñ). The algebra F will be
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crucial for the proof of Theorem 1.1 (the Extension Theorem). In fact, the latter is equivalent to
showing that the identity map idΩ belongs to Fn. To start with we collect some general properties
of F in the following lemma.

Lemma 6.6. The algebra F = F ∗(H∞(Ñ) possesses the following properties:

(a) For any h ∈ F and for any group element γ ∈ Γ, we have γ∗h ∈ F .

(b) Suppose hi = F ∗ui ∈ F for 0 ≤ i < ∞ such that {ui} is a uniformly bounded sequence of
holomorphic functions and such that hi converges uniformly on compact subsets to h ∈ H∞(Ω).
Then, h ∈ F .

(c) Let Q be a manifold equipped with a smooth volume form dµ such that Volume(Q, dµ) < ∞.
Suppose H : Ω×Q→ C is a bounded measurable function on Ω×Q such that for almost every
parameter t ∈ Q, the function ht : Ω → C is a bounded holomorphic function belonging to F .
Then, the function f : Ω → C defined by f(z) =

∫
QH(z, t)dµ(t) also belongs to F .

Proof. By definition F : Ω → Ñ is a lifting of the holomorphic map f : X → N , where X = Ω/Γ.
The holomorphic map f : X → N induces a group homomorphism f∗ : Γ = π1(X) → π1(N).
Thus, identifying π1(N) = Γ′ as a group of biholomorphic covering transformations of Ñ and writing
σγ := f∗(γ), for z ∈ Ω and γ ∈ Γ we have F (γz) = σγ(F (z)).

For the proof of (a) suppose now h = F ∗u for a holomorphic function u ∈ H∞(Ñ). Then, for
γ ∈ Γ we have γ∗h(z) = h(γ(z)) = u(F (γ(z)) = u(σγ(F (z)) = F ∗(u ◦ σγ), hence γ∗h = F ∗(σ∗γu) ∈ F

since σ∗γu ∈ H∞(Ñ).
As to (b), given hi = F ∗ui such that there exists a uniform boundedM > 0 such that |ui(w)| ≤M

for all i ∈ N, by Montel’s theorem there is a subsequence ui(k) which converges uniformly on compact

subsets to a bounded holomorphic function u ∈ H∞(Ñ). It follows that

h = lim
k→∞

hi(k) = lim
k→∞

F ∗ui(k) = F ∗
(

lim
k→∞

ui(k)

)
= F ∗u , (16)

hence h ∈ F .
Clearly F is a complex vector space (in fact a C-algebra). An integral of a measurable family

of uniformly bounded holomorphic functions in F is the limit of a uniformly bounded sequence of
weighted finite sums of bounded holomorphic functions belonging to F , and as such the integral
f(z) =

∫
QH(z, t)dµ(t) belongs to F by (b), completing the proof of the lemma.

Theorem 6.7. Let Ω ⋐ Cn be an irreducible bounded symmetric domain of rank r ≥ 2 in its Harish-
Chandra realization, and ∂Ω be the topological boundary of Ω in Cn. Let h be a bounded holomorphic
function on Ω. Then, for almost all g ∈ G0 the following holds true. For almost all maximal boundary
components Φ ⊂ ∂Ω, h admits the Cayley limit ĥΦ(z) = lim

t→1
h(θt,Φ,Ψ(z)) with respect to the Cayley

projection ρgΣ,gΣ′. Moreover, ĥΦ = ρ∗Φ,ΨsΦ for some bounded holomorphic function sΦ ∈ H∞(Φ)
independent of Ψ.

For the notations in what follows, cf. Definition 4.10 and the paragraph immediately after it. As
an application of Lemma 6.6, we have

Proposition 6.8. Fix h ∈ F . Suppose ([Φ], [Ψ]) ∈ C ′
adm(h). Then, either ρ∗Φ,ΨsΦ or ρ∗Ψ,ΦsΨ belongs

to F .
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Proof. Since G0 acts transitively on C there exists g ∈ G0 such that gΣ = Φ and gΣ′ = Ψ. By Lemma
6.3, there exists tk → 1 or tk → −1 such that, writing ξt = gθtg

−1, there exists γk ∈ Γ such that
γk = ξtkδk for k ∈ N such that δk → idΩ. We assume tk → 1 and proceed to prove that ρ∗Φ,ΨsΦ ∈ F .
The case where tk → −1 will lead to ρ∗Ψ,ΦsΨ ∈ F by exactly the same argument. We have∣∣ξ∗tkh(z)− γ∗kh(z)

∣∣ =
∣∣(h ◦ ξtk)(z)− (h ◦ γk)(z))

∣∣
=

∣∣(h ◦ ξtk)(z)− (h ◦ ξtk)(δk(z))
∣∣

=

∣∣∣∣∣
∫ δk(z)

z
(h ◦ ξtk)

′(ξ)dξ

∣∣∣∣∣
≤ C ∥h ◦ ξtk∥H∞(Ω)

∥∥δk(z)− z
∥∥ (Cauchy’s estimate)

≤ C ∥h∥H∞(Ω)

∥∥δk(z)− z
∥∥ → 0,

for some constant C > 0, since δk → id as k → ∞.

6.3 Proof of the Extension Theorem: existence of a nonconstant element of F
invariant under a conjugate of H

Recall the subgroup H ⊂ G0 defined explicitly in terms of Harish-Chandra coordinates. This is
the reference 1-parameter group of transvections preserving the reference special product subspace
P0 = ν(∆ × Ω′) and flowing from b′0 = (−1; 0;w) to b0 = (1; 0;w) for w ∈ Ω′. Our approach is
to change the Harish-Chandra coordinates so that z in the new coordinates corresponds to g1 ·z in
the original Harish-Chandra coordinates. For g ∈ G0 write hg := g∗h. An automorphism g1 ∈ G0

will be chosen so that among other things the pair (P0,Ω
′
0) is h′-admissible for h′ = hg1 . Thus the

reference objects bθ(w), b
′
θ(w), Σ(θ), Σ

′(θ), P0, Ω
′
0 are written explicitly in a choice of Harish-Chandra

coordinates determined by g1 ∈ G0 satisfying certain conditions to be made precise.
By Lemma 6.2, there is a subset G0,den ⊂ G0 of full measure such that Γg0H is dense in G0 if and

only if g0 ∈ G0,den. Consider the multiplication map µ : G0 × S1 → G0 given by µ(g1, e
iθ) := g1βθ,

where βθ := υ(eiθid∆, idΩ′) for the group homomorphism υ as in (5). The map µ : G0 × S1 → G0

realizes G0×S1 as the total space of a smooth locally trivial fibration with fibers diffeomorphic to S1.
Thus, the subset µ−1(G0,den) ⊂ G0×S1 is of full measure. Equipping G0×S1 also with the canonical
projection π1 : G0 × S1 → G0 onto the first Cartesian factor we have the structure of a double locally
trivial smooth fibration on G0 ×S1, and it follows by Lemma 4.2 that for almost all g1 ∈ G0 we have

(†): g1βθ ∈ G0,den for almost all θ ∈ R.

We now make the requirement on g1 at the end of the first paragraph precise. Denote by G†
0,den the

set of all g1 ∈ G0 satisfying (†). We require

(♯): g1 ∈ G0,adm(h) ∩G†
0,den

to hold true. For θ1 ∈ R write H1 := βθ1Hβ−θ1 . The condition (♯) allows us to take admissible
boundary values of hg1 for the regular pairs (Σ(θ1),Σ

′(θ1)) and (Σ′(θ1),Σ(θ1)) of maximal bound-

ary components for almost all θ1 ∈ R, so that at least one of the two functions ĥg1,Σ(θ1),Σ′(θ1) or

ĥg1,Σ′(θ1),Σ(θ1) belongs to F ′ := g∗1F , by Proposition 6.8. At the same time, we will show in Proposi-
tion 6.10 that θ1 can be chosen so that furthermore both functions are nonconstant.

We adopt a change of Harish-Chandra coordinates determined by g1 ∈ G0 as explained. In so
doing, h ∈ H∞(Ω) is replaced by h′ := hg1 , F : Ω → Ñ is replaced by F ′ := F ◦ g1 : Ω → Ñ , and

hence F is replaced by (F ◦ g1)∗H∞(Ñ) = g∗1(F
∗H∞(Ñ)) = g∗1F = F ′. In the statement of results,

whenever there is no danger of confusion we will refer to h′ as h, treating the latter as a generic symbol
for a bounded holomorphic function on Ω.
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Proposition 6.9. Suppose g1 ∈ G†
0,den and suppose θ1 ∈ R is chosen to ensure that g1βθ1 ∈ G0,den,

so that, in terms of the new Harish-Chandra coordinates with respect to which z ∈ Ω corresponds to
g1 ·z in the original Harish-Chandra coordinates, Γ′βθ1H is dense in G0 for Γ′ = g−1

1 Γg1. Writing
H1 := βθ1Hβ−θ1, let h ∈ F ′ = g∗1F be H1-invariant in the sense that, h(ξ(z)) = h(z) for any element
ξ ∈ H1. Then, for every element g ∈ G0, g

∗h is a g−1H1g-invariant bounded holomorphic function
belonging to F ′.

Proof. Let g0 ∈ G0. Applying the density of Γ′βθ1H in G0 to the group element g−1
0 ∈ G0, there

exist µk ∈ Γ′ and ηk ∈ H for each natural number k such that lim
k→∞

µkβθ1ηk = g−1
0 . In other words,

g−1
0 = ϵkµkβθ1ηk such that ϵk → idΩ. Taking inverses we have g0 = ξkβ−θ1γkδk where δk = ϵ−1

k ,
ξk = η−1

k and γk = µ−1
k . We have

(βθ1g0)
∗h(z) = h(βθ1ξkβ−θ1(γk(δk(z)))) = h(γk(δk(z)) . (17)

since βθ1ξkβ−θ1 ∈ βθ1Hβ−θ1 = H1 and h ∈ F ′ is assumed to be H1-invariant. Since h ∈ F ′, by
Lemma 6.6, for each natural number k, we have h ◦ γk = γ∗kh ∈ F ′. Write g := βθ1g0. By the same
argument as in the proof of Proposition 6.8, for any compact subset Q ⊂ Ω we have

lim
k→∞

sup
{∣∣(h ◦ γk)(z)− (h ◦ γk)(δk(z))

∣∣ : z ∈ Q
}
= 0 , hence

g∗h = lim
k→∞

γ∗kh uniformly on compact subsets
(18)

By Lemma 6.6, we conclude that g∗h ∈ F ′. Finally, for η ∈ H1 we have

g∗h(g−1ηg(z)) = h(g(g−1ηg)(z)) = h(η(g(z)) = h(g(z)) = g∗h(z) , (19)

where the second last equality results from the H1-invariance of h. It follows that g∗h is g−1H1g-
invariant, proving the lemma.

Starting with a nonconstant h ∈ F , we will now prove the existence of a nonconstant holomorphic
function ĥ ∈ F which is invariant under some conjugate of H ⊂ G0. Here and in what follows by a
conjugate of H ⊂ G0 we mean a subgroup H̃ = α−1Hα ⊂ G0 for some element α ∈ G0.

For the notations in what follows, recall that for −1 < t < 1, we write ψt(z1) =
z1+t
1+tz1

for z1 ∈ ∆,
and χt := υ(ψt, idΩ′) using (5), and for θ1 ∈ R, H1 = βθ1Hβ−θ1 , we write ξt = βθ1χtβ−θ1 . We note
that χt was denoted by θt := Θ(ψt) using (3) in §3.2, but here we change the notation in order to
avoid confusion with the notation θ representing an angle, e.g., in eiθ.

Proposition 6.10. Let g1 ∈ G0 be the automorphism chosen as in Proposition 6.9. Write Γ′ =
g−1
1 Γg1, F ′ := g∗1F . Let h ∈ F ′ be nonconstant. Assume that Γ′βθH is dense in G0 for almost all
θ ∈ R and that ([Σ(θ)], [Σ′(θ)]) ∈ C ′

0,adm(h) for almost all θ ∈ R. Then, there exists θ1 ∈ R and a

nonconstant bounded holomorphic function ĥ ∈ F ′ on Ω which is invariant under H1 = βθ1Hβ−θ1.

Proof. To prove Proposition 6.10, it suffices to produce a single nonconstant holomorphic function
ĥ ∈ F ′ which is invariant under H1 = βθ1Hβ−θ1 for some θ1 ∈ R. For P0 = ν(∆ × Ω′), recall that
bθ(w) = (eiθ; 0;w) ∈ Σ(θ) and b′θ(w) = (−eiθ; 0;w) ∈ Σ′(θ). We claim that the following statement
holds true.

(††): There exists a subset A ⊂ [0, 2π) of positive Lebesgue measure such that for any θ1 ∈ A, both

h♯
bθ(w),b

′
θ(w)

and h♯
b′θ(w),bθ(w)

exist as bounded holomorphic functions on Ω′ and both functions are

nonconstant on Ω′.
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By assumption Γ′βθH ⊂ G0 is dense for almost all θ ∈ R, Assuming that the claim (††) is valid,
and choose θ1 ∈ A. Note that Γ′H1 = Γ′βθ1Hβ−θ1 = (Γ′βθ1H)β−θ1 ⊂ G0 is dense in G0. Hence,
as in the proof of Proposition 6.9, for k ∈ N there exists ξtk ∈ H1 = βθ1Hβ−θ1 , and γk ∈ Γ′ such
that γkξ−tk → idΩ, i.e., ξtk = γkδk such that δk → idΩ and such that either tk → 1 or tk → −1 as

k → ∞. In the former case we have lim
t→1

h(ξt(z)) = ρ∗Σ(θ),Σ′(θ)h
♯
bθ(w),b

′
θ(w)

, and in the latter case we

have lim
t→−1

h(ξt(z)) = ρ∗Σ′(θ),Σ(θ)h
♯
b′θ(w),bθ(w)

, and in either case we have obtained a nonconstant bounded

holomorphic function, to be denoted by ĥ, such that ĥ ∈ F ′, by Proposition 6.8. Let η = ξs ∈ H1,
s ∈ (−1, 1). In the former case we have ĥ(ηz) = lim

t→1
h(ξt(ηz)) = lim

t→1
h(ξt′z), where t

′ → 1 as t→ 1, and

it follows that ĥ(ηz) = ĥ(z) for any z ∈ Ω and for any η ∈ H1. The same argument works verbatim
to show that ĥ(ηz) in the latter case where tk → −1. In any event, we have obtained an H1-invariant
bounded holomorphic function ĥ such that ĥ is the limit uniformly on compact subsets of Ω of γ∗kh,

hence ĥ ∈ F ′, by Lemma 6.6.
Fix θ1 ∈ R. By assumption, for almost every point w ∈ Ω′, in particular for a dense set of points

w ∈ Ω′, h(ξt(z)) converges admissibly to h♯
bθ1(w),b

′
θ1
(w)

as t → 1 while h(ξt(z)) converges admissibly to

h♯
b′θ1

(w),bθ1(w)
as t → −1. It follows from the proof of Montel’s theorem, cf. Lemma 3.16 that h(ξt(z))

converges admissibly to h♯
bθ1(w),b

′
θ1
(w)

for all w ∈ Ω′ as t → 1, and to h♯
b′θ1

(w),bθ1(w)
as t → −1, and in

fact the convergence is uniform on compact subsets of Ω′.
For 1 ≤ j ≤ q write ∂j for

∂
∂wj

. From Cauchy estimates on first derivatives, on the special product

subspace P0 = ν(∆ × Ω′) ⊂ Ω, ∂jh(ψt(z1); 0;w) converges admissibly on P0 to ∂jh
♯
bθ1(w),b

′
θ1
(w)

when

t→ 1, and it converges to ∂jh
♯
b′θ1

(w),bθ1(w)
when t→ −1, uniformly on compact subsets as functions in

w ∈ Ω′.
By the hypothesis, for almost every θ ∈ R, Γ′βθH is dense in G0, where βθ := υ(eiθid∆, idΩ′) ∈ G0.

Choose θ = θ1 such that Γ′βθ1H is dense in G0. Hence Γ
′H1 is dense in G0 and there exists a sequence

ξtk ∈ H1 and elements γk ∈ Γ′ such that ξtkγk → βθ1 (which one sees by taking inverses on both
sides). As in the proof of Proposition 6.8, after passing to a subsequence we may assume without loss
of generality that either tk → 1 or tk → −1.

For 1 ≤ j ≤ q, define on P0 the holomorphic function uj by

uj(z1; 0;w) = ∂jh(z1; 0;w) · ∂jh(−z1; 0;w) (20)

For almost all θ1 ∈ R, and for any sequence xk of points on ∆ such that xk converges admissibly to
eiθ1 , we know that h(xk; 0;w) converges as holomorphic functions in w uniformly on compact subsets

of Ω′ to h♯(eiθ1 ; 0;w) := h♯
bθ1(w),b

′
θ1
(w)

, and at the same time h(−xk; 0;w) converges in the same sense to

h♯(−eiθ1 ; 0;w) := h♯
b′θ1

(w),bθ1(w)
. It follows from Cauchy estimates for first derivatives that ∂jh(xk; 0;w)

converges as (not necessarily bounded) holomorphic functions in w uniformly on compact subsets of
Ω′ to ∂jh

♯(eiθ1 ; 0;w), while ∂jh(−xk; 0;w) converges in the same sense to ∂jh
♯(−eiθ1 ; 0;w).

It follows that the holomorphic function uj(z1; 0;w) on the special product subspace P0 ⊂ Ω as
defined in (20), bounded as a holomorphic function on ν(∆× V ) for any open subset V ⋐ Ω′, admits
admissible boundary values in the z1 variable at (eiθ1 ; 0;w) for almost all θ1 ∈ R. By the Cauchy
integral formula for admissible boundary limits of a bounded holomorphic function on ∆, we have

uj(z1; 0;w) =

∫
∂∆

u♯j(ζ; 0, w)

ζ − z1
dζ , (21)

where for ζ = eiθ ∈ ∂∆ we define u♯j(ζ; 0, w) := ∂jh
♯(eiθ; 0, w)∂jh

♯(−eiθ; 0, w).
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Suppose (††) fails. Then, for almost all θ ∈ R, either h♯
bθ(w),b

′
θ(w)

or h♯
bθ(w),b

′
θ(w)

is constant as a

function in w ∈ Ω′. Then, ∂jh
♯
bθ(w),b

′
θ(w)

≡ 0 for 1 ≤ j ≤ q, or ∂jh
♯
bθ(w),b

′
θ(w)

≡ 0 for 1 ≤ j ≤ q, as

functions in w ∈ Ω′, so that for almost all θ ∈ R, u♯j(eiθ; 0;w) = 0 as a function in w ∈ Ω′. Then
(21) implies that uj(z1; 0;w) = 0 for (z1;w) ∈ ∆ × Ω′. As a consequence, for 1 ≤ j ≤ q we have
∂jh(z1; 0, w) = 0 for all (z1, w) ∈ ∆×Ω′, by (21). In other words, h(z1; 0, w) = v(z) for some bounded
holomorphic function v on ∆. Writing Ω′(z0) := ν({z0}×Ω′), h is constant on each Ω′(z0) for z0 ∈ ∆.
In particular, h is constant on Ω′

0 := Ω′(0).

For g ∈ G♯0,adm(h), (gΣ, gΣ
′, gΩ′

0) is an h-admissible triple. Denoting g∗h by hg, we have either

(a) there exists some g1 ∈ G♯0,adm(h), and some θ1 ∈ R such that g2 := g1βθ1 ∈ G′
0,adm(h), and such

that both ĥg1,Σ(θ1),Σ′(θ1) and ĥg1,Σ′(θ1),Σ(θ1) (which are known to exist by the choice of g2 := g1βθ1)
are nonconstant; or

(b) for all g1 ∈ G♯0,adm(h), and for all θ1 ∈ R such that g2 := g1βθ1 ∈ G′
0,adm(h), either ĥg1,Σ(θ1),Σ′(θ1)

or ĥg1,Σ′(θ1),Σ(θ1) are constant on Ω′
0.

When Alternative (a) occurs, putting either ĥ := ĥg1,Σ(θ1),Σ′(θ1) or ĥ := ĥg1,Σ′(θ1),Σ(θ1), we know that

ĥ is nonconstant and g−1
1 H1g1-invariant under the 1-parameter group of transvections {ξt : −1 < t < 1}

preserving P0 = ν(∆×Ω′) flowing from b′θ(w) = (−eiθ; 0;w) to bθ(w) = (eiθ; 0;w) for w ∈ Ω′ as t→ 1

and from bθ(w) to b
′
θ(w) as t→ −1, for w ∈ Ω′. Thus, ĥ is invariant under βθ1Hβ−θ = H1, as desired.

When Alternative (b) occurs, by the argument using the parametrized Cauchy integral formula
(21) on P0 = ν(∆ × Ω′) we conclude that hg1 is constant on Ω′

0, i.e., h is constant on g1Ω
′
0. Since

G♯0,adm(h) ⊂ G0 is of full measure, hence in particular dense in G0, we conclude in this case that h is
constant on gΩ′

0 for any g ∈ G0.
As can be easily seen from the polydisk theorem, given any two distinct points x, y ∈ Ω, there

exists a finite sequence x0, · · · , xs+1 of points on Ω, x0 = x, xs+1 = y, 1 ≤ s ≤ r = rank(Ω), xi ̸= xi+1

for 0 ≤ i ≤ s − 1, and a chain of s minimal disks D1, · · · , Ds such that xj−1, xj ∈ Dj for 1 ≤ j ≤ s.
Now each minimal disk D on Ω can be embedded into some characteristic subspace gΩ′

0, and taking
x0 = 0 it follows from the above that, assuming that Alternative (b) could occur, we would have
h(y) = h(0) for any y ∈ Ω so that h would be a constant function, contradicting with the hypothesis
of the proposition and ruling out Alternative (b). Thus, only Alternative (a) occurs, and the proof of
the proposition is complete.

Remark 6.11. Note that for ĥ = hg1,Σ(θ),Σ′(θ) = ρ∗Σ(θ),Σ′(θ)sΣ(θ), the regular pair of maximal boundary

components (Σ(θ),Σ′(θ)) must necessarily belong to Cadm(hg1), and an analogous statement holds
when Σ(θ) and Σ′(θ) are interchanged.

6.4 End of the proof of Theorem 1.1

We are now ready to complete the proof of Theorem 1.1.

Proof. Consider ĥ ∈ F ′ invariant under H1 = βθ1Hβ−θ1 as guaranteed by Proposition 6.10. We will
now replace the notation ĥ by h, again treating the latter symbol as a generic symbol for a bounded
holomorphic function on Ω, this time endowed with the special property that h is H1-invariant.

We consider the final change of coordinates on Ω such that z ∈ Ω corresponds to g2·z in the initial
Harish-Chandra coordinates for g2 = g1βθ1 . Then, Γ in the initial Harish-Chandra coordinates (which
was replaced by Γ′ = g−1

1 Γg1 in the intermediate Harish-Chandra coordinates determined by g1) is
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now replaced by Γ′′ := g−1
2 Γg2 = β−θ1Γ

′βθ1 . Write F ′′ = g∗2F = β∗θ1F
′, and define h̃(z) := β∗θ1h. For

all χ ∈ H and z ∈ Ω we have

h̃(χz) = β∗θ1h(χz) = h(βθ1χ(z)) = h(βθ1χβ−θ1(βθ1(z)) = h(βθ1(z)) = h̃(z) ,

where for the second last equality we have used the invariance of h (originally denoted as ĥ in Proposi-
tion 6.10) under H1. Hence, in terms of the final Harish-Chandra coordinates we have an H-invariant
bounded holomorphic function h̃ belonging to F ′′. By Remark 6.11, (Σ,Σ′) is a regular pair of max-
imal boundary components belonging to C ′

adm(h̃). Moreover by our choice of θ1, it follows that the

admissible boundary values h̃♯b(w),b′(w) are nonconstant.

Consider now the subgroup G′
0 = υ({id∆} × Aut0(Ω

′)) ⊂ G0. Then, G
′
0 fixes each of Σ and Σ′ as

a set, and both (g∗h̃)♯b(w),b′(w) = h̃♯b(g(w)),b′(g(w)) and (g∗h̃)♯b′(w),b(w) = h̃♯b(g(w)),b′(g(w)) exist. (Here we use

the notation g both as an element of G′
0 ⊂ G0 and as an element of Aut0(Ω

′) in the obvious way.) By

Proposition 6.9, g∗h̃ ∈ F . Since h̃(0; 0;w) = h̃♯(1; 0;w) is nonconstant, there exists g ∈ G′
0 such that

d(g∗h̃)(0) ̸= 0, hence without loss of generality we may assume that dh̃(0) ̸= 0.
In what follows, for the proof of Theorem 1.1 in the case where Ω is irreducible, we will assume

without loss of generality that ΓH is dense in G0, (P0,Ω
′
0) is h-admissible, (Σ,Σ′) belongs to C ′

adm(h),

ĥ(z) = lim
t→1

h(χt(z)) = sΣ(ρΣ,Σ′(z)) for some nonconstant sΣ ∈ H∞(Σ). (Replacing βθ by βθ+π if

necessary, we assume here that ĥ is obtained by taking t → 1.) In other words, we use the symbol Γ
to mean Γ′′, F for F ′′, etc., in the last paragraphs.)

Define now Λ0 : Ω → Cn by Λ0 = [h̃, 0, · · · , 0]t as a column n-vector of bounded holomorphic
functions, hence Λ0 ∈ Fn. Since h̃ and hence Λ0 : Ω → Cn is H-invariant, by Proposition 6.9 we have
g∗Λ ∈ Fn for every g ∈ G0. We claim that the following statement (♭) holds true.

(♭): There exists a linear transformation A ∈ End(Cn) such that, writing Λ = AΛ0 ∈ Fn, we have
Tr(dΛ(0)) ̸= 0.

Since dh̃(0) ̸= 0 there exists i, 1 ≤ i ≤ n, such that ∂h
∂zi

(0) ̸= 0. Let A be the elementary n-by-n matrix
such that for an n-by-n matrix X the map X → AX has the effect of switching the first row and the
i-th row. Then (A(dΛ0(0))ii ̸= 0 while by definition all k-th rows of A(dΛ0(0)) are 0 except for k = i.
Hence, for Λ = AΛ0 we have

Tr(dΛ(0)) = Tr(d(AΛ0)(0) = AdΛ0(0)ii ̸= 0 ,

proving the claim. Now for z ∈ Ω define

Λ̃(z) :=

∫
K
kΛ(k−1z)dµ(k)

Since obviously Λ is H-invariant, by Proposition 6.9 we have g∗Λ ∈ Fn for every g ∈ G0. It follows
that the vector-valued function Λ(k−1z) belongs to Fn. On the other hand, F is closed under left
multiplication by a constant n-by-n matrix, since that gives simply an element of (H∞(Ω))n whose
entries are linear combinations of functions belonging to F . It follows by Lemma 6.6 that Λ̃ ∈ Fn.

Now 0 ∈ Ω is fixed byK. For every k ∈ K, writing Λk(z) = kΛ(k−1z) we have dΛk(0) = kdΛ(0)k−1

so that Tr(dΛk(0)) = Tr(dΛ(0)) ̸= 0, hence Tr(dΛ̃(0)) ̸= 0. As explained in §4.2, Λ̃ is necessarily a
linear function. Since K acts irreducibly as a group of unitary transformations on Cn, it follows from
Tr(dΛ̃(0)) ̸= 0 and the Schur lemma that Λ̃ = 1

c idΩ for some constant c ̸= 0. Hence, 1
c idΩ = F ∗µ =

F ∗[µ1, . . . , µn]
t, where µi ∈ H∞(Ñ) for 1 ≤ i ≤ n. The proof of the Extension Theorem (Theorem

1.1) is completed by taking R = cµΦ : Ñ → Cn.
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Assume now Ω is reducible (and the lattice Γ ⊂ Aut0(Ω) is irreducible), and Ω = Ω1 × · · · × Ωm,
m ≥ 2, is the decomposition of Ω into a Cartesian product of irreducible bounded symmetric domains
Ωj ⋐ Cnj ⊂ Sj being the standard inclusions incorporating the Harish-Chandra realization Ωj ⋐ Cnj

and the Borel embedding Ωj ⋐ Sj of Ωj into its dual irreducible Hermitian symmetric space Sj of the
compact type. Denote by πj : Ω → Ωj the canonical projection of Ω onto the j-th Cartesian factor.

For each j, 1 ≤ j ≤ m, by the hypothesis (♣) in Theorem 1.1 there exists a bounded holo-
morphic function φj on Ñ such that hj := F ∗φj is nonconstant. Write z = (z1, · · · , zm), where

zj = (zj1, (z
j)′, wj) are the privileged Harish-Chandra coordinates on Ωj according to the eigenspace

decomposition at 0 ∈ Ωj of the Hermitian bilinear form Hα with respect to some unit minimal rational
tangent vector α of Sj , Ωj ⋐ Sj being the Borel embedding.

Let νj : ∆× Ω′
j → Ωj be the holomorphic embedding giving the reference special product domain

P0 = νj(∆×Ω′
j) on Ωj , where by convention Ω′

j is a single point in the case where Ωj is of rank 1, and
by υj : Aut0(∆) → Aut0(Ωj) the natural group monomorphism. Recall that for −1 < t < 1 we write
ψt ∈ Aut(∆) for the transvection ψt(z) =

z+t
1+tz . Let Hj be the one-parameter group of transvection

defined by

Hj :=
{(
idΩ1 , · · · , idΩj−1 , χ

j
t , idΩj+1 , · · · , idΩm

)
: −1 < t < 1

}
, where

χjt (z
j
1, 0, w

j) =
(
ψt(z

j
1), 0, w

j
)
=

(
zj1 + t

1 + tzj1
, 0, wj

)
.

Exactly the same argument as in the case where Ω is irreducible produces a holomorphic map Rj :

Ñ → Ωj such that Rj ◦ F = πj . Then, defining R := (R1, · · · , Rm) : Ñ → Cn1 × · · · × Cnm , we have
R ◦ F (z) = (π1(z), · · · , πm(z)) = z, as desired. The proof of Theorem 1.1 is complete.

7 Applications to Rigidity Theorems: Preliminaries, Statements of
Results, and First Arguments

The first link between bounded holomorphic functions and rigidity problems was given by the Em-
bedding Theorem in [19]. In Theorem 1.1 we solved the Extension Problem, which is the problem of
inverting the holomorphic embedding F : Ω → Ñ as a bounded holomorphic map, i.e., finding a holo-
morphic extension R : Ñ → Cn of the inverse i : F (Ω) → Ω ⋐ Cn as a bounded holomorphic map. As a
first application of Theorem 1.1, we are going to prove for X = Ω/Γ (in the notation of Theorem 1.1)
a factorization result called the Fibration Theorem for holomorphic mappings f : X → N inducing
isomorphisms on fundamental groups which says that there exists a holomorphic fibration ρ : N → X
such that ρ ◦ f ≡ idX . After lifting f to F : Ω → Ñ , quasi-compactness of N (cf. §7.1) is used to
show that certain bounded plurisubharmonic functions constructed on Ñ have to be constant, which
allows us to show that R descends from Ñ to N .

A primary objective in our research relating bounded holomorphic functions to rigidity problems
is to study holomorphic mappings from X into target manifolds N which are uniformized by an
arbitrary bounded domain D on a Stein manifold, N := D/Γ′. We study further the situation where
f : X → N = D/Γ′ induces an isomorphism on fundamental groups and look for necessary and
sufficient conditions which guarantee that f : X → N is a biholomorphism. We are going to show

f : X
∼=−→ N in Theorem 7.2 (the Isomorphism Theorem) under the assumption that N is of finite

intrinsic measure with respect to the Kobayashi volume form. When N is a complete Kähler manifold
of finite volume, we have at our disposal the tool of integration by parts. We resort to such techniques,
by passing first of all to the hull of holomorphy D̂ ofD and making use of the canonical Kähler-Einstein
metric constructed by [4] and shown to be complete in [28]. We exploit the hypothesis that N = D/Γ′

is of finite intrinsic measure with respect to the Kobayashi volume form to prove thatN can be enlarged
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to a complete Kähler-Einstein manifold of finite volume, which is enough to show that the bounded
plurisubharmonic functions constructed are constant. The hypothesis on N in Theorem 7.2 appears
to be the most natural geometric condition, as the notion of the Kobayashi pseudo-)volume form µM ,
unlike the canonical Kähler-Einstein metric, is elementary and defined for any complex manifold M ,
and the finiteness of the intrinsic measure with respect to µN is a necessary condition for the target
manifold N of f : X → N to be quasi-compact. The passage from a quotient of finite intrinsic measure
of a bounded domain to a complete Kähler-Einstein manifold of finite volume involves an elementary
a-priori lower estimate of independent interest on the Kobayashi volume form on arbitrary bounded
domains in terms of the Euclidean distance to the boundary.

For further discussion we fix some notational conventions consistent with that introduced in §3.1
and some terminology.

Let gBn be the Kähler-Einstein metric on the unit ball Bn ⊂ Cn normalized to have constant Ricci
curvature −(n + 1), and denote its volume form by dVBn . On a complex manifold M let KM be the
space of all holomorphic maps f : Bn →M . For a holomorphic n-vector η at a point x ∈M its norm
with respect to the Kobayashi (pseudo-)volume form µM is given by ∥η∥µM = inf{∥ξ∥dVBn : f∗ξ =
η for some f ∈ KM}. In the case where M = U is a bounded domain π : U → Z spread over a
Stein manifold Z, µU is a volume form, i.e., µU > 0 everywhere, and the same is true for any quotient
manifold of U by a torsion-free discrete group of automorphisms.

A complex manifold N is said to be quasi-compact if and only if there exists a compact complex
manifold N ♯ such that N ⊂ N ♯ and N ♯ −N ⊂ N ♯ is a complex analytic subvariety. Equivalently, N
is quasi-compact if and only if it is an open subset of N ♯ with respect to the Zariski topology on N ♯

where the closed subsets are exactly the complex analytic subvarieties of N ♯. (We will simply say that
N is Zariski open in N ♯.)

We are going to apply the solution to the Extension Problem given in Theorem 1.1 to holomorphic
mappings f : X → N which induce isomorphisms on fundamental groups. We assume that N is
quasi-compact. In this case we prove that there is a holomorphic retraction of N onto f(X). More
precisely, we have

Theorem 7.1. (The Fibration Theorem) Let Ω be a bounded symmetric domain of rank ≥ 2 and
Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let N be a quasi-compact complex
manifold and denote by Ñ its universal covering space, N = Ñ/Γ′. Let f : X → N be a holomorphic

mapping into N inducing an isomorphism f∗ : Γ
∼=−→ Γ′ on fundamental groups. Suppose (X,N ; f)

satisfies the nondegeneracy condition (♣) (as in the statement of Theorem 1.1). Then, f : X → N is
a holomorphic embedding, and there exists a holomorphic fibration ρ : N → X such that ρ ◦ f = idX .

In the Fibration Theorem, since f∗ : Γ
∼=−→ Γ′, there is a smooth map g0 : N → X such that

(g0)∗ = (f∗)
−1 on fundamental groups. In the case where N is compact and equipped with a Kähler

metric, and where X is also assumed to be compact, there is a harmonic map g : N → X homotopic
to g0, and by the method of strong rigidity starting with [33], g gives the holomorphic fibration
ρ : N → X. The method of harmonic maps can no longer be applied when we drop the Kähler
condition on N , even when N is assumed to be compact. Thus, even in the compact case the strength
of the Fibration Theorem lies on the use of bounded holomorphic functions on the universal covering
space Ñ of N in place of the Kähler condition on N . When N is quasi-compact but not compact then
the method of harmonic maps does not always work even when N is equipped with a complete Kähler
metric.

One of our primary objectives in relating bounded holomorphic functions to rigidity problems is
to develop a theory applicable to holomorphic mappings from irreducible finite-volume quotients of
bounded symmetric domains of rank ≥ 2 by torsion-free lattices to complex manifolds N uniformized
by arbitrary bounded domains. In this case the nondegeneracy condition (♣) in Theorem 1.1 (the
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Extension Theorem) is always satisfied for any nonconstant holomorphic mapping f : X → N . We
will apply Theorem 1.1 to such mappings assuming now as in the Fibration Theorem that the induced
map on fundamental groups is an isomorphism. We look for some natural geometric condition on N
which allows us to establish an analogue of the Fibration Theorem, in which case one expects the fibers
on Ω to reduce to single points. We establish the following main result in §8 yielding a biholomorphism
under the assumption that the target manifold N = D/Γ′ is of finite intrinsic measure with respect to
the Kobayashi volume form µN , a condition necessary for N to admit a realization as a Zariski open
subset of some compact complex manifold.

Theorem 7.2. (The Isomorphism Theorem) Let Ω be a bounded symmetric domain of rank ≥ 2
and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let D be a bounded domain on a
Stein manifold, Γ′ be a torsion-free discrete group of automorphisms on D, N := D/Γ′. Suppose N
is of finite intrinsic measure with respect to the Kobayashi volume form µN , and f : X → N is a

holomorphic map which induces an isomorphism f∗ : Γ
∼=−→ Γ′. Then, f : X

∼=−→ N is a biholomorphic
map.

Remark 7.3. We note that in the statement of the Isomorphism Theorem we do not need to assume
that D is simply connected. We need a slight variation in the formulation of the Theorem 1.1 (the
Extension Theorem). In the proof of the latter result it is not essential to use the universal covering
space Ñ . We may use any regular covering τ : Ñ → N and still have the same conclusion. Note
that when this variation of Theorem 1.1 is applied to the holomorphic mapping f : X → N = D/Γ′

in Theorem 7.2, f still lifts to F : Ω → D. The slight variation of Theorem 1.1 with the weakened
assumption that τ : Ñ → N is a regular covering and the same conclusion will be taken as known and
used in the rest of the article.

7.1 Complete Kähler-Einstein metrics and estimates on the Kobayashi volume
form

For the Isomorphism Theorem we are interested in the case where the target manifold N is uniformized
by a bounded domain D on a Stein manifold. In our study of such manifolds we will need to resort
to the use of canonical complete Kähler metrics. When D is assumed furthermore to be a domain of
holomorphy, we have the canonical Kähler-Einstein metric. The existence of the metric was established
by [4], and its completeness by [28]. More precisely, we have

Theorem 7.4. (Existence Theorem on Kähler-Einstein metrics) Let Z be a Stein manifold of di-
mension n and U ⋐ Z be a bounded domain of holomorphy on Z. Then, there exists on U a unique
complete Kähler-Einstein metric gKE of Ricci curvature −(n+1). The metric is furthermore invariant
under Aut(U).

Remark 7.5. The existence theorem was only stated for bounded domains on Cn but the same proof
goes through when Cn is replaced by a Stein manifold Z, noting that Z can holomorphically embedded
as a complex submanifold of some Euclidean space CN . We note that the invariance of gKE under
Aut(U) follows from the Ahlfors-Schwarz lemma for volume forms (cf. Yau [36]). Furthermore, the
existence of gKE on a bounded domain U ⋐ Z implies that U is a domain of holomorphy. It was in
fact proven in [28] that any bounded domain on Cn admitting a complete Kähler-Einstein metric of
negative Ricci curvature satisfies the Kontinuitätssatz of Oka’s, and must therefore be a domain of
holomorphy, and the same proof is valid when Cn is replaced by a Stein manifold Z.

In the formulation of the Isomorphism Theorem we assume that the target manifold N = D/Γ′

is of finite intrinsic measure with respect to the Kobayashi volume form µN . For the proof of the
Isomorphism Theorem we need to work with the complete Kähler-Einstein metric. This is done by
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first passing to the hull of holomorphy D̂ of D. For the passage from D to D̂ and for estimates in the
proof it is necessary to compare various canonical metrics and volume forms, as given in the following
Comparison Lemma which results from the Ahlfors-Schwarz lemma for Kähler metrics and for volume
forms (cf. [16] and the references given there). In what follows, for a complex manifold M let CM
denote the set of all holomorphic maps h :M → ∆. In the current article by the Carathódory metric
κM on a complex manifold M we always mean the infinitesimal Carathéodory metric on M , i.e., the
complex Finsler metric κM on M defined by ∥ξ∥κM = sup {∥dh(ξ)∥g∆ : h ∈ CM} for ξ ∈ T 1,0

M , where
the Poincaré metric g∆ on the unit disk is normalized to be of constant Gaussian curvature −2 as in
the above.

Lemma 7.6. (The Comparison Lemma) Let U be a bounded domain of holomorphy on some n-
dimensional Stein manifold, gKE be the canonical complete Kähler-Einstein metric of constant Ricci
curvature −(n+1) on U , and denote by dVKE its volume form. Then, for the infinitesimal Carathéodory
metric κU and the Kobayashi volume form µU on U , we have

gKE ≥ 2κU
n+ 1

, dVKE ≤ µU.

We will need the following estimate for the Kobayashi volume form µU on a bounded domain U ⋐ Cn
in terms of distances to the boundary.

Proposition 7.7. Let U ⋐ Cn be a bounded domain, and denote by µU the Kobayashi volume form
on U . For z ∈ U denote by δ(z) the Euclidean distance of z from the boundary ∂U . Write dV for the
Euclidean volume form on Cn. Then, there exists a positive constant c depending only on n and the
diameter of U such that

µU (z) ≥
c

δ(z)
dV .

Proof. We will first deal with the case where n = 1. In this case, the Kobayashi volume form is the
same as the infinitesimal Kobayashi metric, which agrees with the Poincaré metric, and we have the
stronger lower estimate where c

δ(z) is replaced by c
δ2(z)(log δ)2

(cf. [28]). The latter estimate relies on

the Uniformization Theorem and does not carry over to the case of general n. We will instead prove
the weaker estimate as stated in Proposition 7.7 for n = 1 using the maximum principle and Rouché’s
Theorem and then give the necessary modification to deduce the estimate for general n.

Let z ∈ U and f : ∆ → U be a holomorphic function such that f(0) = z. Denote by w the
Euclidean coordinate on ∆. We will show that for some absolute constant C to be determined, we
have |f ′(0)| ≤ C

√
δ(z), which gives the estimate ∥ ∂

∂w∥
2
µU

≥ c
δ(z) for c = 1

C2 , regarding µU as the

infinitesimal Kobayashi metric. Let b ∈ ∂U be such that |z − b| = δ(z). To get an upper estimate
for |f ′(0)| we are going to show that if |f ′(0)| were too large, then b would lie in the image f , leading
to a contradiction. To this end consider the function h(w) := f(w) − b, h : ∆ → ∆(2R) assuming
U ⋐ ∆(R), R <∞. The affine linear part of h at 0 is given by L(w) = h′(0)w+h(0) = f ′(0)w+(z−b),
noting the trivial estimate |f ′(0)| ≤ R by the maximum principle. Write h(w) = L(w) + E(w). We
claim that there is a constant a > 0 for which the following holds if |f ′(0)| ≥ C

√
δ(z) for any constant

C > 3
a .

(&) :

{
(a) |L(w)| > 2δ(z), whenever |w| = a

√
δ(z);

(b) |E(w)| < δ(z), whenever |w| = a
√
δ(z)

From (a) and (b) it follows that |h(w)| > δ(z) whenever |w| = a
√
δ(z). To prove (b) of the claim

observe that the “error” term E(w) satisfies E(0) = E′(0) = 0 and |E(w)| ≤ |h(w)| + |L(w)| ≤
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|h(w)| + |f ′(0)||w| + |z − b| ≤ 5R for |w| < 1, by the maximum principle applied to E(w)
w2 , so that

(b) is valid whenever (5R)a2 < 1. As to (a) choose now the constant C such that C > 3
a . Then, for

|w| = a
√
δ(z), ∣∣L(w)∣∣ ≥ (

C
√
δ(z)

)
· |w| − δ(z) >

3

a

√
δ(z)

(
a
√
δ(z)

)
− δ(z) > 2δ(z) (22)

so that (a) holds for C > 3
a , completing the proof of the claim (&). For Proposition 7.7 in the

case of n = 1 we can conclude by applying Rouché’s Theorem to reach a contradiction whenever
|f ′(0)| > C

√
δ(z). In view of the generalization to several complex variables, we give the argument

here. Assume |f ′(0)| > C
√
δ(z). Consider ht(w) = L(w) + tE(w) for t real 0 ≤ t ≤ 1. From (22)

it follows that for 0 ≤ t ≤ 1 we have |ht(w)| > (2 − t)δ(z) > 0 whenever |w| = a
√
δ(z). For t = 0

the affine-linear function L admits a zero at w = w0 := b−z
f ′(0) , |w0| ≤ δ(z)

C
√
δ(z)

=

√
δ(z)

C <
a
√
δ(z)

3 . In

particular, w0 ∈ ∆
(
a
√
δ(z)

)
for the zero w0 of L(w) = h0(w). For 0 ≤ t ≤ 1 the number of zeros of

ht on the disk ∆
(
a
√
δ(z)

)
is counted, by the Argument Principle, by the boundary integral

1

2π

∫
∂∆

(
a
√
δ(z)

)√−1 ∂log|ht|2 =
1

2π

∫
∆
(
a
√
δ(z)

)√−1∂∂log|ht|2 (23)

The boundary integral is well-defined, takes integral values, and varies continuously with t, so that it is
independent of t, implying that there exists a zero of ht on the disk ∆

(√
δ(z)

)
; 0 ≤ t ≤ 1. In particular,

for t = 1, h1(w) = h(w) = f(w) − b, and f(w) = b has a solution on ∆
(√

δ(z)
)
, contradicting with

the assumption that b ∈ ∂U . This gives Proposition 7.7 for the special case where n = 1.
We now generalize the argument to several complex variables. Let f : Bn → U be such that

f(0) = z. Let again b ∈ ∂U be a point such that δ(z) = b. Consider the linear map df(0). Assume
U ⋐ Bn(R), R < ∞. Considering h(w) := f(w) − z, h(Bn) ⋐ Bn(2R), by the Cauchy integral
formula for the first derivative ∥df(0)(η)∥ ≤ R∥η∥ for any η ∈ T0(Bn) ∼= Cn, where ∥ · ∥ denotes the
Euclidean norm. To prove Proposition 7.7 for an arbitrary dimension n it suffices to get an estimate
|det(df(0))| ≤ C

√
δ(z) for some constant C > 0 depending on U . In analogy to (a) and (b) in

the case of n = 1, for the purpose of arguing by contradiction (in order to establish the estimate
|det(df(0))| ≤ C

√
δ(z) ) we claim that for U ⋐ Bn(R) ⊂ Cn there exist constants a,C > 0 depending

only on n and R for which the following holds assuming |det(df(0))| ≥ C
√
δ(z).

(&)n :

{
(a)n ∥L(w)∥ > 2δ(z) whenever ∥w∥ = a

√
δ(z);

(b)n ∥E(w)∥ < δ(z) whenever ∥w∥ = a
√
δ(z).

Noting that ∥df(0)(w)∥ ≤ R∥w∥ the argument for (b)n is the same as in the case of n = 1, and it
suffices to choose a such that (5R)a2 < 1. As for (a)n, considering |w| ∈ ∂Bn(a

√
δ(z)) we have∣∣L(w)∣∣ ≥ ∥df(0)(w)∥ − ∥z − b∥ = ∥df(0)(w)∥ − δ(z). (24)

To relate ∥df(0)(w)∥ to | det(df(0)| suppose df(0)(w) = ξ with ∥ξ∥ = α∥w∥. Denoting by w⊥ resp. ξ⊥

the orthogonal complements of the nonzero vectors w and ξ in Cn, we consider the linear map Λ :
w⊥ → ξ⊥ given by Λ = π ◦ df(0)|w⊥ where π : Cn → ξ⊥ is the orthogonal projection. With respect to
orthonormal bases of the (n− 1)-dimensional complex vector spaces w⊥ resp. η⊥ we have | det(Λ)| ≤
Rn−1 by the Schwarz lemma while | det(df(0)| = α(det(Λ)), giving α ≥ | det(df(0)|

Rn−1 . Choosing now any

positive constant C such that C
Rn−1 >

3
a for ∥w∥ = a

√
δ(z) and | det(df(0))| > C

√
δ(z) we have

α ≥ | det(df(0))|
Rn−1

>
C
√
δ(z)

Rn−1
>

3

a

√
δ(z) . (25)
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Thus, for ∥w∥ = a
√
δ(z) and assuming |det(df(0)| > C

√
δ(z) we have by (24) and (25)

∥L(w)∥ ≥ 3

a

√
δ(z)

(
a
√
δ(z)

)
− δ(z) > 2δ(z) , (26)

yielding (a)n and completing the proof of the claim (&)n for any n. From (a)n and (b)n it follows
that ∥h(w)∥ > δ(z) whenever ∥w∥ = a

√
δ(z). In terms of the Euclidean coordinates w = (w1, ..., wn)

of the domain manifold define as for n = 1 the holomorphic map h(w) = f(w) − b. Decomposing
h(w) = L(w) + E(w) as in the case of n = 1, L(w) = df(0)(w) + (z − b), and using exactly the same
argument there we have a real 1-parameter family of holomorphic maps ht(w) = L(w)+tE(w). Hence,
for 0 ≤ t ≤ 1 we have ∥ht(w)∥ ≥ ∥L(w)∥ − t∥E(w)∥ ≥ (2− t)δ(z) > δ(z) for w ∈ ∂Bn(a

√
δ(z)), hence

ht(w) ̸= 0 for any w ∈ ∂Bn
(
a
√
δ(z)

)
. For the analogue of Rouché’s Theorem we note that the affine

linear function L(w) = df(0)(w)+(z−b) admits a unique zero at w = w0 = (df(0))−1(b−z) on Cn. By
the hypothesis (for argument for contradiction) we have ∥df(0)(η)∥ > 3

a

√
δ(z)∥η∥ for η ∈ T0(Bn) ∼=

Cn, hence ∥df(0)−1(ξ)∥ < a∥ξ∥
3
√
δ(z)

for ξ ∈ Tz(U) ∼= Cn, so that in particular w0 ∈ Bn
(
a
√
δ(z)

)
and

h0(w) = L(w) has a unique solution on Bn
(
a
√
δ(z)

)
. Suppose for some t, 0 ≤ t ≤ 1, ht(w) = 0 is

not solvable on Bn(a
√
δ(z)). Writing ht(w) = (ht,1(w), · · · , ht,n(w)), the coefficients ht,k(w) cannot

be simultaneously zero, so that [ht] : Bn → Pn−1 is well-defined, and
(√

−1∂ ∂log|ht|2
)n ≡ 0, since

the (1,1)-form inside the parenthesis is nothing other than the pull-back of the Kähler form of the
Fubini-Study metric on Pn−1, which is everywhere degenerate. If that happened, by Stokes’ theorem
we would have

I(t) :=
1

(2π)n

∫
∂Bn

(
a
√
δ(z)

)√−1∂log|ht|2 ∧
(√

−1∂∂log|ht|2
)n−1

= 0 . (27)

The boundary integral is well-defined for 0 ≤ t ≤ 1, with I(0) = 1. Obviously I(t) varies continuously
with t, but it is less clear that I(t) is an integer for each t. To reach a contradiction to the assumption
b ∈ ∂U (as in the use of Rouché’s Theorem for n = 1), we proceed as follows. The mapping ht :=
L+tE : Bn → Cn is defined for any real t, and, for ϵ sufficiently small, in the interval −ϵ ≤ t ≤ 1+ϵ, ht
is not equal to 0 on ∂Bn

(
a
√
δ(t)

)
. Hence, the boundary integral I(t) remains well-defined. The integral

I(t) then varies as a real-analytic function in t. For t sufficiently small, ht is a biholomorphism of
Bn

(
a
√
δ(z)

)
onto its image. The current

(√
−1∂∂log|ht|2

)n
over Bn

(
a
√
δ(z)

)
is given by (2π)nδx(t),

where x(t) is the unique zero of ht, and δx denotes the delta measure at x. Hence I(t) = 1 for t
sufficiently small. It follows that I(t) = 1 for 0 ≤ t ≤ 1 by real-analyticity, and we have a contradiction
to (27) at t = 1. The proof of Proposition 7.7 is complete.

For a bounded domain U ⋐ Cn the Kobayashi volume form µU can be localized using Cauchy
estimates, as follows. Suppose b lies on the boundary ∂U , and let B be a Euclidean coordinate ball
centered at b, B := Bn(b; ρ). Suppose 0 < ϵ < 1, and write B′ := Bn(b; (1 − ϵ)ρ). Then, there exists
r > 0 depending only on the diameter of U and on ϵ such that for any holomorphic map f : Bn → U
satisfying f(0) ∈ B′ ∩ U we have f(Bn(r)) ⊂ B ∩ U . This leads to an upper bound on the Kobayashi
volume form µB∩U

∣∣
B′∩U in terms of µU

∣∣
B′∩U . For our application to the proof of the Isomorphism

Theorem (Theorem 7.2) we formulate the localization estimate obtained by the same argument in a
more general form as follows, noting the monotonicity property of the Kobayashi volume form.

Lemma 7.8. (Localization Lemma for the Kobayashi volume form) Let π : U → Z be a bounded
Riemann domain spread over a Stein manifold Z, U0 ⊂ U be a connected open subset, and b ∈ ∂U0,
the boundary of U0 in U . Let B ⊂ U be a neighborhood of b on U such that π|B : B → Z is an open
embedding of B onto a coordinate neighborhood π(B) of π(x) in Z, and B′ ⋐ B be a neighborhood of
b relatively compact in B. Then, there exists a positive constant C such that

µU (z) ≤ µU∩B(z) ≤ CµU (z)
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for any point z ∈ B′ ∩ U .

Next, for a bounded Riemann domain π : U → Z spread over a Stein manifold Z we will make use
of the above Localization Lemma and Proposition 7.7 to study open subsets U0 ⊂ U of locally finite
volume with respect to µU at any boundary point b ∈ U − U0.

Proposition 7.9. Let π : U → Z be a bounded Riemann domain spread over a Stein manifold Z, and
U0 ⊂ U be an open subset. Assume b ∈ U − U0 and let B ⊂ U be a neighborhood of b in U such that
π|B : B → Z is an open embedding of B onto a coordinate neighborhood π(B) of π(x) in Z. Identify B
as a Euclidean domain via the implicitly chosen local holomorphic coordinates on π(B) and endow B
hence with the Lebesgue measure λ. Suppose Volume(B′∩U0, µB∩U0) <∞ for any open subset B′ ⋐ B
relatively compact in B. Then, the closed subset B − U0 ⊂ B is of zero Lebesgue measure.

Proof. We identify B with π(B), π|B : B
∼=−→ π(B), and then π(B) via the holomorphic coordinate

Φ : π(B)
∼=−→W ⊂ Cn, Φ◦π|B : B

∼=−→W , so that B is identified withW . WriteW0 := Φ(π(B∩U0)) ⊂
W . Using a locally finite collection of relatively compact open subsets covering W and applying the
Localization Lemma for the Kobayashi volume form (Lemma 7.8), the proof of Proposition 7.9 can be
reduced to that of the following special situation.

Identify C with R2 in the standard way, and hence Cn with R2n. Let I denote the closed unit
interval [0, 1] and I0 := (0, 1) be the open unit interval, I0 = I. Let α be a positive real number, and
write J := [−α, 1+α], J0 := (−α, 1+α), J0 = J . Assume that J2n ⊂W . Write E′ = J2n−Φ(π(U0)).
E := I2n − Φ(π(U0)). Assume that E ⊂ I2n−1 × [ϵ, 1] for some ϵ, 0 < ϵ < 1, so that I2n−1 × [0, ϵ) ⊂
I2n−E. On J2n−E′ denote by δ the Euclidean distance to E′, i.e., δ(x) = sup

{
r : Bn(x; r)∩E′ = ∅}

for x /∈ E′. By Proposition 7.7, for some constant C we have∫
I2n−E

dV

δ
≤ C

∫
I2n0 −E

µJ2n
0 −E′ <∞ (28)

where dV denotes the Euclidean volume form on R2n. Then, we need to prove that λ(E) = 0 for the
Lebesgue measure λ on R2n. Let S ⊂ I2n−1 be the closed subset consisting of all parameters s ∈ I2n−1

such that
(
{s} × I

)
∩ E ̸= ∅. Denote by t the Euclidean variable for the last direct factor of I2n. For

each parameter s ∈ S we claim that ∫
({s}×I)−E

dt

δ
= ∞ . (29)

To see this note that for each s ∈ S, δ(s; t) ≤ |t− t0| for any t0 such that (s; t0) ∈ E. For s ∈ S, taking
t0 ∈ [ϵ, 1] to be the smallest number such that (s; t0) ∈ E, we have∫

({s}×I)−E

dt

δ
≥

∫ t0

0

dt

t0 − t
= ∞ , (30)

justifying the claim (2). By Fubini’s theorem, the closed subset S ⊂ I2n−1 is of zero Lebesgue measure,
hence E ⊂ S × I is of zero Lebesgue measure, as desired.

Given any unramified covering map χ : M̃ → M , by the fact that Bn is simply-connected, χ∗µM
on M agrees with µ

M̃
since any map f ∈ KM lifts to f̃ ∈ K

M̃
. Using Proposition 7.7 we deduce

the following result crucial to the proof of the Isomorphism Theorem (Theorem 7.2). It relates the
covering domain D to its hull of holomorphy D̂, and allows us to enlarge N to a complex manifold
admitting a complete Kähler-Einstein metric of finite volume.
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Proposition 7.10. Let D ⊂ Z be an a bounded domain on a Stein manifold Z, Γ′ ⊂ Aut(D) be a
torsion-free discrete group of automorphisms of D such that N = D/Γ′ is of finite measure with respect
to µD. Let π : D̂ → Z be the hull of holomorphy of D. Then, Γ′ extends to a torsion-free discrete
group of automorphisms Γ′ of D̂ such that, writing N̂ := D̂/Γ̂′, N̂ is of finite volume with respect to
µ
N̂
.

Proof. From Cartan’s theorem on limits of automorphisms of bounded domains (cf. Narasimhan [29]),
which generalizes readily to bounded domains on Stein manifolds, one deduces that Γ′ ⊂ Aut(D)
extends canonically to a discrete subgroup Γ̂′ ⊂ Aut(D̂), Γ̂′ ∼= Γ′ of automorphisms of the hull of
holomorphy D̂ ⊃ D (cf. Mok-Wong [27], Lemma in (1.1) therein). Since torsion-freeness of Γ′ is
an algebraic property of the abstract group Γ′, which is isomorphic to Γ̂′, the latter group is also
torsion-free. Thus, Γ̂′ acts properly discontinuously on D̂ without fixed points and N̂ := D̂/Γ̂′ is a
complex manifold.

Since µ
N̂

≤ µN on N , Volume(N,µ
N̂
) ≤ Volume(N,µN ) < ∞. On the other hand, Volume(N̂ −

N,µ
N̂
) is obtained by integrating µ

N̂
over N̂ −N . Covering N̂ by a countable number of open subsets

Bα ⊂ N̂ , α ∈ A, such that each Bα is biholomorphic to a Euclidean domain Wα, and denoting by
λα the Lebesgue measure on Bα thus obtained from Wα ⊂ Cn, we have µ

N̂

∣∣
Bα

= θα · λα for some

locally bounded measurable function θα on Bα such that Bα ∩ (N̂ −N) is of zero Lebesgue measure
with respect to λα, by Proposition 7.9. We conclude that Volume(N̂ , µ

N̂
) = Volume(N,µ

N̂
) < ∞, as

desired.

By Proposition 7.9 it follows readily that D̂−D is locally of zero Lebesgue measure at any boundary
point b of D in D̂. In other words, for any such point b there is a coordinate neighborhood U of b on
D̂ such that U −D is a zero Lebesgue measure. In particular, D̂−D does not contain any nonempty
open subset, and it follows that the Riemann domain D̂ spread over the Stein manifold Z is schlicht,
hence we may from now on identify D̂ as a bounded domain on Z.

Since D̂ ⋐ Z is a bounded domain of holomorphy, by the Existence Theorem on canonical Kähler-
Einstein metrics (Theorem 7.4) on bounded domains of holomorphy on Stein manifolds there is a
unique complete Kähler-Einstein metric gKE and the accompanying Kähler form ωKE on D̂ ⋐ Z

which is invariant under Aut(D̂). By Γ′-invariance, gKE and ωKE descend to N̂ = D̂/Γ′, and we use

the same notations to denote the Kähler metric resp. Kähler form on the quotient manifold N̂ ⊃ N .

Corollary 7.11. Let N̂ ⊃ N be the complex manifold as in Proposition 7.10. Then N̂ admits a
unique complete Kähler-Einstein metric gKE of finite volume and of constant Ricci curvature −(n+1),
n = dimN .

Proof. It remains to prove that (N̂ , gKE ) is of finite volume. This follows from Volume(N̂ , ωKE ) ≤
Volume(N̂ , µ

N̂
) <∞, where the first inequality comes from the Comparison Lemma (Lemma 7.6) and

the second inequality is in Proposition 7.10.

8 Proofs of the Fibration Theorem and the Isomorphism Theorem

8.1 Proof of the Fibration Theorem

We deduce first of all the Fibration Theorem (Theorem 7.1) from the Extension Theorem (Theorem
1.1).

Proof. (The Fibration Theorem) By the hypothesis Ω is of rank ≥ 2 and Γ ⊂ Aut(Ω) is an irreducible
torsion-free lattice. By Margulis [13], Γ is an arithmetic lattice, and the minimal compactification
Xmin ⊃ X of Satake [31] and Baily-Borel [2] is projective, so that X ⊂ Xmin inherits naturally the
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structure of a quasi-projective manifold. Also by the hypothesis N = Ñ/Γ′ is quasi-compact, i.e., N
is a dense Zariski open subset of some compact complex manifold N ♯.

It is further assumed that f : X → N induces an isomorphism f∗ : π1(X) = Γ
∼=−→ Γ′ = π1(N) on

fundamental groups and that (X,N ; f) satisfies the condition (♣) concerning pull-backs of bounded
holomorphic functions on Ñ by the lifting F : Ω → Ñ of f : X → N to universal covers. Let
R : Ñ → Ω be the holomorphic mapping given by Theorem 1.1 such that R ◦ F = idΩ. We are going
to prove that R descends to ρ : N → X, in other words, that we have the following commutative
diagram.

Ω Ñ

X N

F

R

f

ρ

Assume first of all that Ω is irreducible (and of rank ≥ 2). We have first to prove that R(Ñ) ⊂ Ω.
Let α ∈ T0(Ω) be a minimal rational tangent vector of unit length at the origin 0, ∆α ⊂ Ω be the
minimal disk passing through 0 such that α ∈ T0(∆α). Let Lα : Cn → Cα be the Euclidean orthogonal
projection, which projects Ω onto ∆α. We identify Cα isometrically with C and hence ∆α with ∆.
We claim that R(Ñ) ⊂ Ω. Denote by τ : Ñ → N the universal covering map. For any bounded
holomorphic function ψ on Ñ , consider the function ψθ : N → R defined by ψθ(q) = sup{|θ(p)| :
τ(p) = q}. Defining ψ̃ : Ñ → R by ψ̃(p) = ψ(τ(p)), we have

ψ̃(p) = sup
{
|θ(γ(p))| : γ ∈ Γ′} = sup

{
|(θ ◦ γ)(p)| : γ ∈ Γ′} . (31)

Hence, ψ̃ is the supremum of the absolute values |θγ |, γ ∈ Γ′, on a family of holomorphic functions

θγ : Ñ → ∆, θγ := θ◦γ. From Cauchy estimates on first derivatives ψ̃θ is uniformly Lipschitz and hence
continuous. Thus, ψ : N → R is a bounded continuous plurisubharmonic function. Since N ⊂ N ♯ is
quasi-compact, ψθ extends by the Riemann extension theorem for bounded plurisubharmonic functions
to N ♯, and is hence a constant function by the maximum principle. Applying the same argument now
to the function θα := Lα ◦R we conclude that ψθα must be identically equal to 1, since ψθα(p) = 1 for
any p ∈ f(X). Taking all possible minimal rational tangent vectors α of unit length at 0 one concludes
readily that R(Ñ) ⊂ Ω, as can be seen for instance from the polydisk theorem. It remains to show
that R(Ñ)∩ ∂Ω = ∅. Identifying Ω as an open subset of T0(Ω) by the Harish-Chandra embedding, we
have Ω = {η ∈ T0(Ω) : ∥η∥κΩ ≤ 1} for the Carathéodory metric κΩ on Ω. If R(Ñ) ∩ ∂Ω ̸= ∅, then the

plurisubharmonic function θ(w) := ∥R(w)∥κΩ on Ñ attains its maximum value 1, and must therefore

be identically equal to 1, so that R(Ñ) ⊂ ∂Ω. But this contradicts with the fact that R(p) ∈ Ω for
any point p ∈ F (Ω), and proves R(Ñ) ⊂ Ω via argument by contradiction, as desired.

Using f∗ : Γ
∼=−→ Γ′ we identify Γ with Γ′. For every γ ∈ Γ and any p ∈ F (Ω), p = F (x), we

have R(γ(p)) = γ(R(p)) = γ(x) by definition. Consider now the vector-valued holomorphic map
Tγ : Ñ → Cn given by Tγ(p) = R(γ(p))−γ(R(p)). Then Tγ vanishes identically on F (Ω). Considering

the plurisubharmonic function ∥Tγ∥ on Ñ and descending to N by taking suprema over fibers of

τ : Ñ → N we conclude using Riemann extension and the maximum principle as in the above that
Tγ vanishes identically on Ñ , i.e., we have the identity R ◦ γ ≡ γ ◦ R on all of Ñ . It follows that

the holomorphic mapping R : Ñ → Ω descends to ρ : N → X. Since R ◦ F ≡ idΩ we conclude that
ρ◦f ≡ idX , proving Theorem 7.1 in the case where Ω is irreducible. For the general case where Ω may
be reducible it suffices to consider pull-backs of bounded holomorphic functions which are nonconstant
on irreducible factor subdomains of Ω and the proof follows verbatim.
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8.2 Proof of the Isomorphism Theorem

For the proof of the Theorem 7.2 (Isomorphism Theorem) we proceed now to justify the same line
of argument by first proving the constancy of analogous functions ψθ. This will be demonstrated
by integrating by parts on complete Kähler manifolds, for which purpose we will pass to the hull
of holomorphy D̂ of D and make use of complete Kähler-Einstein metrics as explained in §2. A
further argument, again related to the vanishing of certain bounded plurisubharmonic functions, will
be needed to show that the holomorphic fibration obtained is trivial. For the proof of the Isomorphism
Theorem along brown these lines of thought we will need

Lemma 8.1. Let (Z, ω) be an s-dimensional complete Kähler manifold of finite volume, and u be
a nonnegative uniformly Lipschitz bounded plurisubharmonic function on Z. Then, u is a constant
function.

Proof. Fix a base point z0 ∈ Z. For R > 0 denote by BR the geodesic ball on (Z, ω) of radius R
centered at z0. There exists a smooth nonnegative function ρR on Z, 0 ≤ ρR ≤ 1, such that ρR ≡ 1
on BR, ρR ≡ 0 outside BR+1, so that Supp(dρR) ⊂ BR+1 −BR, and such that ∥dρR∥ ≤ 2. By Stokes’
theorem, we have

0 =

∫
Z

√
−1d(ρRu) ∧ ∂u ∧ ωs−1 +

∫
Z
ρR

√
−1u∂∂u ∧ ωs−1 . (32)

Here
√
−1∂∂u ≥ 0 in the sense of currents, hence it has coefficients which are complex measures

when expressed in terms of local holomorphic coordinates, and
√
−1u∂∂u is well-defined since u is a

bounded function. We have∫
BR

√
−1∂u ∧ ∂u ∧ ωs−1 ≤

∫
Z
ρR

√
−1∂u ∧ ∂u ∧ ωs−1

= −
∫
Z

√
−1u∂ρR ∧ ∂u ∧ ωs−1 −

∫
Z
ρR

√
−1u∂∂u ∧ ωs−1 .

(33)

Here and in what follows, ∥ · ∥ will denote norms on Z arising from ωKE . By assumption ∥du∥ is
uniformly bounded. Furthermore, ∥dρR∥ ≤ 2, and its support is contained in Z − BR, so that the
second last term of (33), up to a fixed constant, is bounded by Volume(Z − BR, ω), which decreases
to 0 as R → ∞ since Volume(Z, ω) < ∞ by assumption. On the other hand the last integral is
nonnegative since u ≥ 0 and u is plurisubharmonic. Fix any R0 > 0. It follows from (1) that for some
constants C1, C2 > 0, we have∫

BR

∥∂u∥2 ≤ C1

∫
Z

∥∥∥u∂ρR ∧ ∂u ∧ ωs−1
∥∥∥ ≤ C2Volume

(
Supp(dρR), ωKE

)
≤ C2Volume

(
BR+1 −BR, ωKE

)
< Volume

(
Z −BR, ωKE

)
→ 0

(34)

as R → ∞, since Volume(Z, ωKE ) < ∞ by the hypothesis. As a consequence, we have ∂u ≡ 0, hence
du ≡ 0 since u is real-valued. In other words, the real-valued function u is a constant function, as
desired.

We are now ready to prove the main application of Theorem 1.1 (the Extension Theorem), as
follows.

Proof. (The Isomorphism Theorem) By Proposition 7.10, we can enlarge D to a bounded domain of
holomorphy D̂ on a Stein manifold and extend Γ′ to a torsion-free discrete group of automorphisms
Γ̂′, such that for N̂ = D̂/Γ̂′ we have Volume

(
N̂ , µ

N̂

)
<∞ for the Kobayashi volume form µ

N̂
.
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By Corollary 7.11, N̂ carries a (unique) complete Kähler-Einstein metric gKE of constant Ricci

curvature −(n+ 1), n = dim(N), with Kähler form ωKE such that Volume(N̂ , ωKE ) <∞.

Consider now the holomorphic map f : X → N ⊂ N̂ as having image in N̂ . Applying Theorem 1.1

(the Extension Theorem), we can extend the inverse map i : F (Ω)
∼=−→ Ω to R̂ : D̂ → Cn as a bounded

holomorphic map. We claim, in analogy to the proof of Theorem 7.1 (the Fibration Theorem), that
R̂(D̂) ⊂ Ω. Recall that there for any bounded holomorphic function θ on Ñ , τ : Ñ → N being the
universal covering map, we defined ψθ(q) = sup {|θ(p)| : τ(p) = q}. To establish R̂(Ñ) ⊂ Ω in the
proof of the Fibration Theorem, a key point was to show that the bounded plurisubharmonic function
ψθ on Ñ is a constant.

In the current situation of Theorem 7.2 (the Isomorphism Theorem), we have N = D/Γ′ ⊂ D̂/Γ̂′ =
N̂ . Since the Carathéodory metric κ

D̂
is invariant under Aut(D̂), it descends to a complex Finsler

metric on N̂ , to be denoted by ν
N̂
. Write τ̂ : D̂ → N̂ for the canonical projection, which is a regular

covering map. In analogy to the proof of the Fibration Theorem here, for the Isomorphism Theorem
we have to find an inverse of the holomorphic map f : X → N ⊂ N̂ , i.e., to find an inverse holomorphic
map ρ̂ : N̂ → X making the following diagram commutative.

Ω D D̂

X N N̂

F

τ τ̂

R̂

f

ρ̂

For a bounded holomorphic function θ on D̂ we define now ψ̂θ(q) := sup {|θ(p)| : τ̂(p) = q}. As in
(31), ψ̂θ is uniformly Lipschitz, hence differentiable almost everywhere, and, where defined, ∥dψ̂θ∥κ∗

D̂

is uniformly bounded. Here and in what follows for a complex Finsler metric σ on a complex manifold

M , a point y ∈M and a (1, 0)-covector β at y, we define ∥β∥σ∗ :=
{
sup|β(η)| : η ∈ T 1,0

y (M), ∥η∥σ ≤ 1
}
,

which defines σ∗ as a complex Finsler metric on the holomorphic cotangent bundle T ∗
M

∼= T 1,0(M)∗.
In case σ is the norm function of a Hermitian metric h on TM , then σ∗ is the norm function of the dual
Hermitian metric h∗ of h on T ∗

M . By the Comparison Lemma (Lemma 7.6), gKE dominates a constant

multiple of κ
D̂
, so that ∥dψ̂θ∥g∗

KE
is uniformly bounded on N̂ . By Lemma 8.1, it follows that ψθ is a

constant, so that R̂(D̂) ⊂ Ω. The same argument applied to the bounded vector-valued holomorphic
functions Tγ = R̂◦γ−γ ◦ R̂ yields Tγ ≡ 0 and hence the equivariance of R̂ under Γ. As a consequence,

the analogue of the Fibration Theorem remains valid, i.e., there exists a holomorphic map ρ̂ : N̂ → X
such that ρ̂ ◦ f ≡ idX .

To complete the proof of the Isomorphism Theorem, it remains to show that f : X → N is an
open embedding. Knowing this, we will have f ◦ ρ̂ ≡ id

N̂
by the identity theorem for holomorphic

functions, so that f maps X biholomorphically onto N̂ . But, by the hypothesis f(X) ⊂ N , so that
N̂ = N and we will have established that f : X → N is a biholomorphism.

We proceed to prove

(♯): f : X → N ⊂ N̂ is an open embedding.

Suppose otherwise. Then, n = dim(N) > dim(X) := m and the fibers ρ̂−1(x) of ρ̂ : N̂ → X are
positive-dimensional. Let x0 ∈ X be a regular value of ρ̂ : N̂ → X, and L ⊂ ρ̂−1(x0) be an irreducible
component, dim(L) = n−m > 0. We claim first of all that

(♭): L lifts in a univalent way to D̂, i.e., τ̂ |
L̂
: L̂

∼=−→ L is a biholomorphism.
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From (♭) we will deduce (♯).
To establish (♭) let x̃0 ∈ Ω be such that π(x̃0) = x0 and L̂ ⊂ D̂ be a connected component of

R̂−1(x̃0), so that τ̂(L̂) = L for the covering map τ̂ : D̂ → N̂ . Suppose γ ∈ Γ acts as a covering

transformation on D̂ such that γ(L̂) = L̂. (Recall that Γ is identified with Γ′ via f : Γ
∼=
↪→ Γ′.) The

statement (♭) will follow if we show that γ must necessarily be the identity element id
D̂
. Since γ(L̂) = L̂,

for p ∈ L̂ we have γ(p) ∈ L̂, so that R̂(γ(p)) = R̂(p) = x0. On the other hand, by the Γ-equivariance
of R̂ we have R̂(γ(p)) = γ(R̂(p)), and it follows that γ(R̂(p)) = R̂(p), hence x0 = R̂(p) is fixed by
γ ∈ Γ′. Denoting by ι : D → D̂ the natural inclusion map. Since Γ ∼= Γ′ ⊂ Aut(D)

ι∗−→ Aut(D̂) is
torsion-free, γ ∈ Γ′ ∼= Γ has no fixed point on D̂ unless γ = id

D̂
, and we have proven that γ(L̂) = L̂

implies γ = id
D̂
, i.e., we have established the statement (♭) that τ̂ |

L̂
maps L̂ bijectively onto L.

We are going deduce (♯) from (♭). More precisely, from the assumption that n = dim(N) >
dim(X) = m, and from the existence of a single irreducible component L̂ ⊂ Ω of ρ̂−1(x0) for some

regular value x0 ∈ X of ρ̂ : N̂ → X such that τ̂ |
L̂
: L̂

∼=−→ L (⊂ N̂) is a biholomorphism and such that

Volume
(
L̂, ωKE

)
<∞, we are going to establish (♯) via argument by contradiction.

Ω D D̂ ⊃ L̂

X N N̂ ⊃ L

F

π τ

ι

τ̂

R̂

τ̂ |
L̂∼ =

f

ρ̂

Let θ be a bounded holomorphic function on the bounded domain of holomorphy D̂ on the Stein
manifold Z such that θ|

L̂
is not identically a constant. Then, u := |θ|2 gives a nonnegative smooth

plurisubharmonic function on L̂ ∼= L such that du is uniformly bounded with respect to ωKE . If
we know Volume (L, ωKE ) < ∞, then Lemma 8.1 applies to yield a contradiction. We only know

Volume
(
N̂ , ωKE

)
< ∞, and proceed now to prove that there exists some choice of regular value

x0 ∈ X of ρ̂ : N̂ → X such that (L, ωKE ) is indeed of finite volume, and this will be sufficient for our
argument. The proof will proceed via Fubini’s theorem, and our proof will in fact show that for almost
all regular values x of ρ̂, q := f(x), Volume (Lq, ωKE ) < ∞ for the irreducible component Lq ⊂ N̂ of
ρ̂−1(x) passing through q.

Let again x0 ∈ X be a regular value of ρ̂ : N̂ → X, q0 := f(x0). Let V be a simply connected
neighborhood of x0 in X. For x ∈ V denote by Lq ⊂ ρ̂−1(x) ⊂ N̂ the irreducible component of ρ̂−1(x)

containing q := f(x). Since ρ̂ ◦ f ≡ idX , ρ̂
∣∣
f(V )

: f(V )
∼=−→ V is nothing other than the inverse map

of f
∣∣
V
: V

∼=−→ f(V ), so that ρ̂ is a submersion at any point q ∈ f(V ), hence the irreducible complex

analytic subvariety Lq ⊂ N̂ is of complex dimension n−m for any point q ∈ f(V ). By Sard’s theorem,

for almost all x ∈ V , x is a regular value of ρ̂ : N̂ → X, and Lq ⊂ N̂ is an (n−m)-dimensional complex

submanifold. LetW ⊂ N̂ be the connected component of the open subset ρ̂−1(V ) ⊂ N̂ which contains
f(V ).

Let now θ be a bounded holomorphic function on D̂. Recall that κ
D̂
is the Carathéodory metric on

D̂. By the Comparison Lemma (Lemma 7.6), gKE ≥ Const.× κ
D̂
. Since ∂u = θ∂θ and θ is bounded,

we have
∥∂u(y)∥g∗

KE
≤ Const.× ∥∂θ(y)∥g∗

KE

= Const.× sup
{
|∂θ(η)| : η ∈ Ty(D̂), ∥η∥g

KE
≤ 1

}
≤ Const.′ × sup

{
|∂θ(η)| : η ∈ Ty(D̂), ∥η∥κ

D̂
≤ 1

}
<∞ ,

(35)
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where the last line follows from the inequality gKE ≥ 2κU
n+1 for a bounded domain U ⊂ Z on a Stein

manifold Z in the Comparison Lemma (Lemma 7.6). Denote by Rρ̂ ⊂ f(V ) the subset of all q = f(x),
where x ∈ V is a regular value of ρ̂. By Sard’s Theorem S1 := f(V )−Rρ̂ is of zero Lebesgue measure.

Consider the holomorphic map R̂ : D̂ → Ω. Then, by the infinitesimal distance decreasing property
on Carathéodory metrics for holomorphic maps, we have κ

D̂
≥ R∗(κΩ). Hence,

gKE ≥ Const.× R̂∗κΩ . (36)

Descending now to N̂ , we denote by ωKE the Kähler form of gKE both for D̂ and its quotient manifold

N̂ = D̂/Γ̂′, and consider the fibration ρ̂|W : W → V . In what follows we impose the condition that
the open set V is relatively compact in X and denote by dλ the restriction of a smooth volume form
on X to V . We have by (36) the inequality

ωn
KE

≥ (Const.× ρ̂∗dλ) ∧ ωn−m
KE

. (37)

By Fubini’s theorem we conclude from the estimates that∫
q∈Rρ̂

Volume (Lq, ωKE ) dλ(q)

≤ Const.×Volume (W,ωKE ) ≤ Const.×Volume
(
N̂ , ωKE

)
<∞ .

(38)

Hence, denoting by S2 ⊂ f(V ) the set of all q = f(x) ∈ f(V ) such that x is a regular value of ρ̂
and Volume

(
Lq, ωKE

)
= ∞, S := S1 ∪ S2 ⊂ f(V ) must be of zero Lebesgue measure. There exists

therefore some q♯ ∈ f(V )−S . Fix such a choice of q♯. Write L := Lq♯ and L̂ := L̂q̃, where τ̂(q̃) = q♯.

Choose now a holomorphic function θ on D̂ such that θ|
L̂
is nonconstant. Since Volume

(
L, ωKE

)
<∞,

applying Lemma 7.6 to the complete Kähler manifold
(
L, ωKE

∣∣
L

)
of finite volume (so that Lemma 8.1

applies) and to the bounded smooth plurisubharmonic function u = |θ|2 on L we obtain a contradiction
to Lemma 8.1 (which says that u = |θ|2 and hence θ is constant), proving via argument by contradiction
that f : X → N is an open embedding, with which we have completed the proof of the Isomorphism
Theorem (Theorem 7.2).

8.3 A variant of the Isomorphism Theorem

We have the following variant of Theorem 7.2 when the fundamental groups of X and N are only
assumed to be isomorphic as abstract groups.

Theorem 8.2 (Variation of the Isomorphism Theorem). Suppose in the statement of Theorem 7.2

in place of assuming that f∗ : Γ
∼=−→ Γ′ we assume instead that Γ ∼= Γ′ as abstract groups and that

f : X → N is nonconstant. Then, f : X → N is a biholomorphism.

Proof. Let G0 = Aut0(Ω) be the identity component of the automorphism group of Ω. By the

hypothesis, there exists a group isomorphism α : Γ
∼=−→ Γ′. Replacing Γ (and hence Γ′) by a subgroup

of finite index we may assume without loss of generality that Γ ⊂ G0. Denoting by ι : Γ ↪→ G0 the
inclusion map regarded as a group monomorphism, ι ◦ α−1 : Γ′ → G0 identifies Γ′ also as a subgroup
of G0. Since G0 is semisimple, connected and of real rank ≥ 2, and Γ ⊂ G0 is an irreducible lattice,
by the Margulis superrigidity theorem [14], either f∗(Γ) is finite, or else f∗ : Γ → Γ′ extends to a
group automorphism θ : G0 → G0. In the former case, denoting by Γ0 := Ker(f∗) ⊂ Γ, which is a

(normal) subgroup of finite index, and defining f0 : X0 =: Ω/Γ0
ξ−→ Ω/Γ = X

f−→ N , where the first
map ξ : X0 → X is the canonical unramified covering map, we would have a lifting f̃0 : X0 → D of
f0 : X → N to the covering bounded domain D ⋐ Z of N , which would force f0 to be constant by
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the Riemann extension theorem for holomorphic functions and by the maximum principle. In other
words, the nonconstancy of f forces f∗ : Γ → Γ′ to extend to a group automorphism θ : G0 → G0.
In particular, f∗ is injective. With respect to a fixed Haar measure on the semisimple Lie group G0,
which is invariant under the automorphism θ, Volume(G0/Γ) must agree with Volume(G0/f∗(Γ)).

Since f∗(Γ) ⊂ Γ′, it follows that f∗(Γ) = Γ′, so that f∗ : Γ
∼=−→ Γ′, and we are back to the original

formulation of the the Isomorphism Theorem. The proof of Theorem 8.2 is complete.
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[12] Korányi, A.: Poisson integrals and boundary components of symmetric spaces, Invent. Math. 34
(1976), 19–35.

45



[13] Margulis, G. A.: Arithmeticity of the irreducible lattices in the semisimple groups of rank greater
than 1, Invent. Math. 76 (1984), 93–120.

[14] Margulis, G. A.: Discrete Subgroups of Semisimple Lie Groups , Ergebnisse in der Mathematik
und ihrer Grenzgebiete, Folge 3, Band 17, Springer-Verlag, Berlin-Heidelberg-New York 1991.

[15] Mok, N.: Uniqueness theorems of Hermitian metrics of seminegative curvature on locally sym-
metric spaces of negative Ricci curvature, Ann. Math. 125 (1987), 105–152.

[16] Mok, N.: Complete Kähler-Einstein metrics of bounded domains locally of finite volume at some
boundary points, Math. Ann. 281 (1988), 23–30.

[17] Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds , Series in Pure
Mathematics Vol. 6, World Scientific, Singapore-New Jersey-London-Hong Kong, 1989.

[18] Mok, N.: Characterization of certain holomorphic geodesic cycles on quotients of bounded sym-
metric domains in terms of tangent subspaces, Compositio Math. 132 (2002), 289–309.

[19] Mok, N.: Extremal bounded holomorphic functions and an embedding theorem for arithmetic
varieties of rank ≥ 2, Invent. Math. 158 (2004), 1–31.

[20] Mok, N.: Ergodicity, bounded holomorphic functions and geometric structures in rigidity results
on bounded symmetric domains, in Proceedings of the International Congress of Chinese Math-
ematicians (Hangzhou 2007), Volume II, Higher Educational Press, Beijing, 2007, pp. 464–505.

[21] Mok, N.: Rigidity problems on compact quotients of bounded symmetric domains. Proceedings
of the International Conference on Complex Geometry and Related Fields, pp. 201-249, AMS/IP
Stud. Adv. Math., 39, Amer. Math. Soc., Providence, RI, 2007.

[22] Mok, N.: Extension of germs of holomorphic isometries up to normalizing constants with respect
to the Bergman metric. J. Eur. Math. Soc. 14 (2012), 1617–1656.

[23] Mok, N.: Local holomorphic curves on a bounded symmetric domain in its Harish-Chandra
realization exiting at regular points of the boundary. Pure Appl. Math. Q. 10 (2014), 259–288.

[24] Mok, N.: Holomorphic isometries of the complex unit ball into irreducible bounded symmetric
domains. Proc. Amer. Math. Soc. 144 (2016), no. 10, 4515–4525.

[25] Mok, N. and Ng, S.-C.: Germs of measure-preserving holomorphic maps from bounded symmetric
domains to their Cartesian products, J. Reine Angew. Math. 669 (2012), 47-73.

[26] Mok, N. and Tsai, I-Hsun.: Rigidity of convex realizations of irreducible bounded symmetric
domains of rank ≥ 2, J. Reine Angew. Math. 431 (1992), 91–122.

[27] Mok, N.; Wong, B.: Characterization of bounded domains covering Zariski dense subsets of com-
pact complex spaces, Amer. J. Math. 105 (1983), 1481–1487.

[28] Mok, N. and Yau, S.-T.: Completeness of the Kähler-Einstein metric on bounded domains and
characterization of domains of holomorphy by curvature conditions, in The Mathematical Heritage
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