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ABSTRACT
Empirical studies of large gatherings and natural disasters have revealed two impor-
tant features of dense crowds: extremely high crowd pressure and crowd turbulence.
In this study, a mixed-type continuum model for multidirectional pedestrian flow
was developed that explicitly considered the phase transition of different anticipation
characteristics under different densities. Non-hyperbolicity was used to model the
strong instabilities during crowd turbulence. In addition, by estimating the aggre-
gated crowd pressure, the proposed model could clarify the effects of both force chains
and panic sentiment, phenomena commonly observed during crowd disasters. The
non-hyperbolic partial differential equations were solved using the mixed-type finite
difference method, and Eikonal equations were solved using the fast sweeping method.
Subsequently, the continuum model was applied to simulations of two real-world
scenarios – the 2015 Hajj crowd disaster and the 2010 Love Parade crowd disaster –
and validated through comparison with empirical observations. Overall, the proposed
model is an efficient tool for evaluating crowd management strategies to predict and
assess the crowd state.

KEYWORDS
crowd dynamics; phase-transition; continuum modeling; numerical algorithm; crowd
turbulence

1. Introduction

Over the past two decades, crowd disasters have caused thousands of deaths worldwide
(Still 2022). Such disasters commonly occur during religious gatherings, such as the
2015 Saudi Arabia Hajj Disaster (2,431 deaths), and large-scale events, such as the
2010 Love Parade disaster (652 injuries) and 2022 Seoul Halloween crush (156 deaths).
The high fatalities resulting from such disasters are a primary concern for governments
and event organizers, and researchers have made significant efforts to design realistic
simulations that can be used to strategically prevent such tragedies.
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Figure 1 shows a general framework for describing the mechanism of crowd disasters
based on a review of empirical studies of crowd disasters (Helbing and Mukerji 2012;
Benedictus 2015; Haghani et al. 2019). The two important features of crowd dynamics
that distinguish dangerous situations from normal pedestrian flow are high crowd
pressure and crowd turbulence. During crowd disasters, fatalities typically occur due
to suffocation, induced by high crowd pressure, and stampedes, which result from
turbulence. Crowd pressure and turbulence can be mathematically modeled and must
be thoroughly studied. However, it is challenging to describe the aggregating feature of
pushing forces, and thus, only a few models can quantitatively reproduce high crowd
pressure, which has been estimated to range from 1, 000 N/m to 2, 000 N/m during
crowd disasters (Dickie and Wanless 1993; Smith and Lim 1995). Moreover, it is difficult
to establish a model that can reflect the stability of pedestrian movement under normal
situations and reproduce crowd turbulence in dangerous situations.

Figure 1.: The mechanism of crowd disasters involves three stages. The first
stage pertains to the root causes. In the second stage, panic sentiment gradually
increases, and a crowd accumulates, forming an amplifying feedback circle. The for-
mation of this circle represents the critical process that may lead to a crowd disaster.
The third stage is characterized by falling, trampling, and fatalities owing to direct
causes (marked in red). With increasing crowd pressure and limited oxygen, physically
vulnerable people are likely to be the first to succumb to coma, suffocation, or organ
failure, which are the direct causes of death in most cases.

Recent model-based studies have utilized microscopic models to quantify and char-
acterize crowd dynamics under hazardous scenarios. Traditional agent-based models,
social force models, and discrete element models have been developed to approximate
actual contact force (Helbing et al. 2000; Langston et al. 2006; Liu et al. 2017). A recent
modification of the social force model (Wang et al. 2023) depicted crowd force using
particle analogies, with calibration based on experiments and evaluation of danger
in previous crowd disasters. However, since microscopic models focus on individual
characteristics, they tend to overlook the influence of propagated forces among crowds,
consequently underestimating crowd pressure in dense scenarios. As observed in real
crowds (Helbing et al. 2007; Helbing and Mukerji 2012), force chains can form due
to inadvertent physical interactions between individuals, causing crowd pressure to
vary significantly and become almost uncontrollable. This property bears a striking
resemblance to fluid pressure and has inspired recent studies to apply hydrodynamics
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from a macroscopic perspective to describe the dense movement of crowds.
In macroscopic models, crowd movement is perceived as fluid, taking into account the

relationship between microscopic properties such as density, speed, and flow. Hughes
(2002) initially proposed a first-order continuum model based on the hydrodynamic
properties of moving crowds, factoring in the route strategy. Jiang et al. (2010) and
Zhao et al. (2019) further developed high-order continuum models that successfully
reproduced complex phenomena such as lane formation and stop-and-go waves. Recently,
macroscopic models have been further refined to reproduce the dense, high-pressure
crowds that form during crowd disasters, explicitly considering the effect of panic
on pedestrian behaviors (Liang et al. 2021). However, existing models have primarily
focused on unidirectional crowd dynamics and have not yet taken into account the
interactions between multidirectional pedestrian flows under dense scenarios, which
are present in most crowd disasters, such as the recent Seoul Halloween crowd crush
(F. 2022).

In addition to the inadequate consideration of the influence from collisions of
multidirectional pedestrian streams, another significant phenomenon, crowd turbulence,
has not been sufficiently addressed in existing models. Based on empirical studies
(Johansson et al. 2008; Helbing and Mukerji 2012), crowd turbulence is considered to
be associated with shock waves that fluctuate crowd pressure, which can be so powerful
that they can even lift people off the ground. The strong instability of crowd movement
presents a significant challenge to existing macroscopic models, where the hyperbolic
nature of the Euler equations in the current continuum models (Huang et al. 2009;
Liang et al. 2021) restricts the solutions to be unique and stable. This limitation raises
an important question: Could a non-hyperbolic continuum model be more suitable for
describing crowd dynamics during crowd disasters?

The aim of this study was to develop a higher-order continuum model for multidirec-
tional pedestrian flows to simulate crowd pressure and crowd turbulence as observed
in crowd disasters. Unlike previous continuum models that adhered to hyperbolic laws,
this model introduced novel assumptions about the key parameters, formulating non-
hyperbolic Euler equations for the conservation equation set. Details of the problem
statement are presented in Section 2. Based on the non-hyperbolic assumption, a
continuum model for multidirectional pedestrian flow and its corresponding numerical
solution are established in Sections 3 and 4, respectively.

In Section 5, the proposed model was applied to real-world disaster scenarios, and
the results were compared with observed data using video analysis technology. In
general, when comparing simulation results with empirical data, it is challenging
to quantify observed phenomena, such as crowd turbulence. Krausz and Bauckhage
(2012) proposed a method to detect crowd dynamics from videos in an automated
manner. Khan (2019) described the oscillation map by investigating the individuals
stuck in congested areas, which was further applied to the detection of crowd anomalies
using pre-trained deep learning models. Similarly, levels of chaotic movement, such as
turbulence pressure (Helbing et al. 2007) and velocity entropy (VE) (Wang et al. 2019),
have been used as indicators of crowd turbulence. In this study, the particle image
velocimetry method (PIV) (Thielicke and Sonntag 2021) was introduced to derive the
VE from video recordings. The effectiveness of the multidirectional model was validated
through qualitative evaluations of the simulation results and quantitative comparison
of the video recordings with the simulation results.
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2. Problem statement

Predictive management of heterogeneous crowd movement during large events such
as parades, matches, or tourism gatherings is important but challenging. In these
situations, pushing and fear can lead to chaos and confusion, making it difficult to
predict unstable movement under panic situations. The problem is particularly acute
when there are multidirectional pedestrian streams, which aggravate the congestion
and increase the collision forces. Addressing these challenges requires a robust model to
describe the evolution of crowd states based on explicit mechanisms of crowd pressure
and crowd turbulence.

Based on the unidirectional pedestrian model that considered pushing forces and
panic effect (Liang et al. 2021), this study further investigates the moving characteristics
of multidirectional pedestrian flows through a fundamental diagram under intersecting
situations (Wong et al. 2010). More importantly, the anticipation assumption is further
developed to capture the “phase transition” of pedestrian movement between different
density levels. According to a post-disaster analysis (Helbing et al. 2007), there is a
significant transition in the phase of crowd movement from laminar to turbulent flow,
exhibiting a clear boundary across the entire region. This phenomenon is captured
in the long exposure photographs (see Figure 2a)) and in the figure presented by
Johansson et al. (2008). These observations suggest a distinctly different state of crowd
behavior characterized by substantial instability, referred to as crowd turbulence. The
emergence of this phase transition is a crucial precursor to potential hazards. Once
such a transition occurs (see Figure 2b)), a crowd disaster is more likely to happen.

(a) 2010 Love Parade disaster (Loveparade
2011) (b) 2006 Hajj disaster (Helbing et al. 2007)

Figure 2.: Observation of ”phase transition” during crowd disasters. (a) A long-term
photograph between 16:38:10 and 16:38:20 (Loveparade 2011). (b) Evolution of ”Tur-
bulence Pressure” (TP) during 2006 Hajj disaster, which is an indicator to quantify
crowd turbulence (Helbing et al. 2007).

The widely-used acceleration equation (Equation (1)) incorporates an anticipation
pressure to describe the continuum of momentum in crowd dynamics, which depends
on the density and is denoted as P1 = h(ρ) Jiang et al. (2010); Liang et al. (2021); Yang
et al. (2023). The assumption of a monotonically increasing relationship between this
pressure and density in these studies has revealed two inherent problems. First, from
the perspective of physical meaning, individuals are less likely to think independently
during crowd turbulence, which questions the existence of the anticipation term under
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high-density situations. Second, from the perspective of mathematical formulation, the
strong instability questions the applicability of hyperbolic systems after phase transition:
If h′(ρ) is nonpositive, the Euler equation set can be parabolic or elliptic, which requests
the development of a mixed-type solution algorithm. To address these problems, the
main aim of this study is to develop a mixed-type model and corresponding numerical
algorithms to capture the phase-transition characteristic in crowd disasters.

∂tV + (V · ∇)V +
h′(ρ)

ρ
∇ρ = RHS, (1)

where h′(ρ)
ρ ∇ρ describes the anticipation effect.

3. Model description

This section describes the assumptions incorporated into the novel continuum model
framework for multidirectional pedestrian flow to reproduce the complex crowd phe-
nomena in real crowd disasters, i.e., crowd pressure and turbulence. Please refer to
Appendix C for the definitions of symbols and functions used in this study.

3.1. Assumptions

Assumption 1. The pedestrians are divided into K groups with characteristic crowd
dynamics that follow the continuity of mass and momentum.

The local density of the k-th pedestrian group, ρ(k) is defined as the number

of pedestrians within a unit area. V
(k)
e = (u

(k)
e , v

(k)
e ) is the expected speed vector,

i.e. the equilibrium pedestrian velocity when the effect of physical contact is not
considered, with ue and ve denoting the velocities in the x and y directions, respectively.
V(k) = (u(k), v(k)) is the actual speed vector, defined as the actual average pedestrian
velocity, with u and v representing the velocities in the x and y directions, respectively.
The movement of each pedestrian group follows fluid dynamics concepts, and the set
of continuity equations is applied. For convenience, the following notation is defined:

[e1, e2, ...]
(k) = [e

(k)
1 , e

(k)
2 , ...].

Q
(k)
t + F(k)

x +G(k)
y = S(k)/m̄, (2)

where Q
(k)
t = ∂([ρ; ρu; ρv](k))/∂t is the change in mass and momentum; F

(k)
x =

∂([ρu; ρu2 +P1; ρuv]
(k))/∂x and G

(k)
y = ∂([ρv, ρuv, ρv2 +P1]

(k))/∂y indicate the gradi-

ents of flow vectors in the x and y dimension respectively; S(k) = [0, S
(k)
1 , S

(k)
2 ], where

the second and third components indicate the crowd forces along the x and y directions,

respectively; P
(k)
1 = h(ρ(k)) is the traffic pressure, which is assumed to result in the

psychological consciousness of pedestrians attempting to maintain distance from others
in the same group; and m̄ indicates the average mass of a single pedestrian, which is
assumed to be a constant in this study.

Assumption 2. The responses of pedestrians to variations in the density of a given
group are characterized as follows: in low- and high-density groups, pedestrians respond

5



promptly and slowly, respectively, and pedestrians is unable to respond in extremely
high-density groups.

The traffic pressure within the higher-order continuum framework represents a
pseudo-pressure that characterizes the pedestrian response to variations in the density
of the k-th pedestrian group, pedestrian group, as illustrated in Equation (3). Both
the one-dimensional (1D) model and the two-dimensional (2D) higher-order continuum
model account for hyperbolicity and isotropy. However, in the latter model, route choices
are made simultaneously (Jiang et al. 2010). Consequently, this study re-evaluates the
traffic pressure assumption from the perspective of the 1D anticipation characteristics
of the pedestrian group, which is further discussed in the following.

∂tV
(k) + (V(k) · ∇)V(k) +

h′(ρ(k))

ρ(k)
∇ρ(k) = RHS. (3)

The irrationality of traffic pressure, intended to maintain hyperbolicity, has been
criticized in the “brake or accelerate” case since it was introduced in the Payne–Witham
(PW) model (Aw and Rascle 2000). In densely crowded situations, the effective prop-
agation of information cannot be guaranteed due to the unpredictable behavior of
pedestrians, such as irregular movement (Helbing et al. 2007) and panic behavior (Hel-
bing and Mukerji 2012). To address this problem, the proposed model considers three
types of pressure–density relationships in the context of anticipation characteristics:

• In a low-density group (ρ(k) ≤ ρ0), the movement state in the k-th pedestrian

group (V
(k)
1 in Figure 3a)) is influenced by the density in neighboring regions.

In particular, pedestrians try to lower their speed to avoid dense crowds nearby,

even when V
(k)
2 is large. Therefore, the traffic pressure strictly increases with the

density, as in many PW-type models.

• In a high-density group (ρ(k) > ρ1), pedestrians (V
(k)
3 in Figure 3a)) experience

compression, and their behavior is highly unstable when brake or acceleration

is uncertain and independent of V
(k)
4 (Loveparade 2011; Johansson et al. 2008).

Moreover, the presence of a dense crowd narrows the perceptions of pedestri-
ans, and information cannot be efficiently propagated (Figure 3b)), leading to
nonpositive h′(ρ(k)).
• In a medium-density group (ρ0 < ρ(k) ≤ ρ1)he movement characteristics are

determined through in-between physiological anticipation. Thus, the value of the
anticipation term h′(ρ(k)) is smaller than that in the low-density situation.

This phase transition in crowd dynamics yields a segmented relationship between the
density and sonic speed c, as in Equation (4), that can be applied in the 2D isotropic
continuum model.

√
h′(ρ(k)) := c =


c0, ρ(k) ≤ ρ0

c0/2, ρ0 < ρ(k) ≤ ρ1

0, ρ(k) > ρ1

(4)

Remark 1. The characteristic speeds of the PDE system can significantly differ from
the sonic speed mentioned earlier, as they are also influenced by the right-hand sides
in the complex system.

Assumption 3. Panic sentiment influences not only the pushing behavior but also
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(a) problem of “brake or accelerate” (b) propagation of information

Figure 3.: Information propagation in the k-th pedestrian stream. (a) Example

1D case: Four pedestrians with velocity V
(k)
i (i = 1, 2, 3, 4) are assumed with three

“brake or accelerate” preferences based on the local density. (b) The characteristic
speeds determined from the left-hand-side of Equation (3) generate three characteristic
lines that determine the propagation area of the local density information over space
and time.

the walking pattern on the fundamental diagram (FD). In general, more panic-stricken
pedestrians walk faster and push harder.

The influence of panic sentiment on pushing behavior has been observed in many
crowd disasters (Helbing et al. 2005; Haghani et al. 2019). In the unidirectional model
proposed by Liang et al. (2021), panic sentiment is assumed to influence only the
pushing behavior. However, pedestrians in high-density crowds typically wish to walk
over two times faster than that in the normal condition because of the panic sentiment
(Helbing et al. 2000), generating a second peak on the flow–density curve (Helbing
et al. 2007). Denote the overall density as ρ =

∑
k ρ

(k), the following speed–density
relationship is applied based on the FD form proposed by Wong et al. (2010) for normal
multidirectional pedestrian flow.

f (k)(Q) = v
(k)
f exp(−γ(k)1 ρ2)×

n∏
i=1

exp[γ
(k)
2 (1− cosφik)(ρ

(i))2] (5)

with γ
(k)
1 (δ) = γ

(k)
c (1− δ(k)) + γ

(k)
p δ(k), where γ

(k)
c and γ

(k)
p are the first parameters in

the FD for calm and mass panic situations, respectively; γ
(k)
2 is the second parameter

in the FD; δ(k) ∈ [0, 1] describes the panic sentiment; and φik denotes the intersecting
angle of the expected movement directions of the i-th and k-th pedestrian stream,
which is determined by the instantaneous speed distribution of the two pedestrian
groups: (Q(i),Q(k)) 7→ φ(Q(i),Q(k)).

The parameters for calm situations have typically been calibrated through on-
site experiments (Wong et al. 2010), and only limited experimental studies have
been conducted on the heterogeneity and panic influence. Therefore, in this study,
empirical values are used for real crowd disasters. The simulation results are noted to
be quantitatively consistent and can provide guidance for future experimental studies.
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Assumption 4. The pushing force generated in the collision area is homogeneous, and
a penalty is introduced to account for the collisions of different pedestrian streams.

Pushing force is generated only after the critical density is reached, which allows
for physical contact. In this scenario, the mean walking speed gradually decreases as
the standard deviation increases in the unidirectional and bidirectional flows (Lee and
Lam 2006). The pushing direction may be highly unstable owing to the surrounding
effects, such as the physical interactions. Therefore, the pushing force in a unit area is
considered to be balanced by the different pedestrian streams, and its direction is the
same as the joint speed direction. Thus, the pressure model (Liang et al. 2021) in the
unidirectional case can be applied to the more general multidimensional case through
the following Eikonal equation:

∥∥∥∥∇(P2

α

)∥∥∥∥ =
max
k

(δ(k)) · p(ρ)

α
·
∥
∑

k ρ
(k)ν

(k)
e ∥

ρ
; P2 = 0 if α = 0 (6)

where α is the relaxation factor, defined in Equation (7), p(ρ) indicates the relationship
between the pushing capacity and density; and δ(k)(x, y, t) ∈ [0, 1] describes the panic
sentiment.

α =

{
1, ∇ρ · (

∑
k ρ

(k)ν
(k)
e ) ≥ 0

max( ρ−ρ0

ρm−ρ0
, 0), ∇ρ · (

∑
k ρ

(k)ν
(k)
e ) < 0

(7)

3.2. Model formulation

The mixed-type continuum model is formulated as a set of partial differential equa-
tions (PDEs) with appropriate initial and boundary conditions. Because the model
corresponds to a multidirectional flow system, the PDE set for each pedestrian stream
includes the conservation laws of mass and momentum; expected speed with pressure

potential; and inflow boundary Γ
(k)
O , outflow boundary Γ

(k)
D and common solid boundary

ΓH conditions.

3.2.1. Mass and momentum conservation

Equation (8) presents the conservation laws of mass and momentum for the k-th
pedestrian group.

Q
(k)
t + F(k)

x +G(k)
y = S(k)/m̄; (F(k),G(k)) = (F

(k)
O ,G

(k)
O ) if (x, y) ∈ Γ

(k)
O (8)
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where

Q(k) :=

q1q2
q3

(k)

=

 ρ
ρu
ρv

(k)

,S(k) :=

 0
S1

S2

(k)

=

 0

m̄f(Q)q1νx−q2
τ

m̄f(Q)q1νy−q3
τ

(k)

−

 0
ρ(k)

ρ
∂P2

∂x
ρ(k)

ρ
∂P2

∂y

 (9a)

F(k) =

 q2
q22
q1

+ h(q1)
q2q3
q1


(k)

=

 ρu
ρu2 + P1

ρuv

(k)

,G(k) =

 q3
q2q3
q1

q2
q1

+ h(q1)

(k)

=

 ρv
ρuv

ρv2 + P1

(k)

(9b)

, h(ρ(k)) =
∫ ρ(k)

0 c2 dx and (νx, νy)
(k) = (ue, ve)

(k)/∥(ue, ve)(k)∥.

3.2.2. Equilibrium speed considering pressure potential

Two static Eikonal equations are introduced to take into account the route strategy
and aggregated pushing potential.

First, this predictive user-equilibrium model is applied to determine the expected

movement direction ν
(k)
e = (νx, νy)

(k), as indicated in Equation (10).

∥∇ϕ(k)
e ∥ = g(ρ) + 1/f (k)(Q); ϕ(k)

e = 0 if (x, y) ∈ Γ
(k)
D (10a)

ν(k)
e = −∇ϕ(k)

e /∥∇ϕ(k)
e ∥ (10b)

where g(ρ) indicates the local discomfort cost associated with high density.
Second, the crowd pressure for the overall pedestrian flow is determined through

Equation (11).

∥∥∥∥∇(P2

α

)∥∥∥∥ =
max
k

(δ(k)) · p(ρ)

α
·
∥
∑

k ρ
(k)ν

(k)
e ∥

ρ
; P2 = 0 if α = 0 (11)

where α is the relaxation factor, defined in Equation (7), p(ρ) indicates the relationship
between pushing capacity and density, and δ(k) ∈ [0, 1] describes the panic sentiment.

3.3. Analytical properties

This section demonstrates the mixed-type analytical property that consists of both
hyperbolicity and non-hyperbolicity. Based on these analytical properties, the ability
of the model to simulate the instability/turbulence phenomena observed in crowd
disasters is demonstrated. Moreover, the analytical property is consistent with that in
the unidirectional case if the multidirectional system is homogeneous.

Proposition 1. The Euler equation set for the k-th pedestrian group is strictly
hyperbolic if ρ(k) ≤ ρ1 but non-hyperbolic (parabolic or elliptic) if ρ(k) > ρ1.

According to the model formulation, the characteristics of flux vectors in each
pedestrian group depend on only the crowd states of the individual group. Thus, the
hyperbolicity is independent. For the k-th pedestrian group, the Jacobians of F(k) and
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G(k) are

J
(k)
F (Q(k)) =

 0 1 0

−u2 + h′(ρ(k)) 2u 0
−uv v u

(k)

, J
(k)
G (Q(k)) =

 0 0 1
−uv v u

−v2 + h′(ρ(k)) 0 2v

(k)

(12)

For any real linear combination αlJ
(k)
F + βlJ

(k)
G , the three eigenvalues are

λ1 = αlu
(k) + βlv

(k), λ2,3 = αlu
(k) + βlv

(k) ±
√

(α2
l + β2

l )h
′(ρ(k)) (13)

As defined by the segment function in Equation (4), the PDE system retains its
hyperbolic nature under low-density conditions (ρ(k) ≤ ρ1). This is evidenced by the
Jacobians possessing real and distinct eigenvalues when h′(ρ(k)) > 0. However, under
high-density conditions (ρ(k) > ρ1), the model displays either complex or identical
eigenvalues within the Jacobians, a state referred to as non-hyperbolicity (a detailed
introduction of hyperbolicity can be found in (Gustafsson et al. 2013)).

Proposition 2. Linear stability is maintained if (1) ρ(k) ≤ ρ1 and (2) sonic speed c is
adequately large.

First, the continuum theory in Equation (8) for each pedestrian stream (k =
1, 2, 3 . . . ,K) is rewritten as the following set of Euler equations:{

ρ
(k)
t +∇ · (ρkV(k)) = 0

V
(k)
t +

(
V(k) · ∇

)
V(k) + c2∇ρ(k)

ρ(k) =
V(k)

ep −V(k)

τ (k)

(14)

where V
(k)
ep = V

(k)
e − τ (k)

m̄ ·
∇P2

ρ is the equilibrium speed defined with consideration of
the pressure effect.

Small perturbations of density and speed are added to the steady state (ρ
(k)
0 ,V

(k)
0 )

of k-th pedestrian stream, which are considered to be exponential and are expressed as
in Equation (15). {

ρ(k) = [ρ0 + ρ̃eis·x+ωt](k)

V(k) = [V0 + Ṽeis·x+ωt](k)
(15)

By substituting the permutations into Equation (14) and ignoring the nonlinear
terms, the following linear equation set (16) can be obtained.

A(k)

ρ̃ũ
ṽ

(k)

= 0 (16)
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where

A(k) =

ω + i(s1u0 + s2v0) iρ0s1 iρ0s2
c2is1
ρ0
− 1

τ
δ(uep)
δρ ω + 1

τ + i(s1u0 + s2v0) 0
c2is2
ρ0
− 1

τ
δ(vep)
δρ 0 ω + 1

τ + i(s1u0 + s2v0)


(k)

(17)
To maintain stability, the real parts of ω derived from det(A(k)) = 0 must be

nonpositive, and thus:[
c2(s21 + s22)−

(
ρ0

(
s1

δ (uep)

δρ
+ s2

δ
(
vep
)

δρ

))2 ](k)
≥ 0 (18)

Remark 2. If c ≤ 0, linear stability is no longer maintained in the given pedestrian
stream.

If c > 0,
(
s1

δ(uep)
δρ + s2

δ
(
vep

)
δρ

)2 ≤ (s21 + s22)(
δ(uep)
δρ )2 + ( δ(uep)

δρ )2). Thus, the linear
stability of the pedestrian stream holds only if c satisfies the following condition:∥∥∥∥∥∥ρ(k)0

δ
(
V

(k)
ep

)
δρ(k)

∥∥∥∥∥∥ ≤ c (19)

Remark 3. The linear stability of the multidirectional problem holds only if all groups
of pedestrians (k = 1, 2, 3 . . . ,K) satisfy Equation (19).

Proposition 3. If the pedestrian streams are homogeneous with identical boundary

conditions, the dynamics of multidirectional systems Q
(k)
t equal those in an integrated

unidirectional system (
∑

k Q)t.

In this analysis, the dynamics at the initial time point are proven to be identical, and
the following dynamics are analogous. Owing to the homogeneity of pedestrian streams,
identical equilibrium walking speeds are derived using Equation (20) by substituting
identical parameters and φik = 0 in Equation(5).

∥Ve∥ = ∥V(k)
e ∥ = vf exp(−γ1ρ2) (20)

Correspondingly, the cost potential derived from Equation (10) and pressure potential
derived from Equation (11) are identical for all pedestrian streams. Therefore, the
Euler equation sets in Equation (14) are identical to{

ρ
(k)
t +∇ · (ρkV(k)) = 0

V
(k)
t +

(
V(k) · ∇

)
V(k) + c2∇ρ(k)

ρ(k) = Vep−V(k)

τ

, k = 1, 2, ...,K (21)

Given that c is constant or linearly dependent on ρ(k), multiply the Euler momentum
equation in each equation set by ρ(k) and integrate the two Euler equations. The
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following Euler equation set can be derived:{
(ρ)t +∇ ·Qv = 0

(Qv)t + (Qv · ∇)Qv + c2∇ρ = Vepρ−Qv

τ

(22)

where ρ =
∑

k ρ
(k) and Qv =

∑
k(ρ

(k)V(k)). Equation (22) is equivalent to the dynamics
of (
∑

k Q)t under the same initial values and boundary conditions.

Remark 4. The homogeneous multidirectional systems and unidirectional system are
consistent only if the sonic speed c is constant or linearly dependent on ρ(k).

4. Mixed-type finite difference method (FDM)

Because of the existence of non-hyperbolicity, traditional numerical methods cannot be
applied to the PDE sets presented in Section 2.2. To numerically solve the problem, a
mixed-type FDM and the second-order total variation diminishing (TVD) Runge–Kutta
scheme are developed to solve the conservation equations. The Eikonal equations are
solved using the Godunov fast sweeping method (FSM).

First, Equation (8) is discretized as in Equation (23). The second-order TVD
Runge–Kutta scheme, described in Algorithm 1, is introduced for time integration. At
each time step, the crowd states including all pedestrian stream Qn values are updated
with Qn+1 until the simulation is terminated at a predefined time.

L(k)(Q, t) =
dQ

dt
= −(F(k)

x +G(k)
y ) + S(k)/m̄

∼ −1

h
(F̂

(k)

i+ 1

2
,j
− F̂

(k)

i− 1

2
,j
)− 1

h
(Ĝ

(k)

i,j+ 1

2

− Ĝ
(k)

i,j− 1

2

)) +
S(k)(Q)

m̄

(23)

Two terms on the right-hand side of Equation (23), remain to be calculated: the
differences between the numerical fluxes and the source term.

The Godunov FSM is introduced to numerically solve the Eikonal equations, i.e.,
Equations (10) and (11). The route strategy equation, Equation (10) is a standard
Eikonal equation that can be directly calculated through Algorithm 2. The aggregated
pressure equation, Equation (11) consists of two Eikonal equations corresponding to
different regions according to the movement characteristics (Liang et al. 2021), as in
Equation (24). The solution of the Eikonal equation set is not unique. Therefore, the
FSM is applied to seek an approximation of the continuous solution of P2, which is the
physically relevant solution. In this condition, the Gauss–Seidel iterations in Algorithm
2 can be applied simultaneously to the two Eikonal equations, as P2 is continuous when
sweeping from one region to another.

∥∇P2∥ = max
k

(δ(k)) · p(ρ)
∥
∑

k ρ
kνk

e∥
ρ

, if ∇ρ ·

(∑
k

ρkνk
e

)
≥ 0 (24a)

∥∇
(
P2

α

)
∥ =

max
k

(δ(k)) · p(ρ)

α

∥
∑

k ρ
kνk

e∥
ρ

, if ∇ρ ·

(∑
k

ρkνk
e

)
< 0 (24b)
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Algorithm 1 Second-order TVD Runge–Kutta scheme

n← 0;Q
(k)
0 ← 0 ▷ Initially, the simulation area is empty

t0 ← 0;∆t0 ← 0.01
while n = 0; tn ≤ tmax;n++ do

while k = 1; k ≤ N ; k ++ do
Q̃(k) ← ∆tn × L(k)(Qn, tn)

end while
while k = 1; k ≤ N ; k ++ do

Q
(k)
n+1 ← (Q

(k)
n )/2 + (Q̃(k) +∆tn × L(k)(Q̃, tn +∆tn))/2

end while
∆tn ← CFL(h/η) ▷ Requirement of the CFL condition
tn+1 ← tn +∆tn

end while

Algorithm 2 Godunov Fast Sweeping Method

ϕ(nx×ny) ← 1012 ▷ Initially, the potential is at maximum

while NIT = 0;NORM(ϕnew − ϕold) ≤ 10−9; NIT + + do
while (i, j) in the GS sequences do

Tx ← min(ϕi−1,j , ϕi+1,j)
Ty ← min(ϕi,j−1, ϕi,j+1)
if |Tx − Ty| ≥ C(i,j) × h then

ϕnew
(i,j) ← min(Tx,Ty) + C(i,j) × h

else
ϕnew
i,j ← (Tx +Ty +

√
2C2

i,jh
2 − (Tx − Ty)2)/2

end if
ϕnew
i,j ← 0 if (xi, yj) ∈ ΓD ▷ Fixed boundary condition during iterations

end while
end while
calculate ∇ϕ(x, y) by the central difference method

The mixed-type FDM (Algorithm 3), which considers the phase transition between
hyperbolicity and ellipticity, is used for the approximation of the numerical fluxes. In the
hyperbolic region, the eigenvalues of the Jacobi matrix are real and unique (Jacobians
of F(k) over Q(k) are presented as an example in Equation(25)). The numerical fluxes
are approximated through the traditional local Lax–Friedrichs (LF) scheme on the
characteristic space.

J
(k)
F (Q(k)) =

 0 1 0
−u2 + h 2u 0
−uv v u

(k)

(25)

and the three distinct eigenvalues are u(k), u(k) ± c(k).
In the non-hyperbolic region, the Jacobi matrix becomes singular, and the traditional

LF splitting is not applicable. A new splitting scheme based on (Shu 1992) is introduced
to capture instability in this multidimensional problem. First, we assume the following
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LF splitting scheme along the x-dimension:

H±(Q(k)) =
1

2
(F(k)(Q(k))±ΛQ(k)), Λ =

λ1

λ2

λ3

 (26)

where Λ is the eigenmatrix to be determined. The Jacobian of H+ is

JH+(Q(k)) =

 λ1 1 0
−u2 + h 2u+ λ2 0
−uv v u+ λ3

(k)

(27)

and the three eigenvalues are u + λ3, u + (λ1 + λ2)/2 ±√
(λ1 − λ2)2 + 4u(λ1 − λ2) + 4h′/2.
Representing M = λ1 − λ2, the existence and distinctness of the three eigenvalues

are ensured if

M =


0 if h′ > 0

max
Ω,x

(
−2
(
|u| −

√
u2 − h′

))
+ ε if h′ ≤ 0

(28)

and

λ2 = max
Ω,x

(
|u|+

√
M2 + 4uM + 4p′ −M

2
, 0

)
, (29)

where ε is a positive value and Ω is the non-hyperbolic region in the computational
domain. In this model, h′ = 0 in the non-hyperbolic region. Therefore, the eigenvalues
can be expressed as

λ1 = λ0 + ε,

λ2, λ3 = λ0 = max
Ω,x

(
|u|+

√
ε2 + 4uε− ε

2
, 0

)
(30)

where ε takes the value 0.1 in this study. Using the three eigenvalues, the LF splitting
scheme can be processed along the x direction. The process along the y direction is
analogous.
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Algorithm 3 Mixed-type Finite Difference Method

while i = −1
2 ; i ≤ (nx +

1
2); i++ do

while j = 1; j ≤ ny; j ++ do

if ρ
(k)

i+ 1

2
,j
≤ ρ1 then ▷ Hyperbolic region

Decompose the characteristics of Jacobi matrix JF(Q) = RΛR−1

T
(Q)
s,j ← R(Q

(k)

i+ 1

2
,j
)Q

(k)
s,j ;T

(F)
s,j ← R(Q

(k)

i+ 1

2
,j
)F

(k)
s,j ▷ Characteristic

projection

λk,H
i+ 1

2
,j
← max

s
(max(Λ(Q

(k)
s,j )))

T̂i+ 1

2
,j ← 1

2(T
(F)
i,j +T

(F)
i+1,j − αk,H

i+ 1

2
,j
(T

(Q)
i,j −T

(Q)
i+1,j)) ▷ LLF Scheme

F̂
(k)

i+ 1

2
,j
← R(Q

(k)

i+ 1

2
,j
)T̂i+ 1

2
,j

else ▷ Non-hyperbolic region
Λk,E ← [λ0 +M,λ0, λ0]

T

F̂
(k)

i+ 1

2
,j
← 1

2(Fi,j + Fi+1,j −Λk,E(Qi,j −Qi+1,j)) ▷ LF for non-hyperbolic

end if
end while

end while
calculate the numerical fluxes Ĝ

(k)

i,j+ 1

2

along the y direction

1
h(F̂

(k)

i+ 1

2
,j
− F̂

(k)

i− 1

2
,j
) + 1

h(Ĝ
(k)

i,j+ 1

2

− Ĝ
(k)

i,j− 1

2

) ∼ ∇ · (F(k),G(k))

calculate cost potential ∇ϕ(k)(x, y) and pressure ∇P2(x, y) through Algorithm 2
S(k) ← S1(∇ϕ(k)(x, y)) + S2(∇P2(x, y))
L(k)(Q, t)← (S(k)/m̄−∇ · (F(k),G(k)))
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5. Case studies

This study demonstrates the applicability of the proposed model in reflecting crowd
pressure and turbulence by simulating two major crowd disasters. The first disaster
simulated was the 2015 Hajj crowd disaster, which took place during a religious event
in Mecca, Saudi Arabia on September 25, 2015 (BBC 2015). The second simulated
disaster was the 2010 Love Parade crowd disaster, which occurred during a widely
attended music festival in Duisburg, Germany on July 24, 2010 (Loveparade2010doc
2010). The video recordings from the Love Parade were assessed using the PIV method,
and the processed results were compared quantitatively with the simulated data. Table 1
provides a summary of the general parameters and functions utilized in both simulations,
which were determined based on empirical values.

Table 1: Parameters and functions used in the case study.

Symbol/Function Value Meaning

c0 0.6 m/s Sonic speed

m̄ 65 kg Average weight

ρ0 6 ped/m2 Critical density for physical contact

ρ1 7 ped/m2 Critical density for phase transition

ρm 10 ped/m2 Maximum density

vf 1.034 m/s Free flow speed

γc −0.08 First parameter in the FD in calm
situations

γp −0.06 First parameter in the FD in panic
situations

γ2 −0.019 Second parameter in the FD

g(ρ) 0.02ρ2 Function of the discomfort cost

p(ρ) 300
√

max(0, ρ− ρ0) Function of the pushing capacity

5.1. 2015 Hajj crowd disaster

The tragic crowd disaster during the Hajj pilgrimage in 2015 occurred during a religious
procession, resulting in over 700 fatalities and 900 injuries. Based on information from
post-disaster analyses (BBC 2015), this study conducted a simulation of the collision
between two large groups of pedestrians heading to the same destination from the
horizontal and vertical passages, representing Street 223 and Street 204, respectively,
as illustrated in Figure 4. The numerical simulation was performed over a 70× 50 m2

(mesh size: 140 × 100) T-shaped area. As the destination for the two groups is the
same, only one pedestrian stream was considered, with panic sentiment defined as in
Equation (31).

δ(1)(x, y, t) =


0 t ≤ 360s

(t− 360)/360 360s < t ≤ 720s

1 720s < t ≤ 800s

, (31)
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Figure 4.: Simulation geometry of the 2015 Hajj crowd disaster. The pedestrian
stream in the simulation geometry origins from two different streets but heads to

the same destination. At t = 120 s, the boundary Γ
(1)
D was restricted because of

overcrowding at the hoerizontal passage (Benedictus 2015).

The evolution of density distributions is presented in Figure C1 (Appedix C).
The proposed model successfully reproduced dangerous crowd states with values
comparable to those observed in crowd disasters (Fruin 1993): The maximum density
was 13.87 ped/m2, and crowd pressure was approximately 1254 N/m. The critical
crowd characteristics simulated are discussed below.

5.1.1. Crowd pressure

The simulation results of the crowd pressure P2 reveal the dangerous state of crowds
in panic situations. In the time period t ∈ [720, 800] s, pedestrians were densely packed
at the intersection, allowing pushing forces to propagate through force chains. At
t = 800 s, the maximum aggregated pressure reached 1254 N/m (refer to Figure 5a)),
coinciding with an extremely high density exceeding 10 ped/m2. Figure 5b) presents the
simulated correlation between crowd pressure and density, which aligns with empirical
observations (Bradley 1993): Even at high densities (approximately 7 ped/m2), the
maximum pressure in the region can increase. According to Smith and Lim (1995),
an average pressure of 1, 000 N/m sustained for 30 s can cause significant discomfort
and even suffocation in a densely packed crowd. The model proposed in this study
successfully replicates such pressure levels during this hazardous event.

5.1.2. Crowd turbulence

The critical site during the Hajj crowd disaster was the intersection of Street 223 and
Street 204 (BBC 2015), which represent the horizontal and vertical passages, respec-
tively, as shown in Figure 4. The simulation results replicated the crowd turbulence at
this highly dangerous location, as illustrated in Figure 6. In areas where the density
exceeded 7 ped/m2, the results indicated a phase transition from laminar to turbulent
flow. Vortices were visible at the collision zone between the northward and eastward
pedestrian streams, signifying significant turbulence and discomfort in this region.

Figure 7 depicts the flow-density relation ascertained using the calculation method
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(a) pressure heatmap at t = 800 s
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(b) pressure–density relationship

Figure 5.: Estimation of aggregated pushing pressure P2 near the intersection.
(a) Pressure distribution around the pole. (b) The pressure–density scatter shows that
the pressure has no functional relationship with the density.
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Figure 6.: Plot of the fluid streamlines superimposed on the density heatmap
at t = 800 s. Vortices can be observed within the regions of extremely high density
near the intersection.

presented by Liang et al. (2021). Under low-density conditions, i.e. ρ(1) ≤ 6 ped/m2, the
flow-density exhibited a “Λ”-shape but was lower than the FDs assumed in Equation
(5), due to the presence of non-equilibrium states. In medium-density conditions,
where 6 < ρ(1) ≤ 7 ped/m2, the system transitioned into instability, and the flow
magnitude formed a “second peak” in the flow-density relation. This phenomenon
has also been observed in previous empirical studies (Helbing et al. 2007). Under
high-density conditions, the flow magnitude surged dramatically, indicating severe
oscillations within the crowd, which could potentially lead to significant discomfort
and falls. This high level of instability was also thought to influence movement in
medium-density situations, as the flow rapidly increased from ρ(1) = 6.3 ped/m2.
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Figure 7.: Phase transition depicted via the flow-density relation. Although
the fundamental diagrams used in the case study appear smooth, a marked phase
transition is noticeable between ρ(1) ∈ [6, 7] ped/m2. This suggests a transition in the
crowd’s state, moving from a stable to a turbulent condition.

5.2. 2010 Love Parade crowd disaster

Love Parade was a popular annual dance music festival that had been held in Germany
since 1989. On July 24, 2010, a severe crowd disaster occurred during this event
in Duisburg, causing 21 fatalities and 652 injuries. A simulation was performed in
this study to reproduce the high crowd pressure and turbulence during this disaster
consistent with the empirical observations (Loveparade2010doc 2010; Helbing and
Mukerji 2012). Based on known data from empirical studies and video data, the
numerical simulation was performed over a 105× 50 m2 T-shaped area, involving six
pedestrian streams and various boundary conditions specified in Figure 8. The panic
sentiment was defined as in Equation (32) for the 5th and 6th pedestrian streams, the
members of which attempted to exit the site from climbing up the pole and container,
respectively (see Figure 8).

δ(5,6)(x, y, t) =


0 t ≤ 720

(t− 720)/180 720 < t ≤ 900

1 t > 900

, (32)

The evolution of density distributions is presented in Figure C2 (Appendix C). The
maximum density reproduced in this case was 12.45 ped/m2, and crowd pressure was
approximately 972 N/m. The high crowd pressure occurred with turbulence in the
high-density region around the pole, where people attempted to leave the area. The
crucial crowd characteristics during crowd disasters are discussed in the following.

5.2.1. Crowd pressure

The simulation results of the crowd pressure P2 illustrate the dangerous crowd states
in panic situations. In the period t ∈ [900, 1200] s, the pedestrians were densely packed,
allowing pushing forces to propagate through force chains. At t = 1200 s, the maximum
aggregated pressure was 972 N/m (Figure 9a)), and was accompanied by an extremely
high density (over 10 ped/m2) close to the pole. Figure 9b) displays a non-functional
relationship between crowd pressure and density. The proposed model successfully
replicates such pressure levels, which were the direct cause of fatalities in the 2010
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(a) t = 0 s

(b) t = 300 s

(c) t = 720 s

Figure 8.: Model of the crowd disaster during the 2010 Love Parade. (a)
At t = 0 s, the simulation geometry (mesh size: 210× 100) contains four pedestrian

streams. (b) At t = 300 s, the boundary Γ
(1,2)
D was restricted because of overcrowding

at the main ramp (Loveparade2010doc 2010). (c) At t = 720 s, two new pedestrian
streams were generated: the stranded pedestrians in the blue and red regions, who
attempted to leave from the container and pole, respectively.

Love Parade crowd disaster.

5.2.2. Crowd turbulence

While turbulence did not result in any pedestrians falling during the Love Parade
disaster, chaotic movement patterns were observed around the pole in both the video
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Figure 9.: Estimation of aggregated pushing pressure P2 at the intersection.
(a) Pressure distribution around the pole. (b) The pressure–density scatter shows that
the pressure has no functional relationship with the density.

recordings (Loveparade 2011) and the simulation results (Figure 10). The VE (Appendix
A) derived from the simulation results was compared with that extracted from the
video to demonstrate the capability of the model in simulating crowd turbulence. The
PIV method (Appendix B) was used to quantify the crowd turbulence through video
recordings.
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Figure 10.: Plot of the fluid streamlines superimposed on the density heatmap
at t = 1200 s. Vortices can be observed within the regions of extremely high density
surrounding the pole.

As shown in Figure 11, the VE varied from 1.23 to 3.93 in direction entropy and from
1.74 to 3.20 in magnitude entropy between 16:38:10-16:38:20 (see Figure 2a), when
turbulent waves could be identified from the video through a long-term photographic
procedure (Johansson et al. 2008). During the simulation period of t ∈ [750, 1000] s,
the VE was also calculated within the same region, as detailed in Appendix B. The
computed VE showed a significant increase from 2.13 (t = 750 s) to 4.16 (t = 1000 s) in
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direction entropy and from 0.94 (t = 750 s) to 2.27 (t = 1000 s) in magnitude entropy.
This trend indicated an increasing level of chaos in the simulated crowd movement,
which mirrored the observations from the video analysis.

Moreover, despite the high density around the pole, the crowd continued to move. The
average velocity of 0.0265 m/s, calculated from the simulation results in the observed
area during t ∈ [750, 1000] s, was similar to the value of 0.0192 m/s obtained by the
PIV method (Figure 11c). Notably, the processed results from the video recordings
were more oscillatory because the video was captured from the top and thus included
head shaking, which may have increased the instability.

(a) evolution of magnitude entropy

(b) evolution of direction entropy

(c) evolution of average velocity

Figure 11.: Quantification of crowd turbulence during the 2010 Love Parade.
(a,b) Comparison of the VE derived through the simulation and PIV method in the
period t ∈ [750, 1050] s, which is analogous to the situation between 16:34:12 and
16:38:42. (c) Comparison of the simulated and observed evolution of average velocity.
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6. Model performance

The effectiveness of the model was demonstrated through the case studies of real-world
crowd disasters. According to empirical research and data (Loveparade2010doc 2010;
Helbing and Mukerji 2012; BBC 2015), the following characteristics of crowd dynamics
were observed during the crowd disaster, which were required to be considered in the
simulation.

Situation: The primary cause of crowd accumulation was the trapping of pedestrians
in critical areas. This also led to an increase in crowd density and extended waiting
times, thereby escalating the sense of panic. In the simulation of the 2015 Hajj crowd
disaster, congestion at the destination on the horizontal street induced impatience
among two large groups of pedestrians. Similarly, in the simulation of the 2010 Love
Parade crowd disaster, desperation set in among the pedestrians who attempted to
escape the area by climbing poles and containers. The design of layout settings and
boundary conditions was informed by these observations.

Turbulence: The simulation results displayed notable vortexes in critical regions,
aligning with empirical findings (BBC 2015; Loveparade2010doc 2010). This is par-
ticularly evident in the 2010 Love Parade crowd disaster, where pedestrians near the
pole were forced to move chaotically, as captured in the video (Loveparade 2011). This
precarious situation indicated an increasing variation in pressure within the dense
crowd, which was replicated in the simulations as crowd turbulence.

Pressure: The first death during the 2010 Love Parade crowd disaster occurred near
the pole and was reported to be caused by suffocation (Loveparade2010doc 2010). In
the simulation, the crowd pressure P2 increased to nearly 1, 000 N/m near the pole. A
similar level of crowd pressure was replicated in the simulation of the 2015 Hajj crowd
disaster. While limited research has been conducted to determine the precise pressure
in such crowds, these findings align with empirical values that could potentially lead
to suffocation.

Notably, the risk-level indicators included in this study, such as crowd density, crowd
pressure, and VE, are important for establishing efficient crowd management strategies.
These indicators can represent the features of crowd dynamics during dangerous
situations. Based on the findings of the case study, the following suggestions were
identified for the police and layout designers:

Small exits should be avoided when a crowd becomes dense and panicked. Dangerous
crowd dynamics, such as high pressure and turbulence, were observed around the pole,
attributable to the pedestrians wishing to climb the pole. Thus, small or narrow exits,
such as at the pole, must be avoided, and the police must prohibit people from climbing.
In the actual situation, the police pulled pedestrians from the pole, increasing their
desperation to push and escape, thereby aggravating the situation.

By alleviating the panic sentiment, the pushing forces and thus the crowd pressure can
be decreased. During the 2010 Love Parade crowd disaster, mobile phone connectivity
was restricted due to overload (Helbing and Mukerji 2012), making people more
impatient and panicked. To prevent similar tragedies, adequate communication services
should be provided for large events with many attendees, such as by increasing the
capacity of the base station or maintaining radio broadcasting services.
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7. Conclusion

A mixed-type continuum model was developed for multidirectional pedestrian flow
to reproduce complex crowd dynamics during crowd disasters. The proposed model
can ensure stability when describing laminar multidirectional pedestrian flow and
commonly observed stop-and-go waves and simulate crowd features in high-density
conditions, such as extremely high crowd pressure and turbulence.

The analytical properties of the proposed model were explored to demonstrate its
effectiveness in describing the phase transition of crowd dynamics in multidirectional
systems. Furthermore, the consistency of the homogeneous multidirectional systems
and unidirectional system was verified.

The model was utilized to simulate two real-world scenarios: the 2015 Hajj crowd
disaster and the 2010 Love Parade crowd disaster. The simulation results, such as
those for the crowd pressure and crowd turbulence, were consistent with the findings
of empirical studies of crowd dynamics. Several recently developed risk-level indicators,
such as the crowd pressure and VE, were incorporated to verify the effectiveness of the
model in simulating crowd disasters.

Future research can conduct extensive experiments or site surveys to calibrate the
key parameters and functions considered in the model, such as the sonic speed, pushing
capacity, and multidirectional FDs in panic situations. Moreover, more advanced
numerical schemes can be used to increase the simulation efficiency. To prevent crowd
disasters, it is necessary to establish data-driven approaches to identify the panic
sentiment in real-time. These approaches can be combined with the proposed analytical
model for effective crowd detection and management.
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Appendix A. Velocity Entropy (VE)

To quantitatively describe the risk level of the crowd state, the VE (Huang et al. 2015)
is derived based on the speed distribution, which denotes the dispersion of the velocity
distribution in terms of magnitude and direction. A higher VE corresponds to greater
crowd instability (Wang et al. 2019). The VE has two components: magnitude entropy
Em and direction entropy Ed, defined in Equations (A1) and (A2), respectively. The
velocity magnitude is divided into 10 bins of the same width (0.01 m/s) ranging from 0
to 0.1 m/s. The speed direction is divided into 36 bins of the same width (10◦) ranging
from 0 to 360◦.

Em = −
n1∑
i=1

pv(i) log2 pv(i) (A1)

where pv(i) = hm(i)/N . hm(i) indicates the number of moving particles with the
velocity magnitude corresponding to the i-th bin. N indicates the total number of
moving particles and n1 is the total number of velocity magnitude bins.

Ed = −
n2∑
j=1

pθ(j) log2 pθ(j) (A2)

where pθ(j) = hθ(j)/N . hθ(j) indicates the number of moving particles with the velocity
magnitude corresponding to the j-th bin and n2 is the total number of angle bins.

Appendix B. Particle Image Velocimetry (PIV)

The video recording of Camera 13 from 16:35 to 16:40 is processed using the PIV
method (Figure B1). First, four reference points are selected according to perspective
rays in a sample video frame to ensure that these rays form a rectangle after perspective
transformation. The missing points during the transformation are filled by median
imputation, and the size of the rectangle is estimated with consideration of the following
reference objects: the width of the main ramp is approximately 25 m, and the distance
between two neighboring railings is approximately 2 m. Therefore, the rectangular
box (enclosed by red lines) is estimated to be a 12× 12 m2 square after perspective
transformation. The observation area in this study is the 3× 3 m2 region around the
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pole (blue box). After choosing the observation area, a PIV tool (Thielicke and Sonntag
2021) based on the cross-correlation algorithm is introduced to calculate the speed
distribution with the time increment ∆t = 0.2 s.

Figure B1.: PIV processing using sample video frames. The yellow and blue
boxes indicate the pole location and observation area, respectively.
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Appendix C. Evolution of Density Distributions

The evolution of density distributions in the case studies is illustrated in Figures C1
and C2. The heatmaps have lower and upper bounds of 0 and 12 ped/m2, respectively.
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Figure C1.: Simulated density evolution during 2015 Hajj crowd disaster
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Figure C2.: Simulated density evolution during 2010 Love Parade crowd disaster
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Appendix D. List of Symbols and Functions

Table D1: List of symbols and functions used in this study

Symbol/Function Meaning

ρ Overall density

ρ(k) Density of the k-th pedestrian group

ρ0 Critical density for physical contact

ρ1 Critical density for phase transition

ρm Maximum density

α Relaxation factor in the eikonal equation for crowd
pressure

γ1 First parameter in the FD

γc First parameter in the FD in calm situations

γp First parameter in the FD in panic situations

γ2 Second parameter in the FD

λi i-th eigenvalue

τ (k) Relaxation time of the k-th pedestrian group

ν
(k)
e Normalized expected speed direction of the k-th

group of pedestrians

φik Intersecting angle between the i-th and k-th pedes-
trian streams

ϕ(k) Cost potential of the k-th pedestrian group

δ(k) Measurement of the panic sentiment of the k-th
pedestrian group

Γk
O Inflow boundary of the k-th pedestrian group

Γk
D Outflow boundary of the k-th pedestrian group

ΓH Solid boundary

c Sonic speed

c0 Parameter to determine the sonic speed

E Velocity entropy

Ed Direction entropy of speed

Em Magnitude entropy of speed

m̄ Average mass of a pedestrian

P1 Traffic pressure

P2 Aggregated pushing pressure

t Time

Continued on next page
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Table D1: List of symbols and functions used in this study (Continued)

u(k) Velocity of the k-th pedestrian group in the x
direction

u
(k)
e Expected velocity of the k-th pedestrian group in

the x direction

u
(k)
ep Equilibrium speed with consideration of the pres-

sure effect of the k-th pedestrian group in the x
direction

v(k) Velocity of the k-th pedestrian group in the y
direction

v
(k)
e Expected velocity of the k-th pedestrian group in

the y direction

v
(k)
ep Equilibrium speed with consideration of the pres-

sure effect of the k-th pedestrian group in the x
direction

v
(k)
f Free-flow velocity in the FD

Vk Speed vector of the k-th pedestrian group

Vk
e Expected speed vector of the k-th pedestrian group

Vk
ep Equilibrium speed vector with consideration of the

pressure effect of the k-th pedestrian group

x Horizontal axis

y Vertical axis

X 7→ JH(X) Jacobian of vector H over vector X

X 7→ f (k)(X) Function of FD of the k-th pedestrian group

x 7→ h(x) Function of the traffic pressure

x 7→ g(x) Function of the discomfort cost

x 7→ p(x) Function of the pushing capacity
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