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Abstract—This paper studies the set stability of stochastic
finite-field networks (SFFNs) via the quotient-transition-system
(QTS)-based method. The QTS is constructed to preserve com-
plete probabilistic transition information of the original SFFN
and has a comparatively smaller network scale. First, with respect
to the initial partition of the state set, we obtain the smallest
QTS by calculating the coarsest equivalence relation. Then, the
stability relationship between SFFN and its corresponding QTS
is explored. In particular, the smallest QTS corresponding to
a synchronous n-node SFFN has no greater than n+ 1 nodes.
This formal simplicity gives a solid foundation for the subse-
quent research. Moreover, we establish a visualization interface
“Quotient Generator” to obtain the quotients for any SFFN.
After that, we explore the necessary and sufficient conditions for
the set stability in distribution and the finite-time set stability
with probability one of SFFNs based on the QTS. Finally, an
example concerning a 27-state SFFN is presented to demonstrate
the theoretical results, indicating that its synchronization analysis
can be completely characterized by the stability of a 4-node QTS.
Furthermore, we analyze the relationships among the number of
iterations to obtain the smallest QTS, the number of nodes in
the obtained QTS, and the types of SFFNs.

Index Terms—TFinite-fields networks; Quotient; Stochastic sys-
tems; Set stability; Semi-tensor product of matrices.

I. INTRODUCTION

Distributed collaboration is widely applied in multi-agent
systems [1]-[3], sensor networks [4], power networks [5]-[7],
robotics [8]-[10], estimation [11], and parallel computation
[12], [13]. In a distributed network, each nodal state is
decided by its neighbors’ states, and all nodes cooperate with
their neighbors to realize a desired global objective, such as
consensus [14], stability [15]-[18], synchronization [19], [20],
controllability [21], [22], observability [23], oscillatority [24],
and optimal control [25]. Among these issues, set stability
is a salient dynamic behavior that describes the stability of a
network with respect to a preassigned subset of the state space,
not just a single state or a cyclic trajectory. In particular, by
adjusting the target set, the set stability issue can be converted
into the synchronization problem or the stability with respect
to a certain state.
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In recent years, finite-field networks (FFNs), as a kind
of finite-valued networks, have attracted increasing attention,
since they have the ability to model a system with finite com-
munication bandwidths and limited storage capacities, such as
wireless sensor networks [26]. When handling the issues of
distribution estimation and quantized control, an FFN usually
has a shorter convergence time compared with continuous
dynamic networks and is resilient to communication noises [4].
For an FFN, its state is assigned from a finite integer-valued
set with a prime number cardinality, and the operations +, and
x ,, are processed based on modular arithmetic [27]. It is worth
mentioning that modular arithmetic is applicable in some
practical applications, such as the relative measurements of
pose estimation [4]. Since the directed information interaction
between two nodes may encounter link failure or creation or
intensity variation, an FFN may have time-varying network
topologies. Such an FFN is generally called a stochastic FFN
(SFFN), whose evolution switches among a set of candidate
FFNs [28]-[30].

In the following, we briefly discuss some existing results
on FFNs. Since the finite field is not algebraically closed,
the analysis methods for real-valued networks are not directly
applicable to FFNs. Over the years, some researchers tried to
formulate the analysis and control strategies for FENs. In 2012,
Sundaram et al. discovered that the structural controllability
and structural observability could be guaranteed if there exists
a group of weight forests with self-loops on each vertex [31].
Subsequently, the necessary and sufficient conditions for the
consensus and synchronization of FFNs were, respectively,
obtained in [4] and [20], from the perspectives of state
transition graphs and the characteristic polynomial of network
matrices. These results were further extended to the cases of
mode switching [28], [29] and time delay [28]. Some ten years
ago, a new matrix product, named semi-tensor product (STP)
of matrices, was proposed [32], which breaks the dimension-
matching condition of conventional matrix product. By the
STP of matrices, an FFN can be equivalently transformed into
an algebraic state space representation (ASSR) form [33]-[35].
Based on ASSR, the leader-follower consensus and the finite-
time consensus of FFNs with time delays were, respectively,
investigated in [34] and [35].

Notably, for an n-node FFN over the finite field IFP =
{0,1,...,p— 1}, both the transition graph and the transition
matrix are p"-dimensional, whose large scale makes any
related algorithm have an exponential time complexity in the
worst case. As obtained in [28], the consensus of an n-node
SFFN with m modes is necessary and sufficient to achieve
that all (p" — p)-times product of A;, s € Q, denoted as
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M(k) € F)", k € [1,m?"~P], holds M(k)1, =1, (i.e., M(k)
is row-stochastic) and fyu) = A" (A —1), where g is
the characteristic polynomial of M(k) (see Theorems 3 and
4 in [28]). Equivalently, its transition graph contains exact
p cycles, all of which are unit cycles around the vertices
0,,1,,...,(p—1)1, (see Theorem 2 in [28]). To determine the
consensus of an SFFN, checking the former algebraic criterion
needs O(n’m*P"~P)) computational complexity; checking the
latter graphical criterion is equivalent to finding all cycles
in a graph with p" vertices, which is an NP-hard problem.
Likewise, checking the necessary and sufficient condition for
the synchronization of SFFNs in [29] also needs relatively
high computational complexity.

In order to handle large-scale finite-valued networks, some
model reduction strategies have been proposed (see, e.g., [36]—-
[43]). In [36]-[38], Boolean networks are reduced by classify-
ing the nodes based on their positions. Since such aggregation
does not reveal the properties of the nodes, recently in [39]
and [40], the invariant subspace approach was established to
reduce Boolean networks by separating the logical functions.
Besides, the quotient/bisimulation-based method, widely used
in the control community [44], is also a great way to reduce
the size of Boolean networks while preserving their properties
relevant for analysis or synthesis [41]-[43]. In general cases,
a quotient transition system (QTS) will be constructed from
the original system by defining an equivalent relation on the
state set. The obtained QTS can demonstrate almost all the
dynamic behavior of the original system and is generally of
a much smaller scale than the original system. However, to
the best of our knowledge, there are no related works on the
model reduction of FFNs as well as SFFNs.

In this paper, we shall study the dynamic behaviors of SFFN
by transforming it into the equivalent discrete-time Markov
chain (DTMC) and then constructing the corresponding QTS.
The contributions of this work are concluded as follows:

o Set stability criteria. The concept of set stability is
first defined for SFFNs, including the set stability in
distribution (SSD) and the finite-time set stability with
probability one (FTSSPO). Accordingly, set stability con-
ditions are necessarily and sufficiently obtained based on
the corresponding QTS. These criteria are applicable to
the consensus and the synchronization of SFFNs (see
Remarks 4.3 and 4.4) and are also applicable to the set
stability of deterministic FFNs (simply let m = 1).

o Algorithm QGA to obtain the smallest QTS. For
an SFFN, it is revealed that the coarsest equivalence
relation contained in a given relation does indeed exist
uniquely. This result facilitates the reduction of FFNs
to the smallest scale. In particular, the smallest QTS
corresponding to a synchronous SFFN has less than
n+ 1 nodes (see Theorem 4.2). Furthermore, we build a
visualization interface “Quotient Generator” to calculate
a minimal number of quotients for an inputted SFFN or
a randomly generated SFFN.

« Remarkable scale-reduction effect. Based on the QTS-
based method, the consensus of a 27-state SFFN with
2 modes (studied in [28]) and the synchronization of a

27-state SFFN with 3 modes (studied in [29]) can be
completely characterized by the stability of a 4-state QTS
(see Example 4.1 and Subsection V-A). Compared with
the QTS-based method applied in Boolean networks (see,
e.g., [41]-[43]), here derived QTS for FFNs is generally
on a smaller scale than the derived QTS for Boolean
networks owing to the particular characteristics of FFNs
(see Remarks 3.1 and 4.2).

The remainder of this paper is organized as follows. In
Section II, some notations and the STP of matrices are
introduced. The SFFN model and set stability definition are
established in Section III. Section IV proposes the construction
strategy for the coarsest equivalence relation and studies the
set stability of SFFNs via the smallest QTS. Section V presents
an example to illustrate the obtained results, followed by the
discussion and conclusion in Section VI.

II. PRELIMINARIES

In this section, we present some notations utilized in this
paper and briefly retrospect the notion of the STP of matrices,
as well as the ASSR approach.

Notations: [a,b] := {a,a+1,...,b}. I, is an n X n identity
matrix. Given matrix A, Col;(A) denotes the i-th column
of A; [A];; denotes the (i,j)-th entry of A. & := Col;(1,)
and A, := {8} | i € [1,n]}. L™ is the set of n X m ma-
trices whose columns belong to A,. For an n-dimensional
vector a, it is called a stochastic vector if the sum of all
entries equals 1. An n-dimensional stochastic vector a can
be uniquely written as a :=a;§) +a52 +--- +a,8" with 0 <
ai,as,...,a, <1, and (a) := {8} | a; #0,i € [1,n]}. b, := b1,
with 1,:= (1, 1,...,1)". & {it,iz,....ix} :={&', 82, .... 8}
|S| denotes the number of elements in set S. §! < & if and
only if i < j.

Next, some matrix products are introduced as follows.

(i) The Kronecker product of n X u matrix A := (a;, j) and

m X w matrix B is defined as [45]:
ai 1B auB
A®B=

an,1B anuB

(ii)) The STP of n x u matrix A and m X w matrix B is defined
as [32]:
AXB= (A ® Ilcm(u,m) )(B ®Ilcm(u.m) )7

where Icm(u,m) is the least common multiple of integers
u and m.

Note: The STP of matrices retains all the properties of
the conventional matrix product since Ax B=AB if u =
m. In particular, it has some useful properties:

a) If u=1, it has
AXB=(A®I,)xB;
b) If u=w=1, it has
Wipm) X AX B =B XA,

where W, ) = 28, 1,282,...,1,28".
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The detailed properties and applications can be referred
to [32] and the references therein.

(iii)) The Khatri-Rao product of n X m matrix A and u X m
matrix B is defined as [46]:

AxB =[Col;(A) x Col;(B),Coly(A) x Coly(B),
-+, Col,,(A) x Col,y(B)].

Define a bijective mapping o :IF, — A, as
o(g):=85""

This bijection can be naturally extended to the one-to-one
correspondence between ) and A, as

6-(g1ag27 .. '791) = [er'l:lc(gi) = O-(gl) X O-(g2) X X G(gn)

Lemma 2.1: (ASSR [32]). Given a p-valued logical function
f: ]F;’, — IFp, its multi-linear form is expressed as

o(flan,m,...,00)) =F xi_, 65i+17

where F € LP*P" is called the structure matrix of f.

By resorting to Lemma 2.1, one can convert an arbitrary
logical function to the corresponding algebraic form, formally
called ASSR. Then, considering the functions fi(c,B) =0+,
B and fo(a,B) = o x, B with a, B € F,, by referring to [34],
their structure matrices are, respectively, defined as

M+’p:5p[A1,A2,...,AP]7 (])
where A; = (k,k—i— L...,p, 1,2, k— 1), ke [l,p]; and
M, ,=06,[B1,Bs,...,B)], )

where By = ([(0x k) mod p]+1,[(1 xk) mod p]+1,...,[((p—
1) x k) mod p]+1), ke [1,p].

III. PROBLEM FORMULATION

An SFFN with n nodes has the following features:

o (Finite field). Each nodal state takes values from the
field F, with a prime characteristic p. The operation
is composed of modular addition “+,” and modular
multiplication “X,” satisfying field axioms, which have
been stated in many references (see, e.g., [4] and [27])
and thus is omitted here.

+ (Distributed connection with switching topology). At
each time instant ¢, the connection relationship be-
tween these n nodes can be characterized by a digraph
@90) .= (,&90)) with ¥ :=[1,n] and &) := {(i, ) |
there is a directed edge from node j to node i in mode
0(t)} U{(i,i) | i € [1,n]}. Here, {6(r) | t > 0} is the
switching sequence, which is valued from a finite index
set Q :=[1,m] and obeys an independently and identically
distributed process. The probability distribution of these
m modes is denoted as Z = [d},dy,...,dy).

o (Evolution rule). For each node i € 7, its state at time
t+1 is a weighted combination of the states of nodes in
J{em = {j|(i,j) € &9} at time 1, that is,

i+ = Y (@ xpx0)) 3)
jen Vg

(1)
ij
Here, .4} o(r) is called the in-node set of i at time ¢, and
Y is the cumulative modular addition operator.

with a;;"’ € F), being the weight of edge (i, /) at time .

Therefore, such an SFEN can be described as
x(t+1) = Ag(y X px(1), 4)

where x := (x1,x2,...,%,)" € I, is the network state, and

Ag(y) = (aiej('>) € )" is the weighted adjacency matrix of

491 Furthermore, letting x; := 6 (x;) € A, a?J-(t) = G(a?j(t)) €
Ap, and x := 6(x) € Ay, one derives
Xi(t+1) =Dj () X X(2), (5)

_ ¢]
where D; g = (M )" X5y (L @ (M p X aij(t))] €
LLP*?". Then, SFFN (4) can be equivalently converted into
the algebraic form (exactly the so-called ASSR):

Si o x(t41)=Dog xx(t), x(t) €At (6)

where Dy := Dy g(;) * D2 g1y * - * Dy () € LP"*P" . Subse-
quently, we introduce the notion of DTMC, which is uniquely
determined by X (or equivalently, SFFN (4)) and is also known
as the probability transition system.

Remark 3.1: As studied in [47]-[52], the ASSR of a
probabilistic Boolean network is also in a similar form as
Y. However, there are many different properties between the
ASSR of SFFNs (or FFNs) and probabilistic Boolean networks
(or Boolean networks). For example, the transition graph of
an FFN is composed of disjoint weakly-connected subgraphs,
which contain exactly one cycle, possibly of unit length
[53]. In contrast, the transition graph of probabilistic Boolean
networks has no fixed pattern. Besides, an FFN achieves
consensus or synchronization starting from any state in F), if
and only if it achieves consensus or synchronization starting
from any state in A, [20]. Owing to the particular characteristic
of FFNs, it will result in a more remarkable scale-reduction
for FFNs and SFFNs than Boolean networks and probabilistic
Boolean networks. For example, in [41]-[43], there is no
explicit discussion about how small a general Boolean network
or probabilistic Boolean network can be reduced to. Hence,
it is possible that the complexity of the reduced network will
remain the same as that of the original network, or the reduced
network still has a scale that is too large for efficient analysis.
In contrast, we can obtain the upper bound of the reduction
degree, that is, ”[;El, for SFFNs and FFNs, when studying
the consensus and synchronization issues. A more detailed
interpretation will be given in Subsection IV-B.

Definition 3.1: (DTMC [54]). A discrete-time Markov chain
(DTMC) is a pair (“,P), where . is a set of states and P
is the probability transition matrix (PTM) such that, for all
s € &, it holds

Z P(s,s') = 1.
ses
Here, the DTMC in terms of ¥ in (6) is denoted as
[(X) == (Ap,P) @)
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with PTM P = % (dyDy). It can be demonstrated by a state
transition graphuwlith p" nodes and the edges from node j €
[1,p"] to node i € [1, p"] if and only if [P]; ; > 0.

Noting that the consensus and synchronization issues of
SFFN (4) are essentially the stability problem subject to a
specific target set, we hence aim to explore the set stability
of SFFN (4), including two forms: SSD and FTSSPO. By
referring to [55], their definitions are given as follows.

Definition 3.2: (Set Stability). For a subset 0 C FZ, SFFN
(4) achieves
o O-stability in distribution if, IILIEOIP{x(t; 60,x0) € O} =1
holds for any initial state xo € I, and any initial switching
6y € Q;
« finite-time O-stability with probability one if, for each
initial state xo € F), there exists a corresponding integer
T (x0) > 0 such that P{x(¢;60,x9) € €} =1 holds for all
t > T(xp) and any initial switching 6y € Q.

Remark 3.2: The set stability of SFFN (4) can be trans-
formed into the consensus or synchronization via assigning

O=0.:= {Omlnv“-a(p* 1)1}1}7
whose equivalent algebraic form is
-1 1 2.b+1 —1 P 1
Oo= (880 o e

with a little abuse of the notation of &' and &,. In particular,
the consensus of SFEN (4) should additionally satisfy A1, =
1, for all k¥ € Q; the synchronization of SFFN (4) should
additionally satisfy A1, = B(x)1, with B(x) € F,, for each
KeQ. ]

IV. SET STABILITY ANALYSIS OF SFFNSs viA QTS

This section devotes to establishing the set stability criteria
for SFFN (4) via the QTS-based method, where the evolution
of the constructed QTS can reflect the dynamic features of
the original SFFN. In this sense, one can greatly reduce the
computational complexity by analyzing the smallest QTS,
instead of the probability transition of the whole state space.

A. Construction of the Smallest QTS

In this subsection, we construct the QTS for SFFN (4),
before which we introduce the equivalence relation on Apn,
termed as #, and the quotient set of A,» by %, denoted as
Ay /Z. For more details, please refer to literature [56].

Definition 4.1: (Equivalent Relation [56]). A binary relation
Z on A, is said to be an equivalence relation, if and only
if it is reflexive, symmetric, and transitive. That is, for any

8, 81{,,, 8% € Ap, the following properties hold:
1) reflexivity: (51’;,1,51’;,1) €EX;
2) symmetry: (87,,87,) € Z if and only if (8):,5,:) € %;

3) transitivity: if (8},,8),) € % and (8),,8%) € Z. then
(81,88) € .

ny Opn

Definition 4.2: (Quotient Set). The equivalence class of
8,n € Apr under Z is defined as

[8i] := {80, € Apr | (80.810) € .

Then, the set of all equivalence classes in A,» under the
equivalence relation & is called the quotient set of A, by
X, denoted as Apn /.

It indicates that every state 51’;,[ € Apn is an element of the

equivalence class [51’;,1], which means [6[’;,,] # 0, and every two

equivalence classes [5,’;"] and [5[’,,1] are either equal or disjoint,
that is, [8},] = [67,] or [8},] N[8).] = 0. Hence, quotient set
Apn /% forms a partition of A, and is uniquely determined
by Z. For convenience, we define Il := Ay /% and wg =
|1 |. With respect to equal relation %, and total relation %,
[56], their induced quotient sets are 1z, := {{6,’;,1} lie[l,p"}
and Ilg, := Apn, which depict the finest and the coarsest
partitions of A, respectively. To reveal the relation between
two quotient sets (or called partitions, we present the following
definition for the “coarser” relation.

Definition 4.3: (Coarser Relation [56]). Given two equiv-
alence relations %) and %, on A, quotient set Ilg, is
said to be coarser than Ilg,, expressed as Ilp = Ilg,, if
each equivalence class under | is contained in a certain
equivalence class under %, that is, #; C %>.

For each 51’;,, € Apn, denote the minimal state in the corre-
sponding equivalent class by

|80,] =

; J
" min 5.

S;n 6[5]’;,,]
Then, let ¢(8},) be the order of [ 8}, in set {LS[{nJ | 5,{;; EAp}
whose elements are arranged from the smallest to the largest.
In the following, the equivalence relation % on A, which

can be characterized by a logical matrix .7 € L2#*?" with
¢(S,n)

Col;(I%) = 0q,,” , is required to satisfy

(81, 80) € # & TyP8ly = TP, (8)

It indicates that the states in the same equivalent class must
have the same transitions to other equivalent classes. Hence,
we can study SFFN (4), or equivalently, I'(X) in (7), by its
corresponding QTS defined as follows.

Definition 4.4: (Corresponding QTS). Given a DTMC I'(X)
and an equivalence relation & on A, the QTS corresponding
to I'(X) is defined as

['(2)/% = (%,Qz) 9)
with Qg = y:%Py;

In this paper, we would like to find the coarsest equivalence
relation contained by a given relation %°, which determines
a preliminary partition of Ay and is preassigned in terms of
the desired evolution behavior. For example, when considering

the consensus or synchronization of SFFN (4), the preliminary
relation #° is defined as

R ={(80,80,) | 80,800 € O or A\ O}
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In particular, the coarsest equivalence relation will induce a
QTS of the smallest size, which is subsequently proved to
uniquely exist in %Z° and is termed as Z*.

Proposition 4.1: (Existence and Uniqueness of %*). Given

a binary relation #° on A, there exists a unique coarsest

equivalence relation Z* C Z° on A, satisfying condition (8).

Proof: First, we prove that Z* C %° satisfying condition

(8) is an equivalence relation on A, based on Definition

4.1. Since Z, C %*, relation #Z* is reflexive. From (8), it
is symmetric because of

(810,80, € Z* & Tpe Pl = T PS), & (81, 84) € %"

Furthermore, relation &%* is transitive owing to

(8%1,8%,) € #* and (8),,8%) € %"

]7"’ p" 71y pn

& TP}, = T P8, = T3 P8,
i k

& (8, 8,) € X"

Since equal relation %, satisfies %, C %° and condition (8),
the existence of #* is guaranteed. If there exists another
equivalence relation %' C #° satisfying |Z'| = |%*| and
condition (8), the union %' UZ%* not only meets condition
(8) but is coarser than both %’ and %*. Then, equivalent
relation %' UZ* becomes the coarsest equivalence relation,
which ensures the uniqueness of Z*. ]

Regarding the DTMC I'(X) with preliminary Z%°, the coars-
est equivalence relation %Z* on A, can be obtained by the
following iteration:

RZ0|=2%"°,

(10)
whose terminal condition is that there exists an integer k* >0
such that Z[k* + 1] = Z[k*]. Let @+ := |%Z[k*]|. The obtained
F* = R[k*] can be characterized by matrix - € Lo <P
with

9(8%n)

Coli(Tz+) = 0p,. 5 i €[L,p"].

Accordingly, we design Algorithm QGA to find the min-
imal number of quotients for the DTMC I'(X) derived
from an SFFN (4). Furthermore, we establish a “Quotient
Generator 7 to calculate the minimal number of quotients
for a preassigned SFFN or a randomly generated SFFN,
whose visualization interface can be accessed via the link:
http://zhihanjiang.com/quotient/main/index.html.

After that, one can derive the corresponding smallest QTS
as follows:

(1)

with De(z) = TDe(y) T . Here, xg+(t) is the state of the
corresponding smallest QTS Xg+. For ¥4+, its total number of
states is W+, and its PTM is Qg+ := T+« P.7... In particular,
Y4+ can reflect the evolution of ¥ because it holds

Yope X (t+1) = Dg(,) X Xgpx (1), Xgpr € Aw%,*

Px = P = Q(@*Xt@* = pyp*

with X« 1= Tgp«x and pyp := T p.
Next, we take the same example in [28] to illustrate the
construction process of X+ for the sake of checking the O-

Algorithm 1 Quotient Generator Algorithm (QGA)

Input: P: The probability transition matrix P. S: The initial
partition for A,» obeying Z°.

Output: S*: The quotient set ITypx := Apn /Z*.

I §* S, > Initialize the output set by the initial set.
2: repeat
3: S < §*; > Update the current set by latest output set.
4 for each S; €S
5 divide S; into sets C; that for each set C; ,, in C;
6: for each s,,5, € C; ;y,a# b, and each S; € S;
7 Paj e ¥ Plsalls:

$qES;
8: poj < L Plso]lsqls

54€S;

> Calculate the transition probability from state s,
(state sp) to all states in each set S;.
9: ensure that p,; == p;;;
> Guarantee the transition probabilities of states in
C;n to each class to be the same.

10: end for

11: end for

12: end for

13: §*+— {C,Cy, ...} > Update the output set.
14: until S* ==S > End iteration when there is no update.

stability of SFFN (4).
Example 4.1: (Smallest-X sp«-construction). Consider SFFN
(4) over FF3, it has two modes as

1 0 0 1 0 0
Al=|1 0 0],A4=]0 0 1 (12)
0 1 0 1 0 0

with the probability distribution 2 = [0.2,0.8]. Let 0, =
027{1,14,27}. The states therein are the vector form of
synchronous states: (0,0,0),(1,1,1)7,(2,2,2) . The prelim-
inary partition of Ay7 is assigned as {0.,A»7\0.}. Because
equality F7:P5}, = T P8}, holds for any 8},,8), that be-
long to one of the sets: Cy 1 := 87{2,3,13,15,25,26}, Cy » :=
627{4,7, 11, 17,21724}, and C1"3 = A27\(ﬁCUC1,1 UC172), one
yields

Z(1) = {(80r,8),) € %° |

s Opn
51’,,,,5;,, €CiyorCiporCizor O}

Repeating this process to obtain the quotient set as

Mg+ = 62{[1], (2], [41, 5]},

where
[1]={1,14,27},

2] = {2,3,13,15,25,26},
[4] = {4,7,11,17,21,24},
5] = {5,6,8,9,10,12, 16, 18,19,20,22,23}.

The state transition graph is demonstrated in Fig. 1(a), where
node i represents state 657, and the nodes in the same color
belong to the same quivalent class. The corresponding quotient
transition graph is constructed in Fig. 1(b), where node i
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represents the equivalent class [8;]. Besides, the solid and
dashed edges in Fig. 1(a) and Fig. 1(b) represent the state
transition with probability 0.2 and 0.8, respectively.

(b) Quotient transition graph.

Fig. 1. Illustration of constructing QTS for Example 4.1.

The smallest QTS X« is obtained as (11) with xgpx € Ay
and

1100 101 0
) 00 1 1] - 000 0
Di=too0o0o0l"P=|0 1 01

0000 0000

It can be equivalently expressed as a DTMC I'(X)/%Z* :=
(H%*,Q%*) with

1 02 08 0
0 0 02 02

Q=10 08 0 08 (13
00 0 0

n

As indicated in Example 4.1, a 27-state SFFN can be
characterized by a 4-state QTS. Although Y5+ may not be
an SFFN because w4+ may not be the power of p, we can
still investigate the set stability of SFFN (4) via X4, which
has a smaller number of nodes.

B. Dynamic Equivalences between SFFNs and QTS

In this subsection, for a given subset & C A,», we investigate
the SSD and FTSSPO towards & of SFFN (4) via analyzing
the stability of the obtained smallest X 4+, which can be viewed
as a DTMC (Ag,,.,Qz+ ).

Proposition 4.2: (Necessary Condition of Set Stability).
If SFFN (4) achieves set stability with respect to & C Ay,
there must exist a state &), € ¢ satisfying [5),] C € and

¢(8) ¢(8))
Q:%* 6(0%*‘0 = 6(0%*[7 .

Proof: Assumed that SFFN (4) achieves ¢-stability (that
is, 0-SSD or O-FTSSPO), there must exist a subset 0* C
O such that (Px) C 0* holds for all x € &* (this statement
obviously holds by referring to Theorem 1 and Proposition 1 in
[57], where 0™ is generally called the largest invariant subset

of P in 0). Therefore, 0* is an equivalent class, termed as

8% &%
Z;;*p ) # 5:;;*1) )7 that

[6[;’,,] without loss of generality. If Qg+
is,

P{x(1;60,%0) € [8] | x0 € [6,n]} <1,
it will conflict with the assumption P{(Px) C [5,] | xo €

03 _ $0(3%)

[6,:]} = 1. Hence, Q4«6 [ |

) gp* Wgp*

Remark 4.1: In particular, if & = O,, one has [5;',1] = 0.
in Proposition 4.2 because A1, € O, holds for all v € Q as

proved in Theorems 4.2 and 4.4 in [29]. |

Hereafter, suppose 5[‘,’,1 to be the state satisfying the condi-
8%

tions in Proposition 4.2, and denote s* := 5:;;*" ). Next, we

explore the equivalence relations between the &-stability of
SFFN (4) and s*-stability of QTS Xg-.

Theorem 4.1: (Equivalence of Stability). SFFN (4) is
globally stable towards & if and only if its corresponding QTS
Y4+ is globally stable towards s*.

Proof: Here, we only prove this theorem in the case
of SSD, since this theorem for the finite-time case can be
similarly proved.

Assume that SFFN (4) achieves SSD towards &. Proposition
4.2 indicates that there exists a state 6", € ¢ such that

"
P{X(I;QQ,X()) S [6;/;;] ‘ Xg € [ I;/n]} =1,V 6 eQVt>0.
Then, one has
P{xg+(t;60,5*) =5} =1,V 8 € Q,V 1 > 0.

Hence, s* is an equilibrium point of Xx«. Next, from Definition
3.2, one has

tle IP{X(I; Go,Xo) S [5;;]} =1,V xq EAPn,V 6 eQ.

According to the construction of %*, one can derive
lim P{[x(; 60, [xo])]=[8,p]} =1,V [x0] €T1+,V 60 € Q, (14)

where [x(; 60y, [x0])] denotes the state of I['(X)/%* at time ¢
with initial state [xo] and initial switching 6. Let s® = 53;“.
Since X+ is derived from I'(X)/%* by one-to-one mapping

from Ilg« to Ay, , formula (14) is equal to
lim P{xz+(t:60,5°) =5} =1,¥Y s* €A,V B EQ,
—yo0 £
It indicates that ¥+ achieves s*-stability in distribution. Sub-

sequently, the proof of sufficiency can be derived backwards. B

As indicated in Remark 3.2, if & = O, stable SFFN (4)
achieves synchronization. In this case, an p"-state SFFN (4)
can be reduced into a QTS with the number of nodes no greater
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than n+ 1, which is revealed in the following theorem.

Theorem 4.2: (QTS for C.-stability has no greater than
n—+1 nodes). The number of nodes in the smallest QTS for
solving the O,-stability of SFFN (4) is no greater than n+ 1.

Proof: In what follows, we prove the statement that SFFN
(4) achieves global stability with respect to &, if and only if
Yo~ is stable to s* from

"€ @:= {5519 |k € [1,n)}.

If this statement is proved, we can analyze the stability of
SFFN (4) just based on states s* and 6, «x € [1,n]. The
smallest QTS induced by these n+ 1 states has no greater than
n+ 1 nodes. Notably, SFFN (4) being &,-stable and QTS X+
being s*-stable imply that &, is an invariant subset of Ag ;) in
[ It derives that Ag/,) is row-stochastic, that is, Ag(;y 1, = 1,
with B € F,,. Subsequently, the proof is divided into two parts:
one for the 0,.-SSD, and another for the &,.-FTSSPO.

SSD case: First, we prove that the SSD towards &, of SFFN
(4) is achieved starting from any xo € [, if and only if it is
achieved starting from 86X,k € [1,n]. The necessity obviously
holds owing to {8} | i € [I,n]} C F?, and then we prove the
sufficiency. On the one hand, denoting

E(;0) = AG(I—]) ><pA(r(t—2) Xproe

with o(7) € Q for 7 € [0,£ — 1], it holds

XpAs(0)

tli_}mIP{E(t;O') X,08 €0} =1,V ke[l,n].

On the other hand, considering b, € 0. with b € ), one
obviously has a x,b, € 0. and a x,b,+,cx,b, € O,
for any a,c € F),. Since each state xo € F), of SFFN (4)
can be expressed as xo = 018! +, 082+, -+, 0,87 with
0,0, , 0, €IFp, one derives
}Lm P{X(I;OQ,X()) S ﬁc}
= [lim P{E(t;0) xpx0 € O}
—»00
= lim P{04E(1;0) X, 8 +p WE(t;0) Xy 824+
—»00
+, 4, E(1;0) %, 6) € O} = 1.
From Definition 3.2, SFFN (4) with xg € IFZ achieves SSD
towards O,.

Invoking the construction of X4+ and Theorem 4.1, we can
draw the conclusion that SFEN (4) achieves SSD towards &,
from 86X,k € [1,n], if and only if Lz« achieves stability in
distribution towards s* from any s € @. Therefore, the proof
for the SSD case is completed.

FTSSPO case: The necessity is evidently satisfied since any
initial state s° € ® corresponds to 5, k € [1,#], which belongs
to ). Next, we prove the sufficiency. Suppose that there exists
a time step T" € Njj ;) such that

P{Q s’ =5} =1,Vs"c@®, Vr>T,
which implies

P{E(t;0) x, 8, € O} =1,V k€ [l,n], V1 >T.

Then, for each xo € F”, one can derive that

E(T;0) xpx0 = E(T;0) X, 8} +, WE(T;0) %, 87
+pp E(T;0) X 6y
= Blln +p Blln +p Tt +p ﬁnln
= p*(x0)1n € O,

where Bi, B, ..., B, €F, and B*(x0) := L%_; Bx. In particular,
B*(x0)1, is the state that SFFN (4) with initial state xo will
evolve into at time instant 7', and thus SFEN (4) with xo € ),
achieves FTSSPO towards &,. Therefore, the proof for the
FTSSPO case is completed. [ ]

Remark 4.2: (Network scale reduction from p" to n+1).
Theorem 4.2 provides a way to check whether SFFN (4)
achieves SSD or FTSSPO towards O, through n basis states
instead of all p" states. Accordingly, a smaller QTS with
the number of nodes no greater than n+ 1 can be further
constructed. This obtained QTS still contains enough transition
information about the original SFFN, and the stability of the
original SFFN can be inferred by analyzing the evolution
of the QTS X4+ with a much smaller network scale. It is
worth mentioning that this remarkable reduction does not
arise in Boolean networks (see, e.g., [41]-[43]) owing to the
fundamental differences between Boolean networks and FFNs
as mentioned in Remark 3.1. Besides, it should be pointed out
that such remarkable reduction must hold for consensus and
synchronization issues, whose target set is &, but may not
hold for other issues. ]

In addition, as clarified in [4] and [28], if the states in O
are all equilibrium points of SFFN (4), that is, the modes are
all row stochastic, the synchronous X4+ achieves consensus.
In this case, we can define preliminary relation %° such that
the preliminary partition of Ap» is

{6(0,)},{6(1n)},....{6((p—D1n)}, AP"\{é(bn) |be FP}

Based on %°, one can derive the smallest QTS as X ;. with
the size @,.. Then, we denote
P {5((5(6(0")) 5$(6(1,1)) 5((3(5((17*1)1:1))}
. 7l I ) gpx LR 7l
and deduce the following equivalent relation for the consensus
of SFFN (4), which includes the consensus in distribution and
finite-time consensus with probability one.

Corollary 4.1: (Equivalence of Consensus). SFFN (4)
achieves global consensus, if and only if De(t) xXpa=a for
all @ € %, and X5, achieves .#*-stability from Ve 0.

C. Set Stability Conditions

In what follows, we consecutively explore the necessary and
sufficient conditions for the &-stability of SFFN (4) based
on the constructed QTS X«. Before which, we introduce
some notions in DTMC. A path 7 of DTMC (Ag,.,Qz%*)
with initial state x+(0) := s° is a (possibly infinite) sequence
of states © = s s',... satisfying Q- (s',s"!) > 0 for each
integer i > 0, and its existence probability is calculated by

P{n} =[]Qu(s',s™). (15)
i=0
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In particular, if 7 =s° s!,...,s", its probability is equal to

n—1 L
P{n} = 'Ho P(s',s"*1), which is also the probability of a path
i—

from s° to s". Denoting R(s,s*) as the (possibly infinite) set
of all paths from s° to s*, the probability of reaching s* from
sY, defined as ]P’R{so,s*}, equals to the sum of the probabilities
of all paths leading to s* from s9. that is,

PR{s",s*} = Y P{x}.
neR(s0,s*)

Theorem 4.3: (Criterion for SSD). SFEN (4) achieves SSD
with respect to @ if and only if Q+s*=s* and |R(53,,, ,5*)| >0
for all 65%,* EAp -

Proof: (Necessity). Assume that SFFN (4) achieves SSD
towards ¢. From Theorem 4.1 we acquire that X4+ achieves
stability in distribution towards s*; by Proposition 4.2, we can
deduce Q+s* = s*. If there exists a state 5@{,%* € Ay, such
that |R(8},,, ,5*)| =0, it leads to PR{§,,.,s*} = 0, implying
X+ (t; 00, 6£ ) 7 s* for all integers t > 0, which conflicts with
the assumption.

(Sufficiency). Q+s* = s* induces that P{xz+(1;6p,5*) =
s*} =1 holds for any 6 € Q. Furthermore, R(SC{?%* ) >0
for all 8, € Aw,. guarantees that, for each &, € Ag,.,
there exists a path from 5£%,* to s*. By referring to Theorem
4.1 in [29], one can draw a conclusion that X+ achieves s*-
stability, then the sufficiency is proved by Theorem 4.1. ®

(16)

Theorem 4.4: (Criterion for FTSSPO). SFEN (4) achieves
FTSSPO with respect to &, if and only if Qg+s* = s* and
0 < [R(8,,.,5*)| <o for all &, € Ag,..

Proof: (Necessity). Noted that SFFN (4) achieving
FTSSPO towards ¢ must achieve SSD towards &, the nec-
essary conditions for SSD must hold here. Subsequently, we
prove that |R(6({)W ,5%)| < o0 holds for all 6({)3/7* €Ag,,. . If there
exists a state 8, € Ay, such that [R(5p,.,
exists a state set ¢ C Ag,, \{s*} satisfying

P{x%+(t; 60,x5+(0)) € € | x«(0) € €} =: €(t) >0

§*)| = o, there

for any 6y € Q and all integer ¢ > 0. It leads to
P{xsp+(t;00,x2+(0)) € O | x5+ (0) € €} < 1 —¢€(r) < 1

for any 6p € Q and all integer + > 0. Hence, X5+ does
not achieve finite-time s*-stability with probability one, and
from Theorem 4.1, SFFN (4) does not achieve &-FTSSPO,
which conflicts with the assumption. Therefore, the necessity
is proved.

(Sufficiency). Qg+s* = s* implies that s is an attrac-
tor of Zge: |R(84,.,5%)| > 0 indicates PR{5},,,s*} > 0;
IR(82,,.,5%)| <o for all &, € Ay, implies that no attractor
rather than s* exists in X4+. Therefore, for each 56{) e € Dwges

there exists a positive integer T (5}, ) such that

Wgpx

P{xs(1:60,80,,) ="} =1,V 6 € Q, V 1 >T(5),.).

Owing to the finiteness of state space Ay, , integer T(6({,W)

must be no greater than @g-. Letting T := max T(8p,,.),
1<j<0pm *

one has
P{xp (1:60,5%) = 5"} = 1,
VoeQ Vs'eAy,, Vi>T.

Therefore, X4+ achieves finite-time s*-stability with probabil-
ity one, and SFFN (4) achieves &-FTSSPO by Theorem 4.1. ®

Remark 4.3: (Criterion for Synchronization). If 0 = O,
set stability of SFFN (4) evolves into the synchronization of
SFEN (4). By combining to Theorem 4.2, one can derive that
SFFN (4) achieves SSD (resp., FTSSPO) with respect to &, if
and only if it holds &, = [1,], Qz+s* = s* and |R(s?,s*)| >0
(resp., 0 < |R(s°,5*)| < o) for all s° € ©. [ |

Remark 4.4: (Criterion for Consensus). To check the
consensus of SFEN (4), we can first determine whether its
network matrices are row stochastic and next determine its
O,-stability. This procedure can be mathematically expressed
to meet the following conditions:

(i) Apl, =1, holds for all v € Q;

(i) Quprs™ =s";

(iii) (for consensus in distribution) |R(s?,s*)| > 0 holds for
all s° € @;

(iii’) (for finite-time consensus with probability one) 0 <
IR(s°,5*)| < o0 holds for all s° € ©.

V. SIMULATION AND ANALYSIS

In this section, we first illustrate the stability analysis for
an SFFN via the QTS-based method, and then we explore
the number of iterations to obtain the smallest QTS and the
number of nodes in the obtained QTS for a series of randomly
generated SFFNs.

A. An Illustrative Example

Here, we consider the Example 5.1 in [29], where SFFN
(4) over finite field I3 has three modes as

[ 2 0 0 ] [ 2 1 1 ] [ 1 0
Al=2 0 0], A=2 2 0] Aa=l0 o0
0o 2 0 2 2 0 1 0
with the probability distribution 2 = [0.5,0.3,0.2]. Next, we
study the synchronization of this SFFN, and the desired set is
preassigned as O, = {03,13,213}. The state transition graph
starting from the states 83;,8%,6,7, corresponding to three
basis vectors 87,85, 85, is depicted as Fig. 2. In Fig. 2, node
i represents state 657, and each directed edge (i, 7) refers to a
possible transition from state 8}, to state 85, with the transition
probability marked above.

Step 1: Construct the smallest QTS. By calling (10), one
can derive the coarsest equivalence relation as

R ={(847,84;),(89,,85) | i,j € Ci,k = 1,2,3,4}

with

0
1
0
(17

Cy = {1,14,27},
Cy ={2,3,13,15,20,25},
Cs = {4,7,11,17,21,24},
C; = {5,9,10,18,19,23}.
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Fig. 2. State transition grdph of SFFN (4) defined in Subsection V-A starting
from the initial state 82,85, 527

Besides, by Algorithm QGA, the smallest QTS is obtained as

I'(X)/%* = (I, Qup+)
with I = 87{[1],[2],[4],[5]} and

1 05 02 03

O — 0 0 05 05

=10 02 0 02

0 03 03 0

The quotient transition graph is derived as in Fig. 3, where
node i stands for quotient [8,], and each directed edge (i, /)
refers to a possible transition from the state in quotient [J,,]
to the state in quotient [8;,] with the transition probability
marked above.

Fig. 3. Quotient transition graph corresponding to the state transition graph
in Fig. 2.

Step 2: Verify the set stability criterion. With regards to
the QTS X4+, it holds

Q.%*541 :6417
IR(87.8))| =0, |R(&,8})| =, |R(&},8})| = oo

Therefore, by Theorem 4.3, one can draw the conclusion that
this SFFN achieves SSD with respect to &, more precisely,
synchronization in distribution. However, by Theorem 4.4,
such an SFFN does not achieve FTSSPO with respect to &,
more precisely, finite-time synchronization with probability
one.

Remark 5.1: When checking whether SFFN (4) defined
as (17) achieves synchronization, one can only check its
corresponding QTS with only 4 nodes, which is far less than

the original 27 states and less than 21 nodes indicated in Fig.
2 given in [29]. |

B. Comparative Simulation

To explore the number of iterations required for obtaining
the smallest QTS and the number of nodes in the induced
QTS, we use our designed “Quotient Generator” to randomly
generate three kinds of SFFNs and further obtain a minimal
number of quotients by calculating the coarsest quotient set
based on a preliminary partition of state set.

Type I: Deterministic FFNs. In this scenario, the PTM P is
a logical matrix, rather than a stochastic matrix. We consider
a 3-node FFN over '3 with the preliminary partition of state

set
{{82,6:7,877 1,80\ {85, 857,637 }}.

We randomly generate 1600 FFNs or called samples. For each
FFN, we count the number of iterations required for deriving
the coarsest quotient set and calculate the number of nodes
in the corresponding smallest QTS. Fig. 4 shows that the
number of iterations is significantly less when the number of
nodes in QTS is more than 14. Especially, there are 9.375%
of Type I SFFNs whose number of iterations is equal to zero,
which means the preliminary partition is a quotient set. As
for the number of nodes in the smallest QTS, it is mainly
distributed in the interval [2,21], and its average is 7.944,
which is significantly less than 27, that is, the total number
of states. Most samples can be reduced to a 5-node QTS (190
in 1600 samples), and most samples only need 3 iterations to
obtain the smallest QTS (240 in 1600 samples).

(18)

-O- Nodes (Type I) Iterations (Type ) Nodes (Type Il) -0~ Iterations (Type II)

400

300

The Number of SFFNs

TO-T O ON-0-T-0- o0
16 17 18 19 20 21 22 23 24 25 26 27

—T T OO
6 7 8 9101112131415

The Number of Nodes/Iterations

Fig. 4. Distributions of the number of nodes in the smallest QTS and iterations
required for obtaining this smallest QTS among randomly generated 1600
Type I and Type II SFFNs over F3 with 27 states.

Type II: Equal-Probability-Switched FFNs. Next, we
consider a kind of 3-node SFFNs with two modes, whose
probability distribution is 2 = [0.5,0.5]. We generate 1600
SFFNs over the finite fields 3 and F5. For 3, the preliminary
partition of Ay7 is (18); while for Fs, the preliminary partition

of A125 is
{{8!35},A125\ {832} }.

Then, we count the number of iterations required for obtaining
the coarsest quotient sets and the number of nodes in the
corresponding smallest QTSs for F3 and F's, respectively. The

(19)
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results are presented in Fig. 4 and Fig. 5. The number of
iterations mainly locates in the interval [0,12] for the case of
F5 as indicated in Fig. 4; while for the case of Fs, it mainly
locates in the interval [0,20], as indicated in Fig. 5. In regard
to the number of nodes in the obtained smallest QTS for the
case of [F3, it increases rapidly and even close to the total states
when considering mode switching. In contrast, the distribution
of the number of nodes in the smallest QTS derived from
Type I SFFNs over [F5 tends to be bipolar. More specifically,
there are two different intervals ([2,20] and [96,120]) with
frequent samples. Besides, there are only 2% (that is, 32 in
1600 samples) of the generated Type II SFFNs over F3, whose
number of nodes in the obtained QTS is 2; while there are
31% (that is, 496 in 1600 samples) of such SFFNs over Fs. It
indicates that the probability of an initial partition being the
quotient set increases with the size of finite field F,,, that is,
the number of states in a Type II SFFN.

Nodes (Type Il) ~O- lterations (Type Il) ~O~ Nodes (Type Ill) Iterations (Type Ill)

v
Z 1,500
53
-~
w2
S 200
o
o
2

900
g
=
Z 600
Q
= Q
2 g

S AN I,
[ ‘\
VASA 9
0 O ~—o Q00— 0 O =L © ——0——0——O 0t

[56:60] [76:80] [96:100] [116,120]

The Number of Nodes/Iterations

Fig. 5. Distributions of the number of nodes in the smallest QTS and iterations
required for obtaining this smallest QTS among randomly generated 1600
Type II and Type III SFENs over Fs with 125 states.

Type III: Random SFFNs. Furthermore, we randomly gen-
erate 1600 SFFNs over 5, which have three nodes and three
modes obeying the probability distribution 2 = [0.1,0.2,0.7].
Here, the state set is Ajps with the preliminary partition as (19).
As shown in Fig. 5, in this setup, the most frequent number
of iterations required to obtain the smallest QTS locates in the
interval [0 : 20], which is similar to that for Type I and Type
II SFFNSs. Besides, the most of the numbers of nodes in the
obtained smallest QTS are in the interval [116,120], and only
one Type III SFEN has been found to have two nodes in the
smallest QTS. Therefore, it can be conjectured that, when the
switching form becomes more complex (i.e., there are multiple
switching modes with different probabilities of occurrence),
the derived equivalent relation may be equal relation Z,.

VI. CONCLUSION

In this paper, two kinds of set stability of SFFNs have been
defined in terms of the stable time, that is, SSD and FTSSPO.
The set stability analysis has been carried out by constructing
quotients. First, by resorting to the STP of matrices, an SFFN
has been transformed into a DTMC, based on which the
preliminary relation has been preassigned according to the
target set. Subsequently, the coarsest quotient set contained
by this given preliminary relation has been calculated. In

particular, the coarsest quotient set determines the coarsest
partition of the state set, and will induce a QTS of the smallest
size. Furthermore, the necessary and sufficient conditions
have been established for the SSD and FTSSPO of SFFNs,
respectively. They are, respectively, equivalent to the stability
in distribution and finite-time stability with probability one
of their corresponding QTS. Besides, the obtained criteria for
the set stability of SFFNs have been applied to the cases of
consensus and synchronization. In these cases, the scale in
terms of the number of nodes in the QTS is much smaller
than the scale of SFFN in the ASSR form.

It is worth mentioning that the formal simplicity of the
obtained QTS makes it relatively convenient to handle classical
control-theoretic problems for FFNs and SFFNs. In the future,
we will try to utilize the QTS-based method to design a fea-
sible control strategy (e.g., impulsive control, event-triggered
control, and pinning control) such that an unstable FFN or
SFFN can be stabilized to a target state set.
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