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This paper describes the systematical study of a steady-state solution to the Lighthill-
Witham-Richards (LWR) model on a single origin-destination parallel road network, in which
the user-equilibrium condition is satisfied and shocks on links are permitted. This study de-
rives a novel static traffic assignment model considering the complete fundamental diagram,
including the congested branch. For a composite links unit that includes a set of parallel
links between two junctions, the user-equilibrium condition is discussed in detail and thus,
the so-called user-equilibrium curves are defined. For a single origin-destination parallel road
network, we note that shock structures must be introduced to guarantee the existence of the
solution when a bottleneck exists, and thus we establish the correlation between the total
number of vehicles and the steady-state solution. Moreover, the uniqueness of the solution is
proved by introducing priority coefficients when shocks appear. We analytically give the com-
plete solving procedure of the steady-state solution and thus, avoid the iterative algorithms
used in other static traffic assignment models. A numerical scheme of the LWR network
model is designed to converge the traffic flow into the discussed steady-state solution, by
determining the percentages and priority coefficients at junctions. A numerical example is
given to validate the convergence for the designed numerical scheme on a road network with
two 2× 2 junctions.

Keywords: shock discontinuities; user-equilibrium conditions; composite links unit;
bottleneck effects; static traffic assignment

1. Introduction

Traffic assignment (TA) problems have been studied for several decades, from both static
and dynamic views. Static TA models focus on the flow rates and travel times during a
specified time period, in which the traffic flow on a road link is assumed to be steady
or stationary. Dynamic TA models relax the steady assumption and thus, can describe
time-variant traffic flows, travel times, and congestion dynamics. Although the static TA
problem has been widely studied, the modeling theory needs further supplementation
and improvement.
Traditional static TA models assume link performance functions, e.g., the Bureau of
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Public Roads function (Bureau of Public Roads 1964), and impose no capacity (i.e., the
allowed maximum flow) nor storage (i.e., the maximum number of stored vehicles) con-
straints on links. This implies that the link flow can exceed the actual link capacity and
thus, queueing and spillback are ignored. To improve the traditional static TA models,
several capacity constraint models have been proposed, which can be classified into two
categories: models with steady queues and models with non-steady queues (Bliemer and
Raadsen 2020). The models with steady queues essentially add the link flow capacity
constraints into the optimization problem, which is a natural extension of the tradi-
tional models. These models maintain the assumption that the link inflow equals the
outflow, which means the queues on links are steady. Thompson and Payne (1975) first
formulated the TA problem as a side-constrained optimization problem and introduced
a Lagrange multiplier, which accounts for the queueing delay. The travel time over a
link is then composed of the flow-related travel time (which is determined by the link
performance function) and the queueing delay. This type of model usually assumes that
the number of queueing vehicles is unlimited, which means the storage of a link, and
thus, the queue spillback, are not considered (Smith 1987; Larsson and Patriksson 1995;
Bell 1995; Meng, Lam, and Yang 2008; Yang and Yagar 2008). Smith, Huang, and Viti
(2013) further developed the work of Smith (1987), and considered the storage constraint
by introducing a maximum queue length. Models with non-steady queues assume that
the link inflow is greater than the link outflow, and thus, the queue on a link can grow
dynamically with time. This type of model is not static in the strict sense, and thus, is
also known as a quasi-dynamic TA model, even though the traffic status on the links
is steady. These models do not require all vehicles to complete their trips, but rather
store them in residual queues (Bliemer et al. 2014; Lam and Zhang 2000). These im-
proved models are still based on link performance functions, which assume that travel
time increases with link flow. And then link flow increases with density, if we assume the
velocity is a monotonically increasing function of density. Thus, this is only suitable for
the un-congested situation corresponding to the left branch of the fundamental diagram.
For the dynamic TA problem, the models with side constraints also have been proposed,

in which the side constraints can represent the restrictions on the traffic volume. Zhong et
al. (2011) formulated the side-constraint dynamic TA problem as an infinite-dimensional
variational inequality, and proposed an algorithm based on Euler’s discretization scheme
and nonlinear programming to solve the model. Then, Graf and Harks (2023) gave a
conter-example to the result from (Zhong et al. 2011), and proposed a new framework for
side-constrained dynamic TA problem. Hoang et al. (2019) developed a linear program-
ming framework to solve the dynamic TA problem with general capacitated constraints.
It is worth noting that the side-constraint TA model does not directly consider the
right-hand side of the fundamental diagram. There are several dynamic traffic flow net-
work models based on the fundamental diagram theory, including first-order models, e.g.,
Lighthill-Witham-Richards (LWR) model (Lighthill and Whitham 1955; Richards 1956)
and the cell transmission model (Daganzo 1995), and higher-order models (Lebacque
1995; Coclite, Garavello, and Piccoli 2005; Garavello et al. 2007; Lin et al. 2015, 2022).
These models implicit the side constraints, because the physical link capacity and storage
are restricted in the fundamental diagram. Moreover, these models have been introduced
in dynamic TA models (Lo and Szeto 2002; Friesz et al. 2013; Zhang, Wolshon, and Dixit
2015; Cheng, Liu, and Szeto 2019; Li et al. 2020). Therefore, it remains to establish a
static TA model based on the fundamental diagram theory, in which physical queueing
is described by the shock, and the link capacity and storage are naturally considered.
Bliemer and Raadsen (2020) presented a static model with non-steady queues, in which

the network loading component is derived from a dynamic link transmission model, con-
sidering the fundamental diagram. The model was formulated as a variational inequality
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and the existence of the solution was proved. The method of successive averages was
used to solve the equivalent fixed point problem. This model is a type of quasi-dynamic
TA model, in which the queues are not stationary or time-invariant. However, Jin (2015,
2017) reported that empirical observations suggest a steady state on a network, in which
the locations and sizes of the queues (shocks) are nearly time-independent. The observa-
tions can be described by steady-state solutions of dynamic traffic flow models, such as
LWR model. In this case, the traffic states remain unchanged with time, the flow on the
link is constant, but the density can be constant or a stationary shock. Jin (2015, 2017) s-
tudied the existence and stability of steady-state solutions based on the multi-commodity
LWR network model (Jin 2012). And, a brute-force method was presented to solve the
steady-state solutions for a simple diverge-merge network. However, the detailed solving
method and procedures were not discussed for a general road network. Moreover, the
routes of vehicles were predefined, which means the user-equilibrium principle was not
satisfied. In fact, it is challenging to establish a static model with steady shock structures,
that can be analytically solved, for a general network.
In this work, we consider a single origin-destination (OD) parallel road network com-

posed of sequential junctions, between which are multiple parallel links. We systemati-
cally study the steady-state solution to the LWR model and then provide a potential-
ly key idea for extension to a general road network. In the steady-state solution, the
user-equilibrium route choice conditions are considered and the flow at the junction is
maximized. For travel demand or the total number of users being in a specific range, we
find that if the link density is assumed to be constant, similar to that in traditional TA
models, there is no steady-state solution. We should note that the present paper is the
extension of the two previous works (Zhang et al. 2021; Lyu et al. 2021). However, Zhang
et al. (2021) and Lyu et al. (2021) dealed with the simplest network that includes just
a 1×2 and a 2×1 junctions. In addition to the network structure, the main extensions
can be summarized as follows. i) The composite links unit, which consists of multiple
links connecting two junctions is introduced. Then, the user-equilibrium condition of the
composite links unit is derived, and the complete solving procedure of the solution under
arbitrary travel demand or user number from 0 to the maximum number is discussed.
ii) The theoretical properties of the steady-state equilibrium solution, including its ex-
istence and uniqueness, are discussed and proved in detail. The situations (along with
all discussions and results) in Zhang et al. (2021) and Lyu et al. (2021) can be taken as
special cases of the present paper.
The remainder of this paper is organized as follows. In Section 2, the steady state

on a single OD parallel road network is systematically discussed. The analytical solving
procedure for the steady-state solution is presented in Section 3. In Section 4, we give an
example to validate the presented steady-state solution and numerical scheme. Section 5
concludes the paper. Appendix A describes the numerical convergence scheme based on
the LWR network model.

2. The Steady State on a Single OD Parallel Road Network

We study a single OD parallel road network composed of sequential junctions, between
which are multiple parallel links. Figure 1 shows the case with three junctions including
n links between junction J1 and junction J , and m links between junction J and junction
J2. We explored the steady state on this road network by considering the whole funda-
mental diagram including the right branch in which the flow decreases with increasing
density. Our study of the network’s steady state led us to develop a new type of static
TA model that is totally consistent with the LWR model or fundamental diagram theory,
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Figure 1. A simple single OD road network.

and thus, can describe both queues and spillback effects. Note that if we only consider
the uncongested links, i.e., the left branch of the fundamental diagram, the model pre-
sented in this work is equivalent to the traditional static TA model. In this case, the
theoretical properties, such as the existence and uniqueness of solutions, can be directly
obtained. However, it is important to highlight that these theoretical properties cannot
be directly extended to the model considering the complete fundamental diagram, due
to the introduction of shock waves.
Note that if we only consider the uncongested links, i.e., the left branch of the funda-

mental diagram, the model presented in this work is equivalent to the traditional static
TA model. In this case, the theoretical properties, such as the existence and uniqueness
of solutions, can be directly obtained. It is obvious to similarly consider the congested
links, i.e., the right branch of the fundamental diagram, in which case the solution can
be uniquely derived. This appears to suggest a solution regarding to the complete funda-
mental diagram, in which case the density (rather than the flow) is taken as the solution
variable. However, we find that the solution does not exist for the average density over
(or the total number of users on) the road network, in which case shock waves must be
introduced to complete the solution according to the LWR model (Section 2.2).

2.1. Steady state on a link

A link is defined as a stretch of road along which the number of lanes and free-flow speed
are constant. Let ρ(x, t) (veh/m) and Q(x, t) (veh/s) denote the density per length and
flow at time t at position x. Velocity is then defined as v(x, t) = Q(x, t)/ρ(x, t) (m/s),
and we say that traffic flow is in a state of equilibrium if the following velocity–density
or flow–density relationship is satisfied

V = V (ρ), Q = Q(ρ) = ρV (ρ). (1)

The LWR model can then be written as

ρt +Q(ρ)x = 0. (2)

We assume that all vehicles have the same size. Thus, the maximum ρjam is constant
and the link is blocked when ρ = ρjam. Equivalently, the storage of the link is Lρjam,
where L is the length of the link. The fundamental diagram, V = V (ρ), is assumed to
be a strictly decreasing function with

V (0) = V f , V (ρjam) = 0, Q(ρjam) = 0.

Moreover, the function Q is assumed to be sufficiently smooth and have, at most, one
stagnation point at ρ = ρ∗, namely, Q(ρ) strictly increases for ρ ∈ [0, ρ∗] and strictly
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decreases for ρ ∈ [ρ∗, ρjam]. Thus, the capacity of the link is Q(ρ∗).
According to the LWR model, traffic flow is viewed as being steady on a link if and

only if the flow, Q, is constant. This suggests equilibrium solution satisfying (1), which
can be generally expressed as follows

ρ(x) =

{
ρu, 0 ≤ x < Lu,

ρd, Lu ≤ x ≤ L,
V (x) =

{
V (ρu), 0 ≤ x < Lu,

V (ρd), Lu ≤ x ≤ L,
(3)

where x = Lu is the position of the shock interface, which divides the traffic into upstream
and downstream subsections, with a low density, ρu, and a high density, ρd, respectively.
Note that Eq. (3) also represents a constant solution with ρ(x) = ρu, for Lu = L, or
ρ(x) = ρd, for Lu = 0. In the latter case, the queue propagates to the upstream junction,
and the spillback arises.
However, these two types of constant solutions cannot cover the whole interval of the

average density over (or the total number of users on) the studied road network, provid-
ed that the downstream junction functions as a bottleneck under the user-equilibrium
condition. To complete the solution, a shock wave arises with Lu > 0, which is discussed
in Section 3. Because the flow is static on the network, the shock structure must be
stationary with

Q(ρu) = Q(ρd) = Q, (4)

which obviously satisfies the Rankine-Hugoniot condition in hyperbolic conservation laws
(Toro 1999).
Based on the assumption of Q(ρ), Eq. (4) uniquely determines (Fig. 2)

ρu = ρu(Q) ∈ [0, ρ∗]; ρd = ρd(Q) ∈ (ρ∗, ρjam]. (5)

(a)

V

)
u

(V

)
d

(V

0

d

u

0
Lu

L0 (b)

Q

du
0
0

Figure 2. Steady state with shock structure on a link. (a) The density and velocity on a link, as described by Eq.

(3); (b) One of Q, ρu, or ρd can determine the other two variables, where ρu and ρd are strictly increasing and
decreasing with flow, Q, respectively, and ρd is strictly increasing with ρu.

The shock described in Eqs. (4)-(5) separates the upstream characteristics with a higher
speed, Q′(ρu), and the downstream characteristics with a lower speed, Q′(ρd), which
naturally satisfies the Rankine–Hugoniot condition for discontinuity (Whitham 1974;
Toro 1999). The shock structure reduces to a trivial solution, ρ(x) = ρu or ρ(x) = ρd if
and only if Lu = L or Lu = 0.

2.2. The user-equilibrium condition of a composite links unit

A composite links unit is composed of K links connected by an upstream junction, Ju,
and a downstream junction, Jd, as shown in Fig. 3. Let k index these links, such that
Lk and lk are the link length and number of lanes, respectively, and let ρk, vk, and qk
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be the density, velocity and flow, respectively. This is similar to Eq. (1), and resulting in
the following velocity–density and flow–density relationships on link k:

vk = vk(ρk), qk = ρkvk(ρk) ≡ qk(ρk), k = 1, . . . ,K,

together with similar properties.

2

K

1 dJuJ

Figure 3. A composite links unit.

According to the discussion on a link, the steady state on a link is expressed as follows

ρk(x) =

{
ρuk , 0 ≤ x < Lu

k ,

ρdk, Lu
k ≤ x ≤ Lk,

vk(x) =

{
vk(ρ

u
k), 0 ≤ x < Lu

k ,

vk(ρ
d
k), Lu

k ≤ x ≤ Lk,
k = 1, . . . ,K. (6)

The traveling time on each link can be computed by

Tk(ρ
u
k , L

u
k) =

Lu
k

vk(ρ
u
k)

+
Ld
k

vk(ρ
d
k)
,

where Ld
k = Lk − Lu

k . Because vk(ρ
u
k) > vk(ρ

d
k), Tk is strictly increasing with Lu

k . When
Lu
k = Lk, Tk is strictly increasing with ρuk . Therefore, we have

Tk(ρ
u
k , L

u
k) ≥ Tk(ρ

u
k , Lk) ≥ Tk(0, Lk) ≡ Tmin

k .

Tk = Tmin
k if and only if ρuk = 0 and Lu

k = Lk.
For convenience, we assume that any two of the minimal traveling times, Tmin

k , are not
equal, and any case that dose not satisfy this assumption can be taken as a degenerate or
limit state of inequality. Without loss of generality, the Tmin

k values are sequenced from
small to large, i.e.,

Tmin
1 < · · · < Tmin

K , (7)

which means that link 1 will be first utilized, followed by the others in sequence. There-
fore, the user-equilibrium condition for traveling from Ju to Jd can be described as follows

Tk =

{
Tk−1, Tk−1 > Tmin

k ,

Tmin
k , Tk−1 ≤ Tmin

k ,
k = 2, . . . ,K. (8)

Equation (8) indicates that link k is utilized with a traveling time equal to that on link
k− 1 if and only if the traveling time on link k− 1 is greater than the minimal traveling
time on link k. This condition is known as the user-equilibrium principle, which states
that a link is utilized if and only if the traveling time is not greater than the traveling
times on any of the other utilized links.
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We then assume that there are no shock structures on any of the links, which means
that the density, ρk (as well as the velocity vk), is constant,

ρk(x) = ρk,

where the constant ρk = ρuk or ρk = ρdk, corresponding to Lu
k = Lk or Ld

k = Lk, re-
spectively, in Eq. (6). The user-equilibrium condition of (8) can then be expressed as
follows

Lk

vk(ρk)
=


Lk−1

vk−1(ρk−1)
,

Lk−1

vk−1(ρk−1)
>

Lk

vfk
,

Lk

vfk
,

Lk−1

vk−1(ρk−1)
≤ Lk

vfk
,

k = 2, . . . ,K, (9)

where vfk is the free-flow velocity on link k.
Equation (9) suggests that the densities on the other links are implicit functions of the

density on link 1, which can be computed using the following procedures.
Given ρ1, implement the following for k = 2, . . . ,K:

(1) Compute the critical density ρck−1 of ρk−1, by setting the equality of (9);
(2) If ρk−1 ≤ ρck−1, then set ρk = . . . = ρK = 0, and end the circulation;
(3) Otherwise, compute ρk using the first equation of (9).

In this procedure, the existence and uniqueness of the solution are guaranteed by Eq. (7)
and the strict monotonicity of vk(·). Thus, ρk = 0 for ρk−1 ≤ ρck−1 by the second item
of Eq. (9), and ρk strictly increases with ρk−1 when ρk−1 ≥ ρck−1 by the first item of Eq.

(9). Therefore, ρk (k > 1) is a function of ρ1, and there exists some critical density, ρk1
of ρ1, such that ρk = 0 when ρ1 ≤ ρk1, and ρk strictly increases with ρ1 when ρ1 ≥ ρk1.
Equation (9) can be converted to the following expression related to per-area density,

ρ̄k:

ρ̄k =


0, ρ̄1 < ρ̃k1,

v̄−1
k (

Lk

l1
v̄1(ρ̄1)), ρ̄1 ≥ ρ̃k1,

k = 2, . . . ,K, (10)

where ρ̄k = ρk/lk, v̄k = vk(ρ̄klk), and v̄−1
k (·) is the inverse function of v̄k(·). The crit-

ical density, ρ̃k1, can be determined by ρck−1 in the computational procedure, namely,

ρ̃k1 = v̄−1
1 (

L1vk−1(ρc
k−1)

Lk−1
). After the conversion, the function remains monotonic. Figure

4(a) shows the functions, ρ̄k = ρ̄k(ρ̄1), which are called user-equilibrium curves. Here,
K = 3 and the function vk(·) is

vk(ρk) = V f [1− exp(1− exp(0.2(ρjamk /ρ− 1)))].

The curves in Fig. 4(a) represent the functions ρ̄k = ρ̄k(ρ̄1), k = 2, 3, which are defined by
Eq. (10), indicating changes of the average densities ρ̄2, ρ̄3 on links 2 and 3 with respect
to the average density ρ̄1 on link 1. Because we assume that Tmin

1 < Tmin
2 < Tmin

3 , link
1 is to be chosen, followed by links 2 and 3 in sequence. When ρ̄1 is relatively small, no
road users choose links 2 and 3, i.e., ρ̄2 = ρ̄3 = 0. When ρ̄1 > ρ̃21, which suggests that
Tmin
2 < T1, some vehicles begin to choose link 2 with ρ̄2 > 0, ρ̄3 = 0. When ρ̄1 > ρ̃31, the

vehicles are actually assigned to all three links.
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Figure 4. User-equilibrium curves. All densities are made dimensionless, by dividing through ρk,jam. L1/L2 =
L2/L3 = 0.8, l1 = 1, l2 = 2, and l3 = 4. (a) ρ̄2 and ρ̄3 vary with ρ̄1 (Eq. (10)); (b) ρ̄1, ρ̄2, and ρ̄3 vary with ρ̄

(Eq. (11)).

We then define the average density over the area in the links unit as

ρ̄ =

∑K
k=1Nk∑K
k=1 Lklk

=

∑K
k=1 Lkρk∑K
k=1 Lklk

=

K∑
k=1

Lklk∑K
k=1 Lklk

ρ̄k.

This equation indicates that ρ̄ is the weighted mean of the average densities, ρ̄k. Note
that ρ̄k increases with ρ̄1, and ρ̄1 strictly increases with ρ̄1. Thus, ρ̄ also increases with
ρ̄1. This indicates that ρ̄1 can be replaced by ρ̄, and then the following function holds

ρ̄k =


0, ρ̄ < ρ̃k,

v̄−1
k (

Lk

L1
v̄1(ρ̄1(ρ̄))), ρ̄ ≥ ρ̃k,

k = 1, . . . ,K, (11)

where ρ̃1 = 0, and other ρ̃k values are associated with the critical values of ρ̃k1. Setting the
same parameters as those in Fig. 4(a), Fig. 4(b) shows the dependencies between ρ̄k and
ρ̄, which are also called the user-equilibrium curves. The properties of these functions
are similar to those in Fig. 4(a), in which case there always hold that ρ̄1 ≥ ρ̄2 ≥ ρ̄3.

Defining the total density of the links unit as ρ =
∑K

k=1 lkρ̄ results in the following
(total) flow–density relationship or fundamental diagram:

Q =

K∑
k=1

lkq̄k(ρ̄k(ρ̄)) =

K∑
k=1

lkq̄k(ρ̄k(
ρ

ρ̄
)) ≡ Q(ρ).

We note that the fundamental diagram is defined for a composite links unit rather
than a single link. The definition indicates that, given the average density (or the total
number of vehicles) on the composite links unit, we can obtain the total flow under the
user-equilibrium condition of Eq. (8). This determines the fundamental diagram of the
composite links unit, thus we can define the total demand and supply functions of the
composite links unit similarly to that for a single link. Moreover, should introduce the
shock structure to complete the steady-state solution.

2.3. Ground rules for the steady-state solution

In this section, we then discuss the ground rules for the steady-state solution for the
single OD road network shown in Fig. 1. Based on Eq. (3), we denote the steady-state

8



solutions on the upstream links unit and downstream links unit as

ρi(x) =

{
ρui , x ∈ [0, Lu

i ],

ρdi , x ∈ [Lu
i , Li],

i = 1, . . . , n, (12)

and

ρj(x) =

{
ρuj , x ∈ [0, Lu

j ],

ρdj , x ∈ [Lu
j , Lj ],

j = n+ 1, . . . , n+m,

where

ρuk ∈ [0, ρ∗k], ρdk ∈ (ρ∗k, ρ
jam
k ], k = 1, . . . , n+m.

Then, the steady state of the road network can be denoted as

qk(ρ
u
k) = qk(ρ

d
k) = qk, k = 1, . . . , n+m;

n∑
i=1

qi =

n+m∑
j=n+1

qj .

Considering the necessary conditions of the steady-state solution, we present the fol-
lowing ground rules.

(1) Supply–demand constraint condition. The flow of the upstream link, qi, is not
greater than its demand, di, while the flow of the downstream link, qj , is not
greater than its supply, sj .

(2) User-equilibrium constraint condition. The upstream links unit and downstream
links unit of junction J satisfy Eq.(8).

(3) The principle of maximization of flow. The demand of upstream links should be
satisfied and the supply of downstream links should be released, as possible, such
that the total flow,

∑n
i=1 qi =

∑n+m
j=n+1 qj , at junction J is maximized.

(4) Steady-keeping principle. If we set the initial steady-state solution, the numerical
solution remains unchanged.

In Section 2.2, we discussed the user-equilibrium constraint condition without shocks,
and presented the user-equilibrium curves. The case with shocks will be considered in
the solving procedure in Section 3.2, and the steady-keeping principle of the solution will
be reflected by numerical results without strict proving. Therefore, in this section, we
discuss the other two ground rules.
First, we consider the supply–demand constraint condition. The demand function

(Lebacque 1995) is defined as

di(ρi) =

{
qi(ρi), ρi ∈ [0, ρ∗i ],

qi(ρ
∗
i ), ρi ∈ [ρ∗i , ρ

jam
i ],

i = 1, . . . , n,

where ρi = ρui or ρdi is the density of the upstream link adjacent to junction J . The
supply function (Lebacque 1995) is defined as

sj(ρj) =

{
qj(ρ

∗
j ), ρj ∈ [0, ρ∗j ],

qj(ρj), ρj ∈ [ρ∗j , ρ
jam
j ],

j = n+ 1, . . . , n+m,
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where ρj = ρuj or ρdj is the density of the downstream link adjacent to junction J .

Considering the expression of the steady state in Eq. (12), we note that ρi = ρdi when
Ld
i ∈ (0, Li] and ρi = ρui when Ld

i = 0. Thus, the demand can be rewritten as

di(ρ
u
i ) = sgn(Ld

i )di(ρ
d
i ) + (1− sgn(Ld

i ))di(ρ
u
i ),

where sgn(·) is the sign function, which is defined as

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

Because di(ρ
u
i ) = qi(ρ

u
i ) = qi, di(ρ

d
i ) = qi(ρ

∗
i ) ≡ q∗i , we have

di = di(qi, L
d
i ) = sgn(Ld

i )q
∗
i + (1− sgn(Ld

i ))qi.

Similarly, we note that ρj = ρuj when Lu
j ∈ (0, Lj ] and ρj = ρdj when Lu

j = 0. Thus, the
supply can be rewritten as

sj(ρ
u
j , L

u
j ) = sgn(Lu

j )sj(ρ
u
j ) + (1− sgn(Lu

j ))sj(ρ
d
j ).

Because sj(ρ
u
j ) = qj(ρ

∗
j ) ≡ q∗j , sj(ρ

d
j ) = qj(ρ

d
j ) = qj , we have

sj(qj , L
u
j ) = sgn(Lu

j )q
∗
j + (1− sgn(Lu

j ))qj .

The supply-demand constraint condition requires qi ≤ di(qi, L
d
i ) and qj ≤ sj(qj , L

u
j ).

Thus, we have

sgn(Ld
i )qi ≤ sgn(Ld

i )q
∗
i , i = 1, . . . , n, (13)

sgn(Lu
j )qj ≤ sgn(Lu

j )q
∗
j , j = n+ 1, . . . , n+m. (14)

Note that Eqs. (13)–(14) always hold. Therefore, the steady-state solution always satisfies
the supply–demand constraint condition.
Then, we discuss the principle of maximization of flow. For the steady-state solution

with a shock structure, (Lu
k ∈ (0, Lk)), on link k, we have the following inequality:

qk = (
Lu
k

Lk
+

Ld
k

Lk
)qk(ρ

d
k) < qk(

Lu
k

Lk
ρuk +

Ld
k

Lk
ρdk).

Thus, if we reset the steady-state solution as ρ̌ = Lu
k

Lk
ρuk + Ld

k

Lk
ρdk without shock, the link

has the same total number of users as the solution with shocks, and a greater flow.
We can also find the steady-state solution, ρ̂ without shock, which has the same travel

time as the solution with shocks, and greater flow. Specifically, we define function f(ρ) =
Lu

k

vk(ρu
k)
+ Ld

k

vk(ρd
k)
− Lk

vk(ρ)
, and can easily note that f(ρ) strictly decreases with ρ and f(ρuk) >

0, f(ρdk) < 0. Thus, there exists ρ̂k ∈ (ρuk , ρ
d
k), such that qk(ρ̂k) > qk and f(ρ̂k) = 0, i.e.,

Lk

vk(ρ̂k)
=

Lu
k

vk(ρ
u
k)

+
Ld
k

vk(ρ
d
k)
.
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Based on the above discussion, we conclude the following properties.
Property 1. For a steady-state solution with shocks on a link,

a. if the user number or average density is fixed, there is a steady-state solution
without shock, such that the flow is greater than the solution with shocks.

b. If the travel time is fixed, there is a steady-state solution without shock, such that
the flow is greater than the solution with shocks.

We can directly derive the following property through Property 1.
Property 2. For a links unit, the total flow is maximum if and only if all involved links
have steady-state solutions without shocks.
These properties indicate that the solution with shocks is redundant and uneconomical.

To satisfy the principle of maximization of flow, the steady-state solution with shocks
should not be introduced if possible.

3. Analytical Solving Procedure for the Steady-State Solution

In this section, we discuss the steady-state solution for a single OD road network (Fig.
1), and analyze when and how to consider the shocks. The analytical solving procedure
is then given for the steady-state solution.

3.1. The steady-state equilibrium solution

In Section 2.2, we discussed the steady-state solution of a links unit in detail and defined
the user-equilibrium curves and the fundamental diagram. For the road network shown
in Fig. 1, we denote the upstream and downstream links units and their variables using
subscript I and II. The fundamental diagram is written as

I : QI = QI(ρI), ρI =

n∑
i=1

liρ̄I ; II : QII = QII(ρII), ρII =

n+m∑
j=n+1

lj ρ̄II .

As shown in Fig. 5, the maximum values of flow on links units I and II are denoted as
Q∗

I = QI(ρ
∗
I) and QII = QII(ρ

∗
II), respectively. The maximum value of flow on the road

network is then denoted as

Q∗
J = min(Q∗

I , Q
∗
II).
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Figure 5. The fundamental diagrams of links units I and II. There are, at most, two intersections between the

horizontal line, Q = QJ , and fundamental diagrams, QI(ρI) or QII(ρII) (Eq. (15)).
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We assume that QI = QI(ρI) (QII = QII(ρII)) has only one stationary point, ρ∗I
(ρ∗II), and thus, strictly increases when ρI ≤ ρ∗I (ρII ≤ ρ∗II) and decreases when ρI ≥ ρ∗I
(ρII ≥ ρ∗II). Thus, there are two branches of inverse functions for QI and QII :

I : ρI = ρ±I (QI); II : ρII = ρ±II(QII), (15)

where the superscripts “+” and “−” denote the left and right branch inverse functions,
respectively. Based on the fundamental diagrams, we define the total demand of the
upstream links unit as

DI(ρI) =

{
QI(ρI), ρI ∈ [0, ρ∗I ],

QI(ρI), ρI ∈ [ρ∗I , ρ
jam
I ],

and the total supply of the downstream links unit as

SII(ρII) =

{
QII(ρ

∗
II), ρII ∈ [0, ρ∗II ],

QII(ρII), ρII ∈ [ρ∗II , ρ
jam
II ],

where ρjamI =
∑n

i=1 liρ̄jam, ρjamII =
∑n+m

j=n+1 lj ρ̄jam.
We follow the user-equilibrium condition and the principle of maximization of flow,

and present the following steady-state conditions without shocks:

(1) The flow at junction QJ is not greater than the demand of the upstream links unit,
DI , and the supply of the downstream links unit, SII , and is equal to the maximum
value under the constraints, namely,

QJ = min(DI(ρI), SII(ρII)).

(2) The flow at junction, QJ , is equal to the total flow of the upstream links unit or
the total flow of the downstream links unit, namely,

QJ = QI(ρI) = QII(ρII).

Thus, we have

min(DI(ρI), SII(ρII)) = QI(ρI) = QII(ρII).

If there is no bottleneck at junction J2, then we give the possible steady-state solutions
without shocks.
Property 3. For a given flow, QJ ≤ Q∗

J , there are only the following two types of
steady-state solutions without shocks:

a. Free-flow connection:

ρI = ρ+I (QJ) ≤ ρ∗I , ρII = ρ+II(QJ) ≤ ρ∗II ; (16)

b. Congestion connection:

ρI = ρ−I (QJ) ≥ ρ∗I , ρII = ρ−II(QJ) ≥ ρ∗II . (17)

12



Note that given one of the three variables, ρI , ρII , or QJ , the other two variables can
be uniquely determined. We can then solve the densities for all links, ρi and ρj , through
user-equilibrium curves (Eq. (11)), based on ρI and ρII .
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Figure 6. Steady states without shocks. (a) Free-flow connection; (b) Congestion connection. These two types of
steady state cannot cover the whole range of N from 0 to Nmax, and thus, the shocks have to be introduced as a

supplement.

We then assume that junction J is a bottleneck, namely, Q∗
I > Q∗

II , as shown in Fig.
6. The black thin lines denote the fundamental diagrams of links unit I and II, and the
red thick lines in Fig. 6(a) and Fig. 6(b) indicate the free-flow connection of Eq. (16) and
congestion connection of Eq. (17), respectively. We denote the total number of users on
the road network as

N = NI +NII .

We then analyze the steady-state solution corresponding to N , from 0 to Nmax. The
analysis procedure shows that the two types of steady-state solutions without shocks
cannot cover the whole range of N . Thus, the shocks must be introduced as a supplement,
to achieve steady-state solutions for all user numbers, N .

State 1: Along with the user number, N , increasing from 0, the user numbers on links units
NI and NII and the total flow on the road network, QJ , increase until QJ = Q∗

II .
We then denote N = N∗

1 . In this case, the steady-state solution on the road network
is without shocks, as described by Eq. (16).

State 2: With N gradually increasing, because of flow limitation, the flow on network, QJ ,
cannot increase. Thus, there is no corresponding solution without shocks. In this
case, the solution on links unit II remains unchanged, and the extra users are added
into the links unit I by introducing shocks. The shock interface moves upstream,
with N increasing until it disappears, and now we denote N = N∗

2 .
State 3: If N continues to increase, the users are added to both links units I and II, and the

total flow, QJ , decreases until N = Nmax. In this case, the steady-state solution
on the road network is without shocks and is described by Eq. (17).

3.2. Solving procedure of the steady-state solution

Based on the discussion in Section 3.1, we give the general solving procedure of the
steady-state solution and discuss its existence and uniqueness.

(1) Calculate the critical values of the user numbers N∗
1 and N∗

2 as follows

N∗
1 = NI(ρ

+
I (Q

∗
II)) +NII(ρ

∗
II), N∗

2 = NI(ρ
−
I (Q

∗
II)) +NII(ρ

∗
II).
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(2) If N ∈ [0, N∗
1 ], the road network has a steady-state solution without shocks. We

can then obtain QJ through

∑n
i=1 Lili∑n
i=1 li

ρ+I (QJ) +

∑n+m
j=n+1 Ljlj∑n+m
j=n+1 lj

ρ+II(QJ) = N.

Then, solve ρI = ρ+I (QJ) and ρII = ρ+II(QJ) and obtain the densities on all links
through Eq. (15).

(3) If N ∈ (N∗
1 , N

∗
2 ), the steady-state solution on links unit II is the same as N = N∗

1 ,
while the shocks on links unit I are produced. Obtain the user number on links
unit I through NI = N −NII(ρ

∗
II), and determine the travel time, TI(NI , Q

∗
II) =

NI/Q
∗
II . Thus, obtain the ratios of user numbers and flow on all links as

NI,i

qi
=

NI

Q∗
II

= TI(NI , Q
∗
II). (18)

Thus, if the flow, qi, is known, we can obtain NI,i and then, the other variables.
(4) If N ∈ [N∗

2 , Nmax], the road network has a steady-state solution without shocks
and we can obtain QJ through

∑n
i=1 Lili∑n
i=1 li

ρ−I (QJ) +

∑n+m
j=n+1 Ljlj∑n+m
j=n+1 lj

ρ−II(QJ) = N.

Then solve ρI = ρ−I (QJ) and ρII = ρ−II(QJ) and obtain the densities on all links
through Eq. (17).

When N ∈ (N∗
1 , N

∗
2 ), shocks emerge on links unit I. We now discuss the existence and

uniqueness of the steady-state solution with shocks. For a given N ∈ (N∗
1 , N

∗
2 ), we know

that the user number on links unit I is equal to NI = N − NII(ρ
∗
II), because the links

unit II has no shocks. There are two unknown variables on each link of links unit I,
for example, ρui and Lu

i , and thus, a total of 2n unknown variables. Note that Eq. (18)
contains n equations, and QJ = Q∗

II is the (n + 1)th equation. Thus, we need n − 1
equations to uniquely determine the steady-state solution with shocks on links unit I.
Note that if N ∈ (N∗

1 , N
∗
2 ), the flow on links unit I is QI = Q∗

II , and thus, we assume
flow assignment ratios βi, which are also known as priority coefficients, namely, qi = βiQI .
Thus, βi should satisfy

βi(N) ∈ [0, 1],

n∑
i=1

βi(N) = 1. (19)

and be continuously dependent on the total number, N or NI , which implies

βi(N
∗
1 ) =

qi(ρi(N
∗
1 ))

Q∗
II

, βi(N
∗
2 ) =

qi(ρi(N
∗
2 ))

Q∗
II

. (20)
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According to Eq. (18), we have


NI,i = βiNI ,

Li

vfi
≤ NI

Q∗
II

,

βi = 0, NIi = 0,
Li

vfi
≥ NI

Q∗
II

.

(21)

Given βi, we can solve the steady-state solution with shocks on links unit I through
the following procedure.

• For i = 1, . . . , n, solve ρui and ρdi through

ρui = ρ+i (βiQ
∗
II), ρdi = ρ−i (βiQ

∗
II), (22)

where ρ±i (·) denotes the left or right branch inverse function.
• Calculate NI,i = βiNI , and then solve Lu

i through

Lu
i ρ

u
i + Ld

i ρ
d
i = NI,i. (23)

We then prove that βi always exists, such that all equations are solvable.
Theorem 1. The priority coefficient, βi, can derive a steady-state solution on links unit
I if and only if

βi ≤
Li

NI
v−1
i (min(

LiQ
∗
II

NI
, vfi )). (24)

Moreover, the set of {βi}ni=1 governed by inequality (24) is nonempty.
proof We first consider the first case in Eq. (21). Equation (23) indicates that the user
number, NI,i, should be limited, such that Lu

i ∈ [0, Li], which equals

Liρ
u
i ≤ NI,i ≤ Liρ

d
i .

Considering Eq. (22) and Eq. (21), we have the necessary and sufficient conditions for
solving Eq. (23):

ρ+i (βiQ
∗
II) ≤

βiNI

Li
≤ ρ−i (βiQ

∗
II) ⇔ βiQ

∗
II ≥ qi(

βiNI

Li
).

This is equivalent to

LiQ
∗
II

NI
≥ vi(

βiNI

Li
) or βi ≤

Li

NI
v−1
i (

LiQ
∗
II

NI
).

Note that the first equation of (21) indicates that the independent variable of v−1
i (·) is

not greater than vfi , while the second equation implies that the dependent variable of

v−1
i is not smaller than vfi , and βi = 0. Thus, we combine these two cases and obtain
inequality (24).
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Next, we need to prove that βi, satisfying inequality (24), can be found. We rewrite
inequality (24) as follows

βi ≤
qi(ρ̃i)

min(Q∗
II ,

NIv
f
i

Li
)
, ρ̃i = v−1

i (ṽi), TI =
NI

Q∗
II

, ṽi = min(
Li

TI
, vfi ), (25)

where TI is the travel time on links unit I and ṽi is the average velocity on link i. We
denote TI,i as the travel time on link i, and have

TI,i ≥ TI ; TI,i > TI ⇒ ρdi = ρui = 0. (26)

Li/TI,i can be represented as the weighted harmonic mean of vi(ρ
u
i ) and vi(ρ

d
i ), and we

have

ṽi = min(
TI,iLi

TI
(

Lu
i

vi(ρui )
+

Ld
i

vi(ρdi )
)−1, vfi ).

Thus, we can obtain

min(
TI,i

TI
vi(ρ

d
i ), v

f
i ) ≤ ṽi = vi(ρ̃i) ≤ min(

TI,iLi

TI
vi(ρ

u
i ), v

f
i ). (27)

Considering Eq. (26), we have

min(
TI,i

TI
vi(ρ

d
i ), v

f
i ) = vi(ρ

d
i ), min(

TI,iLi

TI
vi(ρ

u
i ), v

f
i ) = vi(ρ

u
i ). (28)

Thus, Eq. (27) is equivalent to

ρdi ≥ ρ̃i ≥ ρui ⇒ qi(ρ̃i) ≥ qi(ρi), (29)

where ρi = ρui or ρi = ρdi . Thus, we have

n∑
i=1

qi(ρ̃i) ≥
n∑

i=1

qi(ρi) = Q∗
II . (30)

Based on the above derivations, the following statements can be verified.

(1) Inequality (25) is a necessary and sufficient condition of the set of βi, governed by
the condition that inequlity (24) is nonempty.

(2) If the equality holds in the above inequalities associated with link i, we have ρ̃i = ρi
if and only if there is no shock on link i.

(3) The equality holds in inequality (30) if and only if there are no shocks on all
involved links. In this case, we have N = N∗

1 or N = N∗
2 .

(4) If N = N∗
1 or N = N∗

2 , based on (26), inequality (24) degenerates to

βi ≤
qi(ρi)

Q∗
II

⇒
n∑

i=1

βi ≤
∑n

i=1 qi(ρi)

Q∗
II

= 1.

This indicates that, only if the equality holds, the sum is equal to 1, and thus, we
have (20).
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There are infinite βi values that satisfy inequality (24), for example,

βi =
qi(ρ̃i)∑n
i=1 qi(ρ̃i)

.

4. Numerical Simulation

The discussed stead-state flow is a solution to the dynamic LWR model. In this regard,
any arbitrarily distributed traffic flow with fixed total number of vehicles on the network
is expected to evolve into (or converge to) the discussed stead-state solution through
numerical simulations of the LWR model. For the convergence, a “user-equilibrium ori-
ented” numerical scheme of the LWR model is discussed in Appendix A. Then, a test
example is given to verify the convergence to the corresponding analytical stead-state
solution. This also demonstrates that the simulated steady-state solution satisfies the
steady-keeping principle, and implies that the actual traffic flow can be controlled to ap-
proximately reach a steady state by adequate measures (e.g., by dynamic signal timing
plan).

2ue2de ue de dJuJ

4

3 2J

2

1
J1J

Figure 7. T

he inner extension for the road network with n = m = 2.

We consider the road network shown in Fig. 7, with a 2 × 2 junction after the inner
extension, in the numerical simulations. The periodic boundary condition is used so that
the user number, N , is unchanged in a single numerical simulation. This is equivalent to
regarding it as a circular network. The analytical steady-state solutions are calculated
based on the original network, which is obtained by shortening the extension links.
Links unit I is composed of links 1 and 2, and links unit II is composed of links 3 and

4. The free-flow speeds on all links are set as V f , and the link parameters are

L2/L1 = 1.2, L3/L1 = L4/L1 = 1.0; l1 = l2, l3 = l4, l3/l1 = 0.5.

The lengths of the extension links are set as Lue = Lde = Lue2 = Lde2 = Le = 0.02 L1,
which is relatively short, such that the network after the inner extension is almost equiv-
alent to the original network. The fundamental diagram on a link is adopted as

vk(ρ̄k) = V f (1− ρ̄k)
2.8.

The densities, velocities, link lengths, flows, and user numbers are made dimensionless
by dividing through ρjam1 , V f , L1, ρ

jam
1 V f , and ρjam1 L1, respectively. We then have

ρ∗1 = ρ∗2 = 0.5263, ρ∗3 = ρ∗4 = 0.2632, ρ∗I = 1.0526, ρ∗II = 0.5263;

q∗1 = q∗2 = 0.2238, q∗3 = q∗4 = 0.1119, Q∗
I = 0.4451, Q∗

II = 0.2238;

N∗
1 = 0.8285, N∗

2 = 2.9894, Nmax = 6.4.
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The maximum flow on this network is

Q∗
J = min(Q∗

I , Q
∗
II) = Q∗

II = 0.2238.

This indicates that junction J is a bottleneck, and shocks appear on links unit I. The
fundamental diagrams of links units I and II are shown in Fig. 8.
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Figure 8. The fundamental diagrams of links units I and II.

According to Eq. (A7), the priority coefficients at junctions Ju and J2 are set as

β =
η1

η1 + η2
, βJ2

=
η3

η3 + η4
.

For user numbers, N , from 0 to Nmax, the densities and flows of the steady-state
solutions are shown in Fig. 9 and Fig. 10. The upper and lower subfigures are analytical
and numerical solutions, respectively. At the beginning of the numerical simulation, N
users are uniformly distributed on the road network. The convergence conditions Eq.
(A6) are adopted, together with

en3 = max
k,i

|qnk,i − qnk,i+1|
qnk,i

< 10−5,

where k = 1, . . . , 4, i = 1, . . . , Nx − 1. First, we can observe that the analytical solutions
and the numerical solutions have almost the same pattern. Then, because the inner
extension links are introduced in the numerical simulation, all curves move right slightly,
compared with those in the analytical solutions.
For N ∈ [0, N∗

1 ], the traffic demand increases but is still so low that the network is
uncongested with small densities on all links. For N ∈ (N∗

1 , N
∗
2 ), the traffic demand

reaches the highest so that the composite links unit II cannot provide sufficient traffic
supply, thus queuing arises on links 1 and 2 of composite links unit I. ForN ∈ [N∗

2 , Nmax],
traffic demand remains the highest without queuing on the network, but with traffic flow
being decreasingly in congested states. Specifically, when N ∈ [0, N∗

1 ] ∪ [N∗
2 , Nmax], the

densities and flows on all links are constant and dependent only on the user number,
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Figure 9. The densities on all links of the steady-state solutions for user numberN , from 0 toNmax. Shocks appear
on links 1 and 2 when N ∈ (N∗

1 , N
∗
2 ). (a) Analytical solutions (continuous lines) and numerical solutions using

non-periodic boundary conditions (discrete symbols); (b) Numerical solutions using periodic boundary conditions.
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Figure 10. The flows on all links of the steady-state solutions for user numbers, N , from 0 to Nmax. Shocks appear
on links 1 and 2 when N ∈ (N∗

1 , N
∗
2 ). (a) Analytical solutions (continuous lines) and numerical solutions using

non-periodic boundary conditions (discrete symbols); (b) Numerical solutions using periodic boundary conditions.
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Figure 11. Convergence of the numerical scheme. (a) The errors with the time step of the numerical scheme; (b)
The numerical flow distribution parameter and the priority coefficient.
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Figure 12. The numerical and analytical densities on links 1 and 2, with different lengths of the extension links.

N , and there are no shocks on the network. First, the densities on the links strictly
increase with N . The flows on the links strictly increase and decrease with N when
N ∈ [0, N∗

1 ] and N ∈ [N∗
2 , Nmax], respectively. Then, there are more users choosing link

1, because of the user-equilibrium constraint. Finally, there are no users choosing link
2 until N > 0.25, and thus, the flow on link 1 equals the sum of the flows on links 3
and 4 when N ≤ 0.25. When N ∈ (N∗

1 , N
∗
2 ), the densities and flows on links 3 and 4

are constant and are independent of N , i.e., ρ3 = ρ∗3 = 0.2632, ρ4 = ρ∗4 = 0.2632 and
q3 = q∗3 = 0.1119, q4 = q∗4 = 0.1119. Shocks appear on both link 1 and link 2. We can
observe the following properties of the steady-state solution. First, the densities on the
two sides of the shock interface of link 1 are ρu1 and ρd1, corresponding to N = N∗

1 and N∗
2 ,

respectively. The average density, ρ̄1, continuously increase with N , from ρu1 to ρd1. This
indicates that the queue length, Ld

1, continuously increases from 0 to L1. The solution on
link 2 is similar to that on link 1. The number of users choosing link 1 at junction J1 is
then more than the number of users choosing link 2 when N < 1.1. As N increases, more
users choose link 2 at junction J1, namely, ρu2 > ρu1 and q2 > q1 for N > 1.1. Finally, the
number of users on link 1 is always more than the number on link 2, namely, ρ̄1 > ρ̄2
and NI,1 > NI,2.
We then set N = 3 ∈ (N∗

1 , N
∗
2 ) and λ = 0.3, and in the following section, discuss the

numerical steady-state solutions in detail. Figure 11(a) illustrates the errors with the
time step, n, of the numerical scheme and we can see the convergence of the numerical
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solution. Figure 11(b) shows the numerical flow distribution parameter, α, and the pri-
ority coefficient, β, for link 1 at junctions J1 and Ju, respectively. We can see that the
parameters finally converge to the exact analytical values. Figure 12 compares the nu-
merical and analytical densities on links 1 and 2, with different lengths of the extension
links. As Le reduces, the numerical curves converge to the exact values, which indicates
that the inner extension of the network is reasonable.
Note that in the above examples, we used periodic boundary conditions, so that the

road network can be considered as a circular network. We then examine whether in an
“open” road network (i.e., using non-periodic boundary conditions), the steady-state
solution proposed in this work can also be obtained. In this case, it is only necessary to
make the inner extension at junction J . The network is set to be empty initially. The
inflow conditions at the origin (J1) and the outflow conditions at the destination (J2)
are set adequately in the following.
When the traffic is in free flow (the demand is less than Q∗

II), the inflow condition
at the origin (J1) is set as ρI(0, t) = ρ0 < ρ∗I , and the corresponding OD demand is
DI(ρI) = QI(ρI) < Q∗

II . The outflow condition at the destination (J2) is set as natural
boundary conditions. These give


ρI(0, t) = ρ0 < ρ∗I ,

∂ρ3
∂x

=
∂ρ4
∂x

= 0.

When the traffic is congested (the demand is larger than Q∗
II), the inflow condition at

the origin (J1) is set as ρI(0, t), and the corresponding OD demand is DI(ρI) > Q∗
II .

The outflow condition at the destination (J2) is limited by traffic congestion. These give


ρI(0, t) = ρ0 > ρ∗I ,

∂ρ3
∂x

=
∂ρ4
∂x

= 0,

QII(L, t) = QI(ρI(0, t)),

where L = L3 = L4. When the traffic demand is comparable to the maximum flow of
composite section II, Q∗

II , the boundary conditions are set as


ρI(0, t) =

{
ρ∗I , t ≤ t0,

ρ−I (Q
∗
II), t > t0,

∂ρ3
∂x

=
∂ρ4
∂x

= 0.

We select different values of ρ0 and t0 to obtain numerical solutions, as shown by the
discrete symbols in Fig. 9(a) and Fig. 10(a). We can see that the numerical results are
in good agreement with analytical solutions (by the same total number N of vehicles
on the network). However, we stress that these numerical examples are used mainly to
demonstrate the mathematical property that the discussed static traffic states are truly
steady-state solutions to the dynamic traffic flow (LWR) model, in that they can be in-
volved from (any) traffic states through the dynamic model. In principle, the convergence
could be guaranteed with balanced (equaled) in-flow and out-flow at each pair of origin
and destination for t sufficiently large, which is unnecessarily periodic.
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5. Conclusions

In this study, a steady-state solution to the LWR model on a single OD parallel road
network is studied. The density (or velocity) on a link permits the shock structure, and
the user-equilibrium condition is considered. Thus, a novel static TA model is derived,
considering queues and spillback effects. The solving procedure for any total number of
vehicles is presented analytically, which indicated the existence of a solution. Moreover,
the uniqueness of the solution is also proved by introducing priority coefficients when
shocks appear. A numerical scheme of the LWR network model is designed to converge
the traffic flow into the discussed steady-state solution, by adjusting the distribution
percentages and priority coefficients at junctions. The numerical results show good con-
vergence and validate the model and the numerical scheme.
It is significant to extend the model to a more general multi-OD road network in

the future study. The following preliminary ideas should be instructive to the extension
from the perspective of theoretical analysis and the optimization. First, we could define
composite links units at different levels according to the set of OD-routes. Second, we
should discuss the fundamental diagrams of different composite links units under the user-
equilibrium conditions, which is similar to the discussion in the present paper. Third,
the shock structures must be introduced to ensure the existence and uniqueness of the
solution. For a multi-OD road network, the fundamental diagram for multi-class traffic
flow (Wong and Wong 2002) should be introduced because there are vehicles of different
OD-pairs on the same links. From the perspective of optimization, we could establish the
optimization model similar to the classical static traffic assignment model. However, the
variables on a link should be the upstream and downstream densities and the position of
the shock. The principles proposed in the present paper ( e.g., the maximization of flow)
should inevitably be applied to provide more constraints for the solution. Nevertheless,
the problem would pose much more challenges than the problems in classical static traffic
assignment modeling.
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Appendix A. Numerical scheme for LWR network model

Here, we introduce a “user-equilibrium oriented” numerical scheme of the LWR network
model which converges the traffic flow into the proposed steady-state solution. Note that
the numerical scheme is based on LWR network model, instead of using to solve the
steady-state solution directly.
For the LWR model (Eq. (2)), on a link we adopt the following mature first-order finite

volume scheme (Toro 1999) after spatial discretization (Fig. A1):

ρn+1
i = ρni −∆tn

q̂(ρni , ρ
n
i+1)− q̂(ρni−1, ρ

n
i )

∆xi
, ρ0i = ρi(0),

where ∆t = tn+1 − tn, ∆xi = xi+1/2 − xi−1/2 and Godunov flux (Lebacque 1995):

q̂(ρ1, ρ2) =


min

ρ∈[ρ1,ρ2]
q(ρ), ρ1 ≤ ρ2,

max
ρ∈[ρ2,ρ1]

q(ρ), ρ1 > ρ2.

For each time step, tn, the inflow and outflow as boundary conditions are obtained by
solving the local Riemann problems at upstream and downstream junctions (Coclite,
Garavello, and Piccoli 2005; Lin et al. 2015).
To avoid the complicated Riemann problem at an n ×m junction, we make an inner

extension at a junction. For junction J of the road network shown in Fig. 1, the n
upstream links first connect a single link, ue (upstream extended), which assumes the
length, Lu; lane number,

∑n
i=1 li; and the same flow–density relationship as that in links
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Figure A1. The spatial discretization of a link.

unit I. Thus, links unit I and extension link ue are connected naturally, and new traffic
waves do not exist. The link ue is then connected with a single link, de (downstream
extended), with a length, Ld; lane number,

∑n+m
j=n+1 lj ; and the same flow–density function

as that in links unit II. This produces a 1 × 1 junction. Similarly, the link de connects
the links unit II without new traffic waves.
After the inner extension, the road network is only composed of three types of junctions,

namely, n × 1, 1 × 1, and 1 × m junctions. Figure 7 shows the inner extension of the
road network when n = m = 2. In the following section, we discuss Riemann problems
as boundary conditions at junctions, based on Fig. 7.

• The 1× 1 junction

We take the inflow link, ue, and the outflow link, de, for example, and the junction
is denoted as J . The flow–density relationships are QI(ρu) and QII(ρd) for ue and de,
which are the same as the links units I and II, respectively.
For the time step, tn, we denote the densities on links ue and de, adjacent to junction

J , as ρnu,Ku
and ρnd,1, where Ku is the grid number of link ue. We can then obtain the

flux at the interface of ue and de:

q̂nu = q̂nd = min(DI(ρ
n
u,Ku

), SII(ρ
n
d,1)).

• The 1× 2 junction

We take the inflow link, de, and outflow links 3 and 4, for example, and the junction
is denoted as Jd. The flow–density relationship of de is the same as that of links unit
II, namely, QII(ρd). For the time step, tn, we denote the densities on links adjacent to
junctions Jd as ρnd,Kd

, ρn3,1, and ρd4,1, and Kd, K3, and K4 are the grid numbers of the
three links.
The fluxes for links at junction Jd are determined by the following procedure.

(1) Calculate the user numbers and travel times over links 3 and 4 through

Nn
3 =

K3∑
i=1

∆xρn3,i, Tn
3 =

K3∑
i=1

∆x

v3(ρn3,i)
, (A1)

Nn
4 =

K4∑
i=1

∆xρn4,i, Tn
4 =

K4∑
i=1

∆x

v4(ρn4,i)
. (A2)

(2) Set the flow distribution coefficient, αn, of link 3, such that

αn

1− αn
=

Nn
3

NN
4

Tn
4 + ζnmax(Tn

4 − Tn
3 , 0)

Tn
3 + ζnmax(Tn

3 − Tn
4 , 0)

,

where

ηn =
θ∆tn

max(Tn
3 , T

n
4 )

, (A3)
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and θ is a numerical constant parameter.
(3) Determine the fluxes of links at junction Jd by

q̂nd = min(DII(ρ
n
d,Kd

),
s3(ρ

n
3,1)

αn
,
s4(ρ

n
4,1)

1− αn
),

q̂n3 = αnq̂nd , q̂n4 = (1− αn)q̂nd .

Note that αn (or 1 − αn) is inversely proportional to the travel time Tn
3 (or Tn

4 ), such
that more users choose the link with a shorter travel time (Eq. (A3)). From Eq. (A1)
and Eq. (A3), we have

Tn
3 = Tn

4 ⇔ Nn
3

q̂n3
=

Nn
4

q̂n4
, (A4)

which is the necessary condition to reach a steady state on the downstream links unit.
Thus, the numerical scheme can converge the traffic flow to satisfy the user-equilibrium
condition and thus, the steady state by dynamically adjusting the inflow proportion αn.
The necessary conditions of the steady state also include

q̂nd = QII(ρ
n
d,Kd

), q̂n3 = q3(ρ
n
3,1), q̂n4 = q4(ρ

n
4,1). (A5)

Thus, the convergence conditions for the numerical solutions can be set as follows, con-
sidering Eq. (A4) and Eq. (A5):

en1 = min(
|q̂nd −QII(ρ

n
d,Kd

)|
QII(ρnd,Kd

) + ϵ′
,
|q̂n3 − q3(ρ

n
3,1)|

q3(ρn3,1) + ϵ′
,
|q̂n4 − q4(ρ

n
4,1)|

q4(ρn4,1) + ϵ′
) < ε1,

en2 =
|Tn

3 − Tn
4 |

Tn
3

< ε2.

(A6)

where ϵ′ = 10−24, ε1 = 10−5, and ε2 = 0.001 in the numerical experiments.

• The 2× 1 junction

We take the inflow links, 1 and 2, and the outflow link, ue, for example, and the
junction is denoted as Ju. The flow–density relationship of ue is the same as that of links
unit I, namely, QI(ρu). Consider Eq. (24) and replace Q∗

II with NI/TI , after which the
priority coefficients for links 1 and 2 entering ue should satisfy

βi ≤
Li

NI
v−1
i (min(

Li

Ti
, vfi )) ≡ ηi; i = 1, 2, β1 + β2 = 1. (A7)

We write β1 = β and β2 = 1− β. For the time step, tn, we denote the densities on links
adjacent to junctions Ju as ρn1,K1

, ρn2,K2
, and ρnu,1, where K1 and K2 are the grid numbers

of links 1 and 2, respectively. We then give the solving procedure of the fluxes for links
at junction Ju as follows.

(1) If the sum of demands on links 1 and 2 satisfy d1(ρ
n
1,K1

) + d2(ρ
n
2,K2

) ≤ SI(ρ
n
u,1), we

set

γn =
d1

d1 + d2
.
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(2) If d1(ρ
n
1,K1

) + d2(ρ
n
2,K2

) > SI(ρ
n
u,1), calculate the average travel time over links 1

and 2, and the user number on links unit I through

Tn
I =

(
K1∑
i=1

∆x

v1(ρn1,i)
+

K2∑
i=1

∆x

v2(ρn2,i)

)
/2, Nn

I = ∆x

(
K1∑
i=1

ρn1,i +

K2∑
i=1

ρn2,i

)
.

Then, determine ηn1 and ηn2 through Eq. (A7), and calculate γn through

γn =



βn, 1− d2
SI

< βn <
d1
SI

,

SI − d2
SI

, βn ≤ 1− d2
SI

,

d1
SI

, βn ≥ d1
SI

.

(3) Determine the fluxes of links at junction Ju by

q̂n1 = γnmin(d1 + d2, SI), q̂n2 = (1− γn)min(d1 + d2, SI), q̂nu = q̂n1 + q̂n2 .

27


