The VLDB Journal
https://doi.org/10.1007/s00778-024-00858-9

REGULAR PAPER O‘)

Check for
updates

A survey on hybrid transactional and analytical processing

Haoze Song'® - Wenchao Zhou?(® - Heming Cui'® - Xiang Peng?® - Feifei Li2

Received: 18 April 2023 / Accepted: 20 May 2024
© The Author(s) 2024

Abstract

To provide applications with the ability to analyze fresh data and eliminate the time-consuming ETL workflow, hybrid
transactional and analytical (HTAP) systems have been developed to serve online transaction processing and online analytical
processing workloads in a single system. In recent years, HTAP systems have attracted considerable interest from both
academia and industry. Several new architectures and technologies have been proposed. This paper provides a comprehensive
overview of these HTAP systems. We review recently published papers and technical reports in this field and broadly classify
existing HTAP systems into two categories based on their data formats: monolithic and hybrid HTAP. We further classify
hybrid HTAP into four sub-categories based on their storage architecture: row-oriented, column-oriented, separated, and
hybrid. Based on such a taxonomy, we outline each stream’s design challenges and performance issues (e.g., the contradictory
format demand for monolithic HTAP). We then discuss potential solutions and their trade-offs by reviewing noteworthy

research findings. Finally, we summarize emerging HTAP applications, benchmarks, future trends, and open problems.

Keywords Information system - Hybrid transactional and analytical processing - Real-time analysis - Storage design

1 Introduction

Driven by the increasing connectivity between data genera-
tion (e.g., Online Transaction Processing, for short, OLTP)
and data consumption (e.g., Online Analytical Processing,
for short, OLAP), real-time analytics based on new data has
attracted much interest from academia and industry [18, 78,
111, 168, 175]. The fundamental motivation behind this trend
is that much information is most valuable when it first appears
and is usually time-decayed [8, 44, 95]. Meanwhile, data is
increasingly consumed by intelligent algorithms (e.g., Al-

B<X) Haoze Song
hzsong @cs.hku.hk

Wenchao Zhou
zwc231487 @alibaba-inc.com

Heming Cui
heming @cs.hku.hk

Xiang Peng
pengxiang.px @alibaba-inc.com

Feifei Li

lifeifei @alibaba-inc.com

Department of Computer Science, The University of Hong
Kong, Hong Kong, China

2 Database and Storage Lab Alibaba Cloud, Hangzhou, China

Published online: 04 June 2024

assisted [118, 171]) but not human readers to conduct timely
decision automatically [8, 14, 56].

Nevertheless, due to historical reasons, the connection
between OLTP and OLAP is traditionally processed by an
Extract-Transform-Load (ETL) workflow [164, 166], which
usually takes minutes to hours. This workflow can be good
enough for traditional business intelligence, where data is
processed in large batches, and hence, the execution time
takes minutes to hours (e.g., daily report [144] and data min-
ing [75]). In these scenarios, the data freshness loss (i.e.,
the time consumed in ETL) and execution time are of the
same magnitude and can be tolerable. However, for real-time
applications that take seconds for execution to conduct time-
critical decisions (e.g., real-time pricing [60], fraud detection
[36, 136], smart industry [161, 174]), ETL is too slow and
expensive. This trend emphasizes the importance of achiev-
ing high data freshness for analysis. We compare the goals
and scopes of time-critical decisions and traditional business
intelligence in Fig. 1.

Inresponse, Hybrid Transactional and Analytical Process-
ing (HTAP) was born to handle OLTP and OLAP requests in
a single system, thus eliminating ETL. Specifically, HTAP
systems are featured in their strong ability to interleave trans-
actions and analytical queries [63, 103]. That is, analytical
queries can observe the latest write made by transactions, and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00858-9&domain=pdf
http://orcid.org/0009-0000-5952-5168
http://orcid.org/0009-0002-2689-6020
http://orcid.org/0000-0001-7746-440X
http://orcid.org/0009-0008-6355-4525
http://orcid.org/0009-0003-0770-5775

H.Song et al.

transactions can promptly use the results of analytical queries
as payloads. We summarize the common target scopes of
HTAP databases in Sect. 3.

Such technical coherence between OLTP and OLAP raises
new design challenges over data storage, execution engines,
and query optimizers. To tackle these challenges, tremendous
efforts have been made in this area, resulting in a rich litera-
ture of related papers and solutions (see Table 1). The adopted
architectures and design choices may vary significantly. To
systematically oversee existing designs, we broadly classify
existing HTAP systems based on the design of data formats,
which is also adopted by a previous study [126]. Differ-
ently, our survey greatly extends the two-way classfication
of HTAP by summarizing common issues and discussing the
combination of potential solutions.

In particular, we first study monolithic HTAP systems,
which serve OLTP and OLAP workloads with identical data
format designs. Typically, OLTP and OLAP workloads show
different data access patterns. OLTP can operate on a single
data tuple at a time and access many attributes, while OLAP
typically accesses a massive number of rows at a time with a
subset of tuple attributes. Monolithic HTAP systems strive
to make a “one-size-fits-all” format design and allow OLAP
to make progress regardless of concurrent OLTP. Monolithic
HTAP may incur significant performance issues when serv-
ing mixed workloads. We summarize three common issues:
contradictory format demand, performance degradation of
MVCC, and performance isolation. In response to these
common issues, several new techniques for data grouping,
MVCC, in-memory snapshots, and read/write splitting have
been proposed. We discuss them in Sect. 4.

We then study HTAP systems using hybrid data for-
mats, which independently optimize the underlying data
formats for OLTP and OLAP. Although hybrid data for-
mats mitigate the contradictory format demand, they bring
new performance issues. We summarize six common issues
for HTAP with a hybrid data format: data synchronization,
data consistency, gap of write efficiency, hybrid data access,
performance isolation, and sharding strategy. To understand
the design rationales, we further classify HTAP with hybrid
data formats into four typical architectures: row-oriented,
column-oriented, separated, and hybrid architectures. Based
on our taxonomy, we discuss the existing solutions for the
six common issues one by one in Sect. 5

To enlighten new HTAP designers, we make a pros
and cons summary of existing solutions (monolith design,
column-oriented hybrid design, row-oriented hybrid design,
separated hybrid design, and hybrid architecture with hybrid
data formats) in various scopes (transaction performance,
query performance, storage overhead, data freshness, per-
formance isolation, scalability, performance stability, and
system complexity). This can be a good starting point for

@ Springer

Time-critical
Decisions

Traditional
Business Intelligience

Value of data to decision-making

Actionable Reactive

Historical

\4

Real-time Seconds Minutes Hours Days Months

Fig.1 A comparison between the targets of HATP databases and tra-
ditional business intelligence [35]. HTAP databases provide real-time
analytics to maximize the value of data

newcomers (see Sect. 6). We also present readers with emerg-
ing new applications, benchmarks, and future directions.

1.1 Contributions

To the best of our knowledge, our survey takes the first step to
deeply review the existing HTAP architectures, compare the
resident technologies, and give a comprehensive overview
of HTAP regarding system design, applications, and bench-
marks. Our contribution includes:

— We systematically summarize the common design goals
of HTAP. We then intensively study the common design
issues and existing solutions to enlighten and guide
researchers and practitioners in this area.

— We present a new fine-grained taxonomy, which com-
prehensively organizes HTAP architectures based on the
storage layer. This provides us with a uniform methodol-
ogy to compare different implementations and trade-offs.

— We present readers with cutting-edge real-time applica-
tions powered by HTAP systems. They can be practical
templates for developing new ones and motivating new
research in HTAP.

— Last but not least, we also present the emerging bench-
marks, unique evaluation metrics, and standard evalua-
tion methods of HTAP.

1.2 Related surveys and research collections

There are two tutorials related to our survey. Ozcan et al.
presented a tutorial on the taxonomy of HTAP systems in
SIGMOD 2017 [126]. It covers multiple data processing sys-
tems, including NoSQL [157], SQL-on-Hadoop [2, 68, 162],
and Spark SQL [17,22, 109, 179]. However, due to the inten-
sive research and development efforts, the architectures and
technologies of new emerging HTAP systems (Table 1) are
not covered in this tutorial (especially for the designs that
appear after 2017). Compared to previous designs, these new

A survey on hybrid transactional and analytical processing

Table 1 This table lists the

HTAP systems from academia HTAP system Developed by Year
and industry since 2014 Academia FSM [19] Arulraj et al. 2017
BatchDB [111] Makreshanski et al. 2017

Janus [18] Arora et al. 2017

H?TAP [16] Appuswamy et al. 2017

Ptree [158] Sun et al. 2019

RDE [138] Raza et al. 2020

VEGITO [150] Shen et al. 2021

vWEAVER [89] Kim et al. 2021

Diva [90] Kim et al. 2022

Proteus [6] Abebe et al. 2022

Industry SQL Server [93] Microsoft Inc 2015
Oracle Dual [92] Oracle Inc 2015

SingleStore [153] SingleStore Inc 2016

L-store [142] IBM Inc 2016

SAP HANA (ATR) [97] SAP Inc 2017

CitusDB [54] Microsoft Inc 2018

F1 Lightning [175] Google Inc 2020

TiDB [78] PingCAP Inc 2020

IBM DB2 IDAA [34] IBM Inc 2020

PolarDB [168] Alibaba Cloud Inc 2021

OceanBase [69] Ant Group Inc 2021

Greenplum [110] VMware Inc 2021

Heatwave [123] Oracle Inc 2021

AlloyDB [65] Google Inc 2022

Unistore [80] SnowFlake Inc 2022

ByteHTAP [39] ByteDance Inc 2022

The year attribute for each system is when its HTAP feature was first announced. We do not cover HTAP
solutions from the big-data communities (e.g., Spark and Hadoop) but discuss them in related work

HTAP systems are more tightly coupled and leverage multi-
ple advanced experiences from data warehouse systems. For
instance, column stores are regarded as a common optimiza-
tion approach in the HTAP systems with hybrid data format
(Sect.5). Moreover, as discussed in Sect. 1, our paper is more
than a two-way classification. It greatly extends the taxon-
omy in [126] to oversee the common design issues of HTAP
and lead the solutions.

Li et al. summarized the pros and cons of existing HTAP
systems in the tutorial of SIGMOD 2022 [103]. Different
from our work, their classification is limited to the selected
systems (i.e., a new HTAP system may not fall into any
categories) and does not discuss the HTAP systems with
monolithic data formats (Sect.4). In contrast, we compre-
hensively review different HTAP architectures, applications,
benchmarks, metrics, and evaluation methods. Moreover,
our survey deeply explores the dependencies and trade-ofts
between different design choices, providing a more fine-
grained, hierarchical taxonomy to guide future research.

1.3 Survey organization

We first give a general view of ETL, a brief history of HTAP,
and a discussion of other related systems in Sect.2. Then,
we summarize the common design goals and define two
crucial metrics of HTAP in Sect.3. After that, we review
HTAP architectures with monolithic and hybrid data for-
mats in Sects. 4 and 5, respectively. Based on our taxonomy,
we discuss the lessons we learned in Sect. 6. In Sect.7, we
summarize the cutting-edge applications and standard bench-
marks for HTAP. In Sect. 8, we analyze the future directions
and challenges. Finally, we conclude this survey in Sect.9.

2 Background
2.1 Extract-transform-load workflow

Traditional Extract-Transform-Load workflows, which we
term the first generation of ETL, extract data from various

@ Springer

H.Song et al.

sue#1: Contradictory New Data Format
i FormatDemand (e.g., PAX)

sue#2: Performance

Monolithic Format egradation of MVCC !

HTAP-friendly MVCC

In-memory Snapshot

Faster Scan on MVCC
Design of MVCC Index
OS-assisted Fork

] Issue#3:
i Performance Isolation

HTAP
System Design

Row-native Architecture J

Hybrid Format

Separated Architecture

(
[Column-native Architecture]
[
(

Hybrid Architecture |

Resource Isolation Tools
Replication Mechanism

Bypass OS snapshotting

Trasaction-based

/J Synchronization Model

Storage-based

Issue#1: Data Synchronization

_Dua\ Write

;\{Synchronization Approach Delta Merge

Shared Log

Issue#2: Data Consistency

Consistency Model

. oo
i : i : elta Store
: Issue#3: Gap of Write Efficiency :
k Metadata
Issue#4: Hybrid Data Access
© Issue#5: Performance isolation ¢ . /—__cpu Isolation
v /{M Single-Instance}-{ Memory Isolation)
Issue6: Sharding Strategy g_{m]

Irregular

Fig.2 An overview of our taxonomy. We classify existing HTAP systems into two main streams based on data format and discuss each stream’s

design issues and potential solutions

sources and transform and load them into a data ware-
house. Without HTAP, ETL is a mandatory step in projects
implementing decision-making information or knowledge
management systems within organizations. However, tradi-
tional ETL was a long and costly process. It may be favored
for routine queries (e.g., daily reports) and large-scale anal-
ysis (e.g., Spark SQL) while lacking adequate support for
real-time analysis. In particular, the workflow periodically
issues heavy ETL queries on the private storage of OLTP
(e.g., MySQL), then extracts data updates from the query
results, and finally merges updates into the private storage of
OLAP (e.g., MonetDB).

Recent works of ETL focus on improving the timeliness
of ETL to cater to the demand of real-time data injection,
which we term the second generation of ETL. For instance,
several works [164, 166] exploit the advantages of task par-
allelization to speed up the workflow. Other works [34] use
batch processing to improve the throughput of transforma-
tion. As both HTAP and real-time ETL strive to provide
high-performance OLTP and OLAP with fresh data, they
share a similar design target.

However, different from HTAP, real-time ETL has several
different design scopes and thus has a different application
domain. First, the real-time ETL workflow is designed as a
transparent service to the underlying database, and it should
be compatible with different database engines and backends.
In contrast, HTAP is a built-in service inside the database
and is fully managed by the database engine. To capture the
changed data, an HTAP database with hybrid data formats
usually triggers a monitor inside the database instead of using
ETL queries, which is studied as change data capture (CDC)
in the literature [156]. Second, as a real-time ETL workflow
processes data in a batch manner, they can clean data before

@ Springer

injection using a customer program (e.g., a specific code writ-
ten by the database manager). In contrast, such a user-defined
data clean is not usually supported by HTAP.

Due to the aforementioned two different design scopes, a
real-time ETL workflow usually leads to worse data freshness
than HTAP. Meanwhile, due to the flexibility of ETL, it is
more likely suitable for big-data analysis (e.g., MapReduce
and Spark). Some previous studies [34, 126] indeed blur the
boundary between real-time ETL and HTAP. In our survey,
we differentiate them because they have evolved into two
different research directions and have different optimization
focuses inrecent years. Our classification is based on whether
the data synchronization is a built-in service of HTAP.

2.2 A brief history of HTAP

The word “HTAP” was first introduced to the public in 2014
by a Gartner report [130]. Essentially, before the word was
created, multiple works [12, 26, 62, 85, 86, 102, 121, 132]
have strived to handle both OLTP and OLAP workloads
simultaneously, which are formerly mentioned as hybrid
OLTP & OLAP, mixed workloads processing, or OLxP.
Although these research prototypes may have been phased
out in the recent HTAP production, some key techniques and
designs have become the foundation for further development.

In recent years, driven by the increasing demands for all-
in-one data management solutions and real-time analytics,
more and more HTAP systems have been proposed and devel-
oped. We list these advanced HTAP systems in Table 1. These
systems adopt different ways to implement HTAP. Each of
them has different design decisions due to different design
goals. To systematically study the performance trade-offs
behind the design decisions, we broadly classify existing

A survey on hybrid transactional and analytical processing

HTAP systems into two main streams, and each stream
contains multiple sub-streams (Fig.2). We make a compre-
hensive discussion on their design decisions (e.g., storage
model, synchronization model, and execution engine) and
design rationales in Sects.4 and 5.

Briefly, the first stream uses a monolithic data format with
an optimized data structure to run transactions and queries
simultaneously (e.g., PTree [158] and Diva [90]). Typical
designs allow OLAP queries to observe transaction updates
by sharing the same data copy. However, this may incur
physical and logical resource conflict between OLTP and
OLAP. Moreover, it neglects the opportunities for indepen-
dently optimizing data engines and layouts for OLTP and
OLAP. As such, the optimizations in OLAP (e.g., batch iter-
ation [4] and late materialization [4, 5]) may not be adopted
in these systems. The second stream leverages hybrid data
format (e.g., TiDB [78] and BatchDB [111]). These systems
run analytical queries and transactions on the dedicatedly
optimized storage and thus allow for better performance
optimization (i.e., independent storage engine, independent
execution optimization, and independent scalability). Nev-
ertheless, managing a hybrid data format is not free. Data
synchronization between two data formats incurs additional
overhead. For such hybrid architecture, a key challenge is
how to maintain a consistent view of analytical queries effi-
ciently, ensuring atomicity and isolation of the DBMS.

2.3 Other systems with a similar design goal as HTAP

Besides real-time ETL and HTAP, some other works also
share a similar design goal, which tries to connect data gen-
eration and consumption in a real-time manner (i.e., a ground
truth in data processing). Compared to HTAP, the specific
focus of these systems is a bit different, and thus, they are
tailored for different applications and deployment scenarios.
We discuss two popular and representative categories below.
Streaming Systems. At birth, streaming systems do not sup-
port transactional semantics and provide a weak guarantee
for atomicity. That is, considering two SQL operations in a
single transaction, traditional streaming systems treat them
as two individual events. When processing these two events
on the OLAP side, a streaming system only guarantees they
are applied in order while an OLAP query may still observe
the intermediate results of the transaction (i.e., a single SQL
operation in our former example).

Recent works consider supporting transactional analysis
in the flight of streaming processing. They focus on the
optimizations of consistent event processing and adopt the
concurrency control model from the database community for
correctness. However, even using a transactional streaming
system for OLAP, the database manager still needs to config-
ure the input events (which are essentially the updates from
OLTP) using change data capture.

To summarize, traditional streaming systems are good for

real-time alerting and monitoring but lack efficient support
for transactions. Emerging transactional streaming systems
do not have built-in database services and rely on additional
stateful operations to process transactional requests.
Data Lakes. The concept of data lakes is processing different
data sources in a single system and thus provides one-stop
data management (same as HTAP). However, different from
HTAP, data lakes target the process of all structured, semi-
structured, and unstructured data and store data in its native
format. On the contrary, HTAP only processes structured data
generated by transactions and analyzes the generated data
directly for better data freshness. In addition, HTAP generally
provides stronger consistency and isolation guarantees than
data lakes.

3 Design goals and evaluation metrics

By definition, HTAP systems target high-performance OLTP
and OLAP. However, besides high transaction throughput
and low query latency, unique challenges can always arise
when mixing these two types of workloads, leading to spe-
cific design goals. We summarize these goals as follows.

— [Transparent Query Execution] As a unified system,
database users should not be required to understand the
working logic of the systems, nor should they identify
query types or transactions manually [168]. HTAP sys-
tems should provide a unified interface for transactions
and queries and route them automatically.

— [High Data Freshness] A significant motivation of HTAP
is to eliminate ETL, thus providing intelligent insights
into fresh data at generation speed. For that reason, fresh-
ness is commonly mentioned as an essential design goal
of HTAP [39, 58, 78, 83, 103, 111, 150, 154, 168].

— [Strong Performance Isolation] Performance isolation
refers to the ability to maintain the performance of a
specified workload (e.g., OLTP) while another workload
changes. Generally, in an HTAP application, transac-
tions often play a mission-critical role in production. The
performance degradation of OLTP can always lead to
bad application quality. Thus, performance isolation is
always treated as a significant design goal of practical
HTAP systems [78, 103, 111, 150, 154, 168].

— [Strong Consistency Across OLTP and OLAP] Strong
consistency is always good to have. Multiple HTAP
systems (e.g., [39, 78, 168]) target maintaining strong
consistency across OLTP and OLAP. By doing so, appli-
cation developers do not need to spend extra effort
handling data consistency issues in the application layer,
largely reducing the development complexity.

@ Springer

H.Song et al.

— [Excellent Elasticity and Scalability] In HTAP scenar-
ios, the consumption of physical resources (e.g., CPU
and disk I0) may fluctuate significantly depending on
the mixture of different types of workloads. Thus, sup-
porting excellent elasticity and scalability can also be a
significant design goal of HTAP systems [131, 138, 168].

Given such design goals, several evaluation metrics have
been proposed. We highlight two HTAP-specific ones (i.e.,
data freshness and performance isolation). In contrast, the
metrics for other design goals can fit into traditional ones
(e.g., consistency models from OLTP are still applicable for
HTAP).

3.1 Metrics of data freshness

To gauge data freshness, the metric should quantify how
recently each analytical query sees the view (a.k.a. snapshot)
of OLTP datain an HTAP system [117]. We summarize exist-
ing freshness metrics into two categories. The first category
uses the occupied space ratio for the metric, while the second
uses time intervals.

3.1.1 Space-based freshness metrics

Raza et al. propose freshness-rate in [138]. Assuming OLTP
and OLAP engines have two different private storage.
Freshness-rate represents the rate of data tuples that are the
same between two private storage. We show an example in
Fig.3. We assume the data in the red box is visible to OLTP,
and the part of the data in the blue box is visible to OLAP.
As OLTP continuously generates new data, the visibility of
OLTP and OLAP may differ.

Accordingly, a higher freshness-rate means better data
freshness. When the two engines share the same data stor-
age (e.g., using the monolithic data format with a single data
copy), the freshness-rate metric will always be 1. Instead,
when their storage is independent (e.g., using a hybrid data
format and maintaining two data copies), this metric should
generally be less than 1.

count(tuples N tuples
freshness-rate = (tuplesorrp plesorap) o

count(tuplesorrp Utuplesorap)

Thus, HTAP systems can achieve a high freshness-rate
either by the two engines sharing the same data storage or by
speeding up the transfer of the corresponding delta (i.e., the
grey data log in Fig. 3).

3.1.2 Time-based freshness metrics

Another freshness metric: freshness-score is based on the
time dimension. It is more intuitive than freshness-rate.

@ Springer

new OLTP data

‘/Visible to OLTP

Visible to OLAP i
\
(-. . H
H
1]
II EEEE l.
| S
} >

Time

size(T. D)
@ Freshness-rate = &
size({})
The first not seen transaction that
modifies the data read by the Query

x100% (3) visibility Delay

OLAP Query

Freshness-score
of the Query

Fig.3 This diagram shows the comparison of three freshness metrics

Briefly, the freshness-score for a single analytical query g
is defined as a quantitative measure below, where t; means

the start time of ¢ and t{ "* represents the commit time of the
first transaction which updates the data read by the query but
not seen by ¢.
freshness-scoreq = max(0,t5 — ty) 2)
We show an example in Fig.3. As freshness-score is
defined for each query, we need to run the query multiple
times to measure the performance of the whole system. Then,
the freshness score of an HTAP system is defined as the aggre-

gation of the freshness scores of all analytical queries that are
continuously executed in the database:

freshness-score = AV G (freshness-score,) 3)

Accordingly, a smaller freshness-score means better data
freshness. In particular, freshness-score = 0 implies that the
HTAP system can always provide the most recent version of
the operational data to all analytical queries. freshness-score
= o seconds means that, on average, the snapshot used by the
analytical queries is outdated by « seconds.

Note that identifying the first not-seen transaction can be
challenging in a practical HTAP system, as we may not have
a centralized sequencer that records the entire serializable
execution history. It may need more effort to evaluate, mainly
when the databases are partitioned and spanned over multiple
machines.

Besides freshness-score, visibility delay is another time-
based freshness metric. By definition, visibility delay is the
time interval during which updates to the database can be vis-
ible to OLAP queries. Different from freshness-score, it may
not directly represent the delay observed by users but focuses
on the performance evaluation inside the system. This makes
visibility delay much easier to measure as it does not rely on
finding the first transaction not seen by the analytical queries.
As a result, visibility delay is one of the most popular met-
rics evaluated by the previous papers [18, 34,39, 78,97, 111,

A survey on hybrid transactional and analytical processing

>
>
o
o
=2
z
N
&
s

Frontier|

>
L

Ideal
ZIsolation

Ideal
Isolation

Throughput
Throughput

OLAP Throughput

>
>

OLTP Throughput

OLTP Client OLAP Client

Gartner Method

2D chart Method

Fig.4 This diagram compares two isolation evaluation methods

150, 175]. We show an example of visibility delay in Fig. 3,
which capture the time window of data visibility to OLTP
and OLAP.

3.2 Evaluation method of performance isolation

To measure performance isolation, a simple approach sug-
gested by Gartner is to instruct one kind of workload client
(e.g., OLTP clients) to sustain a configured throughput (e.g.,
about half of peak throughput) and allow another kind of
client (e.g., OLAP clients) to saturate the throughput [47,
150]. When the number of later clients increases, the less
performance degradation of the previous workload, the bet-
ter performance isolation is achieved. We show an example
in Fig.4. Ideal isolation indicates no performance drop and
thus plots a horizontal line in the Figure. This approach is
followed by [18, 78, 111, 150, 168].

Milkai et al. extend this approach by visualizing the
throughput frontier in a 2D chart [117]. In the chart, the x-
axis represents OLTP throughput, and the y-axis represents
OLAP throughput. Each pointer in the chart means the HTAP
system can achieve a fixed OLTP throughput and a fixed
OLAP throughput. Then, a frontier can be generated when
given a fixed OLTP throughput, and the OLAP throughput is
the maximum. An HTAP system achieves ideal performance
isolation when each of the OLTP and OLAP workloads per-
forms as if executed independently, which plots a rectangle
frontier in the throughput frontier chart. See the example in
Fig.4. Compared to the previous approach, the chart can
provide a more comprehensive view of the performance iso-
lation property.

4 HTAP with monolithic data format

4.1 Common issues

We now discuss the challenges and solutions for HTAP
systems with a monolithic data format. Sharing the same
physical data format across OLTP and OLAP workloads is
the most straightforward approach to executing analytical

queries on the fresh data generated by transactions. As a mit-
igation solution for HTAP, most of the systems belonging to
this stream evolved from legacy databases.

A few decades ago, OLTP and OLAP workloads were
not clearly divided and were mixed in traditional databases
(e.g., MySQL) without giving HTAP context. More recently,
several works have been proposed to make the monolithic
design suitable for HTAP’s performance. Our survey focuses
on these HTAP-specific optimizations.

In general, unified architecture has strengths in reducing
data redundancy and eliminating the burden of managing
consistency [90]. However, it has some performance issues:

— [Issuel: Contradictory Format Design] OLTP work-
loads prefer row-oriented data format for efficient tuple
inserts and updates; however, it is inefficient for read-
only analytical queries since they only have to read a tiny
subset of attributes (with massive rows) from disk (or
from memory) [4], wasting on I/O.

— [Issue2: Performance Degradation of MVCC] Multi-
version concurrency control (MVCC) is widely adopted
in OLTP DBMSs [172] to allow readers to make progress
regardless of concurrent writers. However, the increased
lengths of version chains further degrade the scan perfor-
mance of analytical queries. Interchangeably, the long
lifetime of analytical queries blocks the garbage collec-
tion (GC) and causes storage overhead [88]. We further
detail this issue in Sect.4.3

— [Issue3: Weak Performance Isolation and Scalability)
Simply marrying OLAP to OLTP breaks performance
isolation. This is because analytical queries are usually
compute-intensive, which take hundreds to thousands of
times longer execution time and consume much more
resources than short-lived transactions [61, 83]. In such
a case, analytical queries may block the execution of
transactions and cause resource starvation [32, 146]. In
addition, scalability can be a major problem for mono-
lithic HTAP. The read and write side may have different
scale-out needs. OLTP workloads may be CPU-intensive,
and OALP workloads typically require larger memory
space for storing the intermediate query results.

In the rest of this section, we dive into these research
problems posted by HTAP and show the key technologies
to solve (or mitigate) these performance issues in the mono-
lithic HTAP architecture. We show the potential solutions for
Issuel in Sect.4.2, the mitigation for Issue2 in Sects.4.3—
4.4, and the mitigation for Issue3 in Sect.4.5. Most of these
solutions are orthogonal to each other and can be combined
into a single HTAP database.

@ Springer

H.Song et al.

> ()=

ts:100 ts:120 ts:150 ts:160 ts:180

Native Approach

aRteT e eTeTe Ditex en
ts:700 Asi120 ts:150 ts:ISO ts:780 tsT00 15720 ts

B : :150 ts:760 ts:T70 ts:200)| ts:710 ts:120 ts:740 ts:750 ts:160 ts: 770 ts:ggo ts710 tsT20 350 tsggo 770 ts:200)
v H '
ts:T00 ts7110 ts:730 ts:T40 tsiT60 ts:100 ts:110 ts:130 ts:140 ts:160 ts:700 ts:110 ts:130 ts:140 ts:T60

Cross-chain Pointer

Cross-chain Snapshot

Column A with row id 1 ---> Pointer

ts: 100 Timestamp 100 ¥ Access Path

Fig.5 Faster Scan of MVCC. This diagram provides an overview of the existing approaches that reform the MVCC chain for better scan performance.
It shows the access path of a column scan operator on column A with timestamp 150

4.2 New data format for HTAP

Several works strive to overcome the contradictory perfor-
mance properties by redesigning the existing formats. Their
new format designs target providing high performance for
OLTP, which should be the same as a row-oriented data
format, and providing high performance for OLAP, which
should be the same as a column-oriented data format. We
introduce some of the representative works below.

Partition Attributes Across (PAX) was proposed in [10]
by Ailamaki et al. Generally, PAX is designed for on-disk
deployment and specifies how to group rows and columns
together. Instead of storing data row-by-row within a disk
block as row-stores, PAX stores rows column-by-column in
a single disk block. This differs from a pure column store,
which stores each column in separate disk blocks. The key
difference is that if you had a table with 10 attributes, then in
a pure column store, data from each original tuple is spread
across 10 different disk blocks, whereas in PAX, all data for
each tuple can be found in a single disk block. Since a disk
block is a minimum granularity with which data can be read
off of disk, in PAX, even if a query only accesses only 1 out
of the 10 columns, it is impossible to read only this single
column off of disk, since each disk block contains data for all
10 attributes of the table. Generally, PAX was able to achieve
the CPU efficiency of column-stores while maintaining the
disk I/O properties of row-stores.

Several commercial works adopted PAX and introduced
how to use PAX in their product, e.g., Spanner [20] and Vec-
torwise [27]. Besides, several successive research works also
follow the PAX data format and propose new optimizations.
For instance, Jin et al. reorders columns within a single disk
block and puts frequently co-accessed columns into nearby
positions [81]. Such a way is effective for wide tables with
many columns, as arandom disk seek takes a large proportion
of the I/O cost when reading a few from the many columns.

@ Springer

4.3 Making MVCC HTAP-friendly
4.3.1 Faster scan on MVCC

In MVCC, a version storage schema specifies how the system
stores versions and what information each version contains
[172]. We show an example of multi-version storage layouts
in Fig.5. We term the basic MVCC implementation as the
native approach. In particular, a native approach records each
item’s version in a linked list and tags each version with a
version ID (e.g., commit timestamp). In our example, Al,
A2, and A3 are the three data items. Each of them has mul-
tiple versions generated by OLTP updates. The versions are
organized in chronological order (e.g., Al has five versions,
and the latest version is tagged as 180).

To perform a scan, the executor traverses each version
chain from front to back until the valid data versions are
found. For instance, assuming an OLAP query performs a
scan using the timestamp 150, thus the required data version
is shown in grey. To find these versions, the scan starts from
AT1’s initial version (i.e., 100) and moves forward to the next
version (i.e., 120) until the version ID is equal to or bigger
than 150 (or the version chain ends). Then, the scan on Al
ends on the version with the biggest version ID, which is
smaller or equal to 150. After finding the version for A1, the
scan continues on A2 and A3. Significant performance issues
can arise when the version chain is long and the number of
required data items is huge.

Several works are proposed to reform the multi-version
storage layer to support faster scans. Among the propos-
als, the key idea is maintaining pointers between stable data
version (i.e., the data version has been committed by the
transactions) to speed up version traversal, which enhances
scan performance at the cost of updates’ complexity. Due to
the different design goals, strategies vary in when and how to
construct the cross-chain link and trade-off between update
efficiency, scan efficiency, and storage overhead.

‘We summarize existing proposals into two categories. The
first category adds cross-chain pointers to the adjacent items.
Hence, quires can filter unnecessary data versions when

A survey on hybrid transactional and analytical processing

scanning over the version chain. As shown in Fig.5, when
traversing the version chain of Al, it records the the cross-
chain pointer for A2 when accessing the version 120 of Al.
Thus, when reading A2, the scan begins at the record position
(i.e., version 120 of A2) instead of the initial position of the
version chain.

For correctness, a safe cross-chain pointer always starts
from the version with a higher (or equal) version ID to
a version with a lower version (or equal) ID. Thus, the
required version will not be neglected in such an optimiza-
tion. With the cross-chain pointer, the executor can find the
target versions with less traversal effort (see Fig. 5). A practi-
cal implementation is VWEAVER. VWEAVER features a frugal
version of skip lists [133, 178] and leverages a new prob-
abilistic search algorithm to decide whether to generate a
cross-chain pointer by coin-flipping algorithm.

Another category leverages pointers to link the data items
that will be (potentially) accessed in the same snapshot
together when adding new data items into the multi-version
chains. So that scans can be done vertically through the point-
ers and skip unrelated data versions efficiently. We show an
example in Fig. 5. When finding the required version for the
given timestamp (e.g., 150), the scan operation directly trans-
verses the chain of snapshots and uses the weaved version
to Al, A2, and A3. Compared to the first category, the sec-
ond category is more aggressive and may lead to higher scan
performance, while it also incurs much more complexity for
version management.

To our knowledge, P-Tree [158] is an instance belonging
to the second category. Although the P-tree is essentially an
in-memory tree index, it holds all the data items in the index
and thus works as an in-memory MVCC store. This property
makes it different from the MVCC indexes we will introduce
later. In particular, P-tree is a nested tree structure and uses
linked snapshots for fast versioning. With the nested struc-
ture, P-trees traverse the linked snapshot to find the versions
and read the version using nested pointers.

In summary, both categories speed up data scanning by
sacrificing update performance and incurring extra storage
overhead. To our knowledge, existing proposals are mainly
designed for flat schemas. How to effectively support com-
plex data types (e.g., arrays and nested fields) is still an open
problem. Some other limitations of the two approaches may
include: 1). when the values in a column are tiny (in compar-
ison to the size of the pointers), the pointers can become too
expensive and ultimately negate the version-skipping bene-
fits. 2). pointers complicate garbage collection and can cause
more fragmentation in storage. It should also be noted that
other implementation details (e.g., garbage collection policy
and concurrency model) can also be critical to the end-to-end
performance and further affect the HTAP design, but we do
not discuss them due to space considerations.

4.3.2 MVCC Index

Another challenge raised by HTAP is how to support con-
current index updating. Even though several efforts [23, 112,
148, 160, 169] have been devoted to building concurrent tree-
based data structures before HTAP is motivated, they may
not be directly applicable to HTAP scenarios. The reason is
that the data access pattern of the analytical queries differs
from the typical read-only transactions, e.g., including more
wide-range scans.

Taking the B+ tree [49] as an example, the lookup oper-
ation has to protect access to the inner and leaf nodes since
other operations (e.g., inserts and deletes) may change them
concurrently. Thus, the two types of operations will be
blocked by each other, leading to sub-optimal performance
(e.g., long tail latency of OLAP). It desires a new mecha-
nism to efficiently split and insert inner and leaf nodes with
the existence of scan-oriented data access.

VEGITO [150] poses the design challenges of the MVCC
index in HTAP and proposes an epoch-base updating mech-
anism that parallelizes the updating in the same epoch (with
both task parallelism and data parallelism) to reduce the con-
flicts. By its design, VEGITO provides slightly stale snapshots
to the analytical queries.

Diva [90] suggests a new provisional version indexing
for HTAP based on the observation that data versions are
continuous and visible only for a sliding time window. The
ideais to co-locate arecord and its first old version in the main
index and store the rest of the versions in separate version
space (i.e., provisional version indexing). This separation lets
Diva conduct rapid version searching and prompt cleaning of
stale data versions simultaneously. Note that prompt garbage
collecting benefits scan operation (with the reduced length
of the version chain) and alleviates storage costs.

4.4 In-memory snapshot algorithm

In addition to conducting analytical queries on the MVCC
storage, another straightforward approach is taking an in-
memory snapshot to serve OLAP workloads. Using separated
consistent snapshots can efficiently eliminate the concur-
rency issues (e.g., race condition), as well as the performance
degradation on MVCC (i.e., Issue2).

Several efficient snapshot algorithms have been proposed
to construct a snapshot with low overhead, including Copy-
on-Write (CoW) [104, 106] and Zigzag [37], and multiple
database vendors and research prototypes adopt memory
snapshot approach for hybrid transactional and analytical
processing, e.g., Hyper-O! [85], SwingDB [116], AnKer
[149], Kvell+ [100], and update-aware NDP [167].

! Hyper adopts the snapshot solutions for their initial version [85] and
transfers to MVCC for their later development [31, 124]. To distinguish
them, we term the initial version as Hyper-O.

@ Springer

H.Song et al.

Nevertheless, executing analytical queries with an in-
memory snapshot may have the following limitations: First,
the application scopes are limited. In-memory snapshots are
primarily used for in-memory databases that are deployed
in a single machine. It can be difficult to scale out when
the database is partitioned into multiple shards. Second,
in-memory snapshots incur additional overhead memory
footprints, which can become severe when serving large-
scale update-intensive applications. We summarize substan-
tial research works by classifying them into two categories:
OS-assisted Fork and bypass OS snapshotting.

4.4.1 0OS fork

Fork is a copy-on-write mechanism implemented by oper-
ating systems. Hyper-O [85] leverages the Unix fork ()
to generate in-memory snapshots for analytical queries in
a single machine. In particular, fork () is used to spawn
child processes that share their entire virtual memory with
the parent process. Practically, Hyper forks a new snapshot
and thus starts a new OLAP query session process periodi-
cally (or on demand). The fork algorithm is always executed
between two transactions to guarantee consistency and iso-
lation. An incoming analytical query will be assigned to a
specific OLAP query session, and the ongoing transactions
will not be blocked. However, a process fork in Unix can
be expensive when the snapshots are taken frequently. As a
result, this snapshot mechanism is disused in the later version
of Hyper [31, 124].

Scale-out Hyper (Scyper) [121] is a variant of Hyper-O,
aiming at scaling out Hyper-O horizontally (without parti-
tions). Scyper uses REDO logs to copy data from the primary
(i.e., the single machine of Hyper-O) to other secondary repli-
cas and let OLAP queries execute on secondary replicas. For
load balance and consistency, Scyper uses a centralized coor-
dinator for OLAP before the queries are scheduled.

4.4.2 Bypass OS snapshotting

Sharma et al. study the overhead of in-memory snapshot algo-
rithms and propose a new lightweight snapshot mechanism
via vin_snapshot in AnKer [149]. Their key motivation
and observation is that, unlike other snapshotting purposes
(e.g., for generating checkpoints), HTAP workloads require
taking snapshots at a much higher frequency to realize better
data freshness. In response, Anker introduces a new custom
system call (vin_snapshot) and integrates the concept of
rewiring directly into the Linux kernel.

The co-design between underlying components and the
databases overcomes the restrictions of the OS. Individual
snapshots in AnKer reserve a few short version chains instead
of calculating totally transparent snapshots.

@ Springer

4.5 Leveraging replication mechanism

Recall the Issue3 of monolithic HTAP. To achieve isolation
when processing OLTP and OLAP workloads in a single
machine, several methods are proposed to isolate CPU, mem-
ory, I/O bandwidth, and network traffic (e.g., binding CPU
Cores, restricting the usage of memory and network, etc.) We
refer readers to Sect.5.5.5 for more details.

Besides processing OLTP and OLAP workloads together,
leveraging the replication mechanism is another approach to
handling HTAP workloads. For instance, our previous exam-
ple (i.e., Scyper) in Sect. 4.4.2 falls into this approach. Scyper
can be configured to serve OLTP on the primary and serve
OLAP on the secondary to provide performance isolation
between the two types of workloads.

It should be noted that replication is also commonly
used in the legacy OLTP databases (e.g., MySQL [122] and
PostgreSQL [84]) for fault-tolerance [41, 72, 73] and bet-
ter performance (e.g., read and write division [50, 108]).
OLAP queries can be naively executed on the replica for
performance isolation and scalability, which is also known
as read/write splitting in the industrial community. In addi-
tion, several optimizations can be applied to customize the
approach, providing better performance in the context of
HTAP.

For instance, PostgreSQL-SR [117] replicates data by
replaying Write-Ahead Logging (WAL) records in a stream-
ing manner (i.e., without waiting for the WAL to be filled),
which makes the replica stay more up-to-date. To serve a
hybrid workload, the primary is generally used for OLTP, and
the replica serves read-only queries. Separating OLTP and
OLAP workloads into different processing nodes (machines)
provides physical resource isolation.

We assume the replication approach discussed in this sec-
tion adopts the same physical data format (e.g., row-oriented)
between primary and secondaries (a.k.a. peer replicas) and
will discuss the approaches using different data formats in
Sect. 5.

5 HTAP with hybrid data format
5.1 Common issues

We now discuss the case for HTAP with the hybrid data
format. Column-oriented data storage has become a paradig-
matic choice for OLAP DBMSs (e.g., MonetDB [28],
SnowFlake [55], ClickHouse [45], RedShift [74], and Vec-
torwise [180]) in the recent decades. The key feature of a
column-oriented database is that it serializes all of the values
of a column together [145]. Compared to row-oriented stor-
age, column-oriented storage has the potential to reduce the
amount of data read by orders of magnitude (only reading

A survey on hybrid transactional and analytical processing

Txn: Query: Txn: Query: Txn: Query: Txn: Query:
i =¥ i (¥ i —O i =¥
oo {w‘nte (B1)} oo {S*can (A)} i {w‘ne (B1)} X (S‘can (A)} o (w‘ne (B1)} {Scan()} oo (w;lte (B1)} X (S*can (A)}
(¥ Optimizer Vv) [(¥ Optimizer v) [v Optim|zer ¢)1 (¥ Optimizer N)
(OLTP INDEX] [Column Store]MemmV [OLTP INDEX]) ((RowStore) Memor | | |QLTP INDEX)Memory (Detta Store] Memory || | (OLTP INDEX] (Storage Advisor] Memory

""""" TP
METADATAJAP! " Goia WETADATA J»p Parion Vetadats)

3
; DD;
> gooog (280 T
{

P
é’cl* i

O—0 Column Store |:|D I:I DD U
Persisted Storage @_ -0 “’O"’O Persisted Slurage

Row-native Col-native

S o
Persisted Storage
-0

Il

Persisted Storage

@:8:8*0 DDHU

Persisted Storage

Separated Hybrid

TP—> OLTP Access Path AP—> OLAP Access Path Column "A" with Row Id "1"

- > >0 Multi-version Storage Chain B Column Store with Data Compaction

Fig. 6 An overview of different HTAP architectures with hybrid data
format. The taxonomy is based on the different data formats adopted in
the persisted storage layer, which are the root causes that influence the

in relevant columns) and benefit from column-specific opti-
mization (e.g., column-oriented compression and execution
[3, 51, new join algorithm [4]).

Given this, following the philosophy that one size does
not fit all, many developers turn to host hybrid data formats
(i.e., row store and column store) in a single database, espe-
cially attracting much more interest from the industry. The
advantages of using a hybrid data format are significant: it
provides the opportunity to optimize OLTP and OLAP inde-
pendently and adhere them together in a lightweight manner.
However, it indeed raises new challenges. Below, we sum-
marize the common issues in implementing HTAP databases
with hybrid data formats.

— [Issue#1:Data synchronization] How to keep the two
storage (a.k.a data copy) abreast with each other with-
out introducing much more additional overhead [78,
111] is one of the foremost challenges given a hybrid
format design. A satisfactory synchronization method
should meet the following requirements: First, it causes
a minimal perturbation in the normal case of OLTP and
OLAP. Second, it keeps the hybrid storage up-to-date,
i.e., updates from OLTP are shipped and applied to the
column store continuously. Third, it should be scalable
to the number of transactions and analytical queries.

— [Issue#2: Data consistency] Along with the data syn-
chronization, it is non-trivial to guarantee the consistency
of HTAP databases when maintaining multiple data
copies in hybrid data format. A safe guarantee of strong
consistency is always keeping an intact snapshot of the
whole row store in the column store. However, this
approach may incur high coordination costs as the col-
umn store should always ask the entire row store for
snapshots. In addition, the problem can become more
complex when the row store or column store is distributed
or partitioned into multiple shards.

design decisions of in-memory storage, processing engine, data syn-
chronization, data access path, and query optimization

[Issue#3: The Gap of Write efficiency] Regardless of
the specific implementation adopted by the row store
and column store, there is a common issue in the gap
of write efficiency between the two stores. Specifically, a
row store is optimized for data updates and tuple inserts,
while it becomes much more costly for a column store to
absorb all the newly generated data since updates are sep-
arated into multiple columns across the format, and the
column store is read-optimized, which groups different
rows of the same column together.

[Issue#4: Hybrid Data Access] Serving a request in a
hybrid data format may incur hybrid data access. That is,
to serve a single query, the execution engine may need to
travel from both row and column stores and combine the
results for answering queries. It’s challenging because
the transformation of different data formats is not free.
Moreover, the execution engines of OLTP and OLAP
have contradictory optimization demands. OLTP engine
commonly uses volcano-style per-tuple iterators [66]
(e.g., MySQL [122]), which is favored for processing
small data. In contrast, per-tuple iterators (or even using
a small batch size) largely limit the parallelism in OLAP
and cause avoidable function calls frequently. It suggests
a dilemma: an execution engine with a fixed block iter-
ation size is either sub-optimal for OLTP workloads or
sub-optimal for OLAP workloads.

[Issue#5: Performance Isolation] Compared to the
monolithic architecture, hybrid data formats mitigate the
contention between OLTP and OLAP by attaching the
two types of workloads to their desired data formats.
However, it still deserves a careful design to isolate the
performance between the two types of workloads since
data is continuously synchronized from row store to col-
umn store. The design of data synchronization and hybrid
data access may break the isolation between row and
column stores. That is, row stores may need to generate

@ Springer

H.Song et al.

additional logs for synchronization, and column stores
should always absorb all updates timely.

— [Issue#6: Sharding Strategy] Partitioning the database
into multiple shards is a significant method for scaling
out. Generally, OLTP and OLAP have different scale-out
needs and have different spike patterns. The data that is
read-hot is not necessarily write-hot. When grouping row
and column data into shards, an efficient strategy should
co-locate the frequently accessed data based on different
workload characteristics.

5.2 A taxonomy of existing achitectures

To handle these issues, multiple technologies are proposed,
and massive design decisions are made. Most of these design
choices are highly dependent on each other and rely on the
assumption of the underlying layer. We classify the HTAP
systems with hybrid data formats into four categories to sys-
tematically study the trade-offs of these design decisions and
technologies. The classification is based on the different data
formats adopted in the persisted storage layer.

Note that we do not differ the systems based on their
deployment model (e.g., shared-nothing, shared disk, or
shared everything) and deployment scopes (e.g., within a
data center using RDMA or cross data center using wide
area network). Specific optimizations on these aspects (e.g.,
using RDMA for fast data synchronization) can be impor-
tant for a given HTAP database. However, we do not plan
to cover them in our survey as our survey targets providing
high-level design guidelines, and these optimizations rely on
specific hardware assumptions and are worth a more detailed
investigation.

Figure 6 gives an overview of the four architectures. We
illustrate the major characteristics of each category below.
Row-native architectures persist row-oriented data and con-
struct in-memory column store as secondary storage. To keep
the column store up-to-date, a typical design is synchronizing
new updates from the in-memory execution engine directly.
When building a new column store (either on the primary
node or on a stand-by replica), it populates data from the
persisted storage layer. This architecture represents the road
to equipping row-oriented DBMSs with a plug-in column
data format. Typical implementations are SQL Server [58],
Oracle Dual [92], and AlloyDB [65].

As mentioned previously, we do not restrict our clas-
sification by the deployment model. That is, row-native
architectures may also be applicable to be deployed at mul-
tiple machines (nodes) using a shared-nothing architecture.
An example is PolarDB-IMCI [168], which separates OLTP
and OLAP workloads into different nodes. Unlike the sepa-
rated architecture we discussed later, it relies on replicating a
row data copy to construct its column stores on a new node.

@ Springer

Unlike row-native architectures, column-native archi-
tectures typically persist column-oriented data and con-
structs in-memory delta store (i.e., update-optimized storage)
for efficient updating. Then, the newly generated updates
will be merged periodically into the persisted column
store.This architecture is commonly adopted by HTAP sys-
tems originating from OLAP DBMSs. Notable implementa-
tions include SAP HANA [152], MemSQL [38] (renamed as
SingleStore [153] in 2020), and NoisePage [105].

Separated architecture usually maintains row and column
stores individually. Updates are shipped from the row store
to the column store in a streaming manner (with consistency
guarantees). To alleviate the gap in write efficiency between
row store and column store, an in-memory delta store is typ-
ically resident on the column side. Similar to the column
native architectures, the updates in the delta store will be
merged into the persisted column store periodically. This
architecture represents the road to building an HTAP database
on the shoulder of existing row and column stores. Typical
implementations include TiDB [78], Heatweave [123], and
F1 Lightning [175], IBM BLU [137], and ByteHTAP [39].

The key concept of hybrid architectures is the adaptive
storage layer [6, 12, 19, 57]. Adaptive storage automati-
cally evolves the data format of the stored data to achieve
the best performance for both OLTP and OLAP workloads.
For instance, HTAP systems belonging to this architecture
always keep the data that are frequently updated by OLTP in
row format and group the data that are always read together
into column format. The shift of data format depends on the
historical statistics of data access patterns, i.e., frequently
updated tuples are stored in rows, while frequently scanned
tuples are stored in columns. A major difference between
separated and hybrid architecture is that hybrid architecture
stores the full copy of data neither in rows nor columns. To
the best of our knowledge, hybrid architectures are still lim-
ited to research efforts due to engineering complexity and
performance reliability. This architecture represents the road
to building an HTAP database from scratch. Typical research
prototypes includes H>O [12], FSM [19], and Proteus [6].

In the rest of this section, we dive into the technical aspects
of the four architectures regarding HTAP-specific issues.
Sections 5.3 and 5.4 introduces the essential background of
row and column store, which is the foundation of hybrid
HTAP. We compare the design of row and column stores and
show how Issue3 and Issue4 come up.

Section 5.5 focuses on the solution to HTAP-specific
issues given the four architectures. In particular, Sects.5.5.1
and 5.5.2 presents the solution to Issuel. Section5.5.3 dis-
cusses Issue2. Section5.5.4 show the design for handling
Issue3. Section5.5.5 details Issue4. Sections 5.5.6 and 5.5.7
target Issue5. Finally, Sect.5.5.8 discusses Issue6.

A survey on hybrid transactional and analytical processing

Table 2 Implementations of HTAP with hybrid data format (1)

OLTP OLAP
Category System Storage Storage Engine
Index Version Storage Type Compression Vectorization Parallel
Row-native SQL Server [58] B Tree Append-only Column Store v v v
Oracle Dual [92] B Tree Delta Column Index v v v
AlloyDB [65] B Tree Append-only Column Store v v v
PolarDB IMCI [168] B Tree Delta Column Index v v v
Col-native SAP HANA [152] B Tree Append-only Column Store v v v
MemSQL [131] Skiplist Append-only Column Store v v v
NoisePage [105] B Tree Delta Column Store v v v
Separated TiDB [78] LSM Tree Append-only Column Store v v v
Heatwave [123] B Tree Delta Column Store v v v
F1[175] B Tree Append-only Column Store v v v
Hybrid FSM [19] B Tree Append-only Column Store v v v
Proteus [6] Hash Append-only Column Store v X v

A summary of different design decisions made by both commercial and research HTAP systems on transactional processing and analytical processing

5.3 Design of row store

Row stores in HTAP inherit the design from existing OLTP
systems. MVCC is one of the common choices. All HTAP
systems in Table 2 use multi-version data structures in their
row store. Additionally, indices are used over version stor-
age to speed up updates and lookups. In the rest, we discuss
the index and storage designs of the representable HTAP
databases in Table 2. It should be noted that, in hybrid HTAP,
the implementation of row stores majorly influences the per-
formance of OLTP. Thus, the design of the row store may
not be specific to HTAP but implies significant design con-
siderations in OLTP. Nevertheless, when the hybrid plans are
enabled, the physical design of the row store can become
a part of an HTAP-specific problem (to be illustrated in
Sect.5.5.7); thus, we briefly list the design choice of rep-
resentable HTAP systems here for interested readers.
Choice of Indexes. Most existing HTAP systems follow the
classical template and use B-Tree indices (or its variant) [49,
67]. Several systems use hash indices and skip lists, which
are delicately optimized for lookup efficiency at the cost of
update overhead. In turn, the LSM Tree adopted by TiDB has
better write performance with a slower read.
Design of Version Storage. Following the taxonomy in the
paper [172], version storage of HTAP systems in Table 2
lies in two typical implementations: append-only storage
and delta storage. Append-only storage always allocates an
empty slot for the new version and applies the modifications
to the data in the newly allocated version slot. On the con-
trary, delta storage only creates a delta version that contains
the modified values instead of the entire tuples.

This makes the two designs differ in read and write effi-
ciency. Each version in the append-only storage can be

accessed independently, making it more suitable for per-
forming read requests. In contrast, delta storage is ideal for
updating since itreduces the overhead for memory allocation.

Overall, the design of the row store targets different per-
formance aspects. However, they all target efficient updates
(using MVCC to improve the concurrency) and are suitable
for a full-row insert.

5.4 Design of column store
5.4.1 Storage layer of column store

The critical decision with the column store is how the
columns are physically structured. We classify existing
designs of column stores in HTAP into two categories.
Native Column Store. Columns are actually collections of
rows with the same attribute. A common approach to storing
column data is partitioning each collection into multiple seg-
mentations with a fixed number of rows. Then, each column
segmentation can be encoded and stored independently (i.e.,
on different pages) [94, 110]. Data can be ordered within
each segmentation by the column attribute or the primary
key [155]. By doing so, every insert in column stores results
in a collection of physical inserts on different segmentations.
Thus causing a gap in write efficiency (i.e., Issue3) when
compared to write-optimized indexes and version storage of
the row stores in Sect.5.3.

In-memory Column Index. Instead of storing columns directly,
an additional approach is building a column index based on
the row store. In-memory column indexes serve as an in-
memory data buffer to speed up column-oriented data access.
The initial idea of column index dates back to 2008 when
Abadi et al. proposed index-only plans in [4]. By creating a

@ Springer

H.Song et al.

1939301 JVTO pue 41 TO Aordop Areord£) swais£s 1o130 o[ym ‘(painqrusip a°1) souryoew [dnnur ojur
pakordop oq ued gy 10 pue 41710 oY) SunedIpur ‘uone[osI [OA[-9JUR)SUL,, 9ABY SWISAS) IOAOIOIN *.—,, SB POsIew SI)1 ‘S[eridjew d[qe[reae A[oriqnd ur pauorjuaw st 1o payoddns st poyjowr
ou J1 * 1ozrundQ pqAH,, pue , UONR[OS] "J19,, UWN[0d Y} I0])Y} AON] 'Sanss og1oads-JyILH U0 SWISAs JV.LH YoIeasal pue [eIoIdWWod [loq £q 9pew SUOISIOAp USISap JUIQMIP Jo ATewwuns

M 1004 pealy, Y3y (yseH) auoN JRULIO] WI0JOY paseq-a3e1ols [9] snaj01g
» - ysiy (depy [0D) suoN TEULIO] WI0Joy paseq-o3elolg [61] WSd pUqiH
- Qoursuy wnipawt (9211, 9) Xvd 30| pareys paseq-a3eIols [se1114
- doursuy wnipaut (QuopN)) suoN 30| pareys paseq-a3eIols [€T1] aaemivOy pareredog
M vlonQ) soour)sup wnipaut (xopu] vI2) 2911, INS'T NiNiENi(ve} paseq-a3e1ols [8L] gdiL
- - y3g (317,) 28e103S-4 T, 381N BIPq paseq-o5e101§ [S01] @8egastoN
- - Y3y (sndnys) o3erois-d1, ST B paseq-o5eIolg [T€1] TOSWON
- - ysiy (xepuy eIa() 25eI0Ns-d L ELS ARETel paseq-ogeIolg [2S1]1 VNVH dVS IAnRU-[0D
- Qoueisuy ysiy (depApre) xoput puaddy QM [end paseq-ux[, [891] IDINT-Aa*eIod
N - Y3y (depy ux) 95e103s-d L, SAIM [enq paseq-ux(, [$9] gakony
- - y3g (depy ux 1) o3e103s-47, AUIA [eng paseq-uxg, [26] 1en(210810
N 210D purg y3g (xopuf [1e],)o5eI10Is-d1, UM [eng paseq-uxg, [86] 10198 TOS QATIRU-MOY
puqAH uone[os] "J1od SSQUYSAL] (eyepelolN) BIleqg yoeoxddy [9POIN
1zundo oukg eleqg wISAS K103918D)
dVL1H

(7) Yoo} viep puqAY yim JVLH Jo suonejuowo[dwy € sjqe]

pringer

Qs

A survey on hybrid transactional and analytical processing

collection of indices, it is possible to answer the query that
covers all of the columns used in an analytical query without
ever going to the underlying row-oriented stores. Thus, the
in-memory column indexes essentially serve as a column-
oriented data storage for OLAP queries.

SQL Server [94] introduced column index in 201 1. Instead
of directly building indices on the row-oriented tables, it
stores columns into column segmentations. The column
index is built based on the segmentations, serving as a dic-
tionary. Oracle Dual [92] builds column indices on its heap
tables. Heap table [79] is a row-oriented table representation
format that stores data in no particular order (i.e., with-
out a clustered index). Hence, operations on the in-memory
column index will never re-structure physical data organi-
zations in the heap table. In turn, updates and deletes are
handled as an in-place operator within the heap table and
will not affect the column index. This loosely coupled struc-
ture makes adding column indices to the existing database
safe and convenient as a plug-in extension. PolarDB-IMCI
[168] performs column index as a secondary index based
on InnoDB’s row-based buffer pool. Same as the index-only
plans [4], it can create indices that cover all or a subset of
columns.

5.4.2 Execution engine

A specialized execution engine plays a vital role in per-
forming analytical queries. As shown in Table 2, almost
all selected HTAP systems embrace this OLAP technology
ecosystem. Nevertheless, it leads to Issue4, as discussed pre-
viously. In this subsection, we provide the background on
such engine optimizations.

Column-oriented Compression and Execution. Column store
has a different compression pattern from row stores. Column
store allows compressed values from more than one row at a
time. Several well-studied compression algorithms are pro-
posed in the literature, e.g., run-length encoding (RLE) [141].
Based on compression, late materialization [4, 5] lets execu-
tion engines directly operate compressed data to defer data
decoding until all predicates have been applied. This opti-
mization enables database systems to construct fewer tuples
at runtime, reducing I/O and computation costs. However,
how to perform late materialization on different data formats
with different compression strategies is still an open problem.
Vectorization and Intra-query Parallelization. Vectorized
query processing [4, 29] and intra-query parallelism [11,
107] are also critical to the performance of analytical queries.
However, they are strongly coherent with the design of the
column-oriented data format and may not be common in the
engine of the row store. It still calls for solutions to enable
efficient data access when both row and column engines are
desired (see our discussion in Sect.5.5.7).

5.5 Road to HTAP

Given the design of the row store and column store above,
we now present the design choices for bridging the two data
formats into a single system as well as the potential solutions
to the aforementioned issues. In addition, we also add a sum-
mary of the pros and cons of the candidate solution in each
sub-section to guide future development. Table 3 summarizes
existing designs of representative systems.

5.5.1 Data synchronization model

Existing data synchronization models fall into two cate-
gories: transaction-based and storage-based. Figure 7 shows
how the writes of a transaction 7 are synchronized and
can finally be observed in both storages. Depending on the
consistency guarantees the HTAP system provides, synchro-
nization in both models can be done either synchronously
or asynchronously. When the data synchronization is done
asynchronously (i.e., the step with a dotted line is done in the
background), it removes the data transfer and communica-
tion out of the critical path of transactional processing, thus
for better performance isolation.

Using the transaction-based model, the coordinator of
transaction 7 performs a double write to both row and column
stores. On receiving the full copy of all writes in the write
set of T and getting ready to be committed (e.g., all needed
latches are preserved), the storage node sends an acknowl-
edgment message to the transaction coordinator. Then, the
coordinator finalizes the transaction with a commit message.
To enforce consistency, it can notify the client of the success
of T only when the coordinator receives both acknowledg-
ments of the commit message from the two stores.

Alternatively, the storage-based model synchronizes data
on the ordered log. The units of log records can be transac-
tions or read/write operations. To commit a transaction 7', the
coordinator performs a write operation to row store. Then,
a log containing a set of writes will be shipped from row
storage to column storage. Once writing in both two stores is
finished, coordinators can finalize the transaction. Until the
row store receives the acknowledgment of the commit mes-
sage from the column store and 7" has been committed to it,
it can send an acknowledgment of the commit message to
the coordinator. Finally, the coordinator can notify the client
about the success of 7.

Pros and Cons. Transaction-based model is usually adopted
in the row-native architectures (see Table 3). This model
benefits development and management as correctness is pro-
vided in the transaction unit. That is, the storage layer in this
model is not required to understand the semantics of transac-
tions. Moreover, column stores in this architecture are fully
in memory; thus, transaction-based synchronization will not
incur much overhead on transactional processing. On the con-

@ Springer

H.Song et al.

[Row-oriented Storage Column-oriented Storage

(a) Transcation-based Data Sychroization

Fig. 7 Data synchronization model. This diagram shows how data is
synchronized from OLTP storage into OLAP storage when a read-write
transaction is scheduled. The steps with dotted lines can be processed

trary, the column-native, separated, and hybrid architectures
usually adopt the storage-based model to decouple the data
synchronization from transactional processing for better flex-
ibility and scalability.

5.5.2 Data synchronization approach

Dual Write. Coinciding with the synchronization model,
HTAP with row-native architectures adopt dual write to per-
form an atomic write operation in both row store (with
in-memory buffer pool) and in-memory column store, which
has been introduced in Sect.5.5.1.

Delta Merge. For HTAP with column-native architectures,
the databases continuously merge the new data generated
from the in-memory row store to the persisted column store.
To enforce efficient processing based on the storage-based
synchronization model, a general optimization parses inter-
nal storage representation in multiple stages [105, 152]. For
instance, SAP HANA [152] features two provisional in-
memory delta storage (i.e., L1-Delta and L2-Delta) instead
of a single row store. L1-Delta is a row store optimized for
fast insert, delete, field update, and record projection. For
performance reasons, L1-Delta does not perform any data
compression. L2-Delta is organized in the column store for-
mat and employs dictionary encoding for better memory
usage. Different from the persisted column store, the dic-
tionary is unsorted. With the two provisional delta storage,
a data update is first caught by L1-Delta. When the L1-
delta absorbs updates more than a specific threshold (e.g.,
10,000 rows), updates in the L1-delta are then merged into
the L2-delta. Similarly, L2-Delta only merges the updates
into the main store (i.e., persisted column store) when the
number of updates exceeds the threshold. This workflow mit-
igates the overhead of transforming row-oriented tuples into
column-oriented ones since the processing can be divided
into multiple stages, and tuples can be batched.

Shared Log or Consensus. For separated architectures,
the data synchronization approach deserves a more careful
design to handle Issuel. BatchDB [111], F1 lightning [175],
VEGITO [150], Janus [18], and Heatwave [123] ship updates

@ Springer

Transaction <T> :

| (writeSet] (write Set)

-
(b) Storage-based Data Synchronization.

asynchronously for better performance if the OLAP storage does not
provide a strongly consistent guarantee

via shared log. All committed transactional updates are saved
in the logical logs (i.e., logs record read/write operations
without depending on physical format). Logs are continu-
ously shipped from the row store to the column store. A
key challenge is guaranteeing the updates belonging to the
same transaction can be consistently observed in the column
store. Specifically, the partial view of an atomic transac-
tion should never be observed by queries, and transactions’
updates should be observed in the commit order.

To handle this challenge, BatchDB [111] groups transac-
tions into batches, and the updates are only visible when a
batch is successfully applied. To form a transaction batch,
BatchDB assigns a batch ID to each transaction. The invari-
ant is that a transaction can only belong to one batch ID,
thus providing atomicity. Similarly, VEGITO [150] tags each
transaction with an epoch id. The transactions within the
same epoch should be applied and observed together. F1
Lightning [175] reuses the safe timestamp mechanisms of
Spanner [50]. The safe timestamp indicates the watermark
of visibility to OLAP. Each transaction in F1 is assigned a
timestamp. The transaction can be visible if and only if the
transaction’s timestamp is smaller than the safe timestamp.

Another straightforward option is reusing consensus
mechanism [77, 120] (e.g., state machine replication [147]).
Consensus is essentially an abstraction of the shared log
approach with clear, safe guarantees and a mature toolkit.
Therefore, we classify them into the same category.

Wiser [21] seeks consensus protocols to achieve the serial
order of writes. A query can only see updates made before it
in a serializable order generated by the consensus (i.e., Raft
[125]). TiDB [78] introduces Raft learners to improve the
performance of data synchronization. A learner in Raft does
not participate in leader elections, and log replication from
the leader to a learner is asynchronous. Thus, adding more
followers will not significantly impact the consensus group’s
performance because the leader does not need to wait for
responses from followers. Also, to satisfy the hybrid format,
data is transformed from row-oriented to column-oriented
when data is synchronized to Raft learners.

A survey on hybrid transactional and analytical processing

Compared to shared logs, the benefits of leveraging a well-
studied consensus protocol to realize data synchronization lie
in three folds: proofed correctness, well-studied implemen-
tations, and strong compatibility.

Reform Format. For hybrid architecture, the database per-
forms data synchronization by reforming data format directly.
For instance, Proteus [6] changes the storage format by read-
ing a consistent data snapshot into memory, and bulk loads
the data into the respective storage format. The changes are
generally triggered by a storage advisor continuously moni-
toring data access patterns.

Pros and Cons. The design choices of data synchronization
largely depend on the underlying storage layer. The four data
synchronization approaches mentioned in this sub-section
are affiliated with their corresponding architecture. Multiple
optimizations can be applied within each architecture to make
synchronization more efficient.

In addition to minimizing performance overhead, a sig-
nificant design goal is to achieve higher data freshness.
The design of data synchronization approaches can also
contribute to data freshness. For instance, batch-based log
shipping may have worse data freshness than streaming ship-

ping.
5.5.3 Consistency model

Given the sophisticated data synchronization models and
approaches, the consistency model is worth revisiting. Dif-
ferent from the monolithic HTAP (Sect.4), where the
consistency model can be simply inherited (since each ana-
lytical query can be treated as a read-only transaction, e.g.,
in MySQL), the consistency model in hybrid HTAP may
degrade. This is because data synchronization in hybrid
HTAP breaks the consistency boundary between two data
formats. To make it worse, data synchronization is practi-
cally done asynchronously to ensure a better performance
isolation between OLTP and OLAP workloads.

Three of the foremost consistency models (a.k.a. isolation
level) used in the database community are read commit-
ted, snapshot isolation, and serializability. To the best of our
knowledge, most of the existing hybrid HTAP systems [6,
18,92, 111, 150, 152, 175] provide snapshot isolation, even
when transactional processing is promised with a more sub-
stantial consistency guarantee.

Under snapshot isolation, analytical queries can observe a
complete data view (i.e., snapshot). As these HTAP databases
usually provide a stronger model on OLTP, the degradation
of the consistency model should be carefully noted. Applica-
tion programmers or database administrators should handle
the interleaving usage of transactions and analytical queries.
A straightforward question is whether HTAP databases can
ensure a stronger consistency model. The answer is abso-
lutely yes, but maybe at the cost of performance and needs a

careful design. Ensuring stronger consistency for HTAP in a
lightweight manner is still an open problem.

For instance, TiDB [78] is a practical implementation that
provides analytical queries to read the latest write made by
transactions at the cost of longer latency. Specifically, it relies
on the raft learner to calibrate and absorb all committed trans-
actions from the raft leader before an analytical query can
actually be scheduled. Obviously, this approach produces
additional overhead for the raft leader and needs to block
analytical queries for a while. PolarDB-IMCI uses an asyn-
chronous replication mechanism and can ensure different
consistency models (e.g., strict serializability) through the
proxy layer. The proxy node keeps track of the log sequence
numbers of both row stores and column stores and may only
route queries to the column store when the log sequence
number of the column store is not less than the log sequence
number of the row store.

5.5.4 Delta buffer and meta-data

Recall Issue3, due to the gap in writing efficiency between
the row and column store, when the write rate in the row
store is high, the column store may not be able to absorb
all updates timely. To make things worse, this lagging will
continuously accumulate. Thus, to bridge the efficiency gap,
an HTAP DBMS commonly maintains a delta buffer and
meta-data for recent transactions and updates. An overview
of the delta buffers and meta-data adopted by the existing
hybrid HTAP systems is shown in Table 3. In the next, we
describe these designs in more detail.

Without introducing additional physical storage space,
row-native architecture can directly treat row stores as a delta
buffer for column stores. This is because row and column
stores are always co-located in this architecture. As such, to
perform a data update, dual-write may not finish the column
store’s writing process immediately. Instead, it only needs to
update a lightweight meta-data. The meta-data distinguishes
whether an update has already been merged into the column
store or is only resident in the row store. Then, the actual
format changes can be done in the background. To serve
an analytical query, the executor fetches most data from the
column store and a small portion of unmerged updates from
the row store. The trade-off is also significant: the reading
process is more expensive.

A typical implementation is used by SQL Server [93].
SQL Server uses Tail Index as its meta-data, which covers
rows not yet included in the column store. Inserting a new
row or row version into the table consists of inserting the
row into the in-memory Hekaton table (i.e., its row store)
and adding it to all indices, including the Tail Index (i.e., the
meta-data). Then, a background task will eventually copy the
datato the CSI (i.e., its column store). Deleting a row from the
table consists of first locating the target row in the Hekaton

@ Springer

H.Song et al.

table and deleting it from there. If the column store contains a
valid value, a row with its row-id is inserted into the Deleted
Rows Table, which logically deletes the row from the column
store. An update operation can be implemented as an insert
follows deletion. To update a row, it is first updated in the
Hekaton table, and the new version is also included in the
Tail Index but not immediately added to the column store. If
an old version is included in the column store, its row ID is
masked and deleted in the Deleted Rows Table to logically
delete the old version from the column store.

Oracle Dual [92] and AlloyDB [65] do not index the
updates directly. Instead, they create a transaction map as its
meta-data to record the committed transactions that do not
appear in the column store. The transaction map will record
its transaction ID and write sets whenever a transaction is
committed in the row store. After the updates of a committed
transaction have been successfully merged into the column
store, the entry with its transaction ID is removed. Compared
to the Tail Index in SQL Server, they simplify the data mod-
ification process (insert, update, and delete) at the cost of
reading performance.

PolarDB-IMCI [168] adopts a different approach. Instead
of leveraging the row store as its temporary delta buffer, it
performs the data writes directly to the column store when
a transaction is ready to commit. To alleviate the problem
with writing efficiency, the column store is append-only, and
all updates to PolarDB-IMCI are out-place. PolarDB-IMCI
moves the task of column encoding, data compression, and
sorting to a background process. Thus, data modifications on
the column store do not incur additional overhead compared
to the row store. Inserting a new row in PolarDB-IMCT’s table
is straightforward. It includes a standard insert in the row
store and an append-only insert in the column store. Like SQL
Server, deleting a row in the column store is conducted by
adding a delete mask to the bitmap (i.e., the meta-data). For
an update operation, without performing an in-place update
in the column store, the update is executed by a delete in
bitmap and an append-only insert.

Fundamentally speaking, the row store is essentially a
delta buffer in column-native architectures. Since data mod-
ifications (i.e., inserts, updates, and deletes) are periodically
merged into the persisted column store, the column store
always lags behind the row store. The tricky thing is that,
like a generally designed delta buffer, a row store does not
store the complete data copy and only contains a small portion
of incremental data. Thus, the overall scan performance will
not be largely influenced by the sub-efficient scan on the row
store. Meta-data in this architecture enhances performance
on the delta buffer.

For instance, SAP HANA [152] adopts a secondary index
structure (named delta index) on its L2-delta (i.e., its delta
buffer) to support access patterns of point query optimally.
NoisePage [105] uses a traditional B-tree on its delta buffer.

@ Springer

MemSQL [153] uses skiplist as its memory-optimized delta
indices. Skiplists can use pointers to rows directly since the
delta buffer is fully in-memory. This makes it different from
the rows-native architecture indices: it avoids the indirection
caused by page tables.

For separated architectures, persisted row store and col-
umn store are stored independently. They can be indepen-
dently stored in a single persisted storage or separated into
different machines. As such, to handle the problem efficiency
gap, a typical solution is allocating additional storage space
and co-locating it with the column store to serve as a delta
buffer. Meta-data in this architecture serves the same target
as column-native architecture.

TiDB [78] proposes DeltaTree (an optimized variant of
log-structured merge-tree (LSM-tree) [127]) as its delta
buffer. Specifically, DeltaTree consists of a delta space and a
stable space. In delta space, data modifications are recorded
in append-only logs with a serialized order, achieving near-
optimal write efficiency. However, these modifications are
usually stored in many small files and induce large 10 over-
head when read. To enhance read performance, DeltaTree
continuously compacts these small records into a larger one,
then flushes the larger logs into stable space. Note that the
separation of delta space and stable space is designed to real-
ize the same goal as L1-Delta and L2-Delta in SAP HANA
(Sect.5.5.2), i.e., dividing the heavy merge process into mul-
tiple stages, and thus amortize the merge overhead to both
read and write operations.

TiDB also includes an important mete-data: delta index.
Delta index is developed to accelerate read operations, and
the implementation is based on B-tree. Briefly, reads on log-
structured storage require a sequential logs scan to find the
latest data version. Delta index speeds up the sequential scan
by recording a valid but may not the latest data version and
its location in delta space for each index entry. Then, read
operations can leverage the delta index to skip old versions
and start the scan process from the pointed location instead
of a scan from beginning to end.

F1 Lightning [175] adopts another data structure for its
delta buffer: PAX [9]. In PAX, rows are first divided into
row groups and then stored column-wise within a row group
(see Sect.4.2). PAX can exhibit superior cache and memory
bandwidth utilization than a purely row-oriented data format,
favoring the performance of retrieving new data. The index of
PAX contains a sparse B-tree index on the primary key where
the leaf entry tracks the key range of each row group. Though
the data modifications on PAX are not as efficient as LSM-
tree, they practically mitigate the write efficiency problem.
Therefore, it balances the performance between range scan
and point lookup.

Hybrid architectures do not rely on delta buffer and meta-
data directly. However, the format change indeed incurs
additional overhead. An adaptive threshold is embedded in

A survey on hybrid transactional and analytical processing

8 8 8 User-visible behaviors
"""" e

Application Logic]

* * DB Request

i
'

1

L}

'

'

! . .

: Diversion Layer

[l H H
1| {[Read/Write or Read-only] [User Hint] [Access Pattern] (Exe. History (-]
v U

'

1

L}

'

'

1

L}

'

'

1

OLTP Request f N OLAP Request

[OLTP Optimizer] [OLAP Optimizer]

[OLTP Executor] [OLAP Executor]

Fig.8 An example of how the HTAP systems generate execution plans
for both OLTP and OLAP requests (Diversion Approach)

OLTP Request f

[OLTP Executor] [OLAP Executor]

N OLAP Request

% % % User-visible behaviors
: Y ¥ ¥V application Logic]
. M A DB Request '
: Unified Optimizer Layer E
' | i Access Path Selection) [User Hint] [Heuristic | (Exe. History ()} |

Fig.9 Anexamples of how the HTAP systems generate execution plans
for both OLTP and OLAP requests (Unified Optimizer)

the storage advisor [6, 19] to avoid changing format fre-
quently.

Pros and Cons. Multiple data structures can be used for
delta buffer, e.g., row-oriented format, LSM-tree, and PAX.
Overall, these data structures perform better writing effi-
ciency than column stores, thus filling the write efficiency
gap between row stores and column stores. On the other hand,
they trade-offs among write performance, range scan per-
formance, and point query lookup performance. Meta-data
is delicately designed on a delta buffer to optimize further
read/write performance. They either mark the unmerged data
modifications or index the incremental data. Nevertheless,
maintaining meta-data increases the complexity of systems.

5.5.5 Performance isolation

In HTAP, data synchronization (Sects.5.5.2, 5.5.1), delta
buffer (Sect.5.5.4), and meta-data (Sect.5.5.4) make it
challenging to realize fine-grained performance isolation
between OLTP and OLAP. A summary of the existing solu-
tions adopted by HTAP systems is shown in Table 3.
Instance level isolation is a native property that separates
different workloads into different instances. An instance can
either stand for a stand-alone physical machine or a virtu-
alized resource group (e.g., virtual machine [64], container
[70]). Separated architectures (e.g., TiDB, Heatwave, F1
Lightning) can embrace this isolation naturally. PolarDB-

IMCI [168] achieves this isolation by dividing the read-write
and read-only nodes. By doing so, the OLAP workload will
only be scheduled for the read-only nodes.

The HTAP systems that share a single instance for both
OLTP and OLAP workloads deserve a more careful design on
performance isolation, which shares the same issue with the
monolithic HTAP (see Sect.4.5). Several methods are pro-
posed to isolate CPU, memory, I/O bandwidth, and network
traffic usage. We illustrate each of them below.

CPU Isolation. Binding CPU core [58, 110], thread pool
[6], and variants are common approaches to separate CPU
resource. They can be implemented either in the program-
ming language layer (e.g., goroutine pool in Go [163]) or in
the OS kernel layer (e.g., the control group in Linux kernel
[71]).

Memory Isolation. Memory isolation is achieved by adaptive
scheduling or configuring a fixed quota for memory usage.
For instance, Greenplum [110] utilizes a memory scheduler
in the database kernel to control memory usage among dif-
ferent workloads. TiDB [78] limits the default access table
size on TiKV for analytical queries to 500 MB.

I/0 Bandwidth and Network Traffic. 1deally, the isolation
of I/O bandwidth and network traffic can be achieved in the
same way as memory isolation. However, it becomes non-
trivial if I/O bandwidth and network traffic are consumed
by background processes asynchronously [110], e.g., asyn-
chronous data merge (Sect.5.5.4) and asynchronous data
synchronization (Sect.5.5.2). Worse still, such bandwidth-
consuming processes may have complex dependencies with
each other, making it an open problem and continuously call-
ing for solutions.

5.5.6 Query optimization and execution

Recall that one of the most important design principles
of HTAP is providing users (applications) with OLTP and
OLAP in a single database system using a transparent inter-
face (see Sect.3). Thus, it demands a unified interface for
both transactions and analytical queries. Expressly, when a
user (application) submits a database request to the HTAP
system, the database should take the duty to optimize the
request, execute the requests, and generate the results auto-
matically (i.e., Issue5).

To the best of our knowledge, there exist two approaches
(Figs.8 and 9). In the first approach (Fig.8, diversion
approach), database requests are diverted into OLTP and
OLAP requests using a routing-based approach. After receiv-
ing user requests, they rely on embedded user-level hints or a
middleware layer to differentiate OLTP and OLAP queries.
Then, they execute queries on the desirable engines and
stores. Typical implementations are PolarDB-IMCI [168]
and ByteHTAP [39].

@ Springer

H.Song et al.

5.60s 4.28s

470.9Tms 279.93m;

29.35757ms

250.2674s

OLTP Plan 47.92us 1.44ms

3.54s

OLAP Plan

1 Access Path in OLTP

Hybrid Plan

2 Access Path in OLAP

Fig. 10 Hybrid plan. An example of the hybrid query plan generated by an anonymous HTAP system for TPC-H Q21

Table4 A Comparison of
Physical Operation in OLTP and
OLAP

An OLTP Engine An
(MySQL v8.0.18
[122])

OLAP
Engine(ClickHouse
v22.6.3.35 [45])

Data Source

Index Scan

Sequential Row Store Scan

Index-only Scan

Sequential Column Store Scan
Dictionary

Materialized View

Materialized View -

Join Algorithm

Loop Join (SNL, BNL, INL)
Index Order, File Sort

Sort Algorithm

Hash Join (Centralized)

Hash Join (Dis-
tributed [Broad-

cast, Shuffle, Co-
locate])

Merge Join (Sort-Merge)
Column Order, File Sort

A case study on the physical operators with stand-alone OLTP (i.e., MySQL) and OLAP (i.e., ClickHouse)
implementations regarding data source, join algorithms, and sort algorithms

Another approach handles the diversion problem with a
unified optimizer (Fig.9). The optimizer can generate both
OLTP and OLAP query plans. Thus, the diversion (i.e.,
choosing an appropriate executor and store format) can be
made inside the optimizer, thus driving the request to its
desired execution engine based on request properties (i.e.,
using OLTP executor for point reads and writes and using
OLAP executor for large scans).

We introduce several implementations belonging to this
approach. For instance, F1 Lightning [175] generates logi-
cal plans using its F1 optimizer (i.e., an optimizer designed
for OLTP) and considers lightning-only indexes and views
during physical planning. SQL Server [58] analyzes and
recommends column stores by its Database Engine Tun-
ing Advisor (DTA) when suitable for a given workload.
TiDB [78] extends query optimizer to explore physical plans
accessing both row and column stores. Oracle Dual [92]
supplements column indices to its optimizer as an alternate
execution method for high-speed table scans.

Pros and Cons. The advantages of the first approach are that
it can reuse the well-developed optimizers and executors
and independently absorb the advanced technologies from
the OLTP and OLAP community. However, it is non-trivial
to distinguish the requests before they have been planned,

@ Springer

optimized, and executed, especially for read-only transac-
tions (e.g., point queries) and analytical queries (e.g., queries
with frequent scans). The second approach can leverage the
knowledge of the optimizer for division and thus can be more
precise when compared to the first approach. Moreover, it
provides the opportunity for hybrid plans, which we will dis-
cuss in the next subsection.

5.5.7 Hybrid plan

A hybrid plan leverages row store, column store, OLTP, and
OLAP executors for a single query. It has the potential to
generate a more efficient execution plan for HTAP. The fun-
damental motivation behind the hybrid plan is that row store
with specific indices (e.g., clustered B+ tree index) is more
suitable for short-range scans than column store [58] since
the index allows efficient point and short-range lookups.
Recent studies [58, 87] point out that access path selection
in modern databases should be based on a selectivity thresh-
old, along with the underlying hardware properties, system
design parameters, and data format. Thus, the row store may
be optimal for a portion of sub-queries in a complex ana-
lytical query, and the column store may be optimal for the
others. Naively binding analytical queries to column store

A survey on hybrid transactional and analytical processing

and OLAP executors leaves much potential for the perfor-
mance of HTAP systems unrealized.

In addition to the data access path, many optimized query
operator implementations rely on underlying storage char-
acters. For example, the index-merge join (or sort-merge
join) algorithm requires the data source to be ordered by
the join key; otherwise, it will incur a computation-heavy
sorting phase. Thus, an available sorted data source (either
in row store or column store) may potentially speed up the
query execution. Table 4 provides a case study on the physi-
cal implementations of query operators in two popular OLTP
and OLAP databases (i.e., MySQL and ClickHouse).

To the best of our knowledge, several HTAP systems have
implemented hybrid plans to optimize the performance of
OLAP. For instance, TiDB [78] complements column store
as an alternative access approach in the cost model and lets
the query optimizer choose the access approach that has the
lowest estimated cost during the optimization. Specifically,
the query optimizer can choose both row and column stores
to access different tables in the same query, while it does
not consider retrieving the same table from different data
sources. SQL Server [59] develops a Database Engine Tuning
Advisor (DTA) to recommend a suitable combination of B+
tree (i.e., the row store) and column store indexes for a given
workload. After a column store index is built, the SQL server
uses the column store indexes in its optimizer simply as other
secondary indexes.

In addition, HTAP databases using hybrid architecture
have to deal with hybrid plans by nature, as they do not
hold a full data copy for either row or column. For exam-
ple, Proteus [6] generates physical execution plans based on
its workload models and the current storage layout and reuses
past decisions to accelerate these processes.

We show a practical example of the hybrid plan generated
by TiDB in Fig. 10. The query plan is for TPC-H [52] Query
21 with a scale factor = 100. We ran the query using the same
parallelism (i.e., 16 threads) in the database engines and thus
used similar CPU and memory resources among the three
candidate plans (i.e., OLTP plan, OLAP plan, and hybrid
plan). Overall, the hybrid plan has the potential to achieve a
better execution time (3.54 s) than both the OLTP plan (5.60
s) and the OLAP plan (4.28s).

Unsurprisingly, scans of TABLE nation, supplier, stock,
lineitem:11, and order on column store are significantly faster
than row store. However, as for TABLE lineitem:12, the scan
performance on the row store is better, i.e., 28.65 ms com-
pared to 286.18 ms on the column store. This is because
the query’s selectivity for TABLE lineitem:12 is high (i.e., a
theta join), and a sorted index exists for the accessed column.
Thus, it incurs smaller CPU, memory, and I/O consumption
compared to a sequential scan on a column store.

Moreover, due to the sorted order, if the TABLE order
is accessed on the row store, it can be joined by a range

join algorithm instead of a hash join algorithm, which can
be potentially more efficient. Thus, in the hybrid plan, even
though the time for a scan on the row store (504.00 ms) is
slightly longer than the column store (470.91 ms), the opti-
mizer should still select the row store for its data source.

Nevertheless, there is no free lunch. With hybrid plans, the
optimizer’s search space is much larger, especically when
both row and column store are available. Actually, even
though the available options in a traditional OLTP or OLAP
database are much more limited, they still suffer from a long
optimization time for complex analytical queries [99, 114,
115]. Heuristics must be adopted to prune the search space
to keep optimization times within reasonable bounds [58].

To our knowledge, existing solutions have not yet well
explored these aspects and leave them as their future work (as
admitted in [59]). Our vision is that the emerging machine-
learning-assisted optimization approach (a.k.a learned opti-
mizer) may help with optimizers for handling the complexity
and pruning challenges since many of them have achieved
excellent success on typical OLAP-only workloads (to be
further illustrated in Sect.8). Meanwhile, the models used
for hybrid architecture (e.g., the learned decision in Proteus)
may also be helpful in finding heuristics.

5.5.8 Sharding strategy

Partitioning databases into multiple data shards can improve
query processing performance, increase database manage-
ability [1], and achieve high scalability. Silimar to format
design, which groups data into storage blocks (e.g., disk
pages), sharding strategies also abstract the way of data
grouping. The key difference is that the format design speci-
fies the smallest unit to organize data while sharing strategies
consider scaling the organized data into multiple machines or
data sites. Briefly, there are three primary ways of partition-
ing a relational database: horizontal, vertical, and irregular.
We show a comparison of the three strategies in Fig. 11.

Each partition is a separate data store in horizontal par-
titioning, and all partitions share the same schema. This
partitioning is general to row store, as a row is the small-
est unit in a horizontal partition. For vertical partitioning,
each partition holds a subset of the columns in the data store.
Thus, column stores can benefit from this partition schema
when two commonly accessed columns are located in the
same partition. In addition, irregular partitioning is typically
adopted by the HTAP systems with a hybrid architecture
(e.g., Proteus [6]). Irregular partitioning does not shard the
database at the granularity of rows or columns but extends
the existing abstraction of hybrid architecture by spanning
hybrid formats into multiple partitions. Similar to the adap-
tive policy of working on a single partition, it adaptively shifts
data across partitions based on workload perspective.

@ Springer

H.Song et al.

C1 C, C3 C4 Cg GCg

C1 C, C3 C4 Cs Cg Ry 11 21 31 41 51 61
Ryl 11| 21| 31| 41 | 51 | 61 Ro| 12 22 82 42 52 o2
Ro| 12 |22 | 32 | 42 | 52 | 62 Rs| 13 23 33 43 53 63
R
3| 13 |23 |33 | 43 |53 | 63 Ci C, Cs Cs Cs Cs
Ral 14 |24 |34 |44 |54 |64 R4| 14 24 34 44 54 64
Rs| 15 |25 | 35 | 45 | 55 | 65 Rs| 15 25 35 45 55 65
Rp| 16 | 26 | 36 | 46 | 56 | 66 Rg| 16 26 36 46 56 66

Logical Table Horizontal Partition

Fig. 11

Excluding using an irregular partition strategy for HTAP
with a hybrid architecture, which essentially blurs the bound-
ary of row and column stores, it’s challenging to draft a
consistent and efficient partitioning strategy for the two types
of data formats (i.e., rows and columns). Existing strategies
can be classified into two categories: symmetric and asym-
metric.

Symmetric partitioning adopts the same partition strat-
egy for both row store and column store. Thus, each data
partition in the column store can be precisely mapped to a
data partition in the row store, simplifying data management
by eliminating cross-partition data synchronization. Typical
implementations include VEGITO [150] and TiDB [78].

On the other hand, asymmetric partitioning has the poten-
tial to generate a more efficient partitioning strategy by
customizing the strategy for each data store and workload
independently. For instance, SAP HANA [96] maintains a
row store in a single physical machine without partition-
ing, while its column store is independently partitioned and
distributed across multiple smaller physical machines. This
enables it to avoid the cross-partition two-phase commit
[119] (2PC) for OLTP workloads while serving partition-
friendly OLAP workloads in a more scalable way. Janus [18]
also uses horizontal partitioning for the row store and vertical
partitioning for the column store by default.

6 Discussion and lessons learned

In the previous sections, we have examined the design of dif-
ferent HTAP systems. In this section, we aim to shed light on
the reasons why these designs persisted and provide coarse-
grained design guidelines for newcomers.

Sincerely, most of the existing HTAP systems have
evolved from legacy OLTP or OLAP architecture to serve
their needs of HTAP, and their evolution routes diverge from
the root. For instance, SQL Server, Oracle, and PolarDB-
IMCI start from an existing OLTP system and strive to
provide a plug-in OLAP acceleration using columnar data
formats. In turn, SingleStore and SAP HANA start from a
current OLAP system and try to provide essential OLTP per-

@ Springer

C1 Cp Cg Cs Cs GCs C1 C, C3 C4 Cs Cg
Ry[11 [21]a1] Rijar |51 61 Ry| 11 21 41 51 61
Rol12 |22 | 32| Relaz |52 |62 Ro|12 22 42 52 62
Rs |13 |23 |33 | Ralas |53 | 63 Ra[13 23 43 53 63
Ra |12 |24 |34 | Balss |54 | 64 R4 34 44 54 64
Rs (15 |25 | 35| Rs|as |55 | 65 Rs 35 45 55 65
Rg |16 | 26 | 36 | R |46 | 56 | 66 RGW 3 46 56 66

Vertical Partition Irregular Partition

Comparison of sharding strategies. This figure is a reprint of Fig. 1 in [82]

formance over the column store. Separated design bridges
two existing OLTP and OLAP systems using a similar
approach as real-time ETL (see Sect.2.1). The difference
is that for better data freshness, the separated design imple-
ments the data synchronization inside the database and uses
system-specific design at the cost of sacrificing versatil-
ity. The hybrid architecture seems to be the best native
approach for handling HTAP. However, there are several open
problems when deploying them into the industry. First, the
performance of such a design heavily relies on the algorithms
that reform the data formats, which inevitably incurs insta-
bility in complex real-world applications. Second, debugging
and management of such a design is always tricky. Third, it
introduces a fair complexity in managing secondary indexes
since the indexed data may have different formats and redun-
dant copies.

To guide an HTAP system designer in selecting data
formats and architectures from scratch, we summarize our
main findings concerning the pros and cons of different
architectures in Table 5. This is a coarse-grained guideline,
and practical databases are much more complex than our
abstraction. The data format and architecture choice can be
important, but not all. Specific optimizations can also con-
tribute to the overall performance.

7 Applications and benchmarks

Thus far, we have reviewed the different HTAP architectures
and their unique challenges and solutions. We now briefly
discuss HTAP applications and benchmarks.

7.1 Real-time applications

Real-time applications drive the development of HTAP. In
addition to bridging existing OLTP and OLAP applications,
several cutting-edge real-time applications are proposed in
the literature, including analytical applications, dashboards,
and real-time prediction using machine learning.

For instance, fraud detection applications [36, 135, 136]
analyze the continuously generated transactions to prevent

A survey on hybrid transactional and analytical processing

money or property from being obtained through false pre-
tenses. System monitoring applications [46, 170] derive
real-time system metrics swiftly based on data logs. Social
trading [129, 176] applications offer a sense of trading com-
munity to traders by monitoring the influx of retail traders.
Innovative industry applications [134, 174] automate the
management of manufacturing and supply chains by con-
ducting timely decisions based on fresh information.

A thorough review of these applications is beyond the
scope of this paper; however, we list their desirable require-
ments for data freshness and consistency in Table 6 and
several key inspirations below. First, automatic decision-
making applications desire data freshness as high as possible.
In contrast, human-in-the-loop applications desire data fresh-
ness close to the boundary of human reaction time (i.e.,
150-300 ms). Second, mission-critical applications (e.g.,
fraud detection) have stringent consistency requirements for
generating analytical results with high quality, while routine
analysis services may tolerate some inconsistent data. This
suggests that the consistency model of a full-fledged HTAP
system should be configurable, further influencing the design
of HTAP (e.g., the data synchronization approaches).

Complexity
Medium
Medium
Medium
High

Low

Perf. Stability

Poor
Medium
Medium
Strong
Poor

Scalability
Poor/Medium
Medium
Medium
Poor/Medium

Strong

Perf. Isolation
Poor

Medium
Medium
Strong

Poor

7.2 Benchmarks

As more and more HTAP systems have been developed, a
benchmark with representative data schema and workloads is
essential for evaluating existing system designs and directing
future development. For this purpose, several HTAP bench-
marks are proposed in the literature (see Table 7).

Most existing HTAP benchmarks mix the OLTP and
OLAP workloads from existing ones. We observe that these
benchmarks usually target a much simpler querying scenario
than a benchmark traditional data warehouse (e.g., TPC-DS).

Specifically, many existing HTAP benchmarks use TPC-C
[53] for OLTP workloads and TPC-H [52] for OLAP work-
loads. Among them, CH-benCHmark is one of the most
representative ones, which is widely adopted by the exist-
ing HTAP systems, e.g., BatchDB [111], TiDB [78], VEGITO
[150], etc. In particular, CH-benCHmark [48] unifies the
schema of TPC-C and TPC-H by keeping the TPC-C schema
unmodified and adding some necessary tables to fulfill equiv-
alent queries from TPC-H. The benchmark can be scaled by
partitioning a database into multiple warehouses. Each ware-
house is a data shard and can be deployed across multiple
physical machines or data sites. Generally, CH-benCHmark
keeps transactions and queries unmodified from the TPC-C
and TPC-H and thus has a similar complexity as the well-
studied benchmarks.

HTAPBench [47] follows a similar schema design, con-
fining the schema from TPC-C and TPC-E. Additionally,
HTAPBench proposes a new evaluation metric: OpHpW.
Instead of evaluating transactions and queries using inde-

Data Freshness

High
High
High
Medium
High

Storage Overhead

Medium
High
Small

Medium

Small

Query Perf
Limited
Medium
Good
Good
Medium

Txn Perf
Good
Good
Limited
Good
Medium

Table 5 A comparison of different formats and architecture choices in various aspects

Monolithic
Row-native
Column-native
Separated
Hybrid

@ Springer

H.Song et al.

Table 6 HTAP applications Real-time HTAP Applications

Freshness (ms) Consistency

Fraud Detection [36, 135, 136]
System Monitoring [46, 170]
Innovative Industry 4.0 [134, 174]
HealthCare [42, 159]

Online Gaming [165]

Stock Price Monitor [43, 91]
Dynamic Pricing [40, 56]

E-commerce Intelligence [93, 143]

~20 strong
~20 strong
~20 strong
~100 strong
~100 medium
~200 medium
~200 medium
~200 medium

A summary of the cutting-edge real-time applications with stringent data freshness and consistency require-
ments. Human reaction time takes 150-300 ms on average

pendent metrics (e.g., throughput for OLTP and latency for
OLAP), OpHpW calculates the throughput of transactions
and analytical queries in the same equation. As such, OpHpW
can be a representative metric for HTAP. Same as CH-
benCHmark, HTAPBench keeps transactions and queries
unmodified from the TPC-C and TPC-H.

HTAPTrick [117] bridges TPC-C and TPC-H with a star
schema (i.e., TPC-H SSB [128]). Star schema provides a
clear division between dimension tables and fact tables,
where dimension tables are most likely to join fact tables
with their primary keys. As star schemas can provide perfor-
mance enhancements for read-only reporting applications,
they have become popular in the OLAP community. HTAP-
Trick follows this design to explore real-world use cases.
To run TPC-C on star schemas, HTAPTrick rewrites the
transactions while keeping the logic unmodified. As such,
HTAPTrick has the same complexity as TPC-C and TPC-
H, while the queries can result in improved performance for
aggregation operations (e.g., Join) thanks to the star schema.

TPC-HC [158] is another benchmark over TPC-C and
TPC-H. Different from the aforementioned benchmarks,
TPC-HC uses the schema directly from TPC-H and inte-
grates TPC-C transactions by rewriting them and tailoring
them to the schema of TPC-H. By doing so, the transactions
of TPC-HC are simpler than TPC-C, while the OLAP queries
are the same as TPC-H.

CBTR [25] is a composite benchmark for evaluating
order-to-cash applications. CBTR is based on a global
enterprise’s data set and thus targets real-world workloads.
Nevertheless, to our knowledge, CBTR is not open-sourced.

Besides mixing OLTP and OLAP workloads for build-
ing HTAP workloads, several studies [63, 103, 126, 130]
feature that HTAP transactions should be able to contain
analytical operations inside transactions. These benchmarks
target to model a widely observed behavior pattern: mak-
ing a quick decision while consulting real-time analysis. To
our knowledge, Kang et al. has proposed a benchmark called
Olxpbench, where a real-time query is embedded between

@ Springer

transactions. Overall, the benchmarks contain three domain-
specific schemas and workloads.

Due to the integration of query operators, the transactions
in Olxpbench are much more complex and have a larger exe-
cution, which may lead to a big contention window (i.e., the
period to conflict with other transactions). The complexity
of OLAP remains unmodified as its initial benchmark. For
interested readers, the OLAP queries in Subenchmark are
the same as queries in TPC-H. Fibenchmark involves many
scan-intensive queries while fewer joins. The OLAP queries
of Tabenchmark have moderate scans and join complexity.

8 Future directions

Although many novel technologies and architectures have
been proposed to make HTAP practical, some further oppor-
tunities and challenges exist. In this section, we outline and
discuss some prospective and interesting research directions.

8.1 Software and hardware co-design

Co-designing software and hardware in HTAP is currently
on the rise due to the increased adoption of accelerators
(e.g., FPGAs and GPUs). There are several existing works
worth noting. Polynesia [30] proposed an energy-efficient
in-memory HTAP implementation, which leverages hard-
ware and software co-designed components (called islands).
Each island is specialized for specific types of queries (either
for OLTP or OLAP). In particular, islands cooperate with
processing-in-memory (PIM) hardware and specifically opti-
mized algorithms to speed up the computation.

In addition, GPU databases accelerate queries by divid-
ing query processing into multiple fine-grained data-parallel
GPU tasks. Several works [16, 98, 139] have been contributed
to exploring such a heterogeneous HTAP database by exe-
cuting OLAP queries on GPUs. However, there are still some
open problems. For instance, the scalability of heterogeneous
HTAP is limited, and the interleaving between CPU/GPU

A survey on hybrid transactional and analytical processing

Table 7 HTAP benchmarks

Columns Indices Txns Queries

Tables

Scenarios

Originated From

Benchmarks

22
22
13

106
61

12

E-commerce

TPC-C [53], TPC-H [52]

CH-benCHmark [48], HTAPBench [47]

TPC-HC [158]

E-commerce

TPC-C [53], TPC-H [52]

63

E-commerce

TPC-C [53], TPC-H (SSB) [128]

HATrick [117]
CBTR [25]

11
10
12
13

28

Order-to-cash

E-commerce 92

TPC-C [53], TPC-H [52]

Small Bank [13]

TATP [51]

Olxpbench-Subenchmark [83]
Olxpbench-Fibenchmark [83]

Banking

51

Telecom

Olxpbench-Tabenchmark [83]

A summary of existing HTAP benchmarks and their characters

processing is complex. Note that the interleaving between
CPU/GPU can be unavoidable when an analytical operator
is embedded in a transaction (see Sect.7.2).

Other hardware, such as persistent memory, secure hard-
ware, and remote direct memory access NICs, may also be
worth attention. How to develop HTAP systems on this new
hardware remains unexplored.

8.2 Serverless and cloud-native HTAP

The advent of new serverless and cloud-native architec-
tures has introduced new opportunities for HTAP. The
benefits of adapting HTAP systems to cloud-native archi-
tectures include elastic resource scheduling, independent
fault-tolerance between storage and computing, stringent
service-level agreement (SLA) to ensure reliability, and easy
manageability with reduced operational cost [101].

There are several cloud-native HTAP systems that have
been proposed. For instance, MemSQL [131] (renamed as
SingleStore in 2022) absorbs two key innovations from the
cloud-native designs to shift its HTAP database. First, it sep-
arates the storage and computing layers to provide excellent
resource elasticity in both of the two layers. Second, it unifies
its table storage for row and column storage to mitigatcost
of storing redundant data copies. PolarDB-IMCI [168] is
another example that follows the separation of storage and
computing layers. By adopting such a design, PolarDB-IMCI
is ablcan up in seconds and scale out in minutes to handle
workload spikes of OLAP. Moreover, it introduces a new
checkpoint mechanism for fast recovery in case of the single
point of failure using cloud facilities.

Although these existing explorations are exciting, the
design choices are based on their unique architecture, leaving
other aspects unexplored (e.g., the cloud-native architecture
for monolithic HTAP). Furthermore, memory disaggregation
has become more and more popular nowadays, especially
because the next generation of in-datacenter networks can
be ultra-fast (e.g., powered by CXL). Generally, the disag-
gregated memory architecture detaches CPUs and memory
by abstracting them into resource pools to reduce the total
cost of resource ownership in a cloud-native environment.
How to leverage this concept to guide the design of HTAP is
still an open problem.

8.3 Beyond column store

As far as we consider, column store is treated as the default
data format complements to row store. Actually, although
real-world applications usually prefer row stores for trans-
actions due to the given relational model, they may desire
another specialized data format for analytical queries. For
instance, complementary to column store, databases with
novel data models are increasingly popular for analytical

@ Springer

H.Song et al.

workloads, e.g., graph databases [15, 33], spatial databases
[76, 173], and time series databases [24, 140]. To absorb
the advancements of these new databases, a well-customized
HTAP system demands a re-design of data synchronization
approaches, delta buffer, meta-data, execution engine, and
query optimizer.

To our knowledge, several works have explored cus-
tomized HTAP designs for graph databases. Jibril et al.
proposed a new data synchronization approach when build-
ing HTAP over graph database. In particular, they use an
update-friendly table in an optimized sparse matrix format
to propagate transactional updates. Another work introduces
GART [151], performing dynamic graph analytical process-
ing tasks on the datasets generated by relational OLTP.
In particular, GART customizes an efficient and mutable
compressed sparse row representation for graph scans and
proposes a coarse-grained (MVCC) scheme to reduce the
temporal and spatial overhead of the version. These issues
can be specific to graph HTAP, which may not be studied in
existing HTAP systems that use column stores.

8.4 Optimizer for HTAP workloads

Designing optimizers in an HTAP database is challenging.
As evident in Sect.5.5.7, the extension of both data source
and operators is accompanied by an exponential increase
in plan search space. Thus, efficient heuristics to prune the
search space are highly desirable. Existing methods [58, 78]
only consider leveraging cost functions to select the access
path (i.e., data source) while neglecting store-specific query
operators (see Table 4). Additionally, as asynchronous data
synchronization causes a visibility delay between the row
and column stores, row stores in HTAP always have better
data freshness than column stores. As such, interesting trade-
offs should be made to achieve the best timeliness of queries:
accelerating OLAP queries using column stores or retrieving
the required data from row stores for better freshness.

In addition, learned optimizers [114] have attracted a lot
of research interest and shown practical gains by learning a
mapping between an incoming query and the execution strat-
egy [103]. For instance, Bao [113] steers query optimizers
using reinforcement learning. Specifically, Bao automati-
cally learns from the changes in query workloads, data, and
schema and provides per-query optimization hints.

In HTAP, how to efficiently utilize those learning algo-
rithms is unclear. Unlike predicting query latency on a static
data copy, ongoing transactions may influence the latency
due to physical and logical resource contention (e.g., latches
on a data object). To forecast the best query plan, a learned
optimizer may need to learn the properties of OLTP work-
loads before estimating the cost.

As pointed out by previous papers [177], learning-based
optimizers cannot work well for dynamic workloads. Some

@ Springer

recent works also consider combining learning with the exist-
ing cost models. For instance, Yu et al. propose a hint-based
candidate generation method that leverages the learning-
based method to generate highly beneficial hints and uses a
cost-based method to supplement the hints to generate com-
plete plans as candidates. Yang et al. takes a similar approach
while identifying important parameters within the cost model
and using a fast-learning model to adjust them for each spe-
cific hardware and software configuration.

In our vision, combining the learning approach with the
traditional cost model (as well as statistics) can be a moderate
solution for HTAP optimizers.

8.5 Learned data format

Recall the design of HTAP with a hybrid architecture. A
system with a hybrid architecture can efficiently learn phys-
ical format design, thus blurring the boundary of row and
column stores. Existing approaches (e.g., [6, 7]) learn the
cost of data accesses and predict their latency under different
storage formats. For instance, Tiresias [7] makes predictions
by collecting observed latencies and access histories to build
predictive models in an online manner, enabling autonomous
storage and index adaptation.

To our knowledge, these learning algorithms are com-
monly used for hybrid architecture and have not been well
explored in other architectures. For instance, for row-oriented
architecture, systems may also need an advisor to suggest
which column (or segmentation of the column) can be most
valuable for constructing an index when the memory space
can be limited. We regard these interesting explorations and
development as future works.

9 Conclusion

Hybrid transactional/analytical processing (HTAP) is an
increasingly important subject of research and development.
It introduces massive technical challenges and opens many
opportunities to the database community.

In this paper, we systematically review the existing HTAP
architectures. We summarize the common HTAP-specific
issues and challenges in implementing an efficient HTAP sys-
tem. We also compare different design choices based on the
assumption of their underlying architecture and discuss how
the proposed methods can handle the aforementioned chal-
lenges. Moreover, we discuss the cutting-edge applications,
benchmarks, and future directions to push forward future
research in this area.

Acknowledgements We thank all anonymous reviewers for their valu-
able comments. The work is supported in part by National Key R&D
Program of China (2022ZD0160200), HK RIF (R7030-22), HK ITF
(GHP/169/20SZ), the Huawei Flagship Research Grants in 2021 and

A survey on hybrid transactional and analytical processing

2023, HK RGC GRF (Ref: HKU 17208223), the HKU-SCF FinTech
Academy R&D Funding Schemes in 2021 and 2022, and the Shanghai
Artificial Intelligence Laboratory.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, D.: Data Partitioning, pp. 599-600. Springer, Boston
(2009)

2. Abadi, D., Babu, S., Ozcan, F., Pandis, L.: Sql-on-hadoop systems:
tutorial. Proc. VLDB Endow. 8(12), 2050-2051 (2015)

3. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and
execution in column-oriented database systems. In: Proceedings
of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, pp. 671-682 (2006)

4. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-
stores: how different are they really? In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data, pp. 967-980 (2008)

5. Abadi, D.J., Myers, D.S., DeWitt, D.J., Madden, S.R.: Materi-
alization strategies in a column-oriented dbms. In: 2007 IEEE
23rd International Conference on Data Engineering, pp. 466—475.
1EEE (2006)

6. Abebe, M., Lazu, H., Daudjee, K.: Proteus: Autonomous adap-
tive storage for mixed workloads. Technical report, University of
Waterloo. https://cs.uwaterloo.ca (2022)

7. Abebe, M., Lazu, H., Daudjee, K.: Tiresias: enabling predictive
autonomous storage and indexing. Proc. VLDB Endow. 15(11),
3126-3136 (2022)

8. Agrawal, N., Vulimiri, A.: Low-latency analytics on colossal data
streams with summarystore. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pp. 647-664 (2017)

9. Ailamaki, A., DeWitt, D.J., Hill, M.D.: Data page layouts for
relational databases on deep memory hierarchies. VLDB J. 11(3),
198-215 (2002)

10. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving
relations for cache performance. VLDB 1, 169-180 (2001)

11. Akal, F., Bohm, K., Schek, H.-J.: Olap query evaluation in a
database cluster: a performance study on intra-query parallelism.
In: East European Conference on Advances in Databases and
Information Systems, pp. 218-231. Springer (2002)

12. Alagiannis, I, Idreos, S., Ailamaki, A.: H20: a hands-free adaptive
store. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pp. 1103-1114 (2014)

13. Alomari, M., Cahill, M., Fekete, A., Rohm, U.: The cost of serial-
izability on platforms that use snapshot isolation. In: 2008 IEEE
24th International Conference on Data Engineering, pp. 576-585.
IEEE (2008)

14. Andoga, R., Schreiner, M., Moravec, T., F6z0, L., Schrotter, M.:
Automatic decision making process in a small unmanned airplane.
In: 2018 IEEE 18th International Symposium on Computational

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Intelligence and Informatics (CINTI), pp. 000301-000306. IEEE
(2018)

. Angles, R., Gutierrez, C.: Survey of graph database models. ACM

Comput. Surv. 40(1), 1-39 (2008)

Appuswamy, R., Karpathiotakis, M., Porobic, D., Ailamaki, A.:
The case for heterogeneous htap. In: 8th Biennial Conference on
Innovative Data Systems Research, number CONF (2017)
Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K.,
Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A. et al.: Spark
sql: relational data processing in spark. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data, pp. 1383-1394 (2015)

. Arora, V., Nawab, F., Agrawal, D., El Abbadi, A.: Janus: a

hybrid scalable multi-representation cloud datastore. IEEE Trans.
Knowl. Data Eng. 30(4), 689-702 (2017)

Arulraj, J., Pavlo, A., Menon, P.: Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In:
Proceedings of the 2016 International Conference on Manage-
ment of Data, pp. 583-598 (2016)

Bacon, D.F,, Bales, N., Bruno, N., Cooper, B.F., Dickinson, A.,
Fikes, A., Fraser, C., Gubarev, A., Joshi, M., Kogan, E. et al.:
Spanner: becoming a sql system. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 331—
343 (2017)

Barber, R., Garcia-Arellano, C., Grosman, R., Lohman, G.,
Mohan, C., Muller, R., Pirahesh, H., Raman, V., Sidle, R., Storm,
A.,etal.: Wiser: a highly available htap dbms for iot applications.
In: 2019 IEEE International Conference on Big Data (Big Data),
pp. 268-277. IEEE (2019)

Barber, R., Huras, M., Lohman, G., Mohan, C., Mueller, R.,
Ozcan, E, Pirahesh, H., Raman, V., Sidle, R., Sidorkin, O., et al.:
Wildfire: concurrent blazing data ingest and analytics. In: Pro-
ceedings of the 2016 International Conference on Management
of Data, pp. 2077-2080 (2016)

Bender, M.A., Farach-Colton, M., Jannen, W., Johnson, R., Kusz-
maul, B.C., Porter, D.E., Yuan, J., Zhan, Y.: An introduction to
b-trees and write-optimization. login; magazine, 40(5), (2015)
Bitincka, L., Ganapathi, A., Sorkin, S., Zhang, S.: Optimizing data
analysis with a semi-structured time series database. In: Workshop
on Managing Systems via Log Analysis and Machine Learning
Techniques (SLAML 10) (2010)

Bog, A., Kruger, J., Schaffner, J.: A composite benchmark for
online transaction processing and operational reporting. In: 2008
IEEE Symposium on Advanced Management of Information for
Globalized Enterprises (AMIGE), pp. 1-5. IEEE (2008)

Bog, A., Sachs, K., Zeier, A., Plattner, H.: Normalization in a
mixed oltp and olap workload scenario. In: Technology Confer-
ence on Performance Evaluation and Benchmarking, pp. 67-82.
Springer (2011)

Boncz, P.A., Zukowski, M.: Vectorwise: beyond column stores.
IEEE Data Eng. Bull. 35(1), 21-27 (2012)

Boncz, P.A., Manegold, S., Kersten, M.L., et al.: Database archi-
tecture optimized for the new bottleneck: memory access. VLDB
99, 54-65 (1999)

Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: hyper-
pipelining query execution. Cidr 5, 225-237 (2005)
Boroumand, A., Ghose, S., Oliveira, G.F., Mutlu, O.:
Enabling high-performance and energy-efficient hybrid transac-
tional/analytical databases with hardware/software cooperation.
arXiv preprint arXiv:2204.11275 (2022)

Bottcher, J., Leis, V., Neumann, T., Kemper, A.: Scalable garbage
collection for in-memory mvce systems. Proc. VLDB Endow.
13(2), 128-141 (2019)

Buchmann, A.P., McCarthy, D.R., Hsu, M., Dayal, U.: Time-
critical database scheduling: a framework for integrating real-time
scheduling and concurrency control. In: Proceedings. Fifth Inter-

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://cs.uwaterloo.ca
http://arxiv.org/abs/2204.11275

H.Song et al.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

national Conference on Data Engineering, pp. 470-471. IEEE
Computer Society (1989)

Buragohain, C., Risvik, K.M., Brett, P., Castro, M., Cho, W.,
Cowhig, J., Gloy, N., Kalyanaraman, K., Khanna, R., Pao, J. et al.:
Al: A distributed in-memory graph database. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 329-344 (2020)

Butterstein, D., Martin, D., Stolze, K., Beier, F., Zhong, J., Wang,
L.: Replication at the speed of change: a fast, scalable replication
solution for near real-time htap processing. Proc. VLDB Endow.
13(12), 3245-3257 (2020)

Camilleri, C., Vella, J.G., Nezval, V.: Htap with reactive streaming
ETL. J. Cases Inf. Technol. 23(4), 1-19 (2021)

Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., Qi, Y.: Titant:
online real-time transaction fraud detection in ant financial. arXiv
preprint arXiv:1906.07407, (2019)

Cao, T., Vaz Salles, M., Sowell, B., Yue, Y., Demers, A., Gehrke,
J., White, W.: Fast checkpoint recovery algorithms for frequently
consistent applications. In: Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pp.
265-276 (2011)

Chen, J., Jindel, S., Walzer, R., Sen, R., Jimsheleishvilli, N.,
Andrews, M.: The memsql query optimizer: a modern optimizer
for real-time analytics in a distributed database. Proc. VLDB
Endow. 9(13), 1401-1412 (2016)

Chen, J., Ding, Y., Liu, Y., Li, F, Zhang, L., Zhang, M., Wei, K.,
Cao, L., Zou, D., Liu, Y., et al.: Bytehtap: bytedance’s htap system
with high data freshness and strong data consistency. Proc. VLDB
Endow. 15(12), 3411-3424 (2022)

Chen, M.K., Sheldon, M.: Dynamic pricing in a labor market:
surge pricing and flexible work on the uber platform. Ec, 16, 455
(2016)

Chen, X., Song, H., Jiang, J., Ruan, C., Li, C., Wang, S., Zhang, G.,
Cheng, R., Cui, H.: Achieving low tail-latency and high scalability
for serializable transactions in edge computing. In: Proceedings
of the Sixteenth European Conference on Computer Systems, pp.
210-227 (2021)

Chisholm, S.: Adopting medical technologies and diagnostics rec-
ommended by nice: the health technologies adoption programme
(2014)

Choudhury, S., Ghosh, S., Bhattacharya, A., Fernandes, K.J.,
Tiwari, M.K.: A real time clustering and svm based price-volatility
prediction for optimal trading strategy. Neurocomputing 131,
419-426 (2014)

Cipar, J.: Trading latency for freshness in storage systems (2012)
Inc. ClickHouse. ClickHouse—open source distributed column-
oriented DBMS. https://github.com/ClickHouse/ClickHouse/
tree/22.6

ALIBABA CLOUD. Double 11 Real-Time Monitoring System
with Time Series Database. https://www.alibabacloud.com/blog/
594855

Coelho, F., Paulo, J., Vilaga, R., Pereira, J., Oliveira, R.: Htap-
bench: hybrid transactional and analytical processing benchmark.
In: Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering, pp. 293-304 (2017)

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A.,
Krompass, S., Kuno, H., Nambiar, R., Neumann, T., Poess, M.,
et al.: The mixed workload ch-benchmark. In: Proceedings of the
Fourth International Workshop on Testing Database Systems, pp.
1-6 (2011)

Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121-
137 (1979)

Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Fur-
man, J.J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild,
P, et al.: Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst. 31(3), 1-22 (2013)

@ Springer

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

75.

TATP Benchmark Council. TATP Benchmark Description (Ver-
sion 1.0). http://tatpbenchmark.sourceforge.net

THE TRANSACTION PROCESSING COUNCIL. TPC-H.
http://www.tpc.org/tpch/

THE TRANSACTION PROCESSING COUNCIL. TPC-C.
http://www.tpc.org/tpcc/, 2014

Cubukcu, U., Erdogan, O., Pathak, S., Sannakkayala, S., Slot, M.:
Citus: distributed postgresql for data-intensive applications. In:
Proceedings of the 2021 International Conference on Manage-
ment of Data, pp. 2490-2502 (2021)

Dageville, B., Cruanes, T., Zukowski, M., Antonov, V., Avanes,
A.,Bock, J., Claybaugh, J., Engovatov, D., Hentschel, M., Huang,
J, et al.: The snowflake elastic data warehouse. In: Proceedings of
the 2016 International Conference on Management of Data, pp.
215-226 (2016)

Science Direct. Real-Time Pricing. https://www.sciencedirect.
com/topics/engineering/real-time- pricing

Dittrich, J., Jindal, A.: Towards a one size fits all database archi-
tecture. In: CIDR, pp. 195-198 (2011)

Dziedzic, A., Wang, J., Das, S., Ding, B., Narasayya, V.R., Sya-
mala, M.: Columnstore and b+ tree-are hybrid physical designs
important? In: Proceedings of the 2018 International Conference
on Management of Data, pp. 177-190 (2018)

Dziedzic, A., Wang, J., Das, S., Ding, B., Narasayya, V.R., Sya-
mala, M.: Columnstore and b+ tree-are hybrid physical designs
important? In: Proceedings of the 2018 International Conference
on Management of Data, pp. 177-190 (2018)

Fu, Y., Soman, C.: Real-time data infrastructure at uber. In: Pro-
ceedings of the 2021 International Conference on Management
of Data, pp. 2503-2516 (2021)

Funke, F., Kemper, A., Neumann, T.: Benchmarking hybrid
oltp&olap database systems. Datenbanksysteme fiir Business,
Technologie und Web (BTW) (2011)

Funke, F., Kemper, A., Neumann, T.: Compacting transac-
tional data in hybrid oltp & olap databases. arXiv preprint
arXiv:1208.0224 (2012)

Gartner. Setting the Record Straight—HTAP & OPDBMS.
https://blogs.gartner.com/donald-feinberg/2018/01/11/setting-
record-straight-htap/

Goldberg, R.P.: Survey of virtual machine research. Computer
7(6), 3445 (1974)

Google. Alloydb for postgresql under the hood: colum-
nar engine. https://cloud.google.com/blog/products/databases/
alloydb-for-postgresql-columnar-engine, (2022)

Graefe, G.: Volcano: an extensible and parallel query evaluation
system. IEEE Trans. Knowl. Data Eng. 6(1), 120135 (1994)
Graefe, G., et al.: Modern b-tree techniques. Found. Trends
Databases 3(4), 203-402 (2011)

Gray, S., Ozcan, E, Pereyra, H., van der Linden, B., Zubiri, A.:
Ibm big sql 3.0: Sql-on-hadoop without compromise (2014)

Ant Group. OceanBase. https://www.oceanbase.com/en

Docker Group. What is a Container? https://www.docker.com/
resources/what-container/

Linux Group. Control Groups. https://www.kernel.org/doc/html/
latest/admin-guide/cgroup-v1/cgroups.html

Guerraoui, R., Schiper, A.: Fault-tolerance by replication in
distributed systems. In: International Conference on Reliable Soft-
ware Technologies, pp. 38-57. Springer (1996)

Guerraoui, R., Schiper, A.: Software-based replication for fault
tolerance. Computer 30(4), 68—74 (1997)

Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R., Stefani,
S., Srinivasan, V.: Amazon redshift and the case for simpler data
warehouses. In: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1917-1923 (2015)
Gupta, M.K., Chandra, P.: A comprehensive survey of data min-
ing. Int. J. Inf. Technol. 12(4), 1243-1257 (2020)

http://arxiv.org/abs/1906.07407
https://github.com/ClickHouse/ClickHouse/tree/22.6
https://github.com/ClickHouse/ClickHouse/tree/22.6
https://www.alibabacloud.com/blog/594855
https://www.alibabacloud.com/blog/594855
http://tatpbenchmark.sourceforge.net
http://www.tpc.org/tpch/
http://www.tpc.org/tpcc/
https://www.sciencedirect.com/topics/engineering/real-time-pricing
https://www.sciencedirect.com/topics/engineering/real-time-pricing
http://arxiv.org/abs/1208.0224
https://blogs.gartner.com/donald-feinberg/2018/01/11/setting-record-straight-htap/
https://blogs.gartner.com/donald-feinberg/2018/01/11/setting-record-straight-htap/
https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://www.oceanbase.com/en
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html

A survey on hybrid transactional and analytical processing

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Giiting, R.H.: An introduction to spatial database systems. VLDB
J. 3(4), 357-399 (1994)

Hsiao, H.-1., DeWitt, D.J.: A performance study of three high
availability data replication strategies. Distrib. Parallel Databases
1(1), 53-79 (1993)

Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Fei, X., Shen,
L., Tang, L., Zhou, Y., Huang, M., et al.: Tidb: a raft-based htap
database. Proc. VLDB Endow. 13(12), 3072-3084 (2020)
Oracle Inc. Heap-organized table. https://www.orafaq.com/wiki/
Heap-organized_table

SnowFlake Inc. Unistore: A modern approach to working with
transactional and analytical data together in a single platform.
https://www.snowflake.com/workloads/unistore/

Jin, G., Bian, H., Chen, Y., Du, X.: Columnar storage optimization
and caching for data lakes. In: EDBT, pp. 2-419 (2022)

Kang, D., Jiang, R., Blanas, S.: Jigsaw: a data storage and query
processing engine for irregular table partitioning. In: Proceedings
of the 2021 International Conference on Management of Data, pp.
898-911 (2021)

Kang, G., Wang, L., Gao, W., Tang, F., Zhan, J.: Olxpbench: real-
time, semantically consistent, and domain-specific are essential in
benchmarking, designing, and implementing htap systems. arXiv
preprint arXiv:2203.16095 (2022)

Kemme, B., Alonso, G.: Don’t be lazy, be consistent: postgres-
r, a new way to implement database replication. In: VLDB, pp.
134-143. Citeseer (2000)

Kemper, A., Neumann, T.: Hyper: a hybrid oltp&olap main mem-
ory database system based on virtual memory snapshots. In: 2011
IEEE 27th International Conference on Data Engineering, pp.
195-206. IEEE (2011)

Kemper, A., Neumann, T., Funke, F., Leis, V., Miihe, H.: Hyper:
Adapting columnar main-memory data management for transac-
tional and query processing. IEEE Data Eng. Bull. 35(1), 46-51
(2012)

Kester, M.S., Athanassoulis, M., Idreos, S.: Access path selec-
tion in main-memory optimized data systems: Should i scan or
should i probe? In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 715-730 (2017)

Kim, J., Ahn, J., Lee, K., Ryu, M., Jung, H.: Hybrid trans-
actional/analytical processing amplifies io in Ism-trees. IEEE
Access (2022)

Kim, J., Kim, K., Cho, H., Yu, J., Kang, S., Jung, H.: Rethink
the scan in mvce databases. In: SIGMOD 21, pp. 938-950, New
York, NY, USA, 2021. Association for Computing Machinery
Kim, J., Yu, J., Ahn, J., Kang, S., Jung, H.: Diva: Making mvcc
systems htap-friendly. In: Proceedings of the 2022 International
Conference on Management of Data, pp. 49-64 (2022)

Konana, P, Ram, S.: Semantics-based transaction processing
for real-time databases: the case of automated stock trading.
INFORMS J. Comput. 11(3), 299-315 (1999)

Lahiri, T., Chavan, S., Colgan, M., Das, D., Ganesh, A., Gleeson,
M., Hase, S., Holloway, A., Kamp, J., Lee, T.-H., et al. Ora-
cle database in-memory: a dual format in-memory database. In:
2015 IEEE 31st International Conference on Data Engineering,
pp- 1253-1258. IEEE (2015)

Larson, P., Birka, A., Hanson, E.N., Huang, W., Nowakiewicz, M.,
Papadimos, V.: Real-time analytical processing with sql server.
Proc. VLDB Endow. 8(12), 1740-1751 (2015)

Larson, P., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Ran-
garajan, S., Surna, A., Zhou, Q.: Sql server column store indexes.
In: Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data, pp. 1177-1184 (2011)

LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz,
N.: Big data, analytics and the path from insights to value. MIT
Sloan Manag. Rev. 52(2), 21-32 (2011)

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Lee, J., Kim, K.H., Lee, H., Andrei, M., Ko, S., Keller, F., Han,
W.-S.: Asymmetric-partition replication for highly scalable dis-
tributed transaction processing in practice. Proc. VLDB Endow.
13(12), 3112-3124 (2020)

Lee, J., Moon, S.H., Kim, K.H., Kim, D.H., Cha, S.K., Han, W.-
S.: Parallel replication across formats in sap hana for scaling out
mixed oltp/olap workloads. Proc. VLDB Endow. 10(12), 1598-
1609 (2017)

Lee, R., Zhou, M., Li, C., Shenggang, H., Teng, J., Li, D., Zhang,
X.: The art of balance: a rateupdb™ experience of building a
cpu/gpu hybrid database product. Proc. VLDB Endow. 14(12),
2999-3013 (2021)

Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neu-
mann, T.: How good are query optimizers, really? Proc. VLDB
Endow. 9(3), 204-215 (2015)

Lepers, B., Balmau, O., Gupta, K., Zwaenepoel, W.: Kvell+: snap-
shot isolation without snapshots. OSDI’20, USA, 2020. USENIX
Association

Li, F.: Cloud-native database systems at alibaba: opportunities and
challenges. Proc. VLDB Endow. 12(12), 2263-2272 (2019)

Li, E., Ozsu, M.T,, Chen, G., Ooi, B.C.: R-store: a scalable dis-
tributed system for supporting real-time analytics. In: 2014 IEEE
30th International Conference on Data Engineering, pp. 40-51.
IEEE (2014)

Li, G., Zhang, C.: Htap databases: what is new and what is next.
In: Proceedings of the 2022 International Conference on Manage-
ment of Data, pp. 2483-2488 (2022)

Li, L., Wang, G., Wu, G., Yuan, Y.: Consistent snapshot algorithms
for in-memory database systems: experiments and analysis. In:
2018 IEEE 34th International Conference on Data Engineering
(ICDE), pp. 1284-1287. IEEE (2018)

Li, T., Butrovich, M., Ngom, A., Lim, W.S., McKinney, W.,
Pavlo, A.: Mainlining databases: Supporting fast transactional
workloads on universal columnar data file formats. arXiv preprint
arXiv:2004.14471 (2020)

Liedes, A.-P., Wolski, A.: Siren: a memory-conserving, snapshot-
consistent checkpoint algorithm for in-memory databases. In:
22nd International Conference on Data Engineering (ICDE’06),
pp- 99-99. IEEE (2006)

Lima, A.A.B., Furtado, C., Valduriez, P., Mattoso, M.: Parallel
olap query processing in database clusters with data replication.
Distrib. Parall. Databases 25(1), 97-123 (2009)

Lu, Y., Yu, X., Cao, L., Madden, S.: Epoch-based commit and
replication in distributed oltp databases (2021)

Luo, C., Toziin, P., Tian, Y., Barber, R., Raman, V., Sidle, R.:
Umzi: unified multi-zone indexing for large-scale htap. In: EDBT,
pp- 1-12 (2019)

Lyu, Z., Zhang, H.H., Xiong, G., Guo, G., Wang, H., Chen, J.,
Asim Praveen, J., Yang, Y., Gao, X., Wang, A., et al.: Greenplum:
a hybrid database for transactional and analytical workloads. In:
Proceedings of the 2021 International Conference on Manage-
ment of Data, pp. 2530-2542 (2021)

Makreshanski, D., Giceva, J., Barthels, C., Alonso, G.: Batchdb:
efficient isolated execution of hybrid oltp+ olap workloads for
interactive applications. In: Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pp. 37-50 (2017)
Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multi-
core key-value storage. In: Proceedings of the 7th ACM European
Conference on Computer Systems, pp. 183-196 (2012)

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., Kraska,
T.: Bao: making learned query optimization practical. In: Pro-
ceedings of the 2021 International Conference on Management
of Data, pp. 1275-1288 (2021)

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., Kraska,
T.: Bao: making learned query optimization practical. ACM SIG-
MOD Rec. 51(1), 6-13 (2022)

@ Springer

https://www.orafaq.com/wiki/Heap-organized_table
https://www.orafaq.com/wiki/Heap-organized_table
https://www.snowflake.com/workloads/unistore/
http://arxiv.org/abs/2203.16095
http://arxiv.org/abs/2004.14471

H.Song et al.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T,
Papaemmanouil, O., Tatbul, N.: Neo: a learned query optimizer.
arXiv preprint arXiv:1904.03711 (2019)

Meng, Q., Zhou, X., Chen, S., Wang, S.: Swingdb: an embed-
ded in-memory dbms enabling instant snapshot sharing. In: Data
Management on New Hardware, pp. 134-149. Springer (2016)
Milkai, E., Chronis, Y., Gaftney, K.P., Guo, Z., Patel, J.M., Yu,
X.: How good is my htap system? In: Proceedings of the 2022
International Conference on Management of Data, pp. 18101824
(2022)

Mishra, S., Tripathi, A.R.: Ai business model: an integrative busi-
ness approach. J. Innov. Entrep. 10(1), 1-21 (2021)

Mohan, C., Lindsay, B., Obermarck, R.: Transaction management
in the r* distributed database management system. ACM Trans.
Database Syst. 11(4), 378-396 (1986)

Moiz, S.A., Sailaja, P., Venkataswamy, G., Pal, S.N.: Database
replication: a survey of open source and commercial tools. Int. J.
Comput. Appl. 13(6), 1-8 (2011)

Miihlbauer, T., Rodiger, W., Reiser, A., Kemper, A., Neumann,
T.: Scyper: elastic olap throughput on transactional data. In: Pro-
ceedings of the Second Workshop on Data Analytics in the Cloud,
pp- 11-15 (2013)

MySQL. MySQL 8.0.18 (2019-10-14, General Availabil-
ity). https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-
0-18.html

MySQL. Mysql heatwave. https://dev.mysql.com/doc/heatwave/
en/heatwave-introduction.html, (2022)

Neumann, T., Miihlbauer, T., Kemper, A.: Fast serializable multi-
version concurrency control for main-memory database systems.
In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, pp. 677-689 (2015)

Ongaro, D., Ousterhout, J.: In search of an understandable consen-
sus algorithm. In: 2014 USENIX Annual Technical Conference
(Usenix ATC 14), pp. 305-319 (2014)

Ozcan, F.,, Tian, Y., Toziin, P.: Hybrid transactional/analytical pro-
cessing: a survey. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 1771-1775 (2017)
O’Neil, P, Cheng, E., Gawlick, D., O’Neil, E.: The log-structured
merge-tree (Ism-tree). Acta Informatica 33(4), 351-385 (1996)
O’Neil, P, Chen, X., Betty, O.: Star Schema Benchmark. https://
www.cs.umb.edu/~poneil/StarSchemaB.PDF

Pelster, M.: I’ll have what s/he’s having: a case study of a social
trading network. ICIS 2017 Proceedings, (2017)

Pezzini, M., Feinberg, D., Rayner, N., Edjlali, R.: Hybrid
transaction/analytical processing will foster opportunities for
dramatic business innovation. Gartner (2014, January 28)
Available at https://www.gartner.com/doc/2657815/hybrid-
transactionanalyticalprocessing-foster-opportunities, pp. 4-20
(2014)

Prout, A., Wang, S.-P., Victor, J., Sun, Z., Li, Y., Chen, J., Berg-
eron, E., Hanson, E., Walzer, R., Gomes, R., et al: Cloud-native
transactions and analytics in singlestore. In: Proceedings of the
2022 ACM SIGMOD International Conference on Management
of Data (2022)

Psaroudakis, 1., Wolf, F., May, N., Neumann, T., Bohm, A., Aila-
maki, A., Sattler, K.-U.: Scaling up mixed workloads: a battle of
data freshness, flexibility, and scheduling. In: Technology Confer-
ence on Performance Evaluation and Benchmarking, pp. 97-112.
Springer (2014)

Pugh, W.: Skip lists: a probabilistic alternative to balanced trees.
33(6):668-676 (1990)

Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Dapeng
Oliver, W.: Edge computing in industrial internet of things: archi-
tecture, advances and challenges. IEEE Commun. Surv. Tutor.
22(4), 24622488 (2020)

@ Springer

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

Qiu, X., Cen, W., Qian, Z., Peng, Y., Zhang, Y., Lin, X., Zhou, J.:
Real-time constrained cycle detection in large dynamic graphs.
Proc. VLDB Endow. 11(12), 1876-1888 (2018)

Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection
using computational intelligence. Expert Syst. Appl. 35(4), 1721-
1732 (2008)

Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D.,
KulandaiSamy, V., Leenstra, J., Lightstone, S., Liu, S., Lohman,
G.M., et al.: Db2 with blu acceleration: so much more than just a
column store. Proc. VLDB Endow. 6(11), 1080-1091 (2013)
Raza, A., Chrysogelos, P., Anadiotis, A.C., Ailamaki, A.: Adap-
tive htap through elastic resource scheduling. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 2043-2054 (2020)

Raza, SM.A., Chrysogelos, P., Sioulas, P., Indjic, V., Anadio-
tis, A.C., Ailamaki, A.: Gpu-accelerated data management under
the test of time. In: Online Proceedings of the 10th Conference
on Innovative Data Systems Research (CIDR), number CONF,
(2020)

Rhea, S., Wang, E., Wong, E., Atkins, E., Storer, N.: Littletable:
a time-series database and its uses. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 125—
138 (2017)

Robinson, H.A., Cherry, C.: Results of a prototype television
bandwidth compression scheme. Proc. IEEE 55(3), 356-364
(1967)

Sadoghi, M., Bhattacherjee, S., Bhattacharjee, B., Canim, M.:
L-store: a real-time oltp and olap system. arXiv preprint
arXiv:1601.04084 (2016)

Sahay, B.S., Ranjan, J.: Real time business intelligence in supply
chain analytics. Inf. Manag. Comput. Secur., x(Mustafa)
Schiefer, J., Bruckner, R.: Container-managed etl applications for
integrating data in near real-time (2003)

Computer science. Column-oriented DBMS.
wikipedia.org/wiki/Column-oriented_ DBMS
Computer science. Starvation (computer science). https://en.
wikipedia.org/wiki/Starvation_(computer_science)
Computer science. State machine replication.
wikipedia.org/wiki/State_machine_replication
Sewall, J., Chhugani, J., Kim, C., Satish, N., Dubey, P.: Palm:
parallel architecture-friendly latch-free modifications to b+ trees
on many-core processors. Proc. VLDB Endow. 4(11), 795-806
(2011)

Sharma, A., Schuhknecht, EM., Dittrich, J.: Accelerating analyti-
cal processing in mvcc using fine-granular high-frequency virtual
snapshotting. In: Proceedings of the 2018 International Confer-
ence on Management of Data, pp. 245-258 (2018)

Shen, S., Chen, R., Chen, H., Zang, B.: Retrofitting high availabil-
ity mechanism to tame hybrid transaction/analytical processing.
In: 15th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 21), pp. 219-238 (2021)

Shen, S., Yao, Z., Shi, L., Wang, L., Lai, L., Tao, Q., Su, L., Chen,
R., Yu, W,, Chen, H., et al.: Bridging the gap between relational
{OLT P} and graph-based {O LA P}. In: 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pp. 181-196 (2023)
Sikka, V., Firber, F., Lehner, W., Cha, S.K., Peh, T., Bornhovd, C.:
Efficient transaction processing in sap hana database: the end of a
column store myth. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 731-742
(2012)

Inc. SingleStore. SingleStore: Real-Time Distributed SQL.
https://www.singlestore.com/

Song, H., Zhou, W., Li, F., Peng, X., Cui, H.: Rethink query opti-
mization in htap databases. Proc. ACM Manag. Data 1(4), 1-27
(2023)

https://en.

https://en.

http://arxiv.org/abs/1904.03711
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://dev.mysql.com/doc/heatwave/en/heatwave-introduction.html
https://dev.mysql.com/doc/heatwave/en/heatwave-introduction.html
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://www.gartner.com/doc/2657815/hybrid-transactionanalyticalprocessing-foster-opportunities
https://www.gartner.com/doc/2657815/hybrid-transactionanalyticalprocessing-foster-opportunities
http://arxiv.org/abs/1601.04084
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/State_machine_replication
https://en.wikipedia.org/wiki/State_machine_replication
https://www.singlestore.com/

A survey on hybrid transactional and analytical processing

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M.,
Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., et al.: C-
store: a column-oriented dbms. In: Making Databases Work: the
Pragmatic Wisdom of Michael Stonebraker, pp. 491-518 (2018)
Sukarsa, .M., Wisswani, N.-W., Darma, I.K.G.: Change data cap-
ture on oltp staging area for nearly real time data warehouse base
on database trigger. Int. J. Comput. Appl. 52(11), (2012)
Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C., Shah, S.:
Serving large-scale batch computed data with project voldemort.
In FAST 12, 18-18 (2012)

Sun, Y., Blelloch, G.E., Lim, W.S., Pavlo, A.: On supporting
efficient snapshot isolation for hybrid workloads with multi-
versioned indexes. Proc. VLDB Endow. 13(2), (2019)

Ta, V.-D., Liu, C.-M., Nkabinde, G.W.: Big data stream comput-
ing in healthcare real-time analytics. In: 2016 IEEE International
Conference on Cloud Computing and Big Data Analysis (ICC-
CBDA), pp. 37-42. IEEE (2016)

Tai, A., Wei, M., Freedman, M.J., Abraham, 1., Malkhi, D.:
Replex: a scalable, highly available {Multi — Index} data store.
In: 2016 USENIX Annual Technical Conference (USENIX ATC
16), pp. 337-350 (2016)

Tang, L., Meng, Y.: Data analytics and optimization for smart
industry. Front. Eng. Manag. 8(2), 157-171 (2021)

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N.,
Antony, S., Liu, H., Murthy, R.: Hive-a petabyte scale data ware-
house using hadoop. In: 2010 IEEE 26th international conference
on data engineering (ICDE 2010), pp. 996-1005. IEEE (2010)
Tunny. Tunny is a Golang library for spawning and managing a
goroutine pool. https://github.com/Jeffail/tunny

Vaisman, A., Zimanyi, E.: Data warehouse systems. Data-Cent.
Syst, Appl (2014)

Vamvoudakis, K.G, Lewis, FL, Mellouk, A.: Online gaming:
real time solution of nonlinear two-player zero-sum games using
synchronous policy iteration. In: Advances in Reinforcement
Learning. Intech, (2011)

Vassiliadis, P.: A survey of extract-transform-load technology. Int.
J. Data Warehous. Min. 5(3), 1-27 (2009)

Vingon, T., Knodler, C., Solis-Vasquez, L., Bernhardt, A., Tamimi,
S., Weber, L., Stock, F., Koch, A., Petrov, I.: Near-data processing
in database systems on native computational storage under htap
workloads. Proc. VLDB Endow. 15(10), 1991-2004 (2022)
Wang, J., Li, T., Song, H., Yang, X., Zhou, W., Li, F., Yan, B.,
Qiangian, W., Liang, Y., Ying, C.J., et al.: Polardb-imci: a cloud-
native htap database system at alibaba. Proc. ACM Manag. Data
1(2), 1-25 (2023)

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.
180.

Wang, X., Zhang, W., Wang, Z., Wei, Z., Chen, H., Zhao, W.:
Eunomia: scaling concurrent search trees under contention using
htm. ACM SIGPLAN Notices 52(8), 385-399 (2017)

Wang, Z., Ma, T., Kong, L., Wen, Z., Li, J., Song, Z., Lu, Y.,
Chen, G., Cao, W.: Zero overhead monitoring for cloud-native
infrastructure using {RDMAJ}. In: 2022 USENIX Annual Techni-
cal Conference (USENIX ATC 22), pp. 639-654 (2022)
Winston, P.H., Prendergast, K.A.: The Al business: commercial
uses of artificial intelligence. Massachusetts Institute of Technol-
ogy (1984)

Yingjun, W., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical
evaluation of in-memory multi-version concurrency control. Proc.
VLDB Endow. 10(7), 781-792 (2017)

Xie, D., Li, F, Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient
in-memory spatial analytics. In: Proceedings of the 2016 Inter-
national Conference on Management of Data, pp. 1071-1085,
(2016)

Hansong, X., Wei, Y., Griffith, D., Golmie, N.: A survey on indus-
trial internet of things: a cyber-physical systems perspective. IEEE
Access 6, 78238-78259 (2018)

Yang, J., Rae, L., Jun, X., Shute, J., Yuan, Z., Lau, K., Zeng, Q.,
Zhao, X., Ma, J., Chen, Z., et al.: F1 lightning: Htap as a service.
Proc. VLDB Endow. 13(12), 3313-3325 (2020)

Yang, M., Zheng, Z., Mookerjee, V.: How much is financial
advice worth? The transparency-revenue tension in social trad-
ing. Manag, Sci (2021)

Xiang, Y., Chai, C., Li, G., Liu, J.: Cost-based or learning-based?
A hybrid query optimizer for query plan selection. Proc. VLDB
Endow. 15(13), 3924-3936 (2022)

Zhang, J., Wu, S, Tan, Z., Chen, G., Cheng, Z., Cao, W., Gao, Y.,
Feng, X.: S3: a scalable in-memory skip-list index for key-value
store. Proc. VLDB Endow. 12(12), 2183-2194 (2019)

Zhang, Z.: Spark-on-hbase: Dataframe based hbase connector
Zukowski, M., Van de Wiel, M., Boncz, P.: Vectorwise: a
vectorized analytical dbms. In: 2012 IEEE 28th International Con-
ference on Data Engineering, pp. 1349-1350. IEEE (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://github.com/Jeffail/tunny

	A survey on hybrid transactional and analytical processing
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related surveys and research collections
	1.3 Survey organization

	2 Background
	2.1 Extract-transform-load workflow
	2.2 A brief history of HTAP
	2.3 Other systems with a similar design goal as HTAP

	3 Design goals and evaluation metrics
	3.1 Metrics of data freshness
	3.1.1 Space-based freshness metrics
	3.1.2 Time-based freshness metrics

	3.2 Evaluation method of performance isolation

	4 HTAP with monolithic data format
	4.1 Common issues
	4.2 New data format for HTAP
	4.3 Making MVCC HTAP-friendly
	4.3.1 Faster scan on MVCC
	4.3.2 MVCC Index

	4.4 In-memory snapshot algorithm
	4.4.1 OS fork
	4.4.2 Bypass OS snapshotting

	4.5 Leveraging replication mechanism

	5 HTAP with hybrid data format
	5.1 Common issues
	5.2 A taxonomy of existing achitectures
	5.3 Design of row store
	5.4 Design of column store
	5.4.1 Storage layer of column store
	5.4.2 Execution engine

	5.5 Road to HTAP
	5.5.1 Data synchronization model
	5.5.2 Data synchronization approach
	5.5.3 Consistency model
	5.5.4 Delta buffer and meta-data
	5.5.5 Performance isolation
	5.5.6 Query optimization and execution
	5.5.7 Hybrid plan
	5.5.8 Sharding strategy

	6 Discussion and lessons learned
	7 Applications and benchmarks
	7.1 Real-time applications
	7.2 Benchmarks

	8 Future directions
	8.1 Software and hardware co-design
	8.2 Serverless and cloud-native HTAP
	8.3 Beyond column store
	8.4 Optimizer for HTAP workloads
	8.5 Learned data format

	9 Conclusion
	Acknowledgements
	References

