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Abstract 

Mobile cranes are essential equipment in construction 

sites due to their high flexibility and mobility. However, 

the existing sensing or monitoring methods have 

limitations in monitoring mobile cranes on sites. 

Recently, the advent of 4D point cloud (4DPC) 

technology with a unique spatial-temporal data structure 

has shown potential in addressing these issues. In this 

paper, we present a 4DPC monitoring approach, which 

includes a set of prototype devices and a rule-based object 

detection method. We conducted a proof-of-concept test 

to monitor the hoisting process of two H-beams in a 

footbridge construction project. The rule-based object 

detection method successfully detected the target beams 

in the collected six-hour 4DPC data. In the future, we 

expect more efficient and robust 4DPC sensing devices 

and processing methods for proactive crane motion 

prediction and optimization in a time-dynamic site 

environment. 

 

Introduction 

Cranes are critical equipment for hoisting and 

transporting heavy objects in the construction industry. In 

recent years, numerous efforts have been made to 

monitoring methods for crane-related activities in both 

academia and industry. The first reason is safety, because  

crane lifting is complex and risky on construction sites. 

Cheng and Teizer  (2011) found that many crane-related 

safety incidents are associated with restricted visibility, 

e.g., sight occlusion, poor weather, or lighting conditions. 

Crane-related accidents usually cause casualties and 

significant economic losses, so extra measures must be 

taken. In addition, monitoring data could be visualized to 

help operators reduce workload and improve work 

efficiency, and the construction time is thus reduced. 

Productivity assessment may be another reason for the 

necessity of crane-related activities monitoring. Based on 

the assessment result, further optimization work could be 

done for the productivity improvement of the crane-

related construction process.  

 

There are two common types of cranes, i.e., mobile cranes 

and tower cranes. The most significant difference between 

them is that one is mobile, and the other one is not. Due 

to its fixed location and working range, monitoring or 

sensing devices are constantly installed on the tower 

crane. However, most existing monitoring methods are 

challenging to implement on mobile cranes. Potential 

reasons are the high mobility and flexibility of the mobile 

crane. Therefore, how to achieve practical and convenient 

monitoring for mobile cranes is still an unresolved issue.  

 

With increasing focus on-site safety of the construction 

industry and the emerging demand of digital construction 

sites, developing a practical monitoring approach for 

mobile cranes has become increasingly necessary and 

urgent. In order to improve the situation, some 

technologies, e.g., CCTV camera (Fang, et al., 2018)s and 

IoT devices (Mijwil, et al., 2023), that are used in other 

monitoring scenarios, are tried for monitoring or tracking 

objects for the mobile crane during the lifting process. 

However, the feasibility is not high for most methods. For 

example, CCTV cameras, the most widely used tool to 

monitor activities in construction sites, always lack depth 

information, making it challenging to accurately capture 

objects’ spatial position (Chen, et al., 2017). In addition, 

quantization errors are widely reported to be the 

shortcoming of conventional image-based video due to its 

grid-based geometric representation. Sensitivity to light 

conditions and the difficulty of multi-source data fusion 

also make it unsuitable for monitoring mobile crane in 

various complex environments. Second, IoT devices are 

other type of tools for sensing objects on sites. IoT devices 

are easy to locate, but various errors are widely reported. 

Meanwhile, IoT devices cannot achieve dynamic detail 

detection, such as rotation, which are significant for some 

tracking purposes. Extra installation procedures for each 

object will decrease productivity and increase risk, and 

using many IoT devices would increase the cost. In 

addition, the interaction of tracked objects and dynamic 

environment cannot be easily reflected. Thirdly, the 

Depth-RGB camera is also often reported to monitor or 

track objects in sites potentially, but its short detection 

distance restricts its application in outdoor scenarios. 

 

Point clouds, a three-dimensional collection of data points 

or coordinates, provide a new data form to produce high-

quality 3D reconstructions of the world (e.g. 

reconstructing building information model in construction 

site (Chen & Xue, 2023)). They provide more information 

than two-dimensional pictures and are insensitive to light. 

However, point clouds always refer to 3D point clouds 

and the application of 3D point clouds is limited in 

capturing some static objects due to only spatial 

information contained in the data (Mirzaei, et al., 2022). 

The advent of the 4D point cloud, consisting of three 

dimensions and time information, has expanded the 

application of the point cloud into a dynamic world (Silva, 

et al., 2022). 4D point cloud (4DPC), a form of time-series 

3D point clouds, is a rich data source demonstrating how 



 

 

objects move against the background. 4DPC has unique 

advantages against other motion tracking technologies, 

e.g., various Internet of Things (IoT) and AI cameras 

(Liang & Xue, 2022): 

a) Real-time environment (including objects and 

background) updating 

b) Highly precise geometry updates 

c) Higher adaptability in poor visibility 

environments 

d) Innate localization and mapping information 

e) Innate capability of multi-/many-device data 

fusion to eliminate visual blind spots 

f) Lower cost, minimal infrastructure 

requirements, lower carbon footprints 

g) Remote, non-destructive sensing 

4DPC is a novel enabling data source that facilitates 

precise 4D motion tracking. In contrast to conventional 

camera/IoT, our methods have three characteristics:  

i. High-definition 4D motion data (cm-s-level 

accuracy);  

ii. Precise depth information in a far range (up to 

500m); 

iii. Simultaneous motion tracking of multiple 

objects; and 

iv. Low cost of devices and easy operating. 

Related works 

Crane monitoring 

In past research, numerous efforts have been put into 

developing computer-aided crane monitoring systems. 

Their primary purpose is to improve the efficiency and 

safety of crane operations and reduce operator workload. 

As listed in Table 1, this study reviews related to research, 

and the purpose, contribution, research focus, target crane 

type, methodology, and limitation are summarized. The 

research generally has three types of goals, i.e. crane pose 

estimation (Zhang, et al., 2012; Lee, et al., 2012; Zhong, 

et al., 2014; Yang, et al., 2014; Roberts, et al., 2017), load 

sway and rotation estimation (Fang, et al., 2018; Fang, et 

al., 2016; Chian, et al., 2022), and object detection in 

workspace (Li, et al., 2013; Chen, et al., 2017). Although 

both crane monitoring and object detection are 

investigated to help operators operate the crane in blind 

areas in the study by Price et al. (2021), the two functions 

are relatively separated and not well integrated into a 

system.  

 

Meanwhile, two types of sensing methods, i.e., sensor-

based and vision-based, are used in these studies. For the 

former, different sensors are serving for different sensing 

goals. In specific, the UWB system, consisting of several 

sensors and multiple tags, is used to estimate the crane 

pose in the study by Zhang et al. (Zhang, et al., 2012), but 

it is not practical due to various errors from different 

sources and too many sensors required for full coverage 

of activity range. Li et al. try to use GPS and RFID to 

obtain positioning data of both site workers and the crane, 

and using multiple tags and receivers decreases its 

practicality. Zhong et al. (Zhong, et al., 2014) combined a 

Wireless Sensor Network (WSN) and the Internet of 

Things (IoT) to monitor the status of tower crane groups 

to avoid collisions, but the interactions of tower cranes 

with environment are not considered. Fang et al. (2016) 

use a series of encoder and IMU sensors to monitor the 

load object and visualize in the virtual platform. Except 

for extensive use of sensors, another problem is the 

dynamic change of the environment cannot be reflected 

by a limited number of sensors. For the latter, CCTV 

cameras or UAV camera are used to estimate crane pose 

(Lee, et al., 2012; Yang, et al., 2014; Roberts, et al., 2017), 

monitor load (Fang, et al., 2018) (Chian, et al., 2022), and 

detect object (Chen, et al., 2017). The common limitation 

stems from the data, such as not containing depth 

information or sensitivity to lighting conditions and color. 

In addition to shared drawbacks, UAV's endurance, 

stability, and safety are also criticized. 

Table 1 Summarization of related literature 

Purpose and contribution Research focus Sensing method Crane type Limitation Source 

Develop a UWB-based 

system to track crane 

boom movement, and 

estimate crane pose near 

real-time for collision 

avoidance 

crane pose 

estimation 
UWB 

Mobile 

crane 

1) the installation space and device 

cost of several sensors and multiple 

tags would be a problem 

2) the accuracy in an ideal 

environment (open space) is 10cm, 

and it may be worse in unordered 

sites 

3) trajectory estimation is relatively 

rough since it is based on linear 

interpolation extrapolation of only 

two points 

(Zhang, et 

al., 2012) 

Develop a tower crane 

navigation system to help 

operators operate with 

blind spots 

crane pose 

estimation 

Video camera 

& 

sensors 

Tower 

crane 

1) too many kinds of sensors 

increase the complexity of the 

proposed system 

2) virtual environment (BIM model) 

cannot BIM model cannot fully 

(Lee, et al., 

2012) 



 

 

represent the as-is site condition 

Identify unauthorized 

work or entrance of 

personnel within a pre-

defined risk zone 

object detection in 

the workspace 

GPS 

& 

RFID 

Not limited 

to a 

specific 

type of 

crane 

1) too many tags, receivers, and 

other units are used; 

2) installation complexity and high 

cost would hinder its practical 

application; 

3) signal strength is also a possible 

issue 

(Li, et al., 

2013) 

Develop a Safety 

Management System to 

monitor the status of 

tower crane groups and 

avoid collisions 

crane pose 

estimation 

WSN 

& 

IoT 

Tower 

crane 

1) only the main body of the crane 

is considered, but the site situation 

is usually more complex 

(Zhong, et 

al., 2014) 

Understand construction 

activity by tracking the 

pose of the tower crane 

crane pose 

estimation 
Video camera 

Tower 

crane 

1)  large range view needs to be 

covered, and the resolution of the 

object will become lower, so the 

recognition accuracy will fluctuate 

due to many factors, such as light 

condition 

2) the recognition result is general 

(Yang, et al., 

2014) 

Develop real-time pro-

active safety assistance 

for mobile crane 

lifting operations 

load sway and 

rotation estimation 

Encoder sensors 

& 

IMU sensor 

Mobile 

crane 

1) The pre-reconstructed site cannot 

reflect the dynamically changing 

site conditions 

2) A large number of sensors are 

required to sense the movement of 

the crane in real time 

(Fang, et al., 

2016) 

Detect and Classify 

Cranes for monitoring 

crane-related safety 

hazards 

crane pose 

estimation 
UAV 

Tower 

crane 

1) The endurance and stability of 

drones are obstacles to the practical 

application 

(Roberts, et 

al., 2017) 

Update real-time 3D crane 

workspace 

object detection in 

the workspace 

TLS 

& 

Video camera 

Mobile 

crane 

1) positioning accuracy (0.1-0.4m) 

in the ideal test environment is 

relatively high 

2) signal synchronization of camera 

and LiDAR is complicated, and the 

error is relatively large 

(Chen, et al., 

2017) 

Track crane load sway 
load sway and 

rotation estimation 
Video camera 

Not limited 

to a 

specific 

type of 

crane 

1) only the 2D location of the load 

could be identified 

2) errors highly depend on the 

quality of the image 

(Fang, et al., 

2018) 

Detect workers near the 

crane load 

crane pose 

estimation 

& 

load sway and 

rotation estimation 

Sensors, 

Camera, 

IMU, 

& 

TLS 

Tower 

crane 

1) sensor-part: positioning system 

has a high reliance on data from 

noisy encoders; large crane 

deflection 

caused by the load leads to errors 

2) vision-part: positioning errors are 

widely reported during irregular 

lighting conditions and when the 

surrounding environment contains 

objects that have a similar color to 

the load 

(Price, et al., 

2021) 

Develop a novel method 

to detect 

and track the crane load 

fall zone 

load sway and 

rotation estimation 
Video camera 

Tower 

crane 

1) the estimation accuracy heavily 

relies on many factors, such as the 

quality of training data since it is 

based on deep learning 

(Chian, et al., 

2022) 

#:UWB: Ultra Wideband; GPS: Global Positioning System; RFID: Radio-Frequency Identification; WSN: Wireless Sensor Network; 

IoT: Internet of Things; IMU: Inertial Measurement Unit; UAV: Unmanned Aerial Vehicle; TLS: Terrestrial Laser Scanners.   

 



 

 

In summary, existing sensor-based sensing methods in the 

literature showed the following drawbacks: 

1) Deploying and maintaining sensors in every 

object onsite is complex and time-consuming, 

which may affect productivity of the 

construction process; 

2) sensors are composed of many components 

susceptible to damage, and low reliability may 

hind its practice; 

3) many high-precision sensors are expensive, and 

the use of numerous sensors on-site may increase 

the cost;  

4) sensor technologies are sensitive to signal 

interference and may not adapt to the complex 

construction site with many existing physical 

obstacles (e.g., existing buildings and 

equipment); 

5) it is difficult for sensors to capture the whole 

environment with dynamical change, and hence 

the interaction between tracking objects with the 

existing site environment cannot be captured;  

6) Synchronization and visualization of multi-

source data increase the practice complexity of 

sensor technologies. 

Meanwhile, current vision-based sensing methods have 

other limitations: 

1) Depth information is not contained in 2D image, 

and hence vertical position information cannot 

be precisely captured;  

2) video errors caused by irregular lighting 

conditions and similar colors make it unreliable 

in daily use; 

3) 3D laser scanning by TLS only captures the site 

geometry at the time of scanning, and hence site 

condition cannot be dynamically reflected in 

real-time; 

4) Multi-angle view fusion has not been well 

resolved, which hinders its broad practice.  

4DPC 

Point clouds, a three-dimensional collection of data points 

or coordinates, provide more information than two-

dimensional pictures and are insensitive to light (Bhople 

et al., 2021). Conventional static point clouds have 

already been widely used in many research and industrial 

domains, such as surveying, electricity, construction, and 

industry, due to their excellent ability to represent our 

three-dimensional world. In the construction industry, the 

3D point cloud is currently used for various aims such as 

as-built building reconstruction and digital twin city (Wu, 

et al., 2021; Xue, et al., 2019; 2020). It should be noted 

that the applications of 3D point clouds are limited in 

capturing non-moving or assumingly non-moving 

objects. 

 

As a window into our ever-evolving 3D environment, 

4DPC are widely used in robotics and augmented reality 

systems. Point cloud sequences play an important role in 

understanding environmental changes and supporting 

interactions with the world that are difficult to describe 

with 2D images or static 3D point clouds due to their 

ability to record movements in physical space. In order to 

more accurately simulate the world, respond to changes in 

the environment, and interact with it, an intelligent agent 

must handle this kind of data with great precision. 

 

4DPC has gained popularity for some reasons. First, the 

ability to comprehend a changing 3D world is essential for 

robotic agents and various other applications. 4DPC has 

enabled many innovative studies, such as how a plant 

grows (Li, et al., 2013) and high-definition human 

motions (Fan, et al., 2021), as shown in Figure 1. In 

addition, various identification tasks, such as calculating 

a moving object's acceleration or identifying human 

activities, benefit from temporal data sequences longer 

than two frames (Fan, et al., 2021). 4D point cloud has 

also been widely utilized in robotic SLAM, autonomous 

driving, and video-assisted training of athletes. 

 

 
Figure 1 Example 4DPC-enabled studies. (a) how plant grows 

(Li, et al., 2013)—permission requesting, (b) high-definition 

human motions (Fan, et al., 2021)—permission requesting 

In contrast to grid-based RGB video, where points 

regularly emerge over time, point cloud video displays 

irregularities and lacks order along the spatial dimension. 

Therefore, numerous efforts have been engaged in 

processing the 4DPC data. Two existing methods, i.e., 

voxelization-based (Choy, et al., 2019) and point-set-

based, explored by many researchers to process 4DPC 

data.  

Case study 

Case description 

A pilot study was conducted on an infrastructure project 

in Hong Kong, as shown in Figure 4. The case project was 

the 3rd Sassoon Road footbridge project that links a new 

Campus building to the student residents across Sassoon 

Road. Two major steel tie-beams were hoisted and 

installed in the mid-night of 28 June 2022, and Figure 2 

shows the site condition before hoisting, the hoisting 

process of component 1, the completed status of the 

component 1 hoisting, and completed status of two 

components hoisting, respectively. This project uses a 

mobile crane since it is a temporary infrastructure project 

and the road is only temporarily closed for construction at 

night. 

 



 

 

The case project had characteristics and requirements in 

hoist efficiency, collision risk, and personnel safety. First, 

the process needs to be completed swiftly before dawn to 

resume day traffic from the temporary close of the road. 

As the most important and challenging work in this 

project, hoisting efficiency will directly affect the 

construction time. In addition, there were already building 

works on both sides of the road, and the facades are 

expensive glass curtain walls. A collision during the 

hoisting process will cause economic losses. Therefore, 

effective measures should be taken to reduce the potential 

collision risk. Furthermore, the workers working on other 

processes on-site may have entered the risky zone where 

the hoisted objects may fall due to negligence of steel 

beam at high height during the hoisting process. 

 
Figure 2 construction site condition of case study 

4DPC devices and setup 

To address the limitations mentioned in Sec. 2.1, this 

study proposes and validates a scheme that 4DPC 

technology is used to achieve the goal of monitoring all 

crane-related activities in real-time, including estimating 

crane pose, tracking load, and detecting objects on sites. 

To achieve that, a novel 4DPC sensing equipment for 

collecting high-definition 4D motion data from 

construction environments is developed in this study. The 

target spatial accuracy is cm-level, while the temporal 

accuracy is 0.5s-level. As shown in Figure 3(b), the device 

has four essential modules, i.e., (Ⅰ) Livox Mid-70 sensor, 

(Ⅱ) controller (Raspberry Pi 4), (Ⅲ) LED monitor, (Ⅳ) 

USB drive. The Livox Mid-70 has 70.4° circular fov, 5 

cm minimum detection range, and 2 cm range precision. 

Raspberry Pi 4 controller transmits 4DPC data to remote 

server via WiFi/4G/USB. The proof-to-concept test of the 

device is conducted in the pilot study. In order to cover 

the whole site, two LiDAR devices in Figure 3 (b) were 

installed on different locations, i.e., one is in the ground 

floor and the other is in the 4th floor (shown in Figure 

3(a)), to collect 6 hours of 4DPC data (format: lvx; size: 

80MB/min).  

 

 
Figure 3 (a) Installation illustration of 4DPC devices on site; 

(b) Components of our 4DPC device: (Ⅰ) Livox Mid sensor, (Ⅱ) 

controller (Raspberry Pi 4), (Ⅲ) LED monitor, (Ⅳ) USB drive 

Methods 

The most popular processing methods of 4DPC in existing 

research are based on deep learning.  The impetus for this 

trend is mainly based on the large amount of data that can 

be collected. In this study, we only collected 1 

construction scenario; hence, deep learning is not 

applicable. Therefore, a rule-based object detection 

method on 4DPC data is proposed to monitor target 

components in real time effectively. As shown in Figure 

4, a cyclic processing workflow is determined:    

1) 4DPC data input: Each frame of data is input in 

chronological order; 

2) Background removal:  using random sample 

consensus (RANSAC) algorithm (Schnabel, et 

al., 2007) is used to detect and delete plane of 

existing ground and walls 

3) Clustering:  using DBSCAN clustering 

algorithm (Ester, et al., 1996) to cluster the 

remaining point cloud. 



 

 

4) First round match:  judging whether the point 

cloud clustering results match the objects with 

known geometric dimensions. If all known 

components match, go to step 7. If not, continue 

to step 5.  

5) crop point cloud: using bounding box of 

previous frame to crop the whole point cloud 

(based on the assumption that there will be no 

large displacement of the member in a very short 

time-0.5s) 

6) Second round match:  judging whether the crop 

result of point cloud match the objects with 

known geometric dimensions. If known 

components match, go to step 7. If not, the result 

of the previous frame will be assigned to the 

current frame (based on the assumption that 

there will be no large displacement of the 

member in a very short time-0.5s). 

7) Result saving: Saving related point cloud 

segmentation results and creating a 

corresponding bounding box for the 

corresponding component 

The program ends when all the time series data are 

processed.

 
Figure 4 logic flow of rule-based detection method for time series 4DPC data

Preliminary results and discussion 

As shown in Figure 5, the two steel beam components can 

be precisely detected in more than 95% of the time using 

the rule-based method described in Sect 3.3. The 4DPC 

data processing time per minute is within 1s. 

 

Figure 5(a), (b), (c), and (d) illustrate the motion detection 

result of two beams from two views at different times, and 

different typical statuses of beams, i.e., remaining on the 

transport vehicle, being placed on the ground, hoisting in 

the air, are all covered, or completing hoisting. However, 

there are also some time frames that beams cannot be 

tracked. Detailed analysis suggests the ineffective capture 

is that the point cloud data is too sparse or no data points 

exist due to small sensing area of components at specific 

view angles, long sensing distances, or some physical 

obstacles. These problems can be attributed to the limited 

number of 4DPC devices used in this pilot study and the 

low point cloud density provided by Livox. Increasing the 

number of LiDAR devices and using advanced LiDAR 

devices providing higher point cloud density would 

improve the robustness of 4DPC data. Obtaining the 

spatial-temporal information of beams will help further 

achieve a set of proactive motion prediction and 

optimization applications. In addition, it could facilitate 



 

 

the productivity assessment of mobile cranes, and future 

improvement may be based on these data records.  

Limitation 

While this study's proposed method effectively captures 

targeted objects, its rule-based approach is limited to the 

specific scenario in which it was tested. Therefore, future 

research is necessary to explore its actual deployment 

and extended application in different conditions. 

Furthermore, the rule-based method can only detect 

known objects since rules must be set with prior 

knowledge of components. Also, due to the angle of the 

equipment installation, the object cannot be fully 

scanned, which limits the reflection of the true detailed 

geometry of the component. Detailed modeling requires 

additional effort. Finally, it should be noted that the 

4DPC data collected from two devices was registered 

manually, which is a time-consuming process and 

hinders its application in mobile situations..  

 
Figure 5 typical detection result of 4DPC data

Conclusion and future work 

This paper evaluated the existing studies focusing on 

sensing or monitoring crane-related activities, including 

estimating crane pose, tracking load, and detecting objects 

in workspace. Meanwhile, the limitation of sensor-based 

and vision-based sensing methods are analyzed and 

summarized. In order to overcome shortcoming of 

existing methods, a state-of-art 4DPC sensing and 

monitoring method is proposed. A rule-based object 

detection method is developed with two prototype devices 

of 4DPC sensing, and a proof-to-concept test was 

conducted on a footbridge construction project. In the 

pilot study, two 4DPC devices covered the whole 

construction site for 6 hours.  The promising preliminary 

results suggested that target beam components were 

precisely captured in different statuses. The spatio-

temporal data series obtained from the tracking results 

could generally satisfy the goal of monitoring load.  

 

There are three directions for future works. One is to 

develop more efficient and robust methods, such as some 

ML-based methods (Zhang, et al., 2019; Liang & Xue, 

2023), to match or detect objects from the collected data. 

Another is to explore a set of proactive motions prediction 

and optimization applications. The last is to integrate 

obtained spatial-temporal information of all objects and 

workers to achieve dynamic site management.  
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