
1 **Superhydrophobic nanoparticles: an efficiently**
2 **selective adsorbent for surfactant-like contaminants**
3 **from complex wastewater matrices**

4 Lingyue Zhang ^{a,b}, Chuyang Y. Tang ^b, Chu Tang ^a, Huijing Wang ^a, Jianchao Wang ^c,
5 Ruiying Li ^b, Haopeng Feng ^b, Dongbei Yue ^{a,*}

6 a School of Environment, Tsinghua University, Beijing 100084, China

7 b Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong
8 Kong SAR, China

9 c School of Chemical and Environmental Engineering, China University of Mining and
10 Technology (Beijing), Beijing 100083, China

11

12 **Keywords:** Superhydrophobic; Selective adsorption; Polydopamine; Hydrophobic
13 interaction; Leachate treatment

14

15 **Abstract:** Surfactant-like contaminants (SLCs) with distinctive amphiphilic structures
16 have become a global concern in wastewater due to their toxicity and persistency.
17 Despite extensive efforts, achieving efficient and selective SLCs removal remains
18 challenging because of their wide range of molecular weights and complex functional
19 group compositions. Superhydrophobic nanoparticles could potentially tackle this
20 challenge by targeting the long oleophilic chains of SLCs. However, conventional
21 contact angle measurements hinder hydrophobicity characterization and corresponding
22 selectivity research because of the powder morphology of nanoparticles. Herein, we
23 offered information regarding the distribution of water molecular probes in surfaces
24 and proposed a quantitative characterization approach based on low-field nuclear
25 magnetic resonance. Through synthesizing superhydrophobic and hydrophilic
26 polydopamine nanospheres with similar morphologies, we systematically demonstrate
27 the selective adsorption potential of superhydrophobic nanoparticles for SLCs. As
28 revealed by the interaction mechanisms, the superhydrophobic surface of nanospheres
29 increased its affinity and selectivity for SLCs adsorption by enhancing hydrophobic
30 interactions. Superhydrophobic modification achieved 10 times the adsorption capacity
31 of sodium dodecyl benzene sulfonate, an exemplified surfactant, compared to pristine
32 nanoparticles. By regulated self-polymerization, the superhydrophobic nanospheres
33 were coated onto the surface of a 3D sponge and enabled efficient selective SLCs
34 adsorption from highly polluted leachate matrices with long-term stability and
35 reusability.

36 **1. Introduction**

37 Surfactants and surface-active agents are frequently used in households and
38 industries^[1], and the majority of them are discharged into the environment as detergents
39 and solubilizers^[2], particularly in water bodies^[3]. Since perfluorooctane sulfonate
40 (PFOS) was listed as a persistent organic pollutant (POP) in 2009^[4], surfactant-like
41 contaminants (SLCs) with both hydrophilic (polar) and hydrophobic (lipophilic)
42 portions have aroused broad concern in the field of wastewater treatment owing to their
43 direct and indirect detrimental environmental effects^[5]. Their distinctive amphiphilic
44 and accumulation properties^[6] are known to cause severe biological toxicity^[7],
45 pollutant solubilization, and water eutrophication.

46 Activated sludge and nanofiltration are the mainstream treatment methods for
47 practical applications with high removal rates and economic costs^[8]. Over the past
48 decade, numerous materials, including activated carbon^[9], graphene^[10], montmorillonite
49^[11], and nano-iron oxide^[12], have been proposed for the efficient adsorption or
50 degradation of SLCs in wastewater. However, limited research has focused on the
51 selective removal of SLCs and their related mechanisms owing to the wide range of
52 molecular weights and various functional groups. Previous studies have confirmed that
53 the non-selectivity of current methods significantly reduce the removal efficiency of
54 SLCs in contaminated water by competitive effects and disordered packing^[6, 13]. Mixed
55 concentrates and extracts from reported membranes and materials have also been
56 confronted with the inevitable difficulty of recycling and detoxification^[1].

57 Superhydrophobic materials possess surfaces with high apparent contact angles ($> 150^\circ$), low sliding angles ($< 5^\circ$)^[14], and high stability of Cassie model state^[15] has been
58 commonly applied in anti-wetting, oil collection, and oil/water separation because of
59 their low surface energy^[16]. In an oil/water separation system^[17], oil droplets can
60 thoroughly spread and permeate the superhydrophobic membrane under either a small
61 applied pressure (< 0.3 bar) or gravity^[18]. With a three-dimensional structure,
62 superhydrophobic sponges can absorb oil several times their weight^[19], which could be
63 a potential material for selective SLCs removal. However, limited studies have been
64 conducted on the potential of superhydrophobic nanoparticles for contaminant removal
65 from sewage, even though hydrophobic interactions have been proven to be a
66 significant factor in organic adsorption^[6]. This is related to the lack of quantitative
67 hydrophobicity characterization of powder nanomaterials and understanding of the
68 interaction mechanisms^[20]. As extensively reported in previous studies, it is difficult to
69 achieve a uniform surface after tableting the nanopowder, which is affected by rigidity,
70 fluidity, and lubricity^[21]. The powder may creep up the side of the liquid droplet, and
71 the liquid may distort the powder surface as well^[20]. As shown in Fig. S1, the water
72 contact angle of the powdered carbon nanotubes, which is a typical hydrophobic
73 material, is less than 90° , which is inconsistent with the actual hydrophobic properties.

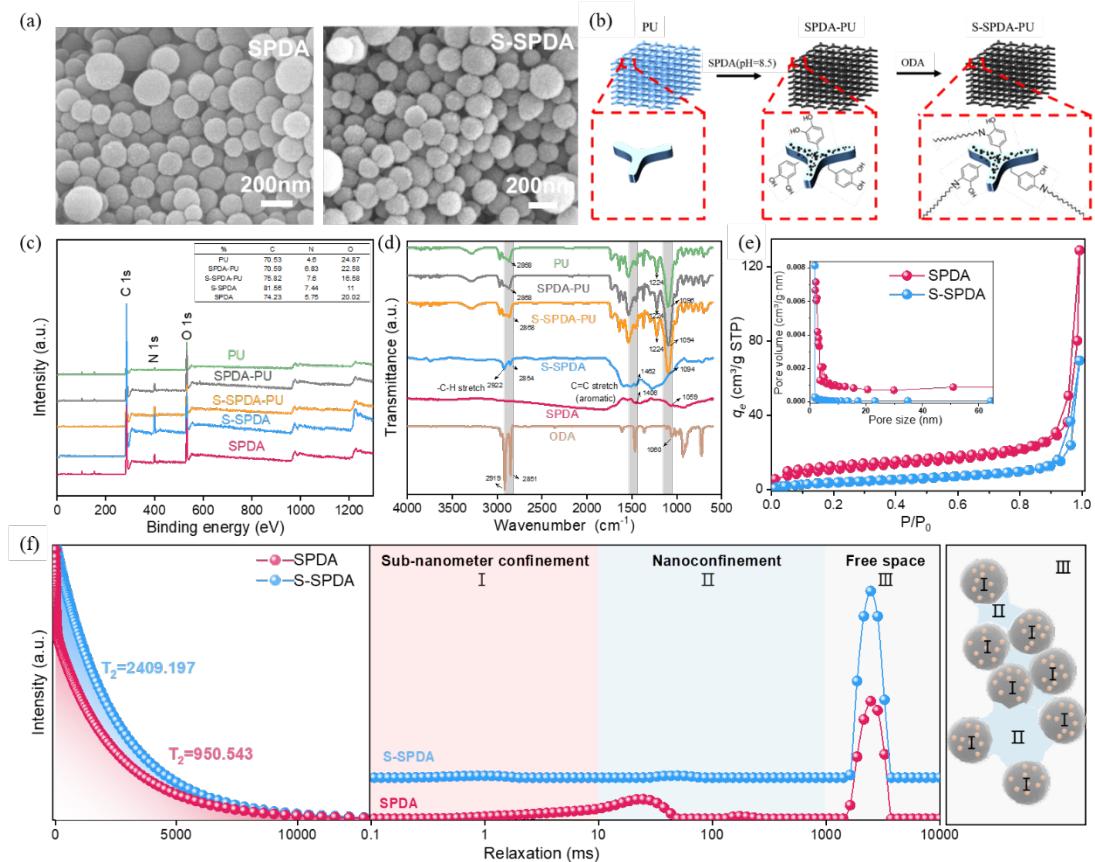
74 This present study aims to elucidate the interaction mechanisms between
75 superhydrophobic nanoparticles and contaminants and achieve efficiently selective

77 SLCs removal. Since Messersmith *et al.* first revealed polydopamine (PDA) as polymer
78 coating in 2007^[22], PDA has garnered considerable attention due to its unique adhesive properties
79 on solid substrates. Recognizing the advantages of its adhesive performance in recycling and wide application as a versatile coating platform, we synthesized
80 polydopamine nanospheres (SPDA) with and without superhydrophobic modification based on the Michael addition reaction to systematically demonstrate the indispensable
81 potential of superhydrophobic nanoparticles for efficient and selective SLCs removal.
82 The surface hydrophobicity and water distribution of the powdered materials were
83 innovatively quantified using low-field nuclear magnetic resonance (LF-NMR). Enhanced hydrophobic interactions improve the adsorption affinity and selectivity of
84 SLCs, as confirmed by the isolation of the interaction mechanisms. Furthermore, the proposed
85 superhydrophobic polydopamine nanosphere (S-SPDA) showed self-polymerization and self-adhesiveness properties, indicating extensive application in
86 surface coating and alkali-activated environmental separation materials in highly-polluted
87 wastewater.

92 **2. Results and discussion**

93 *2.1. Construction of superhydrophobic nanoparticles and sponge*

94 We report the regulation of surface hydrophobicity by means of Michael addition
95 reaction^[23] between the active functional groups of polydopamine and linear alkyl
96 amines. SPDA was first synthesized using a modified oxidative polymerization method.
97 The spherical morphology and nanoparticle diameter (Fig. 1a) were regulated by the
98 optimization of organic phase proportion and substrate concentration (Fig. S3). The
99 superhydrophobic surface was subjected to S-SPDA based on the reduction in surface
100 energy^[15]. To explore the practical application performance and solve the key technical
101 difficulties in the recovery and utilization of conventional powder adsorbents, the
102 prepared S-SPDA nanospheres were coated onto a polyurethane sponge (S-SPDA-PU)
103 by manipulating the self-polymerization of dopamine and surface modification (Fig.
104 1b). Scanning electron microscope (SEM) images (Fig. 1a and Fig. S4) show the
105 consistent nanosphere morphology of the S-SPDA with a diameter of 150–200 nm.


106 X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR)
107 characterizations confirmed the proposed chemical reaction (Fig. 1c and Fig. 1d) for
108 synthesizing S-SPDA and S-SPDA-PU. As shown in Fig. 1c, superhydrophobic
109 modification led to a corresponding increase in the relative contents of C and N in S-
110 SPDA and S-SPDA-PU, which is consistent with the chemical structure of
111 octadecylamine. The fitting results of the C 1s peaks (Fig. S5) further demonstrated that
112 the Michael addition reaction increased the relative content of the C-C and C=O
113 functional groups to 77.84% and 5.77%, respectively, on the S-SPDA surface (Table
114 S1) through the introduction of linear alkyl and the generation of negative carbon ions
115 under alkaline conditions. Moreover, as shown in Fig. 1d, the C-H stretching vibration
116 of the alkane-saturated carbon was observed at 2854 cm⁻¹ and 2922 cm⁻¹ in the FTIR

117 spectrum of the S-SPDA. The C=C stretching vibration peaks of the SPDA benzene
118 ring at 1406 cm^{-1} were also significantly shifted to 1462 cm^{-1} after surface
119 modification^[24], respectively, which is consistent with the predominant Michael
120 addition reaction of the S-SPDA surface.

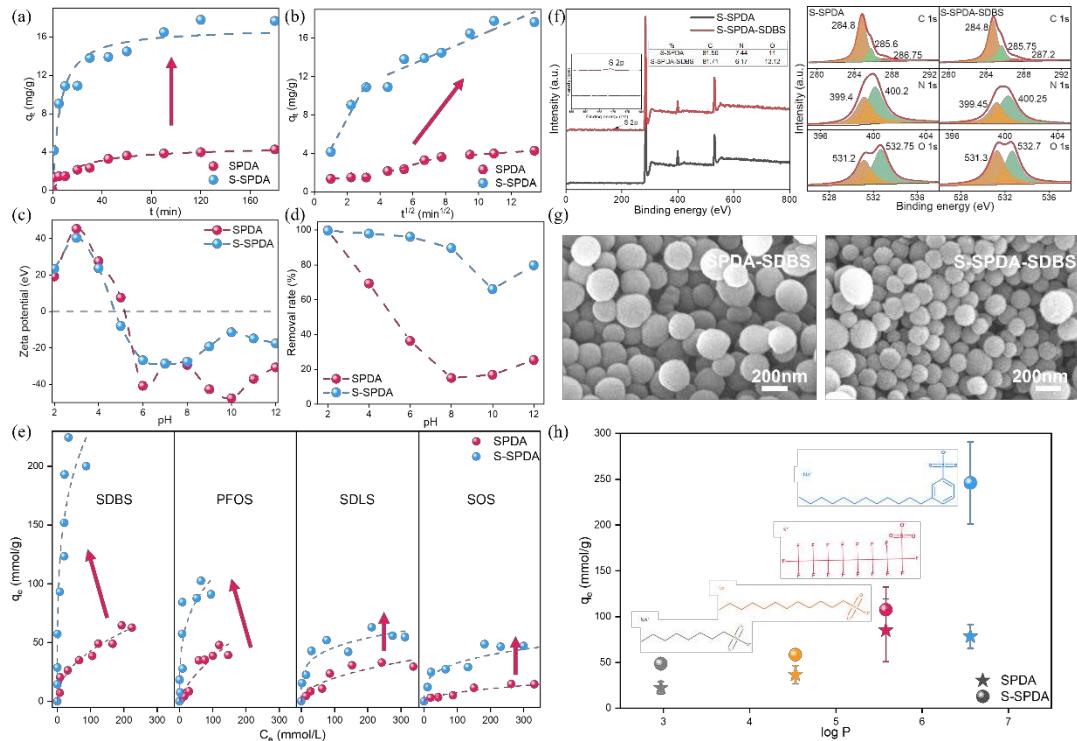
121 The superhydrophobic surface modification proposed in this study did not
122 significantly change the morphology of SPDA, which can be verified by both the N_2
123 adsorption behavior and the pore size distribution. Both S-SPDA and SPDA conform
124 to type-II isotherms (Fig. 1e), indicating that the modified S-SPDA still showed the
125 multilayer reversible adsorption behavior, and the first inflection point is the saturated
126 adsorption capacity of the single molecular layer. In agreement with the SEM results,
127 micropores ($< 2\text{ nm}$) dominated the pore size distribution of SPDA and S-SPDA, which
128 displayed negligible changes in the nanospherical morphology (Fig. 1e). However, the
129 introduction of carbon chains reduces the BET surface while increasing the pore
130 volume of S-SPDA (Table S2).

131 To avoid the uncertainty caused by the characteristics of powder nanomaterial
132 tableting in contact angle measurements, LF-NMR was innovatively employed in this
133 study to quantify the surface hydrophobicity and molecular dynamics of H_2O confined
134 within the porous matrices. With the application of the Carr–Purcell–Meiboom–Gill
135 multipulse sequence methods (Eq. S1), this study offers a facile methodology to reveal
136 the mechanism regarding the degree of solvent confinement and distribution by
137 multicomponent inversion of the time-domain spectra (Eq. S2). With the application of
138 H_2O as a probe molecule and parameter optimization for nanoparticles (detail
139 conditions shown in Section S1 and Fig. S2), LF-NMR quantitatively demonstrated the
140 T_2 relaxation time of SPDA and S-SPDA to be 950.543 ms and 2409.197 ms,
141 respectively (Fig. 1f). Since the dosage of materials and solvent was identical in SPDA
142 and S-SPDA, the transverse relaxation time (T_2) was positively correlated with the free
143 water content, indicating a significantly improved hydrophobic surface of the S-SPDA.
144 Moreover, an upward shift in the relaxation time as well as enhanced signal intensity
145 was observed from SPDA to S-SPDA. The multicomponent LF-NMR spectrum of
146 SPDA shows a continuous signal at lower relaxation times ($\sim 1\text{--}80\text{ ms}$), whereas a
147 limited number of H_2O molecules exist in the sub-nanometer confinement and
148 nanoconfinement domain (0.1–1000 ms) of S-SPDA. As demonstrated in section S1,
149 this water content reduction indicated that the affinity of the surface and micropores of
150 S-SPDA for H_2O molecules was significantly reduced. As the BET surface of SPDA is
151 larger than that of S-SPDA, and there was no significant difference observed in the
152 morphology between SPDA and S-SPDA, we attribute the increase in free water to the
153 hydrophobicity boost that arises from surface energy reduction.

154

155 **Fig. 1.** Fabrication and characterization of superhydrophobic nanospheres. (a) SEM
156 images of SPDA and S-SPDA with a constant spherical structure. (b) Schematic of S-
157 SPDA-PU preparation. XPS patterns (c) and FT-IR spectra (d) of polydopamine
158 nanospheres before and after superhydrophobic modification and the coated sponge. (e)
159 N₂ adsorption-desorption isotherms and pore size distribution. (f) Nuclear magnetic
160 decay curve with the calculated T_2 value and multicomponent inversion of time-domain
161 nuclear magnetic resonance spectra of SPDA and S-SPDA with H₂O as the probe
162 molecule. The inset shows the schematic of each confinement.

163 **2.2. Efficient SLCs removal behaviors**


164 The characterization results indicated that the superhydrophobic surfaces were
165 synthesized without significant morphological transformations. We propose that this
166 surface modification provides efficient and selective adsorption of surfactant-like
167 contaminants with limited influencing variables for mechanism elaboration. To
168 investigate this hypothesis and the adsorption mechanism, sodium dodecyl benzene
169 sulfonate (SDBS), a typical anionic surfactant, was selected as exemplary SLCs for
170 kinetic and isotherm fitting. A series of typical SLCs, including conventional and
171 perfluorinated surfactants, were also conducted for the transverse comparison of
172 different adsorption mechanisms. The detailed properties of the selected pollutants were
173 listed in Table S3.

174 As shown in Fig. 2a and Table S4, the kinetic data for SPDA and S-SPDA were fitted
175 to the pseudo-second-order kinetic model with a higher correlation coefficient (≥ 0.902).

176 According to the fitting results, more than 50% of equilibrium adsorption capacity (q_e)
177 was reached within 5 min for S-SPDA with an enhanced adsorption capacity. By
178 calculating the initial adsorption rate (Eq. 3), the S-SPDA and SPDA reached 2.88
179 mg/(g·min) and 0.23 mg/(g·min) on SDBS adsorption, respectively. This 10 times
180 increase in adsorption rate indicates that the superhydrophobic surface is positively
181 correlated with the adsorption affinity of SDBS, which is attributed to the hydrophobic
182 interaction between the low-surface-energy functional groups. The fitting results of the
183 intraparticle diffusion model (Fig. 2b) further supported this hypothesis. As the fitted
184 curve of the adsorbate does not pass through the origin, diffusion within the particle is
185 not the only step controlling the S-SPDA adsorption process^[25]. The Weber-Morris
186 model fitting results indicate that the adsorption process can be divided into two steps: 1)
187 the contaminants diffused from the solution to the surface of S-SPDA with a high
188 diffusion rate constant and low mass transfer resistance; 2) the contaminant molecules
189 further diffused from the surface of S-SPDA to the interior of the particles with a
190 relatively low diffusion rate constant, which was mainly affected by steric hindrance.
191 Compared with the fitting results of SPDA, the diffusion rates of SDBS from the
192 solution to the S-SPDA solid surface and intraparticle were significantly increased,
193 indicating that the mass transfer resistance and steric hindrance of the adsorbate
194 subjected to superhydrophobic modification were significantly reduced. As the BET
195 surface area of S-SPDA reduced after superhydrophobic modification (Fig. 1e), this
196 result further proves that the surface superhydrophobic property is the main factor
197 influencing the adsorption enhancement of S-SPDA on SDBS.

198 The adsorption isotherms of SDBS on SPDA and S-SPDA (Fig. 2e and Table S5) are
199 well described by the Freundlich model, as indicated by the high R^2 (0.967 and 0.905).
200 In agreement with the kinetic results, S-SPDA exhibited a higher adsorption affinity (K_f)
201 than SPDA based on a heterogeneous adsorption process. The K_f of S-SPDA increased
202 from 2.03 to 10.23, indicating that SDBS tends to be adsorbed by the superhydrophobic
203 surface. Furthermore, the results of the Langmuir isothermal model fitting showed that
204 the maximum adsorption capacity of S-SPDA for SDBS was improved as well. The
205 maximum adsorption capacity of SDBS on S-SPDA and SPDA is 146.97 mg/g and
206 14.11 mg/g, respectively. Similar enhanced adsorption behaviors have been widely
207 observed for other SLCs (Fig. 2e), with the indispensable selectivity of S-SPDA for the
208 octanol-water partition coefficient (logP value). Overall, superhydrophobic surfaces
209 enable highly efficient SLCs removal with an enhanced adsorption affinity and a higher
210 initial adsorption rate than previously reported adsorbent materials^[6].

211

212 **Fig. 2.** Adsorption behaviors of superhydrophobic nanospheres and selective
 213 mechanism elucidation. (a) Adsorption kinetic and fitting results of pseudo-second-
 214 order model. (b) Intraparticle diffusion for the adsorption of SDBS. The initial
 215 concentration of SDBS is 20 mg/L. (c) The ζ -potential of SPDA and S-SPDA as a
 216 function of pH. (d) Effects of pH value on SDBS adsorption. (e) Isotherm and fitting
 217 results of Freundlich model on SLCs adsorption. (f) XPS spectrum, C 1s core region,
 218 N 1s core region, and O 1s core region of S-SPDA before and after SDBS adsorption.
 219 (g) SEM images of SPDA and S-SPDA after SDBS adsorption. (h) Maximum
 220 adsorption capacities of SPDA and S-SPDA on SLCs with logP variation.

221 *2.3 Mechanisms of selective SLCs removal*

222 These adsorption results demonstrate that superhydrophobic modification
 223 significantly improves the adsorption capability of SLCs. To better analyze the
 224 selectivity and its mechanism, the effects of pH value on ζ -potential and SLCs removal
 225 rate were first investigated. As shown in Fig. 2c, the isoelectric pH of S-SPDA (pH =
 226 4.73) decreased slightly compared to that of SPDA (pH = 5.00), which was attributed
 227 to the enhanced electronegativity of the acidic functional groups on the S-SPDA surface
 228 after the addition reaction of the modifier. This agrees with the tendency of the
 229 adsorption removal rate to be influenced by the pH value. For example, both SPDA and
 230 S-SPDA showed a downward trend in SDBS removal with an increase in pH value,
 231 whereas the decline in S-SPDA was relatively limited (Fig. 2d). Since the pKa of SDBS
 232 is 0.7, the surfaces of the adsorbents and SDBS are both negatively charged when the
 233 pH value is larger than the isoelectric point (IEP), resulting in increased electrostatic
 234 repulsion and inhibited adsorption quantity. A similar trend was observed for the

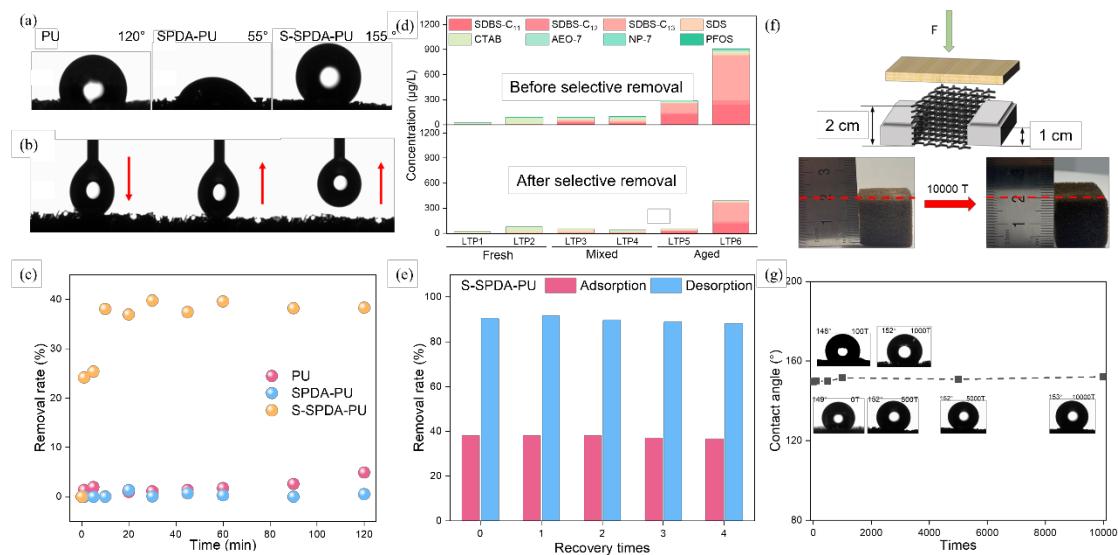
hydrogen bond interactions between the adsorbents and SDBS. When the pH value of the system increased, the sulfonic group ionization of SDBS was negligibly affected, while the phenol hydroxyl ionization in the polyamine was enhanced, resulting in a relatively weak hydrogen bond. Simultaneously, the amino group in the benzene ring structure of S-SPDA is gradually deprotonated, which reduces the content of hydrogen protons participating in hydrogen bonding. Therefore, the decrease in the adsorption capacity of biomimetic polydopamine nanomaterials is attributed to both electrostatic and hydrogen bond interactions. However, the high removal rate (74.33%) at pH 12 demonstrates that the influence of these interactions on S-SPDA was far less than that of SPDA.

The XPS spectrum (Fig. 2f) shows that SDBS adsorption increased the relative content of oxygen and sulfur elements, whereas the composition of the functional groups of each element did not change significantly. The morphologies of the SPDA and S-SPDA were consistent before and after adsorption (Fig. 2g). Their characterization results indicated that SDBS is mainly physically adsorbed on the S-SPDA surface, and there is no significant change in the chemical bond and material morphology. Therefore, to explore the selective mechanism of S-SPDA and realize the isolation between different interactions, a series of characteristic organic compounds was selected for comparison with the molar adsorption capacity to avoid the effects of molecular weight. The system pH was adjusted to the IEP of S-SPDA and SPDA to reduce the influence of electrostatic interactions.

Since SDBS with a sulfonic group act as an electron acceptor in the interaction with the π - π electron donor-acceptor of S-SPDA, the introduction of the long carbon chain after the superhydrophobic modification enhances the electron cloud density of the benzene ring in the SPDA structure, thus promoting π - π electron donor-acceptor interactions. Therefore, the adsorption results of SLCs, including sodium dodecyl sulfonate (SDLS), sodium 1-octane sulfonate (SOS), and potassium perfluorooctyl sulfonate (PFOS), with a similar structure and no benzene ring were significant supplements for further comparison of π – π and hydrophobic interactions (Fig. 2e). Under the pH value at the IEP, the lack of a benzene ring and the sharp decrease in hydrophobicity resulted in the limited adsorption capacity of S-SPDA on SDLS, but the maximum adsorption capacity of S-SPDA material for PFOS (107.48 mmol/g) is much higher than that of SDLS (58.45 mmol/g) and SOS (48.62 mmol/g), which is attributed to the critical difference between the fatty chain and the perfluorocarbon chain with higher hydrophobicity. Moreover, S-SPDA showed indispensable selectivity for the logP value of the adsorbate (Fig. 2h) with an enhanced maximum adsorption capacity and larger K_f . The difference of adsorption properties between S-SPDS and SPDA also enlarged with the increase of logP value. By comparing adsorption isotherm of SPDA and S-SPDA, the difference between S-SPDA and SPDA in adsorption efficiency and selectivity extensively enlarged in the adsorption of pollutants with higher logP values. As illustrated in Figures 1f, 2d, and 2e, the substantial difference in adsorption selectivity, resulting from the transformation of surface and pore channels from

277 hydrophilic to superhydrophobic, is more prominent than the changes in electrostatic
278 interaction caused by minor variations in functional groups or system pH.

279 These comparative results suggest that hydrophobic interactions play a crucial role
280 in the adsorption mechanism. Consequently, enhanced hydrophobic interactions enable
281 superhydrophobic materials to display robust selective adsorption capability for SLCs
282 possessing amphiphilic properties in aqueous systems.


283 *2.4 Selective removal performance in complex wastewater matrices*

284 The constant superhydrophobic surface and adsorption mechanism proposed in this
285 study make it possible for selective adsorption to remove SLCs. As shown in Fig. 1b,
286 S-SPDA-PU was used to further investigate the selectivity and utilization performance
287 in contaminated wastewater. SEM images (Fig. S4) confirmed a nanosphere layer with
288 a diameter of 150–200 nm, aligned with the morphology of SPDA and S-SPDA on the
289 smooth surface of the PU sponge in SPDA-PU and S-SPDA-PU, respectively. In
290 agreement with the LF-NMR results, the TrueDrop method was applied to collect water
291 contact angles from the PU, SPDA-PU, and S-SPDA-PU sponges, and showed that the
292 water contact angle was transferred from 120° of the original PU sponge to 55° and
293 155° with the SPDA and S-SPDA coatings (Fig. 3a), respectively. As shown in Fig. 3b,
294 a water droplet was sufficiently contacted and completely lifted onto the surface of S-
295 SPDA-PU. This was consistent with the outstanding water-repellent characteristics of
296 the S-SPDA surface. More than that, the superhydrophobic property of the S-SPDA-
297 PU surface was relatively stable under extreme test conditions, including strong acid
298 (pH = 1), strong alkali (pH = 13), saturated NaCl, 200°C, and -18 °C for 48 h (Fig. S6).
299 This was attributed to the strong covalent and noncovalent interactions between the S-
300 SPDA and the PU substrate^[22]. The enhanced SLCs adsorption performance of S-
301 SPDA-PU, shown in Fig. 3c and Table S6 (SDBS for example), was consistent with
302 that of S-SPDA. The adsorption equilibrium was reached within 10 min with a 10 times
303 removal rate than of SPDA-PU and PU.

304 To further demonstrate the SLCs selective adsorption performance in complex
305 wastewater matrices, municipal solid waste (MSW) leachate containing much higher
306 organic^[26] (The concentration of total organic carbon (TOC) is ranging from 3000 mg/L
307 to 10000 mg/L) and salt concentrations (The concentration of total dissolved solids is
308 ranging from 10000 mg/L to 30000 mg/L) than domestic sewage^[27] was sampled from
309 6 leachate treatment plants in this study. Representative cationic and nonionic
310 surfactants were quantified as well within the leachate before and after adsorption to
311 comprehensively verify the selective SLCs adsorption ability of S-SPDA-PU. At a 1/10
312 volume ratio of sponge to leachate, the concentration of total SLCs in the leachate at
313 different landfill ages^[28] decreased significantly after adsorption (Fig. 3d). Compared
314 to commercial nanofiltration processes^[8] and state-of-the-art research absorbents^[2, 6],
315 S-SPDA-PU exhibited high selectivity for the removal of anionic, cationic, and
316 nonionic SLCs in practical contaminated wastewater, reaching up to 81.88% of the total
317 SLCs removal rate of MSW leachates. Despite extremely high concentration of organic

318 pollutants and salts in aged leachate, which was widely regarded as a highly complex
 319 wastewater system, S-SPDA-PU achieved a selective SLCs removal efficiency of
 320 average 69.28%. It is worth noting that the concentration of most SLCs was less than
 321 0.050 mg/L in the sampled leachate, whereas the concentration of TOC was greater than
 322 3000 mg/L. This indicates that S-SPDA-PU selectively adsorbed micro or trace SLCs
 323 in complex wastewater, which is expected because of the long hydrophobic chains of
 324 the SLCs that interact with the superhydrophobic surface.

325 Since hydrophobic interactions dominate the adsorption process of SLCs on S-
 326 SPDA-PU, an economical and less side-effect desorption method using ethanol as an
 327 example was proposed in this study. Shielded hydrophobic interactions effectively
 328 released SLCs from the adsorbent with a desorption rate of 90.27% (Fig. S7) and
 329 resumed after drying. After four reuse cycles, the adsorption and desorption rates of S-
 330 SPDA-PU decreased by only 1.50% and 2.28%, respectively (Fig. 3e and Table S7),
 331 demonstrating a comparable reusability. Moreover, after 10000 times of mechanical
 332 extrusion (Fig. 3f), the height of the original PU sponge decreased from 2 cm to 1.8 cm,
 333 whereas the height of S-SPDA-PU remained at 2 cm with a constant superhydrophobic
 334 surface (water contact angle = 153°, Fig. 3g). The test results showed that the S-SPDA
 335 coating improved the mechanical stability of PU and resulted in a more durable reuse
 336 potential, attributing to the mechanical reinforcing effect of S-SPDA nanoparticles
 337 anchored on the interconnected skeleton^[29]. Based on the direct SLCs removal
 338 efficiency in complex wastewater matrices and practical properties, our studies drew a
 339 new paradigm (Fig. S8) to supply S-SPDA-PU as pretreatment process to targeted
 340 removal of trace SLCs from wastewater.

341
 342 **Fig. 3.** Selective SLCs adsorption and application performance of superhydrophobic
 343 nanospheres coated sponge in sampled MSW leachate. (a) Water contact angle of
 344 original PU, SPDA-PU, and S-SPDA-PU. (b) The dynamic adhesion test results of
 345 water droplet on S-SPDA-PU. (c) SDBS removal rate over time for original PU, SPDA-
 346 PU, and S-SPDA-PU. (d) The concentration of SLCs in 6 sampled MSW leachate
 347 before and after selective adsorption of S-SPDA-PU. (e) SDBS adsorption and

348 desorption rate of S-SPDA-PU over 4 times reusing. The initial concentration of SDBS
349 in (c) and (e) is 20 mg/L. (f) Schematic of mechanical test and digital photograph of S-
350 SPDA-PU after 10000 times presses. (g) Negligible effects of mechanical press on the
351 water contact angle of S-SPDA-PU.

352 **3. Conclusions**

353 Owing to the lack of separation and comparison between adsorption interactions,
354 current adsorption materials have difficulty achieving high selectivity for SLCs, while
355 other superwetting materials concentrate on the separation of oil and water phases
356 instead of aqueous systems.

357 In this study, we fabricated superhydrophobic dopamine nanospheres and coated
358 them onto the surface of a PU sponge for selective SLCs adsorption. Based on T_2
359 relaxation time, the surface hydrophobicity of powder nanoparticles and the distribution
360 of water molecular probes was innovatively quantified. As elucidated by interaction
361 mechanisms, the dominant role of hydrophobic interaction in the adsorption of S-SPDA
362 enabled efficient SLCs removal and high selectivity even in complex contaminated
363 leachate matrices. Moreover, S-SPDA adhered to the PU surface without adding extra
364 adhesive, thereby avoiding secondary toxicity and recovery of the powder materials.
365 Desorption methods for shielding hydrophobic interactions reduce the cost of recycling
366 and enhance the durability of adsorbents.

367 Our study provides valuable insights and feasible strategy for quantifying the surface
368 hydrophobicity of powder nanoparticles and extends their potential use in the
369 elucidation of interaction mechanisms between nanoparticles and contaminants.
370 Compared to previously reported adsorption materials and commercial membranes, S-
371 SPDA-PU, which has a stable superhydrophobic surface and practical reusability,
372 shows high efficiency and selectivity for the removal of SLCs. This creates potential
373 for the application of superhydrophobic sponges in the selective removal of SLCs from
374 wastewater as pretreatment process.

375 **4. Experimental Section**

376 **Materials**

377 Hydrochloric acid (HCl, 36-38%), sodium hydroxide (NaOH, > 98%), and
378 ammonium acetate (LC/MS grade, > 99%) were purchased from Sigma-Aldrich
379 (Shanghai, China). Methanol (HPLC grade, 99.9%) was purchased from Fisher
380 Chemical (Leicestershire, England). Dopamine hydrochloride ($C_8H_{11}NO_2 \cdot HCl$, 98%),
381 sodium dodecyl benzene sulfonate standard solution (SDBS, $C_{18}H_{29}SO_3Na$, analytical
382 standard grade), sodium dodecyl sulfonate (SDLS, $C_{12}H_{25}SO_3Na$, ≥ 99.0%), sodium
383 octane sulfonate (SOS, $C_8H_{17}SO_3Na$, ≥ 99.0%), nonylphenol ethoxylate (NP-7,
384 $C_{15}H_{24}O(C_2H_4O)_7$, AR), fatty alcohol polyoxyethylene ether (AEO-7,
385 $RO(CH_2CH_2O)_7H$, AR), cetyl trimethyl ammonium bromide (CTAB, $C_{19}H_{42}BrN$, ≥

386 99.0%) and tris hydrochloric acid buffer (Tris, pH = 8.5) were purchased from Aladdin
387 (Shanghai, China). Potassium perfluorooctyl sulfonate (PFOS, C₈F₁₇SO₃K, > 98%) was
388 purchased from Merida (Beijing, China). Octadecyl amine (C₁₈H₃₉N, analytical reagent)
389 was purchased from Anergic (Shanghai, China), anhydrous ethanol (C₂H₆O, > 99.7%)
390 was purchased from Titan (Shanghai, China). Polyurethane sponges (PU) were
391 purchased from Yongjia Sponge Products Co., Ltd. The ultrapure water used to prepare
392 the solution is prepared by Master-S UV ultrapure water machine.

393 **Adsorbent preparation**

394 SPDA was synthesized by increasing the proportion of organic phase in solvent
395 system. Dopamine of different quality was dissolved in a mixed solution of 20% (v/v)
396 ethanol and Tris-HCl buffer solution (pH = 8.5, 10 mmol/L), and was fully mixed with
397 a magnetic stirrer under dark at room temperature for 24 hours. The resulting solution
398 was centrifuged at 13000 rpm for 10 min and the obtained product was rinsed three
399 times with ethanol and ultrapure water. The resulting precipitate was collected and
400 freeze-dried to get SPDA as black powder.

401 The synthesis procedure for S-SPDA was as follows: A ethanol solution (100 mL)
402 containing the prepared SPDA nanomaterials (10 mg) and octadecyl amine (269.51mg)
403 were stirred at 60°C for 12 hours with a magnetic stirrer. The resulting reaction mixture
404 was centrifuged at 13000 rpm for 10 min and rinsed three times with ethanol. The
405 obtained precipitate was freeze-dried and denoted as S-SPDA.

406 S-SPDA was further coated on the surface of the PU porous-sponge for
407 environmental application. PU (1 cm × 1 cm × 1cm) was ultrasonically cleaned with
408 ethanol and ultrapure water and dried at 60°C. The obtained PU was added into the
409 above SPDA and S-SPDA reaction mixture in turn and was fully rinsed with water and
410 ethanol for more than ten times. After rinse process, no nanoparticles were observed in
411 the effluent solution. The resulting black sponge was freeze-dried and denoted as
412 SPDA-PU and S-SPDA-PU, respectively.

413 **Batch adsorption experiment**

414 Adsorption experiments were conducted using a batch approach at ambient
415 temperature. To initiate the experiment, absorbent (200 mg) was added into 200 mL of
416 surfactant-like pollutants solution with a series of initial concentrations (5–100 mg/L).
417 With 200 rpm stirring, samples were taken in a certain time and adsorption equilibrium
418 (24h) for adsorption kinetics and isotherms, respectively. pH was adjusted using 0.1 M
419 NaOH and 0.1 M HCl and monitored by pH meter (T50, Mettler Toledo, Switzerland).
420 All adsorption experiments were run in duplicate.

421 After filtration through 0.22 μm membranes, quantitative analysis of samples was
422 performed on Acquity UPLC (Waters, USA) coupled with a Xevo TQD (Waters, United
423 States) triple quadrupole tandem mass spectrometry (MS/MS). The detailed
424 optimization methods were developed in our previous study ^[30]. Briefly, gradient
425 elution was conducted using 5 mM ammonium acetate and 0.5% (v/v) formic acid in
426 water (A) and methanol (B) with a BEH-C18 column (1.7 μm, 2.1 × 100 mm, Waters,
427 USA). Electrospray ionization (ESI) source and negative multi-reaction monitoring

428 (MRM) mode were adopted in MS/MS. The post-column compensation method was
429 applied and optimized to improve the detection limit with 30 $\mu\text{L}/\text{min}$ of 10%
430 ammonium hydroxide in water. The specific gradient elution conditions and
431 corresponding mass spectrum conditions of each surfactant were listed in Table S8 and
432 S9.

433 The pseudo-first-order (Eq. 1) and pseudo-second-order model (Eq. 2) was applied
434 to fit the adsorption data of kinetic studies.

435
$$q_t = q_e(1 - e^{-k_1 t}) \quad (1)$$

436
$$q_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t} \quad (2)$$

437 where q_t (mg/g) is the adsorption amounts of pollutants at time t (min), q_e (mg/g) is
438 the adsorption amounts of pollutants at equilibrium time, and k_1 (mg/(g·min)) and k_2
439 (g/(mg·min)) is the rate constant. According to Eq. 2, initial adsorption rate was
440 calculated as Eq. 3:

441
$$v_0 = q_e^2 k_2 \quad (3)$$

442 where v_0 (mg/(g·min)) is the initial adsorption rate. The diffusion mechanisms were
443 conducted by fitting the intraparticle diffusion model (Eq. 4).

444
$$q_e = k_{id} t^{1/2} + C \quad (4)$$

445 where k_{id} (mg·min^{1/2}/g) is the interparticle diffusion rate constant and C (mg/g) is the
446 boundary layer thickness constant. The adsorption isotherms were simulated by the
447 Freundlich model (Eq. 5).

448
$$q_e = K_f C_e^{1/n} \quad (5)$$

449 where C_e (mg/L) is the concentration of residual pollutants in solution at equilibrium,
450 and K_f (mg·(L/mg)^{1/n}/g) and n are the constant of the Freundlich model.

451 Environmental application experiment

452 Application adsorption experiments were conducted using a batch approach at
453 ambient temperature. To initiate the experiment, original and coated PU (1 cm × 1 cm
454 × 1cm) was added into 50 mL of surfactant-like pollutants solution with an initial
455 concentration (20 mg/L). With 200 rpm stirring, samples were taken in a certain time
456 and adsorption equilibrium (24h) for adsorption kinetics and isotherms, respectively.
457 The removal rate of original and coated PU was calculated as Eq.6:

458
$$\text{Removal rate (\%)} = \frac{C_0 - C_t}{C_0} \times 100\% \quad (6)$$

459 where C_0 (mg/L) is the initial concentration of pollutants and C_t (mg/L) is the
460 residual concentration of pollutants at time t (min).

461 Ethanol was used as an exemplary desorption agent. First, the adsorbed powder

462 materials were centrifuged for 10 min at 130000 rpm and desorbed for 2 hours at
463 ambient temperature. After desorption, the obtained materials were washed 3 times with
464 ultrapure water. As for sponge materials, the adsorbed sponge was first fully squeezed
465 to discharge the adsorbed solution and immersed in ethanol for 2 hours at ambient
466 temperature. Reusing experiments were conducted with the same SDBS concentration
467 (20 mg/L) and materials dosage (20 mg for S-SPDA and 1 cm × 1 cm × 1cm for S-
468 SPDA-PU into 50 mL solution, respectively) as adsorption experiment. The eluent was
469 set as 50 mL and cautiously collected. Since the volume of adsorption solution and
470 eluent are same, the desorption rate was calculated as:

471
$$\text{Desorption rate}(\%) = \frac{C_d}{C_0 - C_e} \times 100\% \quad (7)$$

472 where C_d (mg/L) is the concentration of eluent collected after desorption.

473 To perform the selectivity in complex wastewater matrices, this study collected
474 leachate samples from 6 typical MSW landfills and waste-to-energy plants. It is
475 noteworthy that landfill ages from fresh to aged were all included in these samples. A
476 description of the characteristics of all leachate samples and extraction methods were
477 detailed listed in previous study^[30]. Briefly, each sample was filtered by a 0.45 μm
478 membrane before solid phase extraction (SPE) and quantified with UPLC/MS/MS.

479 **Characterization**

480 The morphology of adsorbents was observed by scanning electron microscope (SEM)
481 with a Hitachi SU-8010. Fourier transform infrared (FTIR) spectra were measured to
482 determine chemical groups using a Bruker Vertex 70 with the range of 350 cm^{-1} – 4000
483 cm^{-1} . The Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) equations
484 were used to calculate the surface area and pore size distribution with a Quantachrome
485 SI-MP. X-ray photoelectron spectroscopy (XPS) spectra was recorded in a Thermo
486 ESCALAB 250XI to determine surface elemental composition and valency. The zeta
487 potential was measured with Zeta potentiometer (Delsa Nano C, Beckman Coulter). It
488 is worth noting that the hydrophilicity and water distribution characteristics of
489 adsorbents were innovatively quantified by LF-NMR with VTMR20-010V-I at about
490 0.5 T of main magnetic field. Detailed characterization mechanism and methods were
491 described in Section S1.

492 **Statistical Analysis**

493 The results were reported as mean \pm standard deviation (SD).

494 **Supporting Information**

495 Supporting Information is available from the Wiley Online Library or from the author.

496 **Acknowledgements**

497 This study was funded by the National Key Research and Development Program of
498 China (2018YFC1901405). Special thanks go to Dr. Haijun Yang and Hao Ding for

499 their professional support in the characterization with Low field nuclear magnetic
500 resonance.

501 **Conflict of Interests**

502 The authors declare no conflict of interest.

503 **Data Availability Statement**

504 The data that support the findings of this study are available from the corresponding
505 author upon reasonable request.

506 **Keywords**

507 Superhydrophobic; Selective adsorption; Polydopamine; Hydrophobic interaction;
508 Leachate treatment

509 **References**

510 [1] M. Palmer, H. Hatley, *Water Res.* **2018**, 147, 60.
511 [2] R. F. Nunes, A. C. S. C. Teixeira, *Chemosphere* **2022**, 300, 134507.
512 [3] N. Sakai, J. Shirasaka, Y. Matsui, M. R. Ramli, K. Yoshida, M. A. Mohd, M.
513 Yoneda, *Chemosphere* **2016**, 172, 234.
514 [4] C. Gallen, D. Drage, G. Eaglesham, S. Grant, M. Bowman, J. F. Mueller, *J. Hazard.
515 Mater.* **2017**, 331, 132.
516 [5] J. Arora, A. Ranjan, A. Chauhan, R. Biswas, V. D. Rajput, S. Sushkova, S.
517 Mandzhieva, T. Minkina, T. Jindal, *J. Appl. Microbiol.* **2022**, 133, 1229.
518 [6] A. A. Siyal, M. R. Shamsuddin, A. Low, N. E. Rabat, *J. Environ. Manage.* **2020**,
519 254, 109797.
520 [7] M. Lechuga, M. Fernandez-Serrano, E. Jurado, J. Nunez-Olea, F. Rios, *Ecotoxicol.
521 Environ. Saf.* **2016**, 125, 1.
522 [8] F.-J. Zhu, W.-L. Ma, T.-F. Xu, Y. Ding, X. Zhao, W.-L. Li, L.-Y. Liu, W.-W. Song,
523 Y.-F. Li, Z.-F. Zhang, *Ecotoxicology and Environmental Safety* **2018**, 153, 84.
524 [9] M. Bautista-Toledo, J. Méndez-Díaz, M. Sánchez-Polo, J. Rivera-Utrilla, M.
525 Ferro-García, *J. Colloid Interface Sci.* **2008**, 317, 11.
526 [10] P. Prediger, T. Cheminski, T. de Figueiredo Neves, W. B. Nunes, L. Sabino, C. S.
527 F. Picone, R. L. Oliveira, C. R. D. Correia, *J. Environ. Chem. Eng.* **2018**, 6, 1536.
528 [11] M. J. Sánchez-Martín, M. C. Dorado, C. del Hoyo, M. S. Rodríguez-Cruz, *J.
529 Hazard. Mater.* **2008**, 150, 115.
530 [12] C. C. Borghi, M. Fabbri, M. Fiorini, M. Mancini, P. L. Ribani, *Sep. Purif. Technol.*
531 **2011**, 83, 180.
532 [13] Q. Gao, W. Chen, Y. Chen, D. Werner, G. Cornelissen, B. Xing, S. Tao, X. Wang,
533 *Water Res.* **2016**, 106, 531.

534 [14] A. A. Alazab, T. A. Saleh, *Mater. Chem. Phys.* **2023**, 302, 127609.

535 [15] J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. B. Durairaj, G.

536 Mageshwaran, *J. Coat. Technol. Res.* **2018**, 15, 231.

537 [16] M. Nosonovsky, B. Bhushan, *Curr Opin Colloid Interface Sci* **2009**, 14, 270.

538 [17] M. Satria, T. A. Saleh, *J. Mol. Liq.* **2022**, 367, 120341.

539 [18] L. Wen, Y. Tian, L. Jiang, *Angew. Chem. Int. Ed.* **2015**, 54, 3387.

540 [19] H. Wang, J. Yang, X. Liu, Z. Tao, Z. Wang, R. Yue, *J. Mater. Sci.* **2019**, 54, 1255.

541 [20] A. Alghunaim, S. Kirdponpattara, B.-m. Z. Newby, *Powder Technol.* **2016**, 287,

542 201.

543 [21] A. Depalo, A. C. Santomaso, *Colloids Surf., A* **2013**, 436, 371.

544 [22] H. Lee, S. M. Dellatore, W. M. Miller, P. B. J. s. Messersmith, *Science* **2007**, 318,

545 426.

546 [23] M. Ghasemlou, F. Daver, E. P. Ivanova, B. J. J. o. M. C. A. Adhikari, *J. Mater.*

547 *Chem. A* **2019**, 7, 16643.

548 [24] T. A. Saleh, *Chem. Eng. J.* **2021**, 404, 126987.

549 [25] N. F. Campos, C. M. B. M. Barbosa, J. M. Rodríguez-Díaz, M. M. M. B. Duarte,

550 *Adsorp Sci Technol* **2018**, 36, 1405.

551 [26] L. Zhang, M. C. Lavagnolo, H. Bai, A. Pivato, R. Raga, D. Yue, *Resources,*

552 *Conservation and Recycling* **2019**, 141, 474.

553 [27] L. Zhang, X. Wang, D. Yue, *Environmental Pollution* **2020**, 267, 115573.

554 [28] L. Zhang, H. Bai, Y. Zhang, Y. Wang, D. Yue, *Environmental Science &*

555 *Technology* **2021**, 55, 13264.

556 [29] H. Wang, E. Wang, Z. Liu, D. Gao, R. Yuan, L. Sun, Y. Zhu, *J. Mater. Chem. A*

557 **2015**, 3, 266.

558 [30] L. Zhang, C. Tang, M. Li, H. Wang, S. Zhang, J. Wang, X. Dong, D. Fang, H. Bai,

559 Y. Sun, D. Yue, *Water Res.* **2023**, 231, 119487.