

High-frequency Fluctuation of Air Temperature during a Heatwave Event in Urban Environment and the Physical Mechanism Behind

Ruiqing Du, Chun-Ho Liu^{*}, and Yixun Liu

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

Revised Manuscript No. BAE-D-23-02849

submitted

to

Building and Environment

on

August 26, 2023

**Correspondence:*

Chun-Ho LIU

Department of Mechanical Engineering,
7/F Haking Wong Building,
The University of Hong Kong,
Pokfulam Road, Hong Kong SAR, CHINA

Tel: +852 3917 7901 / + 852 9788 7951

Fax: +852 2858 5415

liuchunho@graduate.hku.hk

<https://aplhk.tech>

ORCID: 0000-0002-4609-524X

1 Abstract

2 Heatwaves threaten human health and power systems. Urban climate is non-stationary
3 and wide-spectrum, with high-frequency temperature and **wind-speed** variations that **could**
4 overload power grids and expose people to extreme heat. In this study, Hilbert-Huang transform
5 (HHT) was unprecedently used to decompose the urban-scale temperature (*IMF* θ 1 to *IMF* θ 6)
6 and **wind-speed** (*IMFW*1 to *IMFW*6) signals during a 5-day heatwave **event** into 6 intrinsic
7 mode functions (IMFs). The spatio-temporal characteristics, physical mechanism, and effective
8 ranges of high-frequency components (IMF1 to IMF4) were unveiled. Temperature (wind
9 speed) *IMF* θ 1 to *IMF* θ 4 (*IMFW*1 to *IMFW*4) had a temporal scale of 2.63 **hr** (2.53 **hr**), 5.88 **hr**
10 (5.78 **hr**), 13.16 **hr** (9.84 **hr**), and 22.72 **hr** (19.05 **hr**); **as well as** a spatial scale of 2.31 km (0.99
11 km), 4.29 km (1.65 km), 5.94 km (2.64 km), and 6.6 km (2.97 km), respectively. The physical
12 mechanisms of IMF1 to IMF4 were composed of turbulence and heat storage/release;
13 disturbance induced by mountainous terrain and slope flows; land/sea breeze, together with
14 anthropogenic heat. Besides, the peaked amplitudes of *IMF* θ 1 were most risky in compact/open
15 high-rise urban (1.4 °C to 1.6 °C) rather than rural (0.6 °C to 1.0 °C) areas. The foothill areas
16 within 8-km coverage were susceptible to *IMF* θ 2 (1 °C to 2.1 °C). *IMF* θ 3 (0.6 °C to 3.6 °C)
17 was effective in urban areas within 10 km from coastline. *IMF* θ 4 (2.5 °C to 3.5 °C) exhibited
18 the most intense fluctuation in urban/suburban areas. The outcome provides references for
19 policy **makers** to mitigate heat-related risks. (247 words)

(247 words)

20 *Keywords:* empirical mode decomposition (EMD); extreme temperature; heatwave; high-
21 frequency fluctuation; Hilbert-Huang transform (HHT); intrinsic mode function (IMF);
22 urban temperature

23

1. Introduction

24 Rapid urbanization induces global warming and more frequent temperature extremes.
25 The unusual warmth has tremendous impacts on public health and power security. High
26 temperature could result in life-threatening thermal stress of human body by inhibiting heat loss
27 and metabolic regulation [1]. As a remedial measure for space cooling, the usage of air-
28 conditioning (AC) would surge. Previous studies have reported that space-cooling-related
29 energy demand could be over 50% of the total in China [2] and the United States [3]. It could
30 result in power shortage or even electric-grid failure [4]. For example, the 2022 heatwave event
31 caused at least 26,000 mortalities in Europe. Moreover, the 2019 heat-related blackout led to
32 73,000 citizens being suffered in New York [5]. Therefore, unveiling the mechanism of peaked
33 urban temperatures during heatwave events is essential to urban planning and energy policy.

34

35 Air-temperature fluctuation plays an important role in urban environment. The
36 mortality and building energy consumption are sensitive to the fluctuating temperatures during
37 extremely hot days. In Hong Kong (HK), for example, every 1 °C increase would induce 4.1%
38 [6] and 9.2% [7] increases in fatality rate and building energy consumption, respectively, under
39 extreme temperatures. Whereas, urban thermal environment is a multi-scale process governed
40 by a range of factors including terrain, urban morphology, and construction materials, etc.
41 Among others, some factors, such as solar radiation and synoptic weather conditions, could
42 induce low-frequency temperature *variations* (*temporal* period \geq 24 hr). On the other hand,
43 atmospheric turbulence and local winds, could cause high-frequency temperature *fluctuations*
44 (*temporal* period $<$ 24 hr) [8]. Most of these *changes* are aperiodic and stochastic. Under this

45 circumstance, acute temperature **fluctuations** are induced that tremendously soar (peaked)
46 power demand.

47

48 During extreme heatwave events, power grids are already on the verge of collapse. In
49 case of sudden, huge power demand, the electricity infrastructure would be overloaded that
50 risks the cities to blackouts [1, 9]. Once a city is in blackout, the outage of AC system could
51 cause increased indoor temperature. Moreover, these non-linear, non-stationary fluctuations
52 could induce uncertainties and anomalies in urban microclimate. It would lead to harmful
53 impact on public health and social activities. Urban planners might find it difficult to handle
54 those unknown threats. Thus, it is necessary to extract the high-frequency components from
55 the (time series of) urban temperatures and explore the physical implication behind.

56

57 In this study, the complicated, extreme temperature data in urban environment were
58 decomposed. The associated high-frequency components and the corresponding physical
59 processes were examined. To analyze the fluctuating temperatures, the techniques from the
60 signal-processing sector have been commonly adopted. Numerous spectral decomposition
61 approaches, such as Fourier decomposition [10, 11] and Wavelet transform [12], have been
62 employed with predetermined functions and time scales. Whereas, urban climate is chaotic,
63 non-linear, and non-stationary. As such, the local time scale is unknown in prior [13]. Lately, a
64 method to analyze such complicated data **was** fostered in the Hilbert-Huang Transform (HHT)
65 [14]. The key step of HHT is empirical mode decomposition (EMD) which is capable of
66 separating any (original) signals into a finite set of orthogonal components called intrinsic

67 mode functions (IMFs). Among others, EMD is entirely data-adaptive that automatically
68 determines the time scales according to the intrinsic data properties, avoiding the a priori choice
69 of time-scale functions [15]. EMD has been applied to the long-term (a few decades) data
70 analyses of the urban temperatures in Mexico City [16], Shanghai [17], Chongqing [18], Taipei
71 [19], Milan [20], Southern India [21], and the United States [15]. Besides, it has been employed
72 to examine the impact of ambient temperatures on the power consumption in Sarajevo City [22]
73 and the effect of vegetation on the air temperatures in Three Gorges Reservoir Region, China
74 [23]. Moreover, it was used to analyze the **pedestrian-level** wind data in Sydney [24]. It was
75 found that EMD could capture the amplitude-frequency fluctuations, especially the high-
76 frequency temperature anomalies or local characteristic of winds. In addition, EMD combined
77 with **HHT** that enabled the investigation of the multi-scale variability of extreme temperatures
78 over a region.

79

80 High-resolution meteorological data are crucial to differentiate the inhomogeneous
81 urban climate nowadays. Weather Research and Forecasting (WRF) model coupling the
82 Building Effect Parameterization (BEP) and Building Energy Model (BEM) [25, 26] is a
83 workaround to refine the spatio-temporal resolution of urban meteorological variables. As a
84 multi-scale model, it enables the urban-climate simulation to consider the mesoscale boundary
85 conditions, natural terrain, building properties, and urban configuration. WRF-BEP/BEM has
86 been validated and applied extensively in studies of urban thermal environment especially
87 heatwave events [27].

88

89 To the best knowledge of the authors, however, there are few studies employing EMD
90 on urban temperature datasets from the WRF-BEP/BEM model. Moreover, the short-term,
91 high-frequency (**temporal** period < 24 hr) components in urban temperatures during typical
92 heatwave events and their physical explanation are rarely explored. Therefore, the pressing
93 need for decomposing broad-spectrum, extreme temperature patterns into interpretable
94 components arises. Such decomposition is helpful to mitigate urban heat island (UHI) and
95 avoid disasters during extremely hot days. Urban planners could formulate the most cost-
96 effective strategy according to **the** temperature variations in different spatio-temporal scales.
97 Besides, the physical processes of individual components are essential to the understanding of
98 the mechanism behind extreme temperatures and the related countermeasures. Unlike the
99 traditional methods, such as Fourier decomposition and Wavelet transform, EMD is adaptive
100 and requires no predefined temporal function so is more suitable for chaotic, non-stationary
101 urban thermal processes. Thus, it is worthy to use EMD to characterize urban temperatures as
102 well as reveal the implication of individual components.

103

104 To bridge the aforementioned knowledge gap, in this paper, we study various high-
105 frequency, irregular components in (hourly) urban temperature during extremely hot days. First,
106 the urban temperature during a typical heatwave event (June 23 to 27, 2016) in Hong Kong is
107 calculated using the WRF-BEP/BEM model [28]. Afterward, EMD/HHT is employed to
108 decompose the temperature signals into IMFs. The spatio-temporal properties and the physical
109 mechanism of the IMFs are further diagnosed. Furthermore, the thermal impact of each high-
110 frequency component of temperature fluctuation on urban environment and the effective range

111 are assessed according to the peaked IMF amplitudes.

112

113 The specific objectives of this study are to: (1) present a scheme to decompose the
114 temperatures during heatwave events into the mean and several high-frequency fluctuating
115 components; (2) examine the spatio-temporal characteristics and physical mechanism of
116 temperature fluctuation; and (3) assess the peaked amplitude of individual fluctuating
117 components and evaluate the impact on the susceptible urban areas.

118

119 **2. Methodology**

120 **2.1 Model Configuration**

121 The Advanced WRF (ARW version 3.6.1) [29] was used to examine the fluctuation of
122 **meteorological** variables during a heatwave event (0000 LST on June 23, 2016 to 2400 LST
123 on June 27, 2016) [30]. The simulation was started at 0800 LST on June 21, 2016 for a 40-hour
124 spinning up [31]. During these extremely hot days, the recorded hottest temperature was 35.5 °C
125 at 1400 LST on June 25, 2016. The WRF domain consisted of four one-way nested domains at
126 9 km (241×181 grids), 3 km (271×181), 1 km (241×181), and 0.33 km (241×181) spatial
127 resolution (Figure 1). The vertical coordinate was composed of 51 η levels from the ground to
128 50 hPa for the atmospheric model in which the urban canopy was refined to 10-m resolution.
129 The initial and boundary conditions for the atmospheric model were derived from the European
130 Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data whose spatial and
131 temporal resolutions were 0.75° and 6 **hr**, respectively.

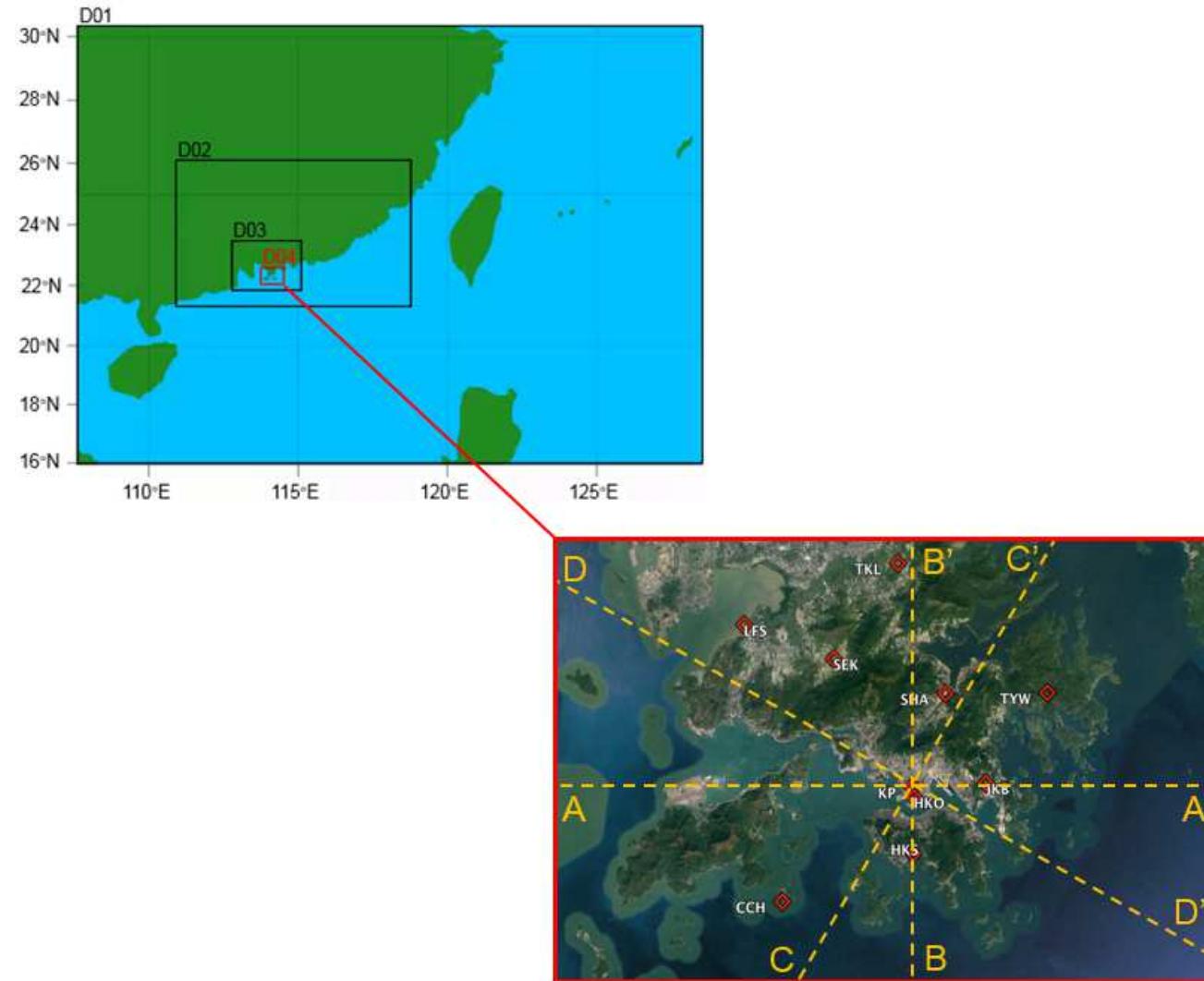


Figure 1. Nested computation domains D01, D02, D03, and D04.

133 To calculate the spatio-temporal variations of meteorological variables more accurately,
 134 we developed a new landuse/landcover (LULC) map which consisted of 30 urban classes
 135 (LCZBC). This new map was generated by combining the local climate zone (LCZ) [32]
 136 defined in the World Urban Database and Access Portal Tools (WUDAPT) and the building
 137 categories (BCs; 10-m resolution) [33] from the Land Utilization Map of Planning Department
 138 (PlanD) of HK Special Administrative Region (HKSAR; Figure 2). In each of the 10 LCZ
 139 urban types existing in HK, the landuse was further sub-classified into three BCs (commercial,
 140 residential, and non-building; Table 2) according to the dominant LULC at individual model
 141 grids. The physical parameterization schemes used in the current WRF model are tabulated in
 142 Table 1. Among them, the combined multi-layer urban canopy model, which was based on
 143 BEP/BEM, was used for the built-environment parameterizaton.

144

Table 1. Physical parameterization schemes used in the WRF model.

Physics Options	Schemes	References
Boundary Layer	BouLac	[34]
Microphysics	Single-Moment 3-class	[35]
Land Surface	Noah	[36]
Cumulus (only in Domain 01)	Kain-Fritsch	[37]
Short Wave Radiation	Dudhia	[38]
Long Wave Radiation	Rapid Radiative Transfer Model	[39]
Surface Urban	BEP/BEM	[25, 26]

145

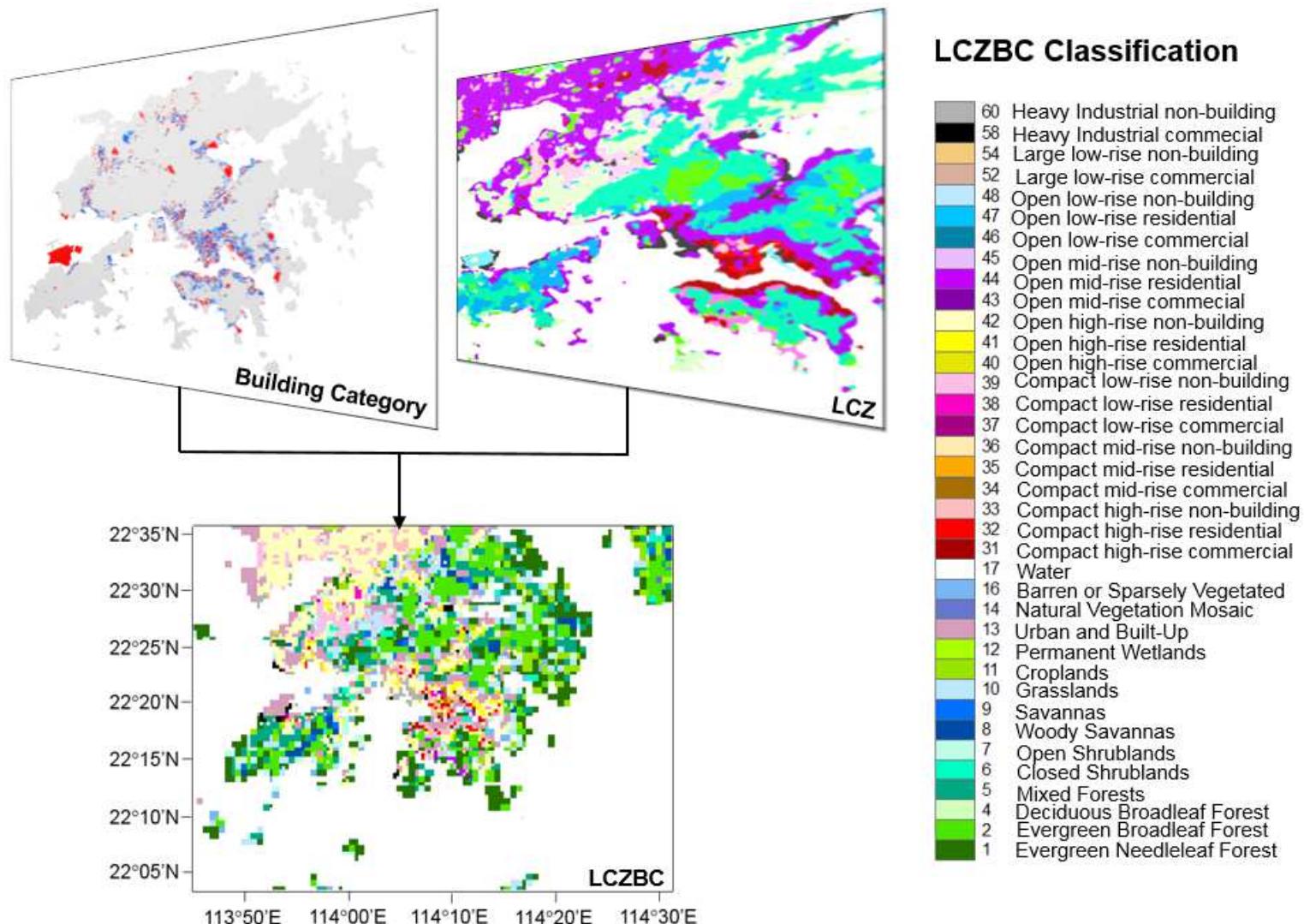


Figure 2. Map of local climate zone and building category (LCZBC) in Hong Kong (HK).

Table 2. Sub-classification of local climate zone (LCZ) based on building category (BC) [40].

LCZBC Map – Urban Land Use	LCZ1	LCZ1-C	Compact high-rise Commercial
	Compact high-rise	LCZ1-R	Compact high-rise Residential
		LCZ1-N	Compact high-rise Non-building
	LCZ2	LCZ2-C	Compact mid-rise Commercial
	Compact mid-rise	LCZ2-R	Compact mid-rise Residential
		LCZ2-N	Compact mid-rise Non-building
	LCZ3	LCZ3-C	Compact low-rise Commercial
	Compact low-rise	LCZ3-R	Compact low-rise Residential
		LCZ3-N	Compact low-rise Non-building
	LCZ4	LCZ4-C	Open high-rise Commercial
Open high-rise		LCZ4-R	Open high-rise Residential
		LCZ4-N	Open high-rise Non-building
	LCZ5	LCZ5-C	Open mid-rise Commercial
Open mid-rise		LCZ5-R	Open mid-rise Residential
		LCZ5-N	Open mid-rise Non-building
Open low-rise	LCZ6	LCZ6-C	Open low-rise Commercial
		LCZ6-R	Open low-rise Residential
		LCZ6-N	Open low-rise Non-building
Lightweight low-rise	LCZ7	LCZ7-C	Lightweight low-rise Commercial
		LCZ7-R	Lightweight low-rise Residential
		LCZ7-N	Lightweight low-rise Non-building
Large low-rise	LCZ8	LCZ8-C	Large low-rise Commercial
		LCZ8-R	Large low-rise Residential
		LCZ8-N	Large low-rise Non-building
Sparsely built	LCZ9	LCZ9-C	Sparsely built Commercial
		LCZ9-R	Sparsely built Residential
		LCZ9-N	Sparsely built Non-building
Heavy industry	LCZ10	LCZ10-C	Heavy industry Commercial
		LCZ10-R	Heavy industry Residential
		LCZ10-N	Heavy industry Non-building

147 **2.2 Analytical Approach**148 **2.2.1 Empirical Mode Decomposition**

149 The **wind-speed** and temperature fluctuations in urban areas are complicated by
 150 synoptic weather conditions, diurnal variations, and local forcing (e.g. terrain, surface
 151 properties, urban morphology, and anthropogenic heat). To examine how these processes
 152 influence ground-level winds, HHT was used to decompose the meteorological time series
 153 obtained from the WRF-BEP/BEM model. HHT is a time-frequency analysis that consists of
 154 two steps. The first step applies EMD to decompose any multi-scale, non-linear time-series
 155 data into a finite number of IMFs. IMFs admit well-behaved **HHT** and reveal the timescales
 156 that comprise the dataset. However, EMD often causes mode-mixing, unavoidably leading to
 157 the overlapping of IMF spectra. We hence used an improved approach called noise-assisted
 158 multivariate EMD (NA-MEMD) [41] instead. The second step is **HHT** that extracts the
 159 instantaneous frequency and amplitude of each IMF. The Hilbert spectrum signifies the time-
 160 frequency behavior of amplitude that represents the energy distribution among different
 161 physical processes.

162

163 **2.2.2 Two-point Correlation**

164 To quantify the spatial scales of individual IMFs, two-point correlation

$$C_{\psi}(x, r) = \frac{\overline{\psi(x, t)\psi(x+r, t)}}{\sigma_{\psi}(x)\sigma_{\psi}(x+r)} \quad (1)$$

165 of the wind speed or temperature is calculated between neighboring model **grids**. Here,
 166 x is the reference location, $x+r$ the location at distance r measuring from x , and σ_{ψ} the standard
 167 deviation of variable ψ . Two-point correlation $C_{\psi}(x, r)$ signifies if the variable ψ at two

168 model grids (distance apart = r) **experiences coherence** in their time series. Specifically, for
169 each model grid, the correlation to its neighboring grids (distance apart = r) is calculated as the
170 average in four cardinal directions (east, south, west, and north). The distance apart r is set as
171 the integer multiple of model spatial resolution of the innermost domain (**0.33 km**). The two-
172 point correlation is in **the range** $-1 \leq C_{\psi} \leq 1$ in which the larger $|C_{\psi}(x, r)|$ signifies stronger
173 spatial correlation.

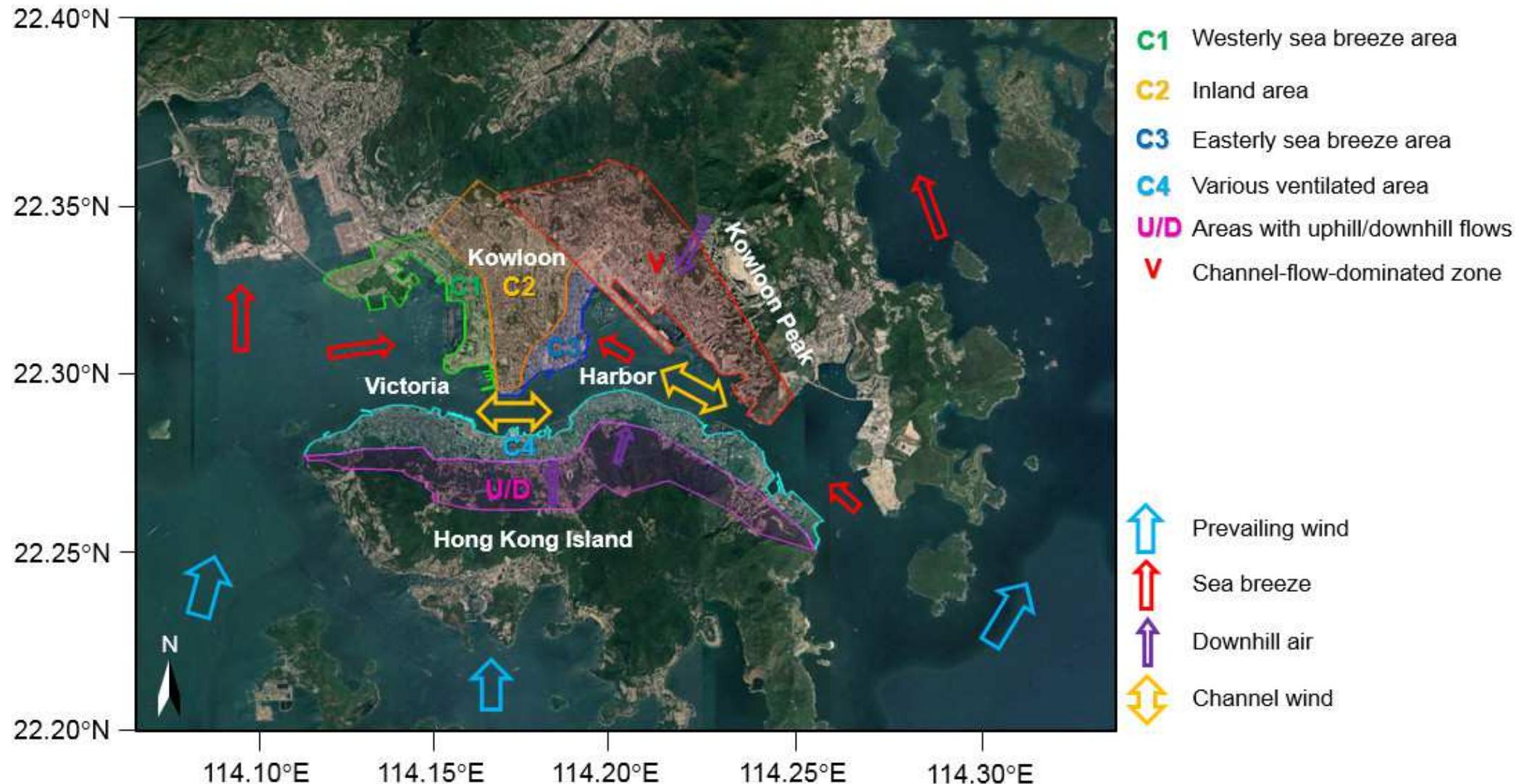


Figure 3. Wind information layer, Urban Climatic Analysis Map (UC-AnMap), of Hong Kong (HK) in summer [42].

Table 3. Design of numerical experiments.

Scenario	Numerical experiment	Model setup
Real	1 REAL	WRF coupled to BEP/BEM with the combined data of Local Climate Zone (LCZ) and Building Category (BC; LCZBC) as the <i>landuse</i> and <i>landcover</i> (LULC) configuration.
Hypothetical	2 ALLGREEN	Same as REAL but all the urban areas in the domain D04 are switched to grassland.
	3 NoAC	Same as REAL but all <i>the</i> air-conditioners are switched off.

175 **2.2.3 Wind Information Layer**

176 The schematic of summer wind information was collected from the Urban Climatic
 177 Analysis Map (UC-AnMap) of HK (Figure 3) [42]. It illustrates the typical wind patterns during
 178 summertime (June to August). The prevailing southerly wind coincides with southerly sea
 179 breeze that could penetrate to North HK Island [43]. Besides, sea breezes were observed on the
 180 east and west of Kowloon Peninsula. The rugged terrain flanks a narrow inlet to the east of
 181 Victoria Harbor, inducing the easterly channel flows [44, 45]. Besides, the mountain/hills
 182 caused the uphill/downhill flows from Kowloon Peak or the hilly region in HK Island. UC-
 183 AnMap divides the North HK Island and Kowloon Peninsula into 6 zones according to their
 184 dominant ventilation characteristics. They are Westerly sea breeze area (C1), Inland area (C2),
 185 Easterly sea breeze area (C3), Various ventilated area (C4), Areas with uphill/downhill flows
 186 (U/D), and Channel-flow-dominated zone (V).

187 **2.2.4 Numerical Experiment**

188 The sensitivity of (fluctuating) meteorological variables to various local factors, such
 189 as terrain and building morphology, was tested by three numerical experiments, including one
 190 real scenario (REAL) and two hypothetical scenarios (ALLGREEN, and NoAC; Table 3). The
 191 two hypothetical scenarios are: (1) a no-urban scenario (ALLGREEN) by switching all the
 192 urban areas in (the innermost) domain D04 (Figure 1) to grassland and (2) a scenario (NoAC)
 193 by switching off all the ACs in the urban areas.

194

195 **2.3 Model Validation**

196 The current WRF modeling results are validated against the measurements from ten
 197 selected weather stations of Hong Kong Observatory (HKO; Figure 1). The root-mean-square
 198 errors (RMSEs) of 2-m air temperature ($T2$), 2-m relative humidity ($RH2$), and 10-m wind
 199 speed ($W10$) are calculated to evaluate the model performance (Table 4). The WRF results and
 200 the HKO measurements agree well with each other, demonstrating the reliability of the current
 201 WRF-LCZBC model. Specifically, the RMSEs of $T2$ at all the stations ($0.91\text{ }^{\circ}\text{C} \leq \text{RMSE} \leq$
 202 $1.4\text{ }^{\circ}\text{C}$) are compatible with those of previous WRF studies [46-49]. The uncertainty of $T2$ is
 203 quite uniform in the urban ($1.04\text{ }^{\circ}\text{C} \leq \text{RMSE} \leq 1.4\text{ }^{\circ}\text{C}$), suburban ($0.91\text{ }^{\circ}\text{C} \leq \text{RMSE} \leq 1.05\text{ }^{\circ}\text{C}$),
 204 and rural ($1.25\text{ }^{\circ}\text{C} \leq \text{RMSE} \leq 1.31\text{ }^{\circ}\text{C}$) areas. The WRF-calculated $RH2$ is more accurate in the
 205 rural ($8.42\% \leq \text{RMSE} \leq 9.02\%$) than urban ($9.83\% \leq \text{RMSE} \leq 9.89\%$) and suburban ($7.09\% \leq$
 206 $\text{RMSE} \leq 11.16\%$) sites. Moreover, the maximum $RH2$ RMSE (11.16%) is consistent with that
 207 of prior WRF studies over 10 cities in China. The calculation of $W10$ at all the stations is
 208 acceptable as well according to the benchmark of European Environment Agency (RMSEs of
 209 $W10 < 2\text{ m sec}^{-1}$) [50]. Whereas, it is more accurate in rural sites ($0.88\text{ m sec}^{-1} \leq \text{RMSE} \leq 1.06$

210 m sec^{-1}) than urban ($1.10 \text{ m sec}^{-1} \leq \text{RMSE} \leq 1.38 \text{ m sec}^{-1}$) and suburban ($0.79 \text{ m sec}^{-1} \leq \text{RMSE}$
 211 $\leq 1.41 \text{ m sec}^{-1}$) sites.

212

213 In addition, two benchmarks are employed to assess the accuracy of wind direction.
 214 The first criterion is suggested by United States Environmental Protection Agency (USEPA)
 215 for the mean error (*BIAS*) of wind direction which is calculated as

$$BIAS = \frac{1}{n} \sum_{i=1}^n |M_i - O_i| \quad (2)$$

216 where M_i and O_i are the modeled and observed values, respectively, and n the number of data
 217 points. This criterion is proposed for complex simulation conditions in which $BIAS \leq 55^\circ$ is
 218 suggested [51]. Hong Kong is a coastal city with complex terrain where 70% of the total area
 219 is hilly topography with mountains, urban, and coastal water intersect. The mountainous flows,
 220 land/sea breeze, and urban/rural circulations co-exist, forming a complicated dynamical system
 221 (Figure 3). Hence, this criterion is applied to the current model.

222

223 The second criterion is developed for areas with complex topography and frequent low-
 224 wind-speed conditions [52]. It includes mean wind speed to formulate a benchmark for the
 225 gross error of wind direction which is calculated by

$$BIAS_{dir} = \frac{\sum_{i=1}^n \min(|M_i - O_i|, |M_i - O_i + 360|, |M_i - O_i - 360|)}{n} \quad (3)$$

226 that should fulfill the following requirement

$$BIAS_{dir} \leq \frac{46}{Max(\bar{u}, 0.5)} + 25 \quad (4)$$

227 where \bar{u} is the mean wind speed. The WRF-calculated wind direction is validated against the
 228 observations (Table 4). Apparently, the current WRF model setup met both the criteria above
 229 over all the monitoring sites.

230

231 Among others, there is a larger deviation of wind direction at the SEK, SHA, and HKS
 232 sites where the geographical configurations are quite similar: (1) surrounded by mountain on
 233 three sides, (2) in coastal areas, and (3) suburban areas would increase sensible heat and
 234 subsequent buoyant flows (Figure 1). These conditions collectively complicate the local-wind
 235 systems that enlarge the uncertainty in simulation.

236

237 The validation of the current WRF model was detailed in our previous study [40]. The
 238 numerical output could accurately represent the weather conditions as well as the urban
 239 contexts in HK.

240

241 3. Results and Discussion

242 3.1 Spatio-temporal Scales

243 The NA-MEMD (Section 2.2.1) was used to analyze the temperature trend at each
 244 model grid (2 m or 10 m [above ground surface](#)). Here, the reference urban site (HKO) [54] was
 245 adopted to demonstrate the data processing. The 5-day hourly time series of 2-m temperature
 246 ($T2$) and 10-m wind speed ($W10$) were decomposed into 6 IMFs ($IMF\theta1$ to $IMF\theta6$ for
 247 temperature and $IMFW1$ to $IMFW6$ for wind speed) and the residuals (Figure 4).

Table 4. Root-mean-square errors (RMSEs), mean error (*BIAS*) and gross error (*BIAS*_{dir}) between the predicted and observed 2-m temperature (*T*2), 2-m RH (*RH*2), 10-m wind speed (*W*10), and wind direction at the 10 selected weather stations operated by HKO [51-53]

Station	Classification	LCZ type	RMSEs			Mean Error (°)		Gross Error (°)	
			<i>W</i> 10 (m sec ⁻¹)	<i>RH</i> 2 (%)	<i>T</i> 2 (°C)	<i>BIAS</i>	Benchmark	<i>BIAS</i> _{dir}	Benchmark
HKO	urban	LCZ1	1.38	9.83	1.4	48.85	55	46.43	49.21
KP	urban	LCZ4	1.10	9.89	1.04	41.87	55	41.87	48.94
HKS	suburban	LCZ5	1.20	8.15	1.05	52.85	55	52.17	58.07
JKB	suburban	LCZ4	0.79	9.8	0.96	45.27	55	41.03	59.82
LFS	suburban	LCZ4	1.41	9.7	0.98	37.86	55	33.16	40.06
SEK	suburban	LCZC	1.07	11.16	1.02	50.35	55	60.88	89.49
SHA	suburban	LCZ6	1.18	7.09	0.91	53.68	55	56.30	57.04
CCH	rural	LCZA	1.06	9.02	1.25	34.14	55	31.13	37.08
TKL	rural	LCZ6	0.88	8.90	1.31	49.51	55	47.33	63.17
TYW	rural	LCZ4	/	8.42	1.30	/	55	/	/

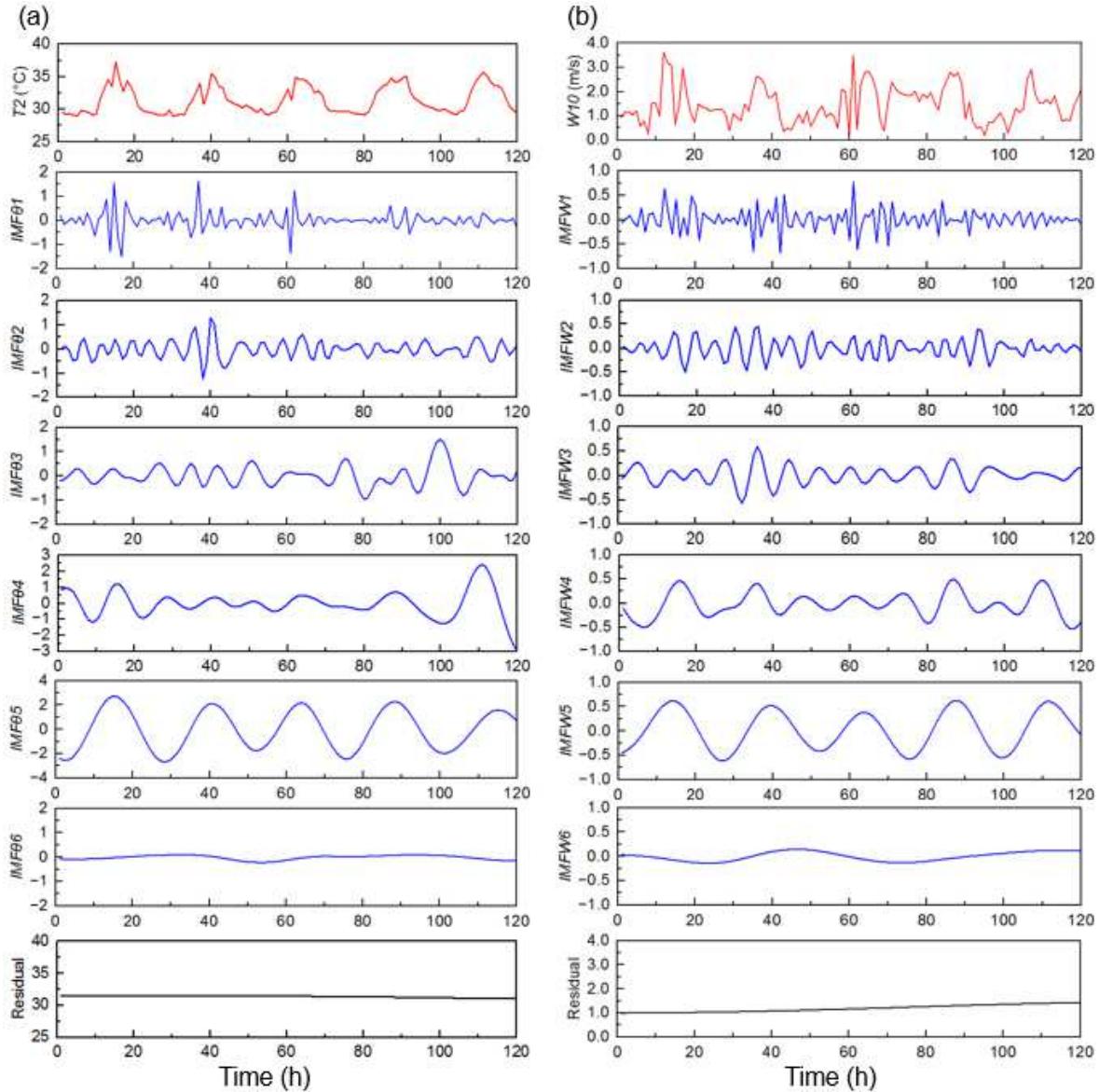


Figure 4. Time series of the original signals (raw data from WRF; red solid lines) as well as the IMFs (blue solid lines) of (a) 2-m temperature $IMF\theta_j$ and (b) 10-m wind speed $IMFW_j$ after NA-MEMD at the HKO (reference) station.

249

250

251

252

253

The Hilbert spectra (Figure 5) calculated from the time-series data of T_2 and W_{10} show

that the time-frequency domain could be divided into several parts: synoptic (frequency =

$0.0167 \text{ cycles hr}^{-1}$; period = 59.88 hr), diurnal-cycle (frequency = $0.042 \text{ cycles hr}^{-1}$; period =

23.9 hr), and local ($0.083 \text{ cycles hr}^{-1} \leq \text{frequency} \leq 0.31 \text{ cycles hr}^{-1}$; $2.94 \text{ hr} \leq \text{period} \leq 12.04$

254 hr) windows [55]. The temperature component $IMF\theta 6$ in the synoptic window is moderate that
 255 is low-frequency (0.0167 cycles hr^{-1}) and small-amplitude (0.45 $^{\circ}C$). It is attributed to the mild
 256 fluctuating synoptic conditions during the analysis period [30]. $IMF5$ in the diurnal-cycle
 257 window ($IMF\theta 5$) is dominated by solar radiation. It is rather periodic (24 hours) that improves
 258 the prediction accuracy. The components in these two windows (synoptic and diurnal-cycle)
 259 rarely cause temperature anomalies (less risky) because they are driven by the natural
 260 atmospheric cycles. As such, this study focuses on $IMF1$ to $IMF4$ in local windows in which
 261 intense temperature fluctuations are likely to occur due to human activities and anthropogenic
 262 heat release.

263

264 To define the temporal scales of IMFs in local windows, the marginal spectra are
 265 derived by integrating the amplitude in HHT spectra over the entire temporal domain. Figure
 266 6 shows the spatial average of marginal spectra of $T2$ and $W10$. Here, the spatial average is the
 267 average of all model grids (2 m or 10 m above ground surface) in the domain D04 (Figure 1).
 268 The abscissa depicts the dominant frequencies of individual IMFs which are the inverses of
 269 their time scales. The (dominant) time scales of $IMF1$, $IMF2$, $IMF3$, and $IMF4$ in $T2$ ($W10$) are
 270 2.63 hr (2.53 hr), 5.88 hr (5.78 hr), 13.16 hr (9.84 hr) and 22.72 hr (19.05 hr), respectively.

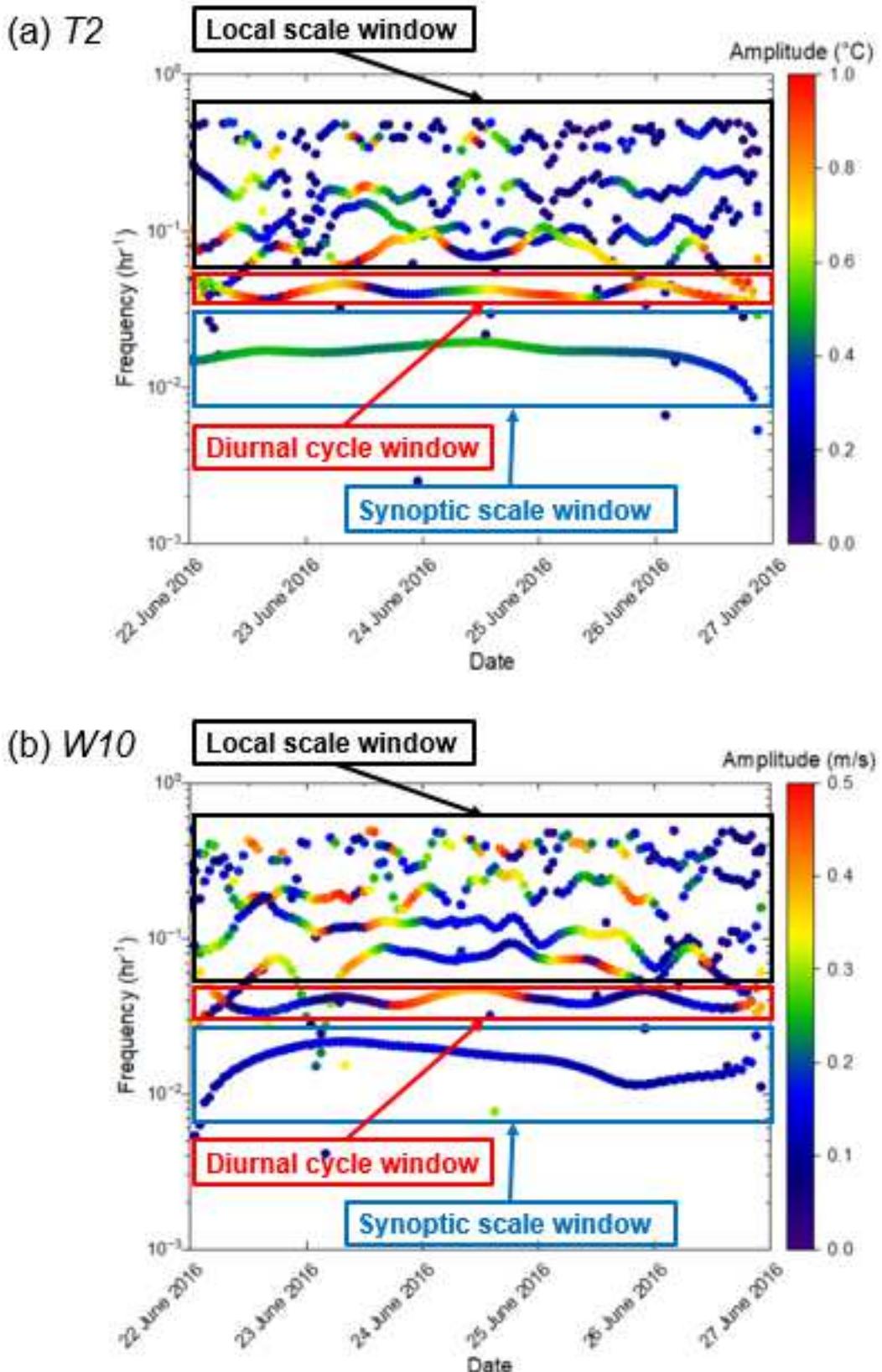


Figure 5. Hilbert-Huang transform (HHT) spectra of (a) 2-m temperature $T2$ and (b) 10-m wind speed $W10$ at the HKO station (reference) during the heatwave event.

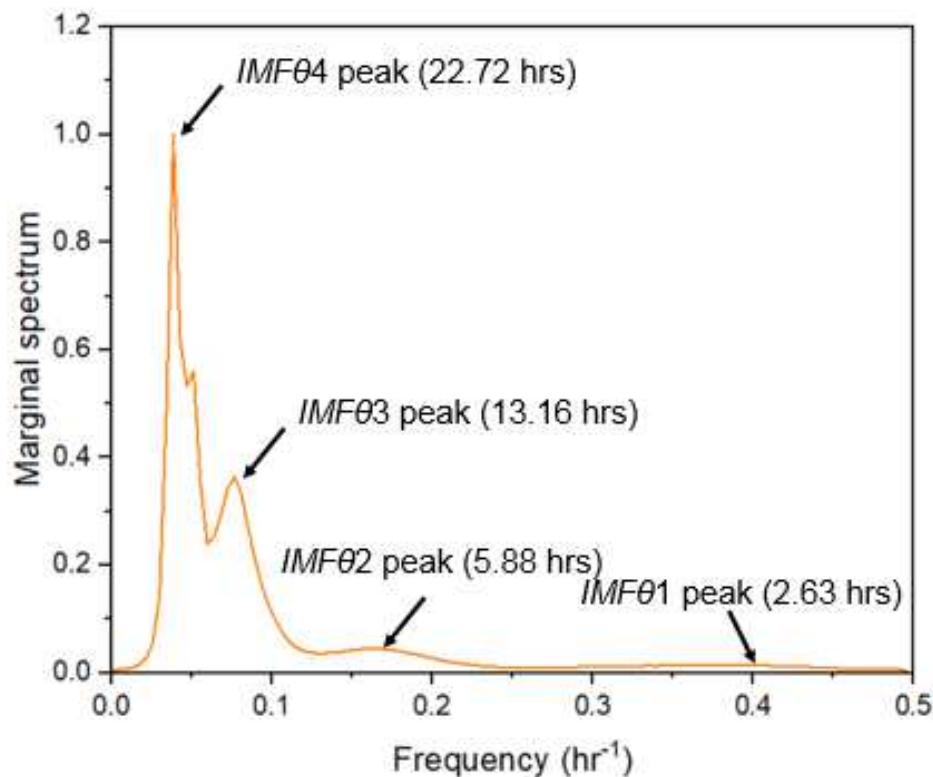
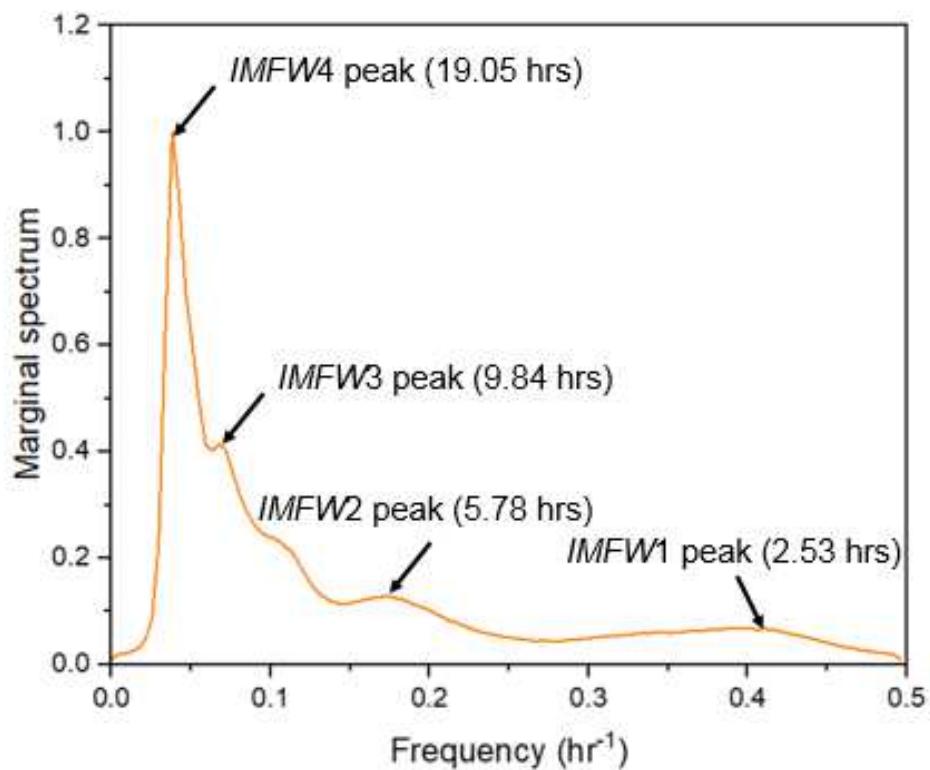


(a) $T2$ (b) $W10$

Figure 6. Hilbert-Huang transform (HHT) marginal spectra of (a) 2-m temperature $T2$ and (b) 10-m wind speed $W10$ at the HKO station during the heatwave event.

272 The spatial scales of the IMFs in local-scale window were calculated by the two-point
 273 correlation (Section 2.2.2). The ensemble averaged spatial coherence drops with increasing the
 274 distance between **the** two model grids (Figure 7). Here, **the** ensemble average is the spatio-
 275 temporal average of all model grids (2 m or 10 m **above ground surface**) in **domain D04** (Figure
 276 1). The e-folding correlation (e^{-1}) distance was used to define the spatial scale of each
 277 component [56]. The spatial scales of IMF1, IMF2, IMF3, and IMF4 in $T2$ ($W10$) are 2.31 km
 278 (0.99 km), 4.29 km (1.65 km), 5.94 km (2.64 km), and 6.6 km (2.97 km), respectively.

279

280 **3.2 Physical Explanation**

281 The physical significance of IMF2 of 2-m temperature ($IMF\theta2$) and 10-m wind speed
 282 ($IMFW2$) is explored by comparing their amplitudes in the foothill areas (U/D and V zones;
 283 Figure 3) and the inland area (C2 zone) for the REAL scenario (Table 3). Figure 8 compares
 284 the diurnal variation of the spatial average of $IMF\theta2$ and $IMFW2$ in these climate areas. Here,
 285 the spatial average is the average of all model grids (2 m or 10 m **above ground surface**) in a
 286 specific climate area (U/D, V or C2). The temperature $IMF\theta2$ and wind speed $IMFW2$ in the
 287 foothill areas (0.23 °C and 0.18 m sec⁻¹ in U/D zones; 0.33 °C and 0.16 m sec⁻¹ in V zones)
 288 tend to be larger in amplitudes than those in the inland area (0.19 °C and 0.11 m sec⁻¹). It is
 289 thus implied that $IMF\theta2$ and $IMFW2$ possess more intense fluctuations in the foothill areas
 290 than their inland-area counterparts. It could be attributed to the mountains surrounding the
 291 foothill areas that induce channeling/uphill/downhill winds, strengthening the atmospheric
 292 turbulence.

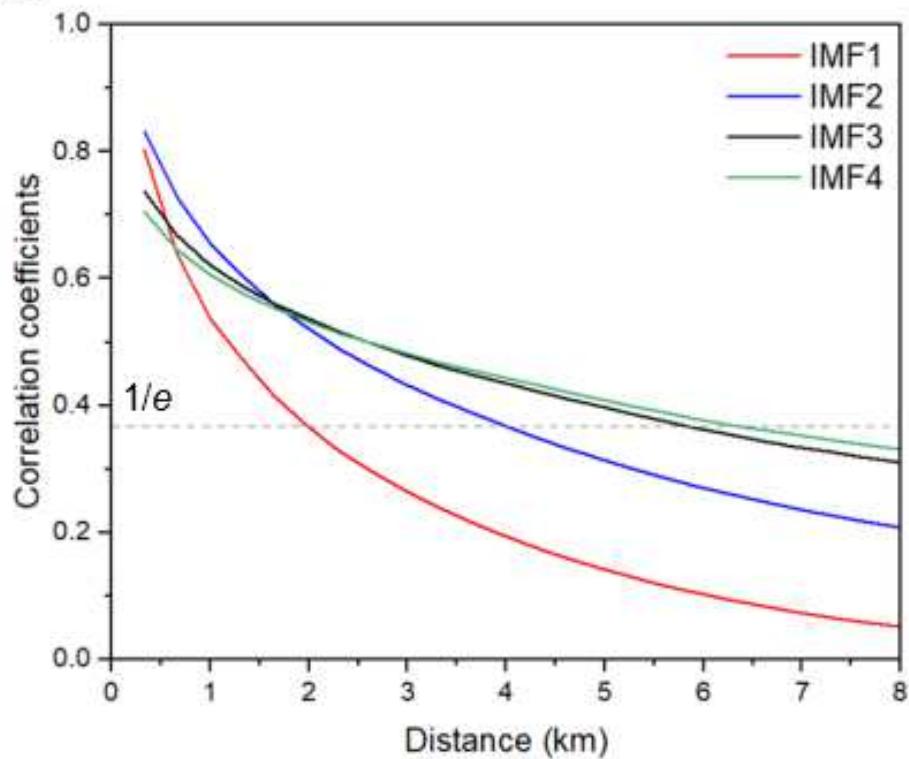
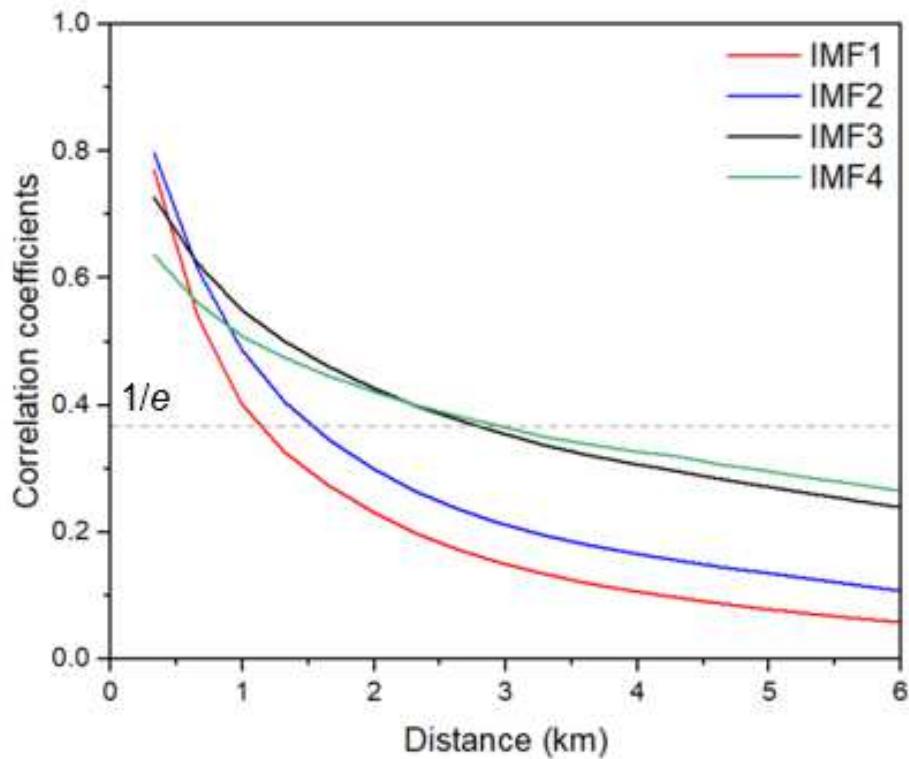


(a) $T2$ (b) $W10$

Figure 7. Average spatial coherence of (a) 2-m temperature $T2$ and (b) 10-m wind speed $W10$ during the heatwave event.

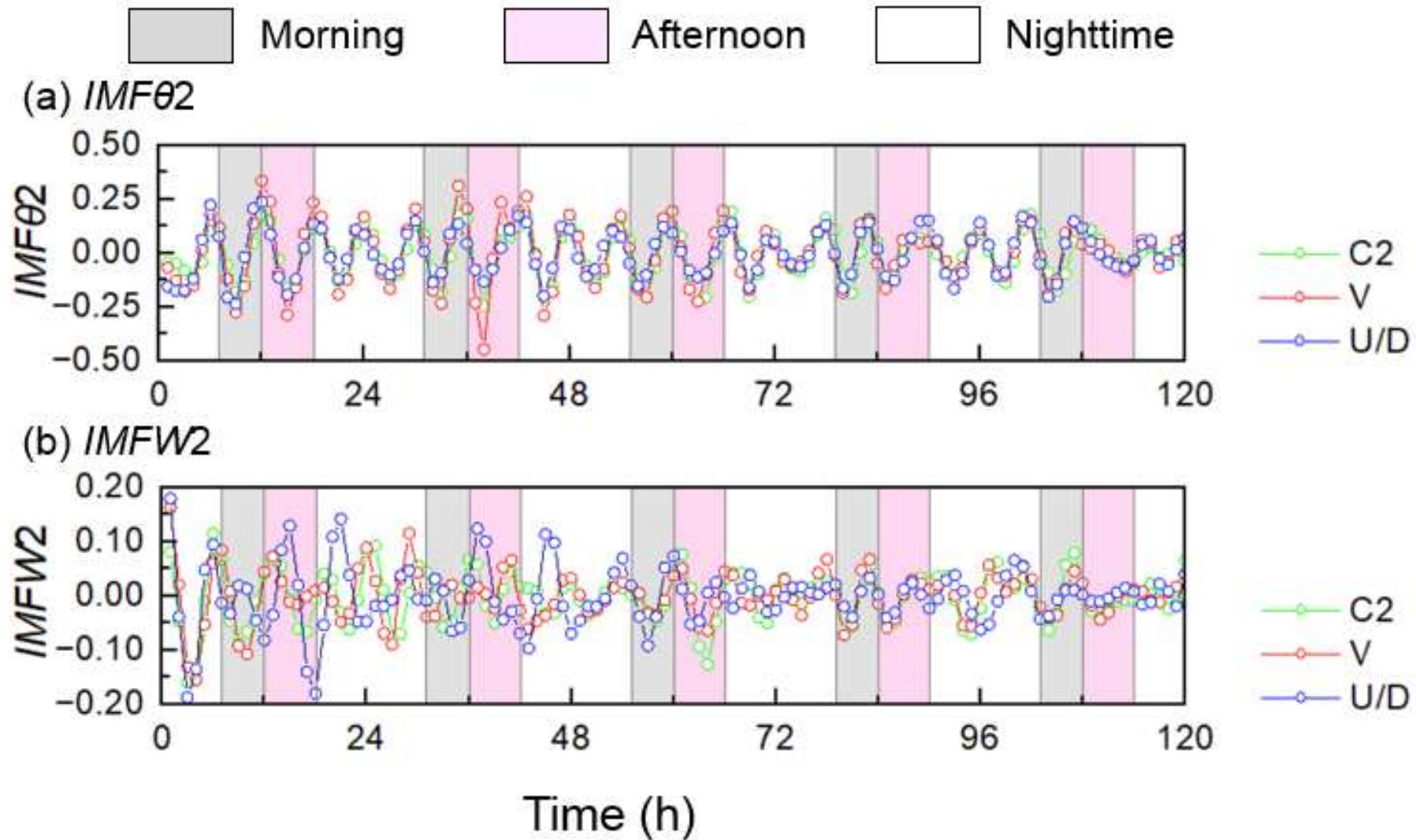
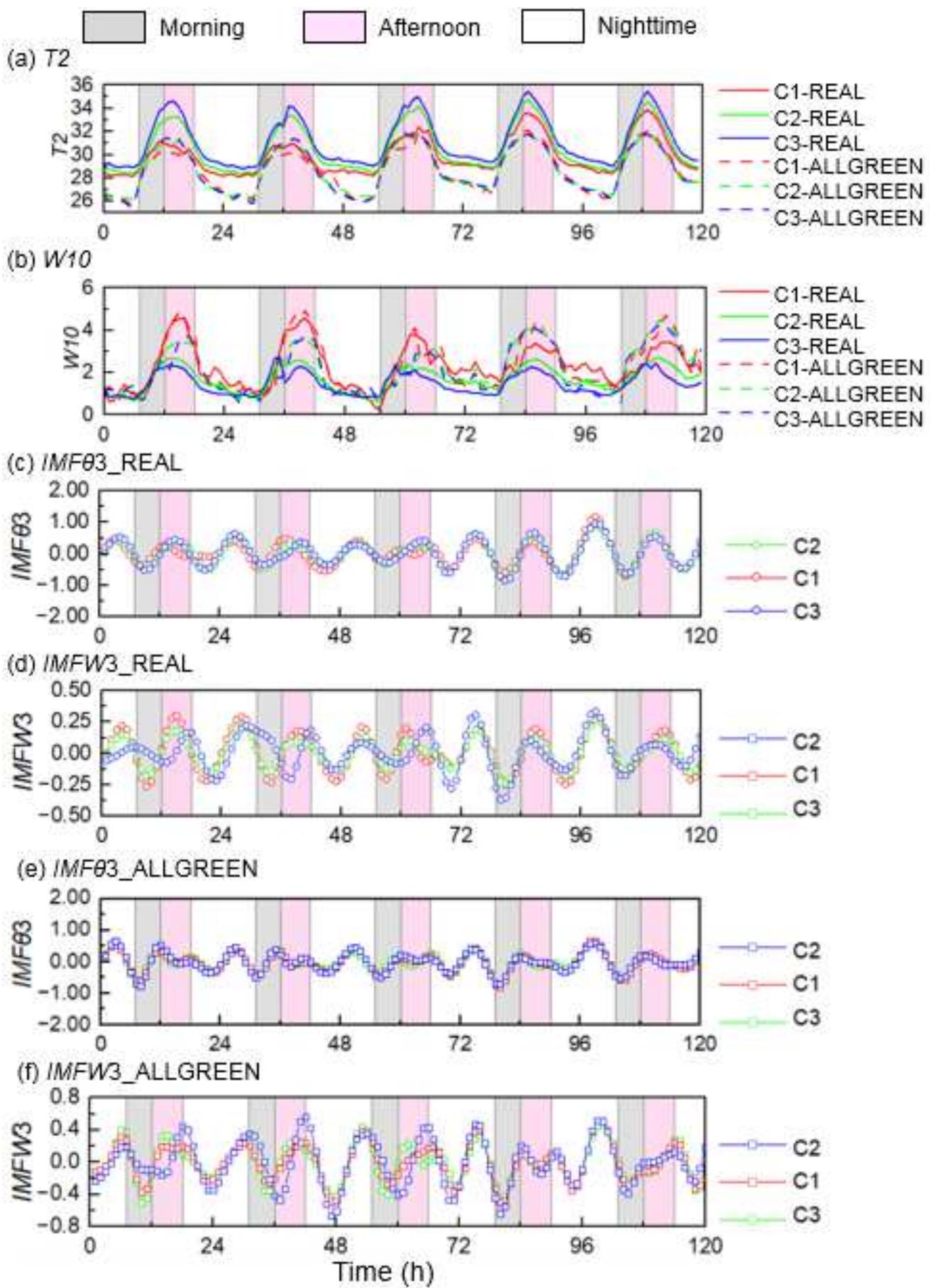



Figure 8. Time series of spatially averaged IMF2 of (a) 2-m temperature $IMF\theta 2$ and (b) 10-m wind speed $IMFW2$ in inland (C2) and foothill (V and U/D) areas.

295 To investigate the physical mechanism behind IMF3 in 2-m temperature $IMF\theta3$ and
 296 10-m wind speed $IMFW3$, two numerical experiments were conducted for REAL and
 297 ALLGREEN scenarios (Table 3). The surface roughness and the sensible heat flux in
 298 ALLGREEN are lower compared with those in REAL. It results in the faster spatially averaged
 299 $W10$ and the cooler spatially averaged $T2$ in ALLGREEN than REAL. The amplitudes of IMF3
 300 in coastal (C1 and C3 zones; Figure 3) and inland (C2 zone) areas are compared for the REAL
 301 scenario. By and large, the fluctuating $IMF\theta3$ and $IMFW3$ in the coastal areas ($1.17\text{ }^{\circ}\text{C}$ and
 302 0.30 m sec^{-1} for C1, $0.95\text{ }^{\circ}\text{C}$ and 0.34 m sec^{-1} for C3; depending on the prevailing direction of
 303 sea breeze) are more noticeable than those in inland area ($0.91\text{ }^{\circ}\text{C}$ and 0.26 m sec^{-1} for C2;
 304 Figures 9c and 9d). It is because the sea breeze in coastal areas introduces disturbance locally
 305 that subsequently modifies the IMF3. Besides, there is more intense fluctuation in coastal areas
 306 than inland areas in ALLGREEN scenario (Figures 9e and 9f).

307

308 The correlation between the IMF3 and the land/sea breeze is further examined by the
 309 differences in $IMF\theta3$ ($\Delta IMF\theta3_{C3-C2}$ and $\Delta IMF\theta3_{C1-C2}$) and $IMFW3$ ($\Delta IMFW3_{C1-C2}$ and
 310 $\Delta IMFW3_{C3-C2}$) between the coastal (C1 and C3 zones) and inland (C2 zone) areas. The diurnal
 311 variations of $\Delta IMF\theta3$ and $\Delta IMFW3$ for the scenarios REAL and ALLGREEN are compared in
 312 Figures 9g to 9j. Unlike the scenario ALLGREEN, higher sensible heat in the urban areas is
 313 observed in REAL so is the abrupt land/sea temperature gradient because of the different heat
 314 capacities of land and sea surfaces. As such, a larger difference in IMF3 amplitude between the
 315 coastal and inland areas is observed in the scenario REAL than that in ALLGREEN. This
 316 finding also indirectly suggests that IMF3 is dominated by land/sea breeze.

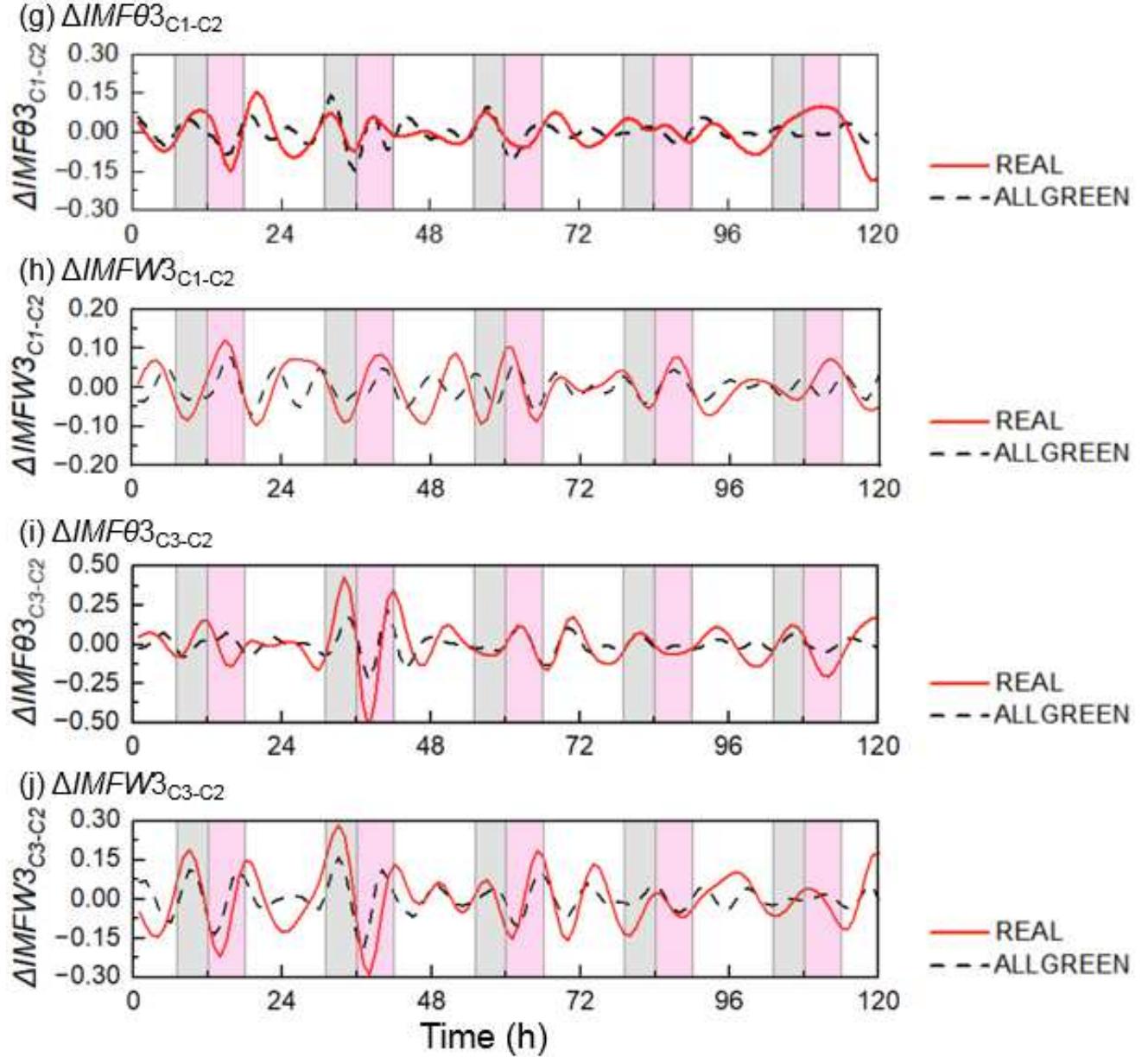


Figure 9. Time series of spatially averaged (a) 2-m temperature $T2$, (b) 10-m wind speed $W10$, (c) 2-m temperature $IMF\theta3$ and (d) 10-m wind speed $IMFW3$ for inland (C2) and coastal (C1 and C3) areas in REAL scenario. (e) 2-m temperature $IMF\theta3$ and (f) 10-m wind speed $IMFW3$ for inland (C2) and coastal (C1 and C3) areas in ALLGREEN scenario. Their differences in (g) 2-m temperature $\Delta IMF\theta3_{C1-C2}$ and (h) 10-m wind speed $\Delta IMFW3_{C1-C2}$ between C1 and C2; together with those in (i) 2-m temperature $\Delta IMF\theta3_{C3-C2}$ and (j) 10-m wind speed $\Delta IMFW3_{C3-C2}$ between C3 and C2.

317 The diurnal variation of ensemble-averaged IMF4 in 2-m temperature (*IMFθ4*) and
318 10-m wind speed (*IMFW4*) for REAL and NoAC scenarios are compared to reveal the physical
319 implication (Figure 10). **Their surface roughness is the same but there is more anthropogenic**
320 **heat in REAL and subsequently more noticeable urban-rural temperature gradient, causing**
321 **higher spatially averaged *T*2 and *W*10 (Figures 10a and 10b).** For daytime *IMFθ4*, solar
322 radiation is the major heating source in urban areas. In this connection, the contribution from
323 anthropogenic heat is insignificant so the amplitudes of *IMFθ4* in the scenarios REAL and
324 NoAC are comparable (Figures 10c and 10d). Whereas, anthropogenic heat dominates at
325 nighttime, the scenario REAL (0.64 °C, with anthropogenic heat) exhibits a larger amplitude
326 of *IMFθ4* than does NoAC (0.52 °C, without anthropogenic heat). Besides, there is a larger
327 amplitude of *IMFW4* in REAL (0.51 m sec⁻¹) than that in NoAC (0.49 m sec⁻¹) for both daytime
328 and nighttime. Furthermore, a time lag is observed in *IMFW4* in NoAC (about 2 hours)
329 compared with that in REAL. It is induced by the weakened anthropogenic heat exhaust in
330 NoAC that subsequently relieves the disturbance caused by vertical mixing and UHI circulation
331 [31]. These findings in turn suggest that the IMF4 is dominated by the anthropogenic heat in
332 urban areas.

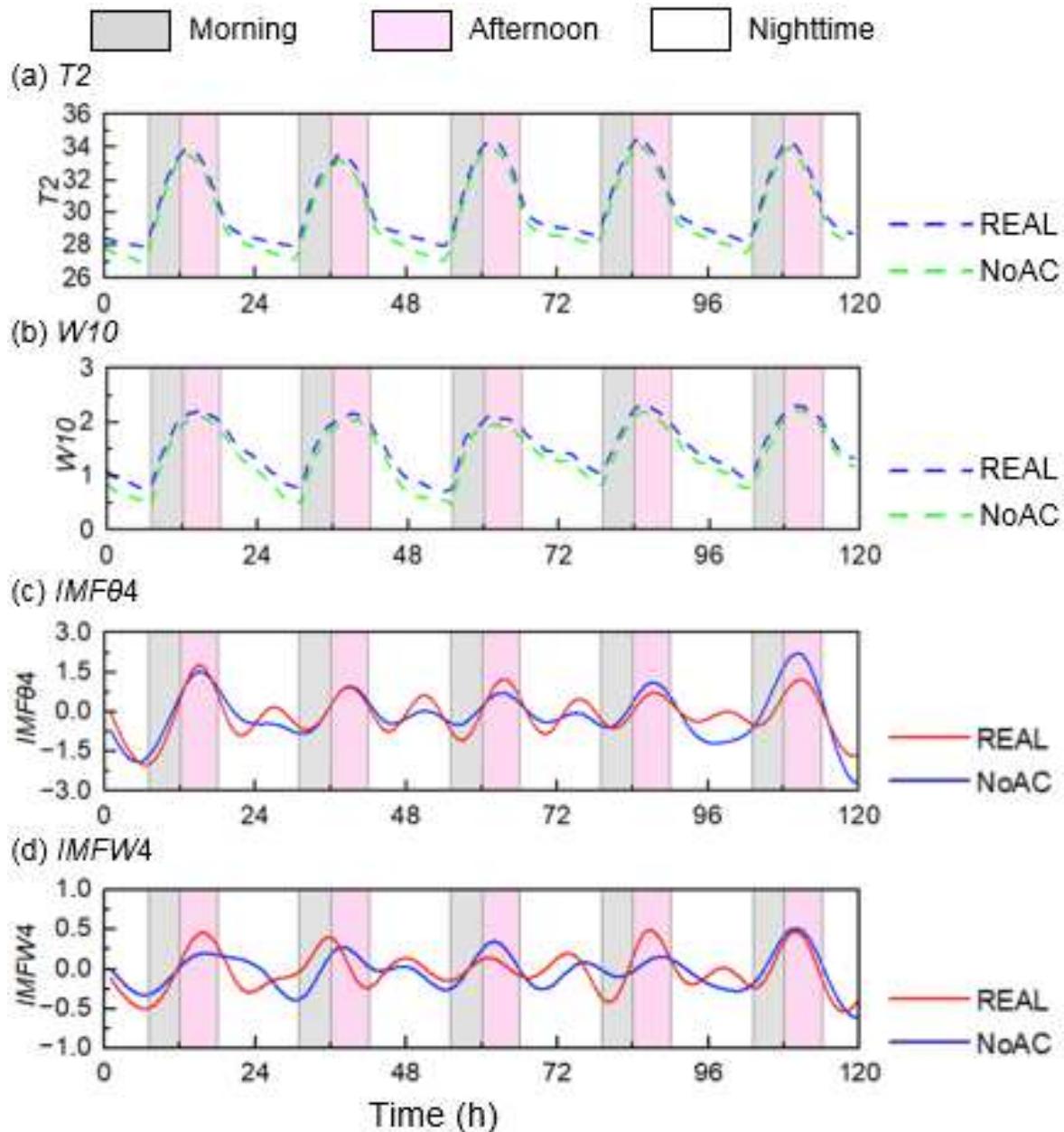


Figure 10. Time series of spatially averaged (a) 2-m temperature $T2$, (b) 10-m wind speed $W10$, IMF4 of (c) 2-m temperature $IMF\theta4$ and (d) 10-m wind speed $IMFW4$.

334 The physical implication of IMF1, IMF5, and IMF6 could be explained according to
335 their spatio-temporal scales. The spatial (2.31 km for $IMF\theta 1$ and 0.99 km for $IMFW1$) and the
336 temporal (2.63 hr for $IMF\theta 1$ and 2.53 hr for $IMFW1$) scales of the IMF1 are small that are
337 substantially limited by the buildings and/or streets. Previous efforts had reported that these
338 small-scale fluctuations of temperature and wind are attributed to the heat storage/release [57]
339 in construction material and the turbulence/disturbance in street canyons [8]. Besides, the trend
340 of IMF5 is periodic and stationary (close to the diurnal cycle; temporal scale = 23.9 hr) so it is
341 driven by solar radiation. The frequency and amplitude of the IMF6 during the heatwave event
342 are negligible. The physical process behind is the synoptic forcing [55].

343

344 Alike our findings in IMF5 and IMF6, the components with similar frequency were
345 explained by the diurnal-cycle variations and the synoptic scales elsewhere [55]. Whereas, for
346 the first time, the current results differentiate the high-frequency components induced by terrain,
347 land/sea breeze, as well as anthropogenic heat. Afterward, their spatio-temporal characteristics
348 and physical mechanism are elucidated.

349

350 **3.3 Susceptible Urban Areas**

351 In this section, the effective ranges of those high-frequency IMFs ($IMF\theta 1$ to $IMF\theta 4$) in
352 the local-scale window and the corresponding susceptible urban areas are assessed through
353 their respective peaked amplitudes. The (positive) peaks of $IMF\theta 1$ to $IMF\theta 4$ at $z = 2$ m above
354 ground surface are extracted from their time series whose spatial distributions are mapped over
355 the central business district of HK (Figure 11).

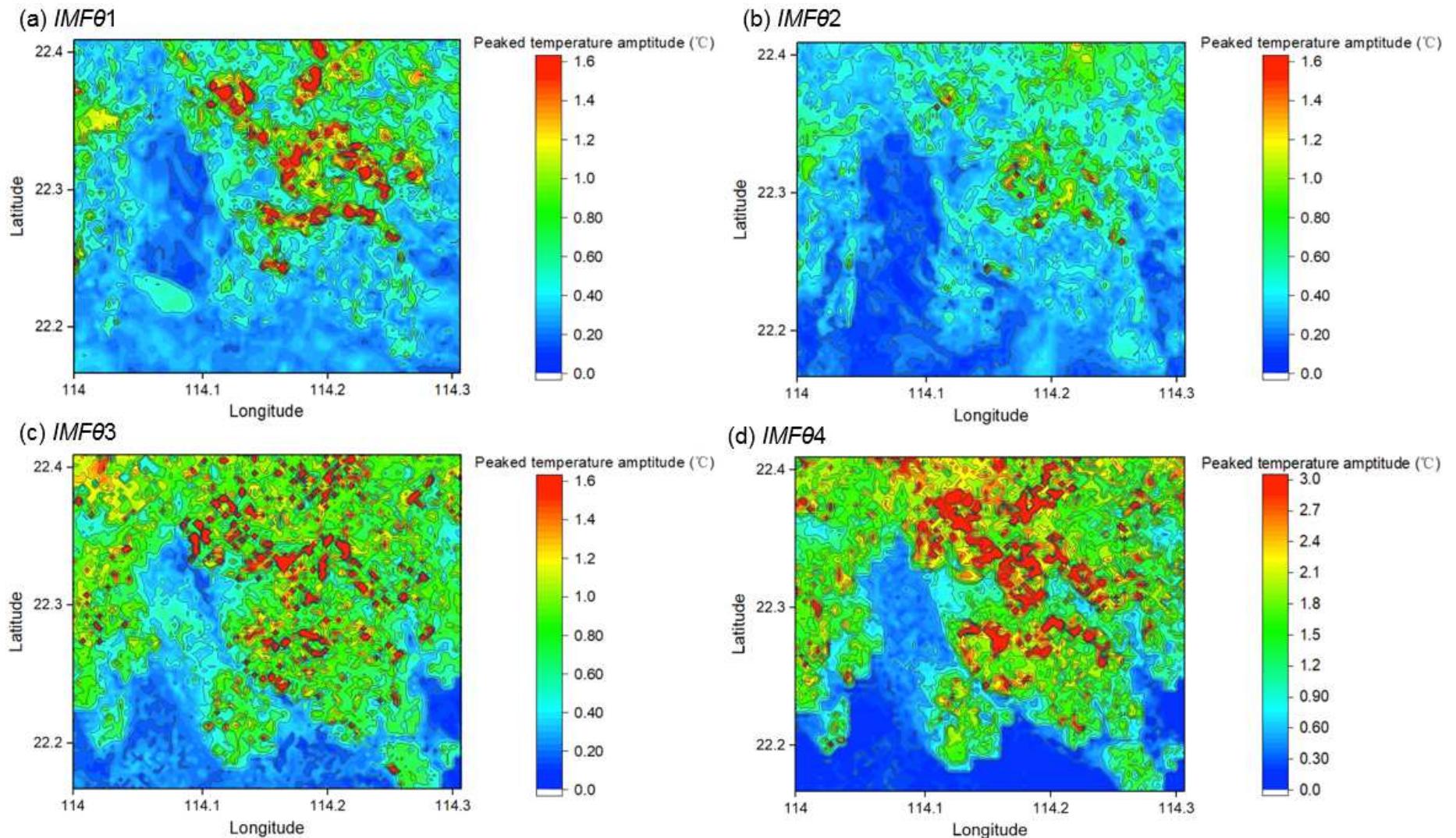
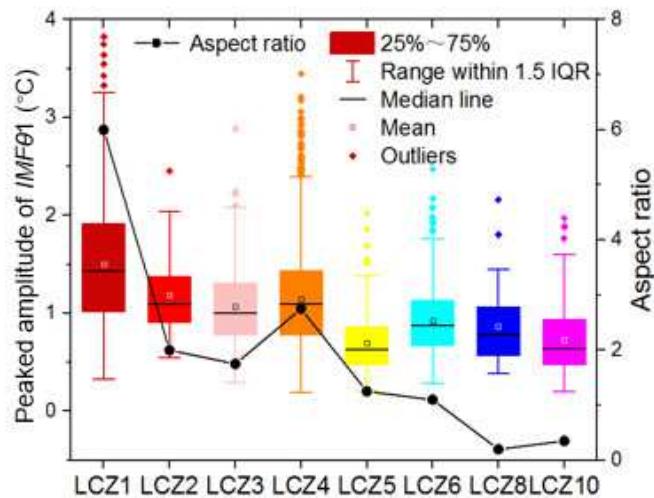



Figure 11. Spatial distribution of the peaked amplitudes of (a) $IMF\theta 1$, (b) $IMF\theta 2$, (c) $IMF\theta 3$, and (d) $IMF\theta 4$ in the HK central business district.

(a)

(b)

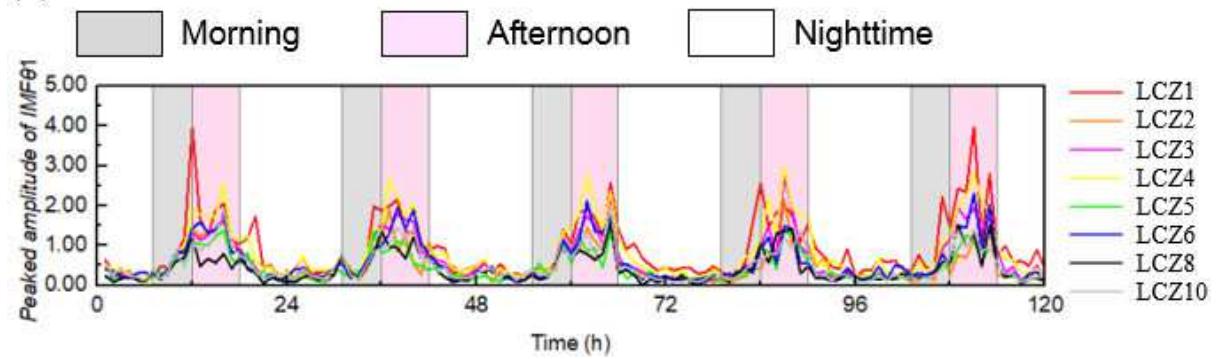


Figure 12. (a) Spatial average of the peaked amplitudes of 2-m temperature $IMF\theta_1$ and (b) time series of peaked amplitudes of $IMF\theta_1$ for individual LCZs.

357

358

The most intense fluctuation of $IMF\theta_1$ resides in the urban areas (1.4 °C to 1.6 °C).

359

360

361

362

363

364

365

Rural areas, on the contrary, show narrower temperature fluctuations (0.6 °C to 1.0 °C) in the same scale (Figure 11). The distinction and boundary between urban and natural surfaces are clearly defined, concurring the aforementioned physical explanation: disturbance and heat storage/release are related to buildings (Section 3.2). Figure 12a presents the ensemble average of the peaked $IMF\theta_1$ of each LCZ type. It closely follows the aspect ratios (ARs; building-height-to-street-width) of the LCZ types that demonstrates the importance of urban morphology and building configuration to micro-scale temperature fluctuations. Apparently,

366 urban morphology plays a key role in the temperature fluctuations of compact high-rise (LCZ1)
 367 and open high-rise (LCZ4) LCZs where the ARs are high ($2.75 \leq AR \leq 6$). Existing studies also
 368 suggest that the heatwave extent is sensitive to urban morphology [58]. Hence, these LCZs
 369 likely suffer from the peaked, high-frequency fluctuating temperature $IMF\theta 1$. There are two
 370 reasons for the elevated $IMF\theta 1$ amplitudes: (1) deep street canyons cause more disturbance to
 371 winds, and (2) more massive buildings reinforce heat storage/release.

372

373 The time series of peaked amplitude in different LCZs are shown in Figure 12b. Urban
 374 morphology tends to induce more noticeable peaks in daytime but gentle ones at nighttime.
 375 Besides, urban types exhibit the greatest differences at noon and in early afternoon (1200 to
 376 1500 LST). During nighttime, the $IMF1$ fluctuation is uniform in majority urban areas other
 377 than the compact high-rise (LCZ1) areas. Instead, the compact high-rise (LCZ1) areas exhibit
 378 the most prominent amplitude of fluctuating temperature which could be up to 3.97°C in
 379 daytime and 1.73°C at nighttime. It is noted that the peaks in high-rise building areas (LCZ1
 380 and LCZ 4) are sharp and would erect suddenly over 2.98°C within an hour. It might intensify
 381 the fluctuation of power usage, challenging the reliability of power grids. Therefore, urban
 382 planners should pay more attention to very high-frequency fluctuating temperature in these
 383 areas to mitigate the heat-related risks.

384

385 Most of the foothill areas possess the largest amplitude of $IMF\theta 2$ (Figure 11). This
 386 finding is consistent with the aforementioned physical processes of $IMF\theta 2$ (Section 3.2). The
 387 disturbance is induced by mountainous terrain and the associated uphill/downhill wind. Besides,

388 the sensitivity of $IMF\theta2$ peaked amplitude to the distance measuring from mountain/hill areas
 389 is tested in this study (Figure 13a). The grids with the i -pixel distance to mountain/hill areas
 390 are grouped into the corresponding i -th-pixel zones and the average $IMF\theta2$ peaked amplitude
 391 of individual zone is obtained by:

$$\overline{IMF\theta2^{\max}_i} = \frac{\sum_{j=1}^n IMF\theta2^{\max}_{ij}}{n} \quad (5)$$

392 where $IMF\theta2^{\max}_{ij}$ is the $IMF\theta2$ peaked amplitude of the j -th grid in [the](#) i -th-pixel zone and n
 393 the total grid number of [the](#) i -th-pixel zone. The $IMF\theta2$ peaked amplitude gradually reduces
 394 with increasing distance measuring from the [mountains/hills](#) and their correlation is tight
 395 (Figure 13). Eventually, it does not dominate the urban temperature beyond a certain distance.
 396 This range (about 8 km) before the $IMF\theta2$ peaked amplitude diminishing could be considered
 397 the effective distance being influenced by mountainous circulation. These findings signify that
 398 the foothill areas within 8-km range are susceptible to the temperature fluctuations caused by
 399 slope flows.

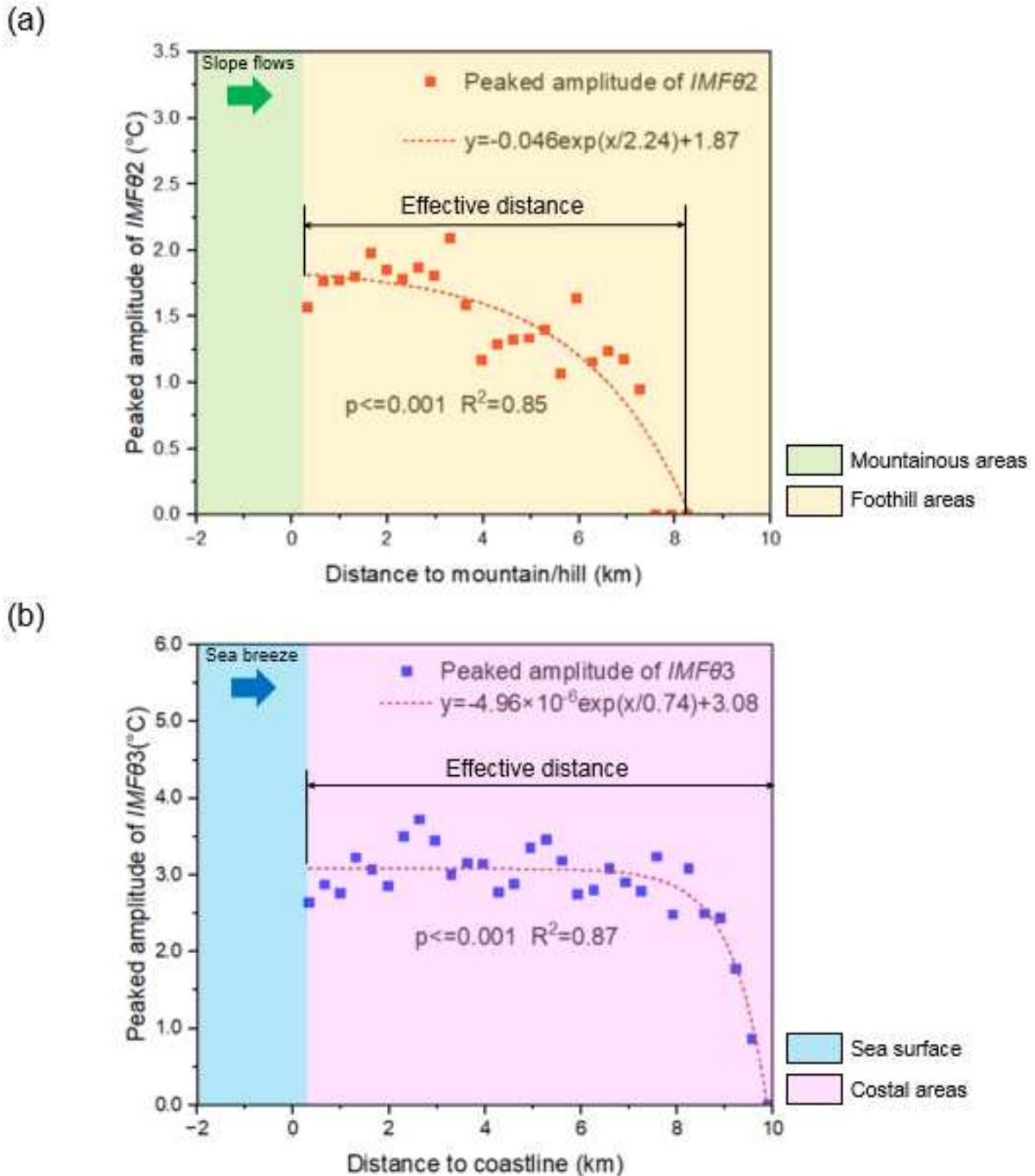


Figure 13. Peaked amplitudes of 2-m temperature of (a) IMF2 $IMF\theta_2$ expressed as the distance to mountains/hills and (b) IMF3 $IMF\theta_3$ expressed as distance to coastline.

400

401 $IMF\theta_3$ fluctuates most intensely in coastal areas. Hence, it is associated with the
 402 disturbance induced by land/sea breeze. The sensitivity of $IMF\theta_3$ peaked amplitude to the
 403 distance measuring (inland) from coastline is tested (Figure 13b). Analogous to $\overline{IMF\theta_2}_{i\max}^{\text{max}}$ in

404 Equation (5), $\overline{IMF\theta3_i^{\max}}$ is used in the comparison. The temperature fluctuations $IMF\theta3$
 405 diminish with increasing distance from the coastline. The effective distance (about 10 km) of
 406 $IMF\theta3$ is determined based on the trend of the best-fit profile which drops sharply after 8-km
 407 away from the coastline. These findings suggest that the areas within 10 km measuring from
 408 the coastline are more sensitive to land/sea breeze.

409

410 The high-amplitude zones of $IMF\theta4$ are mainly located in urban areas (Figure 11).
 411 Unlike $IMF\theta1$, the distinction in $IMF\theta4$ peaked amplitude between urban and rural areas are
 412 ambiguous. It could be attributed to the heat dissipation from urban to rural areas such as urban-
 413 rural thermal interaction through recirculating winds. In this connection, urban and suburban
 414 areas with compact anthropogenic heat sources are more sensitive to the fluctuating
 415 temperature $IMF\theta4$.

416

417 Alike the findings reported in this paper, it was reported elsewhere that the influence of
 418 land/sea breeze on urban temperature is weakened with increasing distance from the coastline
 419 [59]. Moreover, there exists an effective distance of sea-breeze depending on city properties.
 420 As such, it is necessary to examine the relationship between $IMF\theta2$ and the distance from
 421 marine surfaces.

422

423 HHT has been used to analyze the long-term (several decades) urban temperatures
 424 previously [15]. Unlike this study, the short-term urban temperatures during a typical heatwave
 425 event (within a week) are rarely examined using EMD. Moreover, the peaked amplitude of

426 high-frequency temperature components (**temporal** period \leq 24 hr) remains an open question.
427 These components are generally aperiodic and non-stationary. Urban planners often encounter
428 difficulties effectuating remedial measures for power security. Once peaked, these drastic
429 fluctuations would cause the failure of power infrastructure and blackout. Thus, we assess the
430 impacts of these components in response to various urban contexts and examine their effective
431 range as well as susceptible urban areas.

432

433 **3.4 Effect of Heatwave**

434 Hong Kong Observatory (HKO) [30] and an existing study [31] have defined 0000 LST
435 on June 23, 2016 to 2400 LST on June 27, 2016 as a heatwave event. In June 2016, the
436 maximum temperature of 32.4 °C was record-high in June [30]. The intensification of the
437 southwest monsoon on June 12, 2016 resulted in windy conditions in the next five days and
438 precipitation until June 18, 2016 [30]. Afterward, the weather changed to sunny and hot on
439 June 19, 2016 when the trough was dissipated and the subtropical ridge dominated over
440 southern China. The pre-heatwave and heatwave were then initiated that persisted for another
441 nine days. In view of the calm winds and the abundant sunshine, HKO recorded four
442 consecutive days with daily maximum temperatures exceeding 35.0 °C from June 24 to 27,
443 2016. It was a new record after the previous heatwave event of three consecutive days from
444 May 30 to June 1, 1963 [30]. During the heatwave event being examined in this manuscript,
445 the hottest temperature record was 35.5 °C at 1400 LST on June 25, 2016. Finally, the heatwave
446 event ended on June 28, 2016 when a low-pressure system with heavy rainfall moved to the
447 coastal area of Guangdong province [30]. The weather stayed hot and rainy for the rest of the

448 month because of southerly (on-shore) winds. In this connection, the weather conditions from
 449 June 17 to 28, 2016 were divided into four periods: non-heatwave (June 17 to 18, 2016), pre-
 450 heatwave (June 19 to 22, 2016), heatwave (June 23 to 27, 2016), and post-heatwave (June 28,
 451 2016). The WRF-calculated results show that it was hottest in the heatwave period during
 452 which the wind speeds were moderate compared with its non-heatwave and pre-heatwave
 453 counterparts (Figure 14).

454

455 The heatwave effects on individual IMFs are explored by comparing their amplitudes
 456 in different periods (Figures 14 and 15). By and large, most air temperature ($IMF\theta 1$ to $IMF\theta 4$)
 457 and minor wind speed ($IMFW3$) components had more intense fluctuations during the
 458 heatwave ($IMF\theta 1$: 1.49 °C, $IMF\theta 2$: 0.83 °C, $IMF\theta 3$: 0.81 °C, $IMF\theta 4$: 1.18 °C, $IMFW3$: 0.73
 459 m sec⁻¹) and post-heatwave ($IMF\theta 1$: 1.16 °C, $IMF\theta 2$: 0.29 °C, $IMF\theta 3$: 1.36 °C, $IMF\theta 4$:
 460 1.71 °C, $IMFW3$: 0.78 m sec⁻¹) periods compared with the pre-heatwave ($IMF\theta 1$: 0.81 °C,
 461 $IMF\theta 2$: 0.50 °C, $IMF\theta 3$: 0.86 °C, $IMF\theta 4$: 0.61 °C, $IMFW3$: 0.72 m sec⁻¹) and non-heatwave
 462 ($IMF\theta 1$: 0.31 °C, $IMF\theta 2$: 0.29 °C, $IMF\theta 3$: 0.38 °C, $IMF\theta 4$: 0.34 °C, $IMFW3$: 0.56 m sec⁻¹)
 463 periods. The difference is attributed to the substantial spatial temperature gradient in these
 464 periods that subsequently strengthens building heat storage/release ($IMF\theta 1$), urban-mountain
 465 heat exchange ($IMF\theta 2$), land/sea breeze ($IMF\theta 3$ and $IMFW3$), and anthropogenic heat ($IMF\theta 4$).
 466 In addition, there was strong solar radiation in the diurnal cycle of pre-heatwave and heatwave
 467 periods, leading to the noticeable amplitude of $IMF\theta 5$. Whereas, $IMFW1$, $IMFW2$ and $IMFW4$
 468 tend to possess a larger amplitude during the non-heatwave ($IMFW1$: 0.84 m sec⁻¹, $IMFW2$:
 469 1.07 m sec⁻¹, $IMFW4$: 0.35 m sec⁻¹) and the early pre-heatwave ($IMFW1$: 0.61 m sec⁻¹, $IMFW2$:

470 0.51 m sec⁻¹, *IMFW4*: 0.97 m sec⁻¹) periods.

471

472 The southwesterly monsoon in the non-heatwave and early pre-heatwave periods
 473 accompanied windy conditions [30]. Subsequently, the faster background winds enhanced the
 474 turbulence in street canyons (*IMFW1*), uphill/downhill flows (*IMFW2*), and urban-rural
 475 advection (*IMFW4*). On the other hand, *IMFW1* to *IMFW4* during the heatwave period are
 476 attributed to the secondary circulation induced by buoyancy rather than background winds.
 477 Besides, the IMF frequencies in the local-scale windows (IMF1 to IMF4) were compared for
 478 various periods. The temperature IMFs (*IMFθ1* to *IMFθ4*) exhibit noticeable blue-shift (higher
 479 frequency) during the heatwave period (*IMFθ1*: 0.051 cycles hr⁻¹, *IMFθ2*: 0.097 cycles hr⁻¹,
 480 *IMFθ3*: 0.220 cycles hr⁻¹, *IMFθ4*: 0.394 cycles hr⁻¹) compared with the non-heatwave (*IMFθ1*:
 481 0.032 cycles hr⁻¹, *IMFθ2*: 0.065 cycles hr⁻¹, *IMFθ3*: 0.174 cycles hr⁻¹, *IMFθ4*: 0.315 cycles hr⁻¹),
 482 pre-heatwave (*IMFθ1*: 0.037 cycles hr⁻¹, *IMFθ2*: 0.090 cycles hr⁻¹, *IMFθ3*: 0.180 cycles hr⁻¹,
 483 *IMFθ4*: 0.393 cycles hr⁻¹), and post-heatwave (*IMFθ1*: 0.045 cycles hr⁻¹, *IMFθ2*: 0.091 cycles
 484 hr⁻¹, *IMFθ3*: 0.182 cycles hr⁻¹, *IMFθ4*: 0.318 cycles hr⁻¹) ones. It is caused by the intensification
 485 of heat exchange and convection during the heatwave period.

486

487 However, the frequency of wind-speed IMFs during non-heatwave period (*IMFW1*:
 488 0.043 cycles hr⁻¹, *IMFW2*: 0.098 cycles hr⁻¹, *IMFW3*: 0.239 cycles hr⁻¹, *IMFW4*: 0.348 cycles
 489 hr⁻¹) was enhanced by the (stronger) synoptic winds that tended to be higher than its pre-
 490 heatwave (*IMFW1*: 0.042 cycles hr⁻¹, *IMFW2*: 0.074 cycles hr⁻¹, *IMFW3*: 0.128 cycles hr⁻¹,
 491 *IMFW4*: 0.404 cycles hr⁻¹), heatwave (*IMFW1*: 0.021 cycles hr⁻¹, *IMFW2*: 0.081 cycles hr⁻¹,

492 *IMFW3*: 0.174 cycles hr⁻¹, *IMFW4*: 0.432 cycles hr⁻¹), and post-heatwave (*IMFW1*: 0.0454
493 cycles hr⁻¹, *IMFW2*: 0.909 cycles hr⁻¹, *IMFW3*: 0.136 cycles hr⁻¹, *IMFW4*: 0.341 cycles hr⁻¹)
494 counterpart. It is noteworthy that both the amplitude and frequency of temperature synoptic
495 component (*IMFθ6*, blue block) dropped at the end of the heatwave period (Figure 15). It is
496 because the formation of low-pressure system resulted in cooling and precipitation. Moreover,
497 there was a reduction in the amplitude and frequency of wind-speed synoptic component
498 (*IMFW6*) in the non-heatwave period that touched down in the early heatwave (June 23, 2016)
499 period. It is mainly attributed to the development of subtropical ridge that resulted in stuff air
500 and calm wind which are critical to the development of a heatwave event. Afterward, the
501 frequency of *IMFW6* gradually increased until the end of the heatwave period when the high-
502 pressure system slowly declined to low-pressure.

503

504 Alike our findings, the strengthening of secondary circulation, such as land-sea breeze
505 [60], heat storage [61] and anthropogenic heat [31], as well as the weakening of urban-rural
506 advection [61] during heatwave events have been reported elsewhere. In addition, our current
507 results detailed the variation of amplitude and frequency that provide insight of urban climate
508 during heatwave events, effectuating mitigation strategies.

509

510 UHI is also aggravated during the heatwave period. It is found that urban areas are more
511 sensitive to heatwave than rural areas. Unlike non-heatwave and pre-heatwave periods, the
512 differences in urban-rural temperatures are more noticeable during the heatwave and post-
513 heatwave periods (Figure 14). Hence, there exists synergy between heatwave and UHI that is

514 in line with previous studies [61]. Moreover, our findings reveal the interaction between
515 heatwave and UHI using NA-MEMD. Firstly, the hot ambient temperature during heatwave
516 period enhances the heat storage, increasing urban-rural contrast in surface temperatures. It
517 changes the amplitude of $IMF\theta 1$, causing hotter peaked temperature. Secondly, heatwave
518 intensifies the difference in urban-rural anthropogenic heat exhaust from air-conditioning
519 systems that in turn raises the amplitude of $IMF\theta 4$. Finally, weakened background winds also
520 suppress the advective cooling induced by urban-rural air motions.

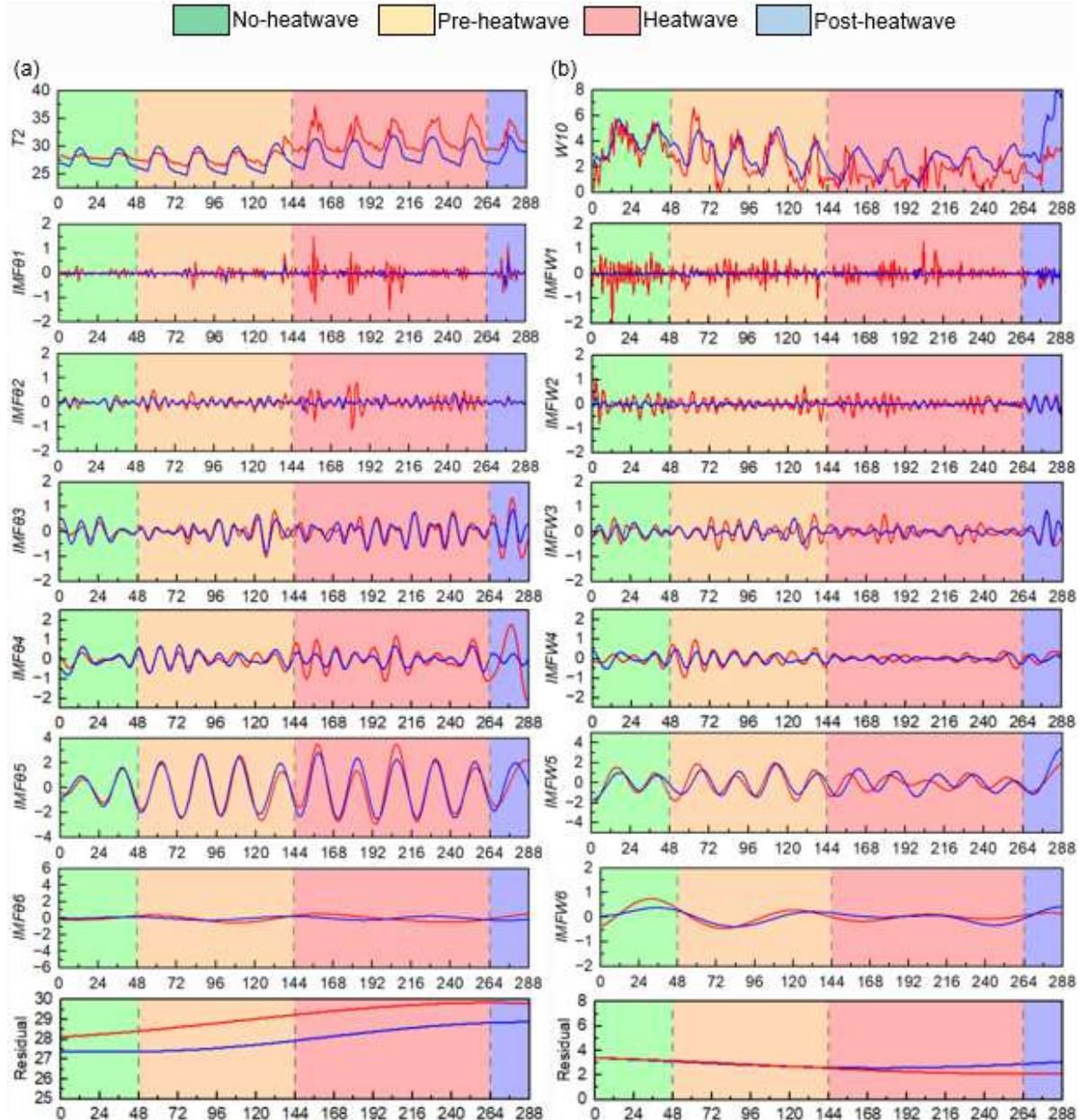


Figure 14. Time series of the original signals as well as the IMFs of (a) 2-m temperature $IMF\theta_j$ and (b) 10-m wind speed $IMFW_j$ during the non-heatwave (June 17 to 18, 2016), pre-heatwave (June 19 to 22, 2016), heatwave (June 23 to 27, 2016), and post-heatwave (June 28, 2016) periods after NA-MEMD for urban and rural areas.

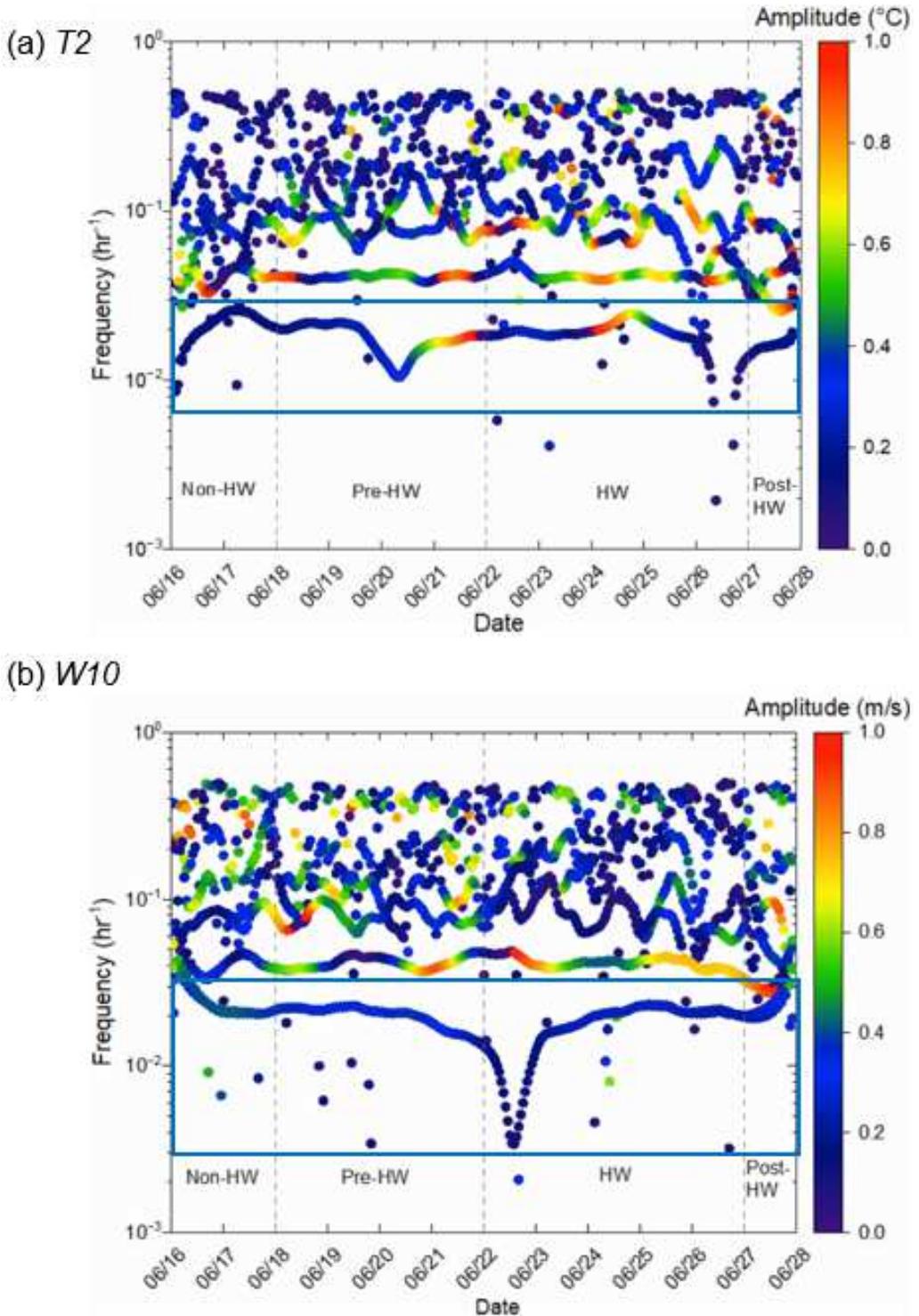


Figure 15. Comparison of Hilbert-Huang transform (HHT) spectra of (a) 2-m temperature $T2$ and (b) 10-m wind speed $W10$ during the non-heatwave (June 17 to 18, 2016), pre-heatwave (June 19 to 22, 2016), heatwave (June 23 to 27, 2016), and post-heatwave (June 28, 2016) periods in urban areas.

522 **4. Conclusions**

523 In this study, the meteorology parameters during a heatwave event in HK (June 23 to
 524 28, 2016) are calculated using the multi-layer WRF-BEP/BEM model. The time series of urban
 525 temperature and wind speed from the WRF results are decomposed into various components
 526 in the time-frequency domain using HHT. After EMD, the physical explanation of each IMF
 527 of temperature and wind speed is explored by a series of numerical experiments. Furthermore,
 528 the effective range of high-frequency temperature fluctuations and the related susceptible urban
 529 areas are assessed through the peaked amplitude of IMFs. The key findings are summarized as
 530 follows:

531

532 1. The trend of 2-m temperature $T2$ and 10-m wind speed $W10$ during extremely hot days in
 533 urban areas could be partitioned into 6 IMFs. Among others, IMF6 is the low-frequency
 534 synoptic scale while IMF5 belongs to the periodic, diurnal-cycle window. IMF1 to IMF4
 535 are grouped into local-scale windows which are aperiodic, high-frequency components.
 536 Under this circumstance, they are more likely to induce acute threat to power infrastructure.
 537 The temporal scales of IMF1, IMF2, IMF3, and IMF4 in temperature (wind speed) are 2.63
 538 hr (2.53 hr), 5.88 hr (5.78 hr), 13.16 hr (9.84 hr), and 22.72 hr (19.05 hr), respectively.
 539 Accordingly, their spatial scales are 2.31 km (0.99 km), 4.29 km (1.65 km), 5.94 km (2.64
 540 km), and 6.6 km (2.97 km).

541

542 2. The physical mechanism of IMF1 to IMF4 is elaborated as well. The temperature/wind-
 543 speed variations in the IMF1 component could be attributed to the disturbance caused by

544 the turbulent transport in street canyons and/or the heat-storage/release properties of
 545 building materials. The fluctuation in IMF_2 is induced by the uphill/downhill flows in
 546 mountainous terrain. The land/sea breeze modifies the urban thermal context in the IMF_3
 547 components. The temperature and **wind-speed** fluctuations in the IMF_4 components are
 548 attributed to the anthropogenic heat in urban and suburban areas.

549

550 3. The peaked amplitudes of temperature IMF_1 to IMF_4 cause the inhomogeneous, heat-
 551 related impact in cities. The effect of the IMF_1 components is substantial in urban ($1.4^\circ C$
 552 $\leq IMF_1 \leq 1.6^\circ C$) but less significant ($0.6^\circ C \leq IMF_1 \leq 1.0^\circ C$) in rural areas. It is most
 553 appealing in compact high-rise (LCZ1) and open high-rise (LCZ4) areas where the ARs are
 554 high ($2.75 \leq AR \leq 6$). IMF_2 ($1^\circ C \leq IMF_2 \leq 2.1^\circ C$) is most risky in foothill areas with an
 555 effective range of about 8 km. The littoral areas within 10 km from coastline are susceptible
 556 to IMF_3 ($0.6^\circ C \leq IMF_3 \leq 3.6^\circ C$). IMF_4 ($2.5^\circ C \leq IMF_4 \leq 3.5^\circ C$) tends to fluctuate
 557 most in urban and suburban areas where the anthropogenic heat is **intense**.

558

559 4. There exists a synergistic interaction between heatwave and UHI. Heatwave intensifies
 560 urban-rural temperature difference mainly by: (1) enhancing heat storage in construction
 561 material, (2) increasing anthropogenic heat, and (3) weakening the cool air motions from
 562 surrounding rural areas. On the other hand, the strengthening of land-sea secondary
 563 circulation is found during heatwave events.

564

565 Overall, to the best knowledge of the authors, this paper **unprecedentedly characterizes**

566 multi-frequency components of air temperature and wind speed during a heatwave event
567 together with unveil the physical mechanism behind. It could provide references for urban
568 planners and policy makers, effectuating cost-effective **strategies** for public health as well as
569 power security in a timely manner. Besides, the outcome provides an insight into the physical
570 processes of urban temperature variation which are necessary when extreme heatwave events
571 become more frequent in the current era under global warming.

572

573 The WRF setup used in this study was developed based on the Fortran W2W tool and
574 WRF 3.6.1 [62, 63] that are commonly used in WRF modeling [64]. Whereas, the latest version
575 of W2W tool [65] based on Python assigns morphological parameters directly to the higher-
576 resolution LCZ map which is then aggregated to the lower-resolution WRF grids. It is able to
577 capture urban diversity as well as reduces the uncertainty in urban-canopy parameters. Besides,
578 the BEP/BEM model was updated in the new version of WRF to lower down memory
579 consumption. Further efforts are worthy to modify the Python W2W tool and WRF 4.3 (or
580 later), integrating the LCZBC data (30 urban classes).

581

582 **Acknowledgments**

583 This research is conducted in part using the research computing facilities and/or
584 advisory services offered by Information Technology Services (ITS), The University of Hong
585 Kong (HKU). Technical support from Ms. Lilian Y.L. Chan, Mr. W.K. Kwan, and Mr. Bill
586 H.T. Yau is appreciated. This study is partly supported by the Hong Kong (HK) Research
587 Grants Council (RGC) Theme-based Research Scheme (TRS)T24-504/17-N, the RGC

588 Collaborative Research Fund (CRF) C7064-18G, RGC CRF C5108-20G as well as the RGC
589 General Research Fund (GRF) 17209819 and 17211322.

590

591 **References**

592 [1] A. Baniassadi, J. Heusinger, D.J. Sailor, Energy efficiency vs resiliency to extreme heat
593 and power outages: The role of evolving building energy codes, *Building and
594 Environment*, 139 (2018) 86-94.

595 [2] The Future of Cooling in China, Delivering on action plans for sustainable air conditioning,
596 (2019).

597 [3] The Future of Cooling, Opportunities for energy- efficient air conditioning, (2018).

598 [4] B. Stone Jr, E. Mallen, M. Rajput, C.J. Gronlund, A.M. Broadbent, E.S. Krayenhoff, G.
599 Augenbroe, M.S. O'Neill, M. Georgescu, Compound Climate and Infrastructure Events:
600 How Electrical Grid Failure Alters Heat Wave Risk, *Environmental Science &
601 Technology*, 55 (10) (2021) 6957-6964.

602 [5] C. Shen, W. Zhu, L. Xu, Critical risk determination method of energy-flow network for
603 urban electricity system under extreme heat wave impact, *Environmental Research*, 191
604 (2020) 110143.

605 [6] W.B. Goggins, E.Y. Chan, E. Ng, C. Ren, L. Chen, Effect modification of the association
606 between short-term meteorological factors and mortality by urban heat islands in Hong
607 Kong, *PloS one*, 7 (6) (2012) e38551.

608 [7] W. Fung, K.S. Lam, W. Hung, S. Pang, Y. Lee, Impact of urban temperature on energy
609 consumption of Hong Kong, *Energy*, 31 (14) (2006) 2623-2637.

610 [8] A. Christen, F. Meier, D. Scherer, High-frequency fluctuations of surface temperatures in
611 an urban environment, *Theoretical and Applied Climatology*, 108 (2012) 301-324.

612 [9] D. Burillo, M.V. Chester, B. Ruddell, N. Johnson, Electricity demand planning forecasts
613 should consider climate non-stationarity to maintain reserve margins during heat waves,
614 *Applied Energy*, 206 (2017) 267-277.

615 [10] Y. Wang, Y. Li, Y. Xue, A. Martilli, J. Shen, P.W. Chan, City-scale morphological
616 influence on diurnal urban air temperature, *Building and Environment*, 169 (2020)
617 106527.

618 [11] G. Chen, C.K.C. Lam, K. Wang, B. Wang, J. Hang, Q. Wang, X. Wang, Effects of urban
619 geometry on thermal environment in 2D street canyons: A scaled experimental study,
620 *Building and Environment*, 198 (2021) 107916.

621 [12] P. Pišot, J. Kalvová, R. Brázdil, Cycles and trends in the Czech temperature series using
622 wavelet transforms, *International Journal of Climatology: A Journal of the Royal
623 Meteorological Society*, 24 (13) (2004) 1661-1670.

624 [13] Z. Wu, N.E. Huang, S.R. Long, C.-K. Peng, On the trend, detrending, and variability of
625 nonlinear and nonstationary time series, *Proceedings of the National Academy of
626 Sciences*, 104 (38) (2007) 14889-14894.

627 [14] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung,
628 H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear
629 and non-stationary time series analysis, *Proceedings of the Royal Society of London.
630 Series A: mathematical, physical and engineering sciences*, 454 (1971) (1998) 903-995.

631 [15] V. Capparelli, C. Franzke, A. Vecchio, M.P. Freeman, N.W. Watkins, V. Carbone, A

632 spatiotemporal analysis of US station temperature trends over the last century, *Journal*
633 of *Geophysical Research: Atmospheres*, 118 (14) (2013) 7427-7434.

634 [16] M.G. Orozco-del-Castillo, J.J. Hernández-Gómez, G.A. Yañez-Casas, M.R. Moreno-
635 Sabido, C. Couder-Castañeda, I. Medina, R. Novelo-Cruz, M.A. Enciso-Aguilar,
636 Pattern recognition through empirical mode decomposition for temperature time series
637 between 1986 and 2019 in Mexico City downtown for global warming assessment, in:
638 *Telematics and Computing: 8th International Congress, WITCOM 2019, Merida,*
639 Mexico, November 4–8, 2019, *Proceedings 8*, Springer, 2019, pp. 45-60.

640 [17] W. Chu, S. Qiu, J. Xu, Temperature change of Shanghai and its response to global
641 warming and urbanization, *Atmosphere*, 7 (9) (2016) 114.

642 [18] C. Yang, H. Wu, Y. Zhang, M. Itoh, Extracting periodic components in temperature
643 fluctuation patterns, in: *2009 First International Conference on Information Science*
644 and *Engineering*, IEEE, 2009, pp. 4873-4876.

645 [19] M.-L. Lin, C.W. Tsai, C.-K. Chen, Daily maximum temperature forecasting in changing
646 climate using a hybrid of Multi-dimensional Complementary Ensemble Empirical
647 Mode Decomposition and Radial Basis Function Neural Network, *Journal of*
648 *Hydrology: Regional Studies*, 38 (2021) 100923.

649 [20] A. Vecchio, V. Carbone, Amplitude-frequency fluctuations of the seasonal cycle,
650 temperature anomalies, and long-range persistence of climate records, *Physical Review*
651 *E*, 82 (6) (2010) 066101.

652 [21] S. Adarsh, M.J. Reddy, Investigating the multiscale variability and teleconnections of
653 extreme temperature over Southern India using the Hilbert–Huang transform, *Modeling*

654 Earth Systems and Environment, 3 (2017) 1-17.

655 [22] M.M. Dedović, N. Dautbašić, S. Avdaković, Impact of air temperature on active and
656 reactive power consumption-Sarajevo case study, B&H Electrical. Engineering, 11
657 (2017) 61-70.

658 [23] Z. Wen, S. Wu, J. Chen, M. Lü, NDVI indicated long-term interannual changes in
659 vegetation activities and their responses to climatic and anthropogenic factors in the
660 Three Gorges Reservoir Region, China, Science of the Total Environment, 574 (2017)
661 947-959.

662 [24] J. Zou, Y. Yu, J. Liu, J. Niu, K. Chauhan, C. Lei, Field measurement of the urban
663 pedestrian level wind turbulence, Building and Environment, 194 (2021) 107713.

664 [25] F. Salamanca, A. Krpo, A. Martilli, A. Clappier, A new building energy model coupled
665 with an urban canopy parameterization for urban climate simulations—part I.
666 formulation, verification, and sensitivity analysis of the model, Theoretical and applied
667 climatology, 99 (3) (2010) 331-344.

668 [26] F. Salamanca, A. Martilli, A new building energy model coupled with an urban canopy
669 parameterization for urban climate simulations—Part II. Validation with one dimension
670 off-line simulations, Theoretical and Applied Climatology, 99 (3) (2010) 345-356.

671 [27] J. Kong, Y. Zhao, J. Carmeliet, C. Lei, Urban heat island and its interaction with heatwaves:
672 A review of studies on mesoscale, Sustainability, 13 (19) (2021) 10923.

673 [28] Y. Wang, Y. Li, S.D. Sabatino, A. Martilli, P. Chan, Effects of anthropogenic heat due to
674 air-conditioning systems on an extreme high temperature event in Hong Kong,
675 Environmental Research Letters, 13 (3) (2018) 034015.

698 (1990) 2784-2802.

699 [38] J. Dudhia, Numerical study of convection observed during the winter monsoon experiment
700 using a mesoscale two-dimensional model, *Journal of Atmospheric Sciences*, 46 (20)
701 (1989) 3077-3107.

702 [39] E.J. Mlawer, S.J. Taubman, P.D. Brown, M.J. Iacono, S.A. Clough, Radiative transfer for
703 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,
704 *Journal of Geophysical Research: Atmospheres*, 102 (D14) (1997) 16663-16682.

705 [40] R. Du, C.-H. Liu, X.-X. Li, C.-Y. Lin, Effect of local climate zone (LCZ) and building
706 category (BC) classification on the simulation of urban climate and air-conditioning
707 load in Hong Kong, *Energy*, 271 (2023) 127004.

708 [41] N. ur Rehman, C. Park, N.E. Huang, D.P. Mandic, EMD via MEMD: multivariate noise-
709 aided computation of standard EMD, *Advances in adaptive data analysis*, 5 (02) (2013)
710 1350007.

711 [42] HKPlanD, Urban climatic map and standards for wind environment - Feasibility Study.
712 (2012).

713 [43] Y.Y. Yan, Surface wind characteristics and variability in Hong Kong, *Weather*, 62 (11)
714 (2007) 312-316.

715 [44] H. Liu, J.C. Chan, An investigation of air-pollutant patterns under sea-land breezes during
716 a severe air-pollution episode in Hong Kong, *Atmospheric Environment*, 36 (4) (2002)
717 591-601.

718 [45] H. Liu, J.C. Chan, Boundary layer dynamics associated with a severe air-pollution episode
719 in Hong Kong, *Atmospheric Environment*, 36 (12) (2002) 2013-2025.

720 [46] M.-K. Hwang, J.-H. Bang, S. Kim, Y.-K. Kim, I. Oh, Estimation of thermal comfort felt
721 by human exposed to extreme heat wave in a complex urban area using a WRF-
722 MENEX model, International journal of biometeorology, 63 (7) (2019) 927-938.

723 [47] Y. Wang, S. Di Sabatino, A. Martilli, Y. Li, M. Wong, E. Gutiérrez, P. Chan, Impact of
724 land surface heterogeneity on urban heat island circulation and sea-land breeze
725 circulation in Hong Kong, Journal of Geophysical Research: Atmospheres, 122 (8)
726 (2017) 4332-4352.

727 [48] Q. Wang, C. Zhang, C. Ren, J. Hang, Y. Li, Urban heat island circulations over the
728 Beijing-Tianjin region under calm and fair conditions, Building and Environment, 180
729 (2020) 107063.

730 [49] U.S. EPA, Guidance on the use of models and other analyses for demonstrating attainment
731 of air quality goals for ozone, PM2.5, and regional haze, in, United States Environment
732 Protection Agency, Research Triangle Park, NC, 2007.

733 [50] European Environment Agency, The application of models under the European Union's
734 Air Quality Directive: A technical reference guide, Copenhagen, 2011.

735 [51] C. Misenis, J. Thurman, R.C. Owen, Prognostic meteorological data in dispersion
736 applications, in: Proceedings of the 19th International Conference on Harmonisation
737 within Atmospheric Dispersion Modelling for Regulatory Purposes, Bruges, Belgium,
738 2019, pp. 3-6.

739 [52] D. Oettl, G. Veratti, A comparative study of mesoscale flow-field modelling in an Eastern
740 Alpine region using WRF and GRAMM-SCI, Atmospheric Research, 249 (2021)
741 105288.

742 [53] HKO, Information of Weather Station, (2022) <https://www.hko.gov.hk/en/cis/stn.htm>.

743 [54] L.W. Siu, M.A. Hart, Quantifying urban heat island intensity in Hong Kong SAR, China,
744 Environmental monitoring and assessment, 185 (5) (2013) 4383-4398.

745 [55] C. Helmis, G. Sgouros, H. Flocas, K. Schäfer, C. Jahn, M. Hoffmann, C. Heyder, R.
746 Kurtenbach, A. Niedojadlo, P. Wiesen, The role of meteorology on the background air
747 quality at the Athens International Airport, Atmospheric environment, 45 (31) (2011)
748 5561-5571.

749 [56] J. Barlow, G. Rooney, S. von Hünerbein, S. Bradley, Relating urban surface-layer
750 structure to upwind terrain for the Salford Experiment (Salfex), Boundary-layer
751 meteorology, 127 (2008) 173-191.

752 [57] H. Swaid, M.E. Hoffman, Prediction of urban air temperature variations using the
753 analytical CTTC model, Energy and Buildings, 14 (4) (1990) 313-324.

754 [58] N.S.M. Harmay, M. Choi, Effects of heat waves on urban warming across different urban
755 morphologies and climate zones, Building and Environment, 209 (2022) 108677.

756 [59] F. Guo, J. Zhao, H. Zhang, J. Dong, P. Zhu, S.S.Y. Lau, Effects of urban form on sea
757 cooling capacity under the heatwave, Sustainable Cities and Society, 88 (2023) 104271.

758 [60] J. Hidalgo, V. Masson, L. Gimeno, Scaling the daytime urban heat island and urban-breeze
759 circulation, Journal of Applied Meteorology and Climatology, 49 (5) (2010) 889-901.

760 [61] D. Li, E. Bou-Zeid, Synergistic interactions between urban heat islands and heat waves:
761 The impact in cities is larger than the sum of its parts, Journal of applied Meteorology
762 and Climatology, 52 (9) (2013) 2051-2064.

763 [62] O. Brousse, A. Martilli, M. Foley, G. Mills, B. Bechtel, WUDAPT, an efficient land use

764 producing data tool for mesoscale models? Integration of urban LCZ in WRF over
765 Madrid. *Urban Climate*, 17 (2016) 116-134.

766 [63] A. Martilli, O. Brousse, J. Ching, Urbanized WRF modeling using WUDAPT. Paper
767 presented at the Technical Report March, Cientro de Investigaciones Energeticas
768 MedioAmbientales y Tecnologicas (CIEMAT), (2016).

769 [64] P. Patel, S. Jamshidi, R. Nadimpalli, D.G. Aliaga, G. Mills, F. Chen, M. Demuzere, D.
770 Niyogi, Modeling Large-Scale Heatwave by Incorporating Enhanced Urban
771 Representation. *Journal of Geophysical Research: Atmospheres*, 127(2) (2022)
772 e2021JD035316.

773 [65] M. Demuzere, D. Argüeso, A. Zonato, J. Kittner, W2W: A Python package that injects
774 WUDAPT's Local Climate Zone information in WRF. *Journal of Open Source Software*,
775 7(76) (2022) 4432.