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Avoiding dynamic small obstacles with onboard
sensing and computation on aerial robots

Fanze Kong1∗, Wei Xu1∗, Yixi Cai1, Fu Zhang1

Abstract—In practical applications, autonomous quadrotors
are still facing significant challenges, such as the detection and
avoidance of very small and even dynamic obstacles (e.g., tree
branches, power lines). In this paper, we propose a compact,
integrated, and fully autonomous quadrotor system, which can
fly safely in cluttered environments while avoiding dynamic small
obstacles. Our quadrotor platform is equipped with a forward-
looking three-dimensional (3D) light detection and ranging (lidar)
sensor to perceive the environment and an onboard embedded
computer to perform all the estimation, mapping, and planning
tasks. Specifically, the computer estimates the current pose of
the UAV, maintains a local map (time-accumulated point clouds
KD-Trees), and computes a safe trajectory using kinodynamic
A* search to the goal point. The whole perception and planning
system can run onboard at 50Hz. Various indoor and outdoor
experiments show that the system can avoid dynamic small
obstacles (down to 9mm diameter bar) while flying at 2m/s in
cluttered environments. High-speed experiments are also carried
out, with a maximum speed of 5.5m/s. Our codes are open-
sourced on Github2.

Index Terms—Aerial Systems: Perception and Autonomy, Mo-
tion and Path Planning, Collision Avoidance.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have shown in-
creasing potentials in a variety of applications, such as

delivery, inspection, mapping, and search-and-rescue missions.
To enable these widespread applications, a fully autonomous
UAV that is able to fly in cluttered environments is crucial.
One major challenge in achieving this goal is the detection
and avoidance of very small and/or dynamic objects such as
tree branches, power lines, small pipes, and stair rails that are
common in real-world environments.

Despite the plenty of works on autonomous UAVs recently
developed, there are still two critical unsolved issues. Most
existing works cannot handle dynamic obstacles with only
onboard UAV resources due to the limited rate of sensing
and/or planning. Avoiding small obstacles is another challenge
to UAVs due to the low resolution of mapping in existing
works.

These two issues are rooted in the limited sensing ca-
pabilities available for existing UAVs. The popularly used
RGB-D sensors have limited sensing range (a few meters)
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Fig. 1. Our system is able to detect and avoid dynamic small obstacles such
as tree branches. The green dashed line is the path flied by the UAV, the white
arrow indicates the movements of the tree branch. The current tree branch is
highlighted in red. Video is available at https://youtu.be/mjtmpEYwQsI.

and resolution, preventing the timely and reliable detection of
small obstacles (e.g., pipes with diameter smaller than 20mm).
The noisy measurements of RGB-D sensors also require addi-
tional probabilistic filtering on each voxel’s occupancy (e.g.,
OctoMap [1]), which imposes an inherent trade-off between
processing time and affordable resolution. Multi-line spinning
lidars are another type of sensor that has been used on UAVs.
Besides the high-cost, their bulky size, weight (∼1kg), low
resolution (e.g., 2◦ for 16 lines lidars), and low frame-rate
(e.g., 10Hz) have significantly prevented the adoption to UAVs
for obstacle avoidance.

In this paper, we present an autonomous UAV system
aiming to fulfill intelligent flight in cluttered and dynamic
environments. The system-level contribution is the proof of
feasibility of using only a low-cost, light-weighted, and small
form factor 3D lidar and onboard processing to achieve high-
rate and safe navigation in unknown cluttered environments
(see Fig. 1). We summarize our contributions as follows:

1) Design of a complete autonomous lidar-based UAV
for the avoidance of small and dynamic obstacles. It
is lightweight (1.8kg in total) and compact (280mm
wheelbase) while equipped with onboard computing
(a DJI Manifold 2-C, with Intel i7 8550U CPU) and
sensing (a solid-state lidar: LIVOX AVIA) modules. The
system performs full state estimation and high-resolution
mapping at 50Hz with onboard computing;

2) Time-accumulated KD-Tree: a novel mapping approach
naturally balancing the LiDAR resolution and dynamic
objects. This approach enables efficient and timely (i.e.,
50Hz) detection of obstacles, static or dynamic, large or
small, in the scene;

3) Field tests demonstrating the effectiveness of the UAV
system and the proposed approach. Real-world experi-

https://github.com/hku-mars/dyn_small_obs_avoidance.git
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ments show that with only onboard sensing and compu-
tation, our UAV system can safely navigate in various
indoor and outdoor environments while reliably avoiding
dynamic small obstacles (down to 9mm) in the scene.

II. RELATED WORK

A. Navigation in cluttered environments

In recent years, the localization and mapping technology of
unmanned vehicles have developed rapidly, especially vision-
based and lidar-based methods. For the application of vision-
based UAVs, Visual-Inertial Odometry (VIO) is one state-of-
the-art technique, which gives stable odometry by only using
camera images and IMU measurements [2]–[5]. Most existing
works of autonomous aerial vehicle systems are based on
visual sensors and have achieved outstanding performance in
static complex environments.

The standard process of a vision-guided aerial vehicle is to
obtain the location from the VIO algorithm and combine it
with the depth image from a depth camera to build a map
(e.g., Occupancy grid map [1], Euclidean Signed Distance
Field (ESDF) map [6] or point clouds map [7]), and then
generate and execute a trajectory on the established map.
Liu et al. [8] use a uniform resolution volumetric occupancy
grid map to establish a short-range planner for high-speed
quadrotor navigation. Oleynikova et al. [9] presents a UAV
system using a high-rate local replanner based on ESDF
map, which can avoid newly-detected obstacles and generate
feasible trajectories online in 50ms. Lopez et al. [10] proposed
a state-based motion primitive planning on current point cloud
map and achieved high-speed avoidance. Tordesillas et al. [11]
proposed a framework that generates a fast trajectory while
always having a safe trajectory in known area and achieves
up to 7.8m/s speed in cluttered environments. The Nanomap
[12] and Mapless planner [13] check collision not only in the
current FoV point cloud, but also in the past FoVs. Nanomap
[12] even achieved 10m/s velocity flight in forests considering
pose uncertainties.

Besides vision-based UAV, there are also many works on
lidar-based UAVs. Liu et al. [14] generate safe flight corridors
(SFC) consisting of multiple ellipsoids from point clouds of
a 360° lidar and optimize the trajectory in the flight corridor.
Mihir et al. [15] proposed a method to explore a mine site
autonomously, which utilizes control-based motion primitives
to find future-safe paths in an ESDF map built from lidar data.
Zhang et al. [16] achieved a 10m/s flight in forests using a set
of static motion primitives assuming a constant flying velocity
in the lidar frame.

B. Navigation in dynamic environments

The approaches mentioned above have a common assump-
tion that the environment is static, so the rate of map updating
and replanning is usually low. To avoid dynamic obstacles,
it requires both the environment perception (i.e., mapping)
and trajectory replanning to be performed at a very high rate.
Sanchez et al. [17] generates a progressive optimal trajectory
allowing the UAV to avoid moving people at a very low speed.
Allen et al. [18] use kinodynamic RRT* algorithm to make

Fig. 2. Our quadrotor UAV. The camera is used for visualization only.

the UAV avoid a dynamic sword rapidly, but the perception
and replanning are both performed by offboard sensors (i.e.,
motion capture systems) and computers. Wang et al. [19]
use an RGB-D camera on a quadrotor UAV to avoid moving
people, but its ability to avoid very small objects is not known.
Falanga et al. [20] use an event camera to fulfill a high speed
(10m/s relative speed) objects avoidance, having only 3.5ms
overall latency. However, the event cameras do not have a
complete perception of the environment.

C. Navigation considering small obstacles

In practical applications, it is common for UAVs to en-
counter small obstacles (e.g., power lines outdoor, small pipes
and/or stair rails in indoors). Existing works are usually based
on visual sensors and detect such small objects by reasoning
the image. Madaan et al. [21] trains a convolution network to
segment wires from images and reconstructs them to fulfill the
avoidance. Zhang et al. [22] proposes a method to detect the
power line using convolutional and structured features. These
methods are usually not general and costly for UAVs.

Our work considers the three challenges all at once. We
emphasize a wholistic system design from sensing, perception,
estimation, to planning, instead of focusing on one component
alone. Compared with the existing work, our developed system
is lightweight, fast, and able to safely navigate in complex
indoor and outdoor environments while avoiding dynamic
small obstacles.

III. SYSTEM HARDWARE

In this section, we present the hardware design of our
quadrotor testbed aimed at achieving good autonomous flying
performance, being an integrated, durable, and aggressive
UAV, as shown in Fig. 2.

A. Fully onboard hardware architecture

The UAV hardware system consists of a Livox AVIA lidar,
a DJI Manifold 2-C onboard computer (i7 8550U CPU,
1.8GHz Basic Frequency, quad-core), and a Pixhawk4-mini
flight controller. We also add a monocular camera on the UAV
to gain first-person view (FPV) images for better visualization.
Note that the camera is not used in the perception system.

Compared with vision-based UAVs, our system only uses
a lidar (with a built-in consumer-grade IMU) to navigate
the UAV and to sense the environment. The measured point
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cloud and IMU data are transmitted to the onboard computer,
which performs all the state estimation, mapping, and motion
(re-) planning (see Section IV). At last, the flight controller
Pixhawk4-mini performs the trajectory tracking control.

TABLE I
SYSTEM SPECIFICATIONS

Thrust weight ratio 3

Weight (lidar included) 1.8kg

Size (with propeller) 44cmx38cmx15cm

Size (without propeller) 26cmx27cmx15cm

Maximum flight time 10min

Battery 5S 3300mAh 50C

TABLE II
LIDAR PARAMETERS

Detection Range 1m – 450m

FoV 70.4◦ × 77.2◦

Point Rate 240,000points/sec

Maximum Frame Rate 2500Hz

Build-in IMU Rate 200Hz

Range Precision 2cm

False Alarm Ratio <0.0003%

Weight 498g

Size 76mm×65mm×91mm

Besides the avionic system mentioned above, we also design
and optimize our specific quadrotor frame. To ensure that the
UAV has enough mobility and small size, we choose T-motor
F90 motors and 7042 propellers as the power plant. As shown
in Table I, the final UAV has a moderate weight (1.8kg in
total), size (280mm wheelbase), and flight endurance (over
10 mins). With over 3-g thrusts, the UAV is able to perform
aggressive maneuvers to quickly respond to dynamic obstacles.

B. Lidar characteristics

Lidar is a type of sensor which emits laser pulses and
receives the reflected pulse to gain depth information of
the environment. Unlike multi-line spinning lidars used on
existing UAVs [14], we use a solid-state lidar, the Livox
AVIA, which features many advantages that are suitable for
aerial applications: (1) shown in Table II, the sensor has a
weight and size that can be adapted to a small-scale UAV; (2)
the sensor has a very long detection range, allowing obstacle
detection and avoidance at high-speed flight; (3) the sensor has
an extremely low false alarm rate, producing only three noise
points per one million points. This could eliminate the time-
consuming ray-casting occupancy filtering as in OctoMap [1]
and ESDF [6]; (4) the sensor can output point clouds data at

Fig. 3. Point clouds scanning results of a 9mm diameter bar over different
accumulation time. The bar can be detected in the first 20ms data.

a very high rate (up to 2500Hz), as opposed to the 10∼20Hz
output rates of multi-line spinning lidars. This allows timely
detection of dynamic obstacles; (5) the sensor uses 6 laser
heads to scan the front area simultaneously in a rosellete
pattern, forming a circular FoV. Since it covers the entire
FoV very quickly, the sensor is very suitable for detecting
line-shaped small objects. Furthermore, the sensor uses a non-
repetitive scanning [23] that significantly boosts the resolution
even at stationary. An example of the sensor measurements for
a 9mm bar are seen in Fig. 3, it can be seen that the bar is
detected only after 20ms and the resolution increases over the
accumulation time.

IV. INTEGRATED ONBOARD PERCEPTION AND MOTION
PLANNING

A. Overview

In this section, we detail the software and algorithm design.
The overview of the system workflow is seen in Fig. 4 and
Algorithm 6. A typical autonomous UAV consists of three
functional parts: navigation, planning, and control. In our sys-
tem, navigation and planning modules are both running on the
onboard computer, and the tracking control is running on the
onboard flight controller Pixhawk4-mini. For the navigation
task, we use FAST-LIO [24] to compute the location of the
UAV and build a point cloud map of the environment, both
at 50Hz. After receiving a new scan of point cloud and IMU
data from the lidar, FAST-LIO estimates the current UAV state
in a tightly-coupled iterated Kalman filter. The estimated state
is, in turn, used to project the new scan of point cloud to the
world frame (Line 1) and then added to a local map (Line
2), which is a time-accumulated KD-tree detailed in Section
IV-B. The updated local map triggers a collision check on the
current trajectory under tracking. If any collision occurs (Line
3), a new trajectory is re-planned from the state on the current
trajectory that is 30ms after (to account for the re-planning
time, Line 4). The re-planned trajectory replaces the current
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Fig. 4. The software architecture of our overall system. Perception and
planning are all running on the onboard computer.

Algorithm 1: Software architecture workflow
Input: New LiDAR Scan Scan and IMU data IMU

Manual Input: Goal point G
Output: Odometry Odom, Trajectory Trajc

1 [Odom,Ptclouds]←FAST-LIO(Scan, IMU);
2 TimeAccKDTrees.add(Ptclouds);
3 if IsCollision(TimeAccKDTrees, Trajc) then
4 S ←GetState(Trajc, Tc + 0.03);
5 Trajc ←kinoA∗search(TimeAccKDTrees, S,G);

6 SendToFlightController(Odom, Trajc);

one (Line 5) and is sent to the flight controller for tracking
(Line 6).

We defer the local map representation (Line 2) to the next
section. For the trajectory planning (Line 5), we choose the
motion primitive-based method, which has been successfully
used in high-speed planning [10] and dynamic objects avoid-
ance [20]. More specifically, we directly adopt the Kinody-
namic A* search algorithm implemented in [25, 26]. For
collision check (Line 3), we perform the check on a set of
discrete points along the trajectory by searching its nearest
neighbors on the time-accumulated KD-trees. If the point on
the trajectory is too close (i.e., safety clearance) to the nearest
point in the map, a collision occurs. The number of checking
points are assigned according to the length of each motion
primitive segment of the trajectory (as apposed to a fixed
number 5 in the original method [26]). Finally, the trajectory
tracking controller is a cascaded PID controller implemented
on Pixhawk4-Mini, and we tune the parameters appropriately
beforehand.

B. Time-accumulated KD-Tree

Most existing works rely on occupancy grid map [8, 9, 27],
where the space is discretized into small voxels. To filter
out sensor noise, ray-casting is usually conducted to estimate
the occupancy probability of each voxel along the ray of
a point measurement (e.g., OctoMap [1]). Besides filtering
out noise points, such ray-casting also enables to distinguish
unknown spaces from the free or occupied ones, which could
be useful in some planning tasks. Euclidean Signed Distance
Field (ESDF) map [6, 28] builds on top of the occupancy

Fig. 5. Update of the two time-accumulated KD-Trees with new scans of
points.

grid map and further maintains the signed distance of each
voxel to its nearest occupied voxels. Such distance provides
the gradient information allowing the optimization of a smooth
trajectory. However, it takes additional time to compute the
distance information.

Due to the very long measuring range of our lidar (up
to 450m as in Table II), ray-casting is very time-consuming,
especially when the voxel size is small to accommodate small
objects. On the other hand, the lidar has a very low noise
ratio (lower than 0.0003%) that makes the ray-casting used
in OctoMap unnecessary. In this paper, we directly plan on
the point clouds received from the estimation and mapping
module. To enable efficient collision check [10], we organize
the point clouds into a KD-tree structure.

Considering all historic points in the collision check leads to
over-conservative motion planning since the space traveled by
dynamic objects will be mistakenly considered as occupied
[29]. Moreover, maintaining all points in a single KD-tree
is time-consuming due to the large number. On the other
hand, using points in the current scan only [10] will lead to
incomplete coverage of the FoV and miss potential obstacles
on the trajectory.

We propose to use a temporally local map. That is, only
the most recent point cloud is used for collision check. We
accumulate the point cloud over a certain time, called the
accumulation time. For the livox AVIA lidar, the accumulation
time is set to one second, which produces sufficiently high-
resolution point clouds (see Fig. 3) while retains only recent
points on dynamic objects. We further downsample the raw
point clouds at a prescribed resolution (e.g., 10cm) to lower the
computation. Note that the down-sampling resolution, unlike
the voxel size in OctoMap, does not affect the detection of
objects smaller than the resolution, but may only inflate the
obstacle space slightly.

The local map is organized into two KD-Trees, one static
and one dynamic growing (see Fig. 5), each KD-Tree stores up
to the accumulation time point clouds data. The update of each
KD-tree is detailed in Algorithm 13, where H = 50 denotes
the maximum number of lidar scans stored in one KD-Tree,
and N = 2 denotes the number of KD-Trees. In the beginning,
the two KD-Trees are both empty. Once a new scan of points
arrives, the KD-Tree that is still not full is obtained (Line 1 -
5). Then, the new scan of points is added to the point cloud
already on the tree (Line 10). The updated point clouds are
downsampled at the prescribed resolution (Line 11) and used
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Algorithm 2: Time-accumulated KD-Tree
Input: Point clouds NewPoints in the new scan
Output: Two KD-Trees KDTree[2]
Parameters: H = 50 N = 2

1 if ScanInputNum ≥ H ∗N then
2 ScanInputNum = 0;
3 TreeInputNum = 0;
4 else
5 TreeInputNum = floor(ScanInputNum/H);

6 if ScanInputNum mod H = 0 then
7 CloudAccumulate.Clear();
8 CloudAccumulate = NewPoints;
9 else

10 CloudAccumulate.add(NewPoints);

11 CloudFilt = VoxelGridFilter(CloudAccumulate);
12 KDTree[TreeInputNum].build(CloudFilt);
13 ScanInputNum = ScanInputNum+ 1;

to build up a new KD-Tree replacing the existing one (Line
12). The above process repeats until the current KD-Tree is
full (Line 6), where the new scan is accumulated from scratch
(Line 7-8) and saved to the other KD-Tree (this will override
the existing point cloud already on the other KD-Tree).

The two KD-Trees save point cloud up to twice the accu-
mulation time, which is sufficient to cover the lidar FoV with
great details. When performing collision checks, both KD-
Tree should be used: the static one provides information of the
environments while the dynamic one timely detects dynamic
obstacles at the lidar scan rate (i.e., 50Hz).

We would like to point out that building only one KD-
Tree (as apposed to two in our approach) is not feasible. If a
single KD-Tree is used, a purging of the tree (when it is full)
will delete all map points and lead to over-optimistic collision
check. One may also wonder why not use more than two KD-
Trees. While this is certainly feasible, it requires to performing
collision checks on all trees, which in turn increases the query
time. To study the effect of the number of KD-Trees, we
performed a quick comparison in Table. III, where a total
number of 100 scans of points are organized into different
numbers of KD-Trees. As expected, when N increases, the
average time for adding a new scan decreases since the number
of scans to build on each KD-Tree reduces. However, at the
same time, as each point on the trajectory needs to carry out a
nearest neighbor search on every KD-Tree, the average search
time per each checking point increases linearly with N . As a
result, the overall planning time increases with N , the number
of KD-Trees.

Remark: while the proposed time-accumulated KD-Trees
is very efficient in computation time (see Section V), it
shares the same drawback of a point-cloud map, the inability
to distinguish unknown spaces from free ones. Moreover,
similar to all other local maps, the time-accumulated KD-
Trees maintain points over a local time window, so points
of obstacles moving out of the window will not be considered

TABLE III
TIME-ACCUMULATED KD-TREES WITH DIFFERENT PARAMETERS

N H Update time Search time/point Planning time (15m)

2 50 1.06ms 4us 11.5ms

4 25 0.663ms 8us 20ms

5 20 0.574ms 10us 25ms

by the planner. This will lead to two problems: (1) the UAV
may collide with obstacles that lie in the unmapped area or
move out of the local map; (2) a planner based on such a
partial map may fail to plan a globally feasible trajectory in
very complicated environments (e.g., maze). In practice, the
first issue could be addressed by constraining the trajectory
within the LiDAR FoV, while the second one by a lower-rate
global planner on an additional global map.

V. RESULTS

In this section, we present experiment results to validate
our system. We first test the minimal size of both static and
dynamic obstacles that our UAV could avoid. Then, we present
some more challenging real-world experiments, including an
indoor office corridor, an outdoor forest environment, and an
outdoor cluttered environment full of tree crowns (see Fig.
6). All the environments are unmodified except the possible
dynamic small obstacles (e.g., narrow bar, tree branches) in-
tentionally added to the scene. Each experiment is successfully
repeated at least twice. In all experiments, the parameters of
the system are set as follows according to the actual situation:
the down-sampling resolution is set to 10cm when building
the two time-accumulated KD-Trees. The safety clearance
between UAV and obstacles is set to 45cm considering the
actual size of the UAV and the possible obstacle shrink caused
by point cloud down-sampling. For the kinodynamic A* based
planning [26], we set vmax = 2m/s, amax = 2m/s2 (or
vmax = 5m/s, amax = 3m/s2 for high speed experiment),
and the time duration of one motion primitive is Ts = 0.6s.
The snapshots of experiments are shown in Fig. 6 (a-c). Due
to the use of lidar, a byproduct of our system is a high-
resolution high-accuracy 3D map of the environments built
in real-time as shown in Fig. 6 (d-f). We supply a video
attachment (also available at https://youtu.be/mjtmpEYwQsI)
that better visualizes the flight performance.

A. Indoor experiments with static and dynamic obstacles
First, we conduct a series of experiments to determine the

smallest static obstacle that our system is able to detect,
and found that a bar with the minimum diameter of 9mm
can be reliably mapped, shown in Fig. 7(a). Then we keep
waving the 9mm bar in front of the UAV and it could still be
successfully avoided as shown in Fig. 7(b). After this simple
validation experiment, we test our system in more realistic
indoor environments.

Instead of flying in a man-made indoor environment [10,
26], we choose an unmodified office corridor, as shown in Fig.
6(a). The UAV can autonomously fly to a 9 meters away goal
point while avoiding both the static and dynamic obstacles
with a maximum velocity of 2m/s. During the flight, we
suddenly raise a narrow-bar shape obstacle (diameter 20mm)

https://youtu.be/mjtmpEYwQsI
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Fig. 6. We test our developed system in both indoor and outdoor environments: (a) an indoor office corridor with a narrow bar of diameter 20mm being
intentionally raised to block the UAV flight path; (b) outdoor forest with a tree branch of diameter 10-20mm being intentionally lowered to block the UAV
flight path; (c) a hillside with cluttered tree crowns. (d-f), the point cloud map built in real-time as the UAV flies in the three tested environments. Notice that
(e) is the scene in (b) but rendered at an apposite view angle.

Fig. 7. Avoiding a static and moving bar of 9mm diameter. It is the thinnest
bar that our UAV system can avoid.

when the UAV is about 2.5m away and hold it to the UAV
flight path. Still, our system can detect this dynamic small
obstacle and avoid it in a very short time. As shown in Fig.
8, a smooth trajectory (the yellow curve) is first generated to
the target point. With the narrow-bar raising, the trajectory is
detected to have a collision with the updated environment, and
the planning module starts replanning. After several times of
replanning, a final safe trajectory (the red curve) that passes
under the bar is planned. In the upper right corner of Fig.
8, we show the zoomed-in view of the narrow bar where the
blue points represent the points in time-accumulated KD-Trees
used for replanning and white points are points in the past. It
is seen that the bar movement profile is clearly captured by
the LiDAR points. By using a temporally local map, the re-
planner is able to utilize the space where dynamic obstacles
swept over (indicated by white points in the upper right corner)
to avoid the bar at its current position (indicated by the blue
points in the upper right corner).

B. Outdoor experiments with natural and dynamic obstacles

In order to validate the system in more natural and complex
environments, we also carry out experiments in a forest. In the
first scene, the quadrotor passes several trees and a dynamic
branch (see Fig. 6(b)) to reach the target point 15m away.
During the flight, we suddenly swept down a tree branch

Fig. 8. Avoiding a dynamic 20mm diameter bar in an indoor environment.
The white point clouds represent all points accumulated so far, the blue and
green point clouds represent points in the first and second KD-tree of our
local map, respectively, used for re-planning. The yellow curve is the current
trajectory and the red one is the re-planned one after detecting the new bar
position. The upper right corner is a zoomed view of the points collected on
the moving bar.

Fig. 9. Avoiding a dynamic tree branch in outdoor environment. The
meanings of point clouds and trajectories are the same as those in Fig. 8.

(diameter 10-20mm) when the UAV is about 2.5m away and
hold it on the UAV flight path (see Fig. 1). Fig. 9 shows the
moment the re-planning is triggered. It can be seen that the
tree branch movement profile is clearly seen (the zoomed view
in the upper right corner). Once the tree branch falls within the
safety clearance of the current trajectory under tracking (the
yellow trajectory), the re-planning is triggered to produce a
new trajectory (the red trajectory) that avoids the tree branch.
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Fig. 10. Global point cloud map of the second outdoor environment, with
leafy trees, stones and a water pipe. The upper right corner shows the narrow
corridor and the leaves around the trajectory.

Unlike the indoor experiment, all points on the tree branch are
on the KD-Tree. This is because the tree branch falls within
the safety clearance, which triggers the re-planning, within
twice the accumulation time.

High-speed experiments are also carried out in the first
outdoor environment. Peak speed of 5.5m/s and average speed
of 3m/s are achieved, which shows our approach and system
are capable of handling such challenging situations.

The second outdoor environment is a very complex hillside
full of cluttered tree crowns, stones, water pipes, and with
significant height variation, as shown in Fig. 10. We set the
target point of the UAV to be 18 meters away from its takeoff
position. Our method is able to find a safe path through
cluttered tree crowns and flies to the target point. A part of
the path is in a narrow corridor as shown in the upper right
corner of Fig. 10 but the UAV still succeeds.

More than ten experiments are additionally conducted but
not included in this paper due to the space limit. We refer
readers to the accompanying video for a more comprehensive
demonstration. Generally, as long as the environment is not
too cluttered (like mazes where the local planner may fail to
find a feasible trajectory due to the partial local map) and the
dynamic small obstacle does not appear out of the LiDAR’s
measuring range (i.e., below 1m as shown in Table II), our
system would always succeed.

C. Breakdown of running time

In general, our system achieves real-time capability and is
able to avoid dynamic small obstacles. Fig. 11 shows a timing
breakdown of each module for the 15m target in the first
outdoor environment, our system took an average of 16.5ms
in total, including 3ms for state estimation and mapping,
1ms for updating time-accumulated KD-Trees, and 12.5ms for
kinodynamic A* search. Note that our re-planning is triggered
only when the current trajectory collides with an obstacle
instead of re-planning at a fixed rate, hence the worst case
in Fig. 11 rarely occurs.

D. Comparison of mapping method

We finally study the applicability of OctoMap [1] in de-
tecting small dynamic objects and compare its performance

Fig. 11. Running time statistics of each module for the 15 meters away
target in the first outdoor forest environment.

Fig. 12. Different resolution of OctoMap detecting dynamic 20mm bar.

with our time-accumulated KD-Trees. Taking the indoor office
corridor as an example, we build OctoMaps at 0.3m, 0.2m, and
0.1m resolution, respectively. Due to the very low false alarm
rate of our lidar (see Table. II), we tune the probabilities for
hits and misses from the default value [0.7/0.4] to [0.93/0.48].
With these parameter tuning, the Octomap can reliably detect
the dynamic bar at all these three resolutions as shown in Fig.
12.

TABLE IV
AVERAGE UPDATE TIME OF OCTOMAP AND TIME-ACCUMULATED

KD-TREES

Environment Octo (0.3m) Octo (0.2m) Octo (0.1m) KD-Trees

Indoor Env 1.6ms 2.76ms 8.2ms 1.09ms

Outdoor Env1 9.6ms 19.7ms 67.6ms 1.06ms

Outdoor Env2 2.4ms 4.2ms 15.4ms 1.25ms

The strength of our time-accumulated KD-tree is mainly
on the computation efficiency. We compare the update time
of OctoMap in different resolutions with that of our time-
accumulated KD-Trees (0.1m downsampling) in the above
three environments (one indoor, two outdoor). As shown in
Table IV, our approach achieves the lowest processing time
in all cases. As expected, the difference between OctoMap
and time-accumulated KD-tree is small in indoor environments
due to the confined space. In open outdoor environments, the
superiority of our time-accumulated KD-tree is more evident.
It is also noticed that OctoMap takes less time in the second
outdoor environment than the first one although the target
position is further (18m versus 15m), this is because the
second outdoor environment is much more cluttered, full of
leafy trees, so most LiDAR measurements are very short in
range. On the other hand, our time-accumulated KD-trees take
consistently lower time as it depends on the number of points
(which is nearly constant in every new scan) instead of the
points’ locations.
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VI. CONCLUSION AND FUTURE WORK

This paper proposes an autonomous UAV system where
all the state estimation, mapping, and trajectory planning are
performed onboard based solely on lidar and inertial mea-
surements. The design of the hardware and software system
is presented. Various indoor and outdoor experiments are
conducted. Results show that the proposed system is able to fly
safely in some cluttered environments while avoiding dynamic
small obstacles.

The proposed system uses an existing Kinodynamic A* (re-)
planning method, where the control (i.e., acceleration) space is
discretized to produce motion primitives. The searched trajec-
tory has a discontinuous acceleration trajectory, preventing the
UAV from higher flying speeds requiring accurate trajectory
tracking. The small number (i.e., 27) of control space motion
primitives also limits the UAV from operating in an even
tighter space or higher re-planning rate. While these two issues
can be mitigated by a finer discretization of the control space,
the planning time would dramatically increase. In the future,
we would like to improve the re-planning module to enable
more challenging environments and higher flying speeds.
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