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With the attributes of being biocompatible, label-free, and contact-free, sound has been
widely used to manipulate micro-objects, such as cells, soft matters, and living things,
by the acoustic radiation force and torque arising from wave scattering. The analytical
theory exists for the acoustic radiation force and torque on separable geometries,
including sphere and ellipsoid. However, it is still a challenge to handle irregular
surfaces subject to non-orthogonal and inseparable boundary conditions. Here, we
present a calculation method for an axisymmetric geometry with irregular cross-section
excited by a time-harmonic plane wave with arbitrary incidence in the inviscid fluid.
The method is based on conformal mapping from the irregular surface to a sphere in
the new coordinate system. In this way, the separation of variables can be used to solve
the corresponding Helmholtz wave equation subjecting to the spherical boundary
conditions in the new coordinate system. The radiation force and the torque are
asymptotically obtained using the far-field, closed-form solutions. The method is
validated by comparisons with full 3D numerical solutions over a wide range of
frequencies and incident angles. With a typical discrepancy of less than 5%, the
proposed method is much more efficient than the full numerical simulations (via finite
element method). Furthermore, it is found that the radiation force acting on different

geometries follows the same tendency. The difference is that the presence of the



radiation torque ensures that the symmetry axis of the irregular bodies is coincident

with or orthogonal to the wave propagating direction.

Keywords: Acoustic radiation force, Acoustic radiation torque, Conformal
transformation, Axisymmetric irregular geometries



1. Introduction

The manipulation of microparticles is essential for particle separation [1][2],
agglomeration [3][4], transport [5][6][7][8], pattern formation [9][10][11], and imaging
[12][13][14][15]. These applications potentially promote the biochemistry and medical
industries in specific subjects, including migration of microorganisms [16], assembly
of colloidal structure [17], and development of novel bioprinting method [18]. Various
techniques, such as magnetic [19], optical [20][21], and acoustic [7], can spatially
contactless manipulation of particles. However, the magnetic and electronic techniques
require the particles or media to be magnetically susceptible or electrically polarizable.
Optical alternatives are limited by sample damage due to extensive heating by lasers
[22]. By contrast, acoustic methods are free from such constraints, and have superior
efficiency and low-power operation [23], thereby preventing excessive heat from
deactivating organisms. Acoustic waves exert acoustic radiation force and torque on
objects because of the momentum transfer that arises from acoustic scattering effects
of the wave-particle interaction [24][25][26][27]; these second-order force and torque,
caused by inherent nonlinearities in the governing physics [28], manipulate the
behavior of the objects. The careful control of these effects enables handling particles

ranged from 1 pm [29] to 1 cm [30][31] in a contactless manner.

For Rayleigh particles, where the scattering effect is negligible, the acoustic
radiation force on the particles due to the known incident fields can be easily evaluated
according to Gorkov’s theory [32]. In this way, the particles are typically trapped at the
pressure nodes of incident driving fields [5][7][33]. By contrast, the effect of the
acoustic radiation torque on these Rayleigh particles is insignificant [34], thereby

attracting less attention.

Beyond the Rayleigh regime, the complex scattering phenomena become
considerable. The partial wave expansion is a powerful and effective tool in describing
the scattering fields [35]. For a single sphere system, starting from the partial wave
expansion of the incident and scattered waves in the spherical coordinate system, the
analytical expressions of the acoustic radiation force and torque are derived concerning

the expansion coefficients. The boundary conditions of the spherical particles and the
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orthogonality of the spherical wavefunctions (the basis functions) are employed to
decouple each mode and obtain a system of linear equations for the unknown scattering
expansion coefficients [36][37]. Additionally, for the multi-sphere system, the acoustic
radiation interaction force and torque among particles excited by the plane waves [38]
or the ultrasonic transducer arrays [39] have been developed with the help of the

translation addition theorem [40].

An obvious limitation of the above studies is that they all assumed the manipulated
object(s) to be spherical. In reality, most objects have a certain degree of asymmetry in
their morphology, such as erythrocyte [41] and C. elegans [42]. When considering a
prolate spheroidal object, the radial distance to the locus of any point on the object
surface depends on the angular coordinates. Consequently, the spherical wavefunctions
are not necessarily orthogonal, which renders closed-form exact solutions of the
scattering expansion coefficients for the radiation force and torque as difficult to be
attained on the spherical coordinate system. By introducing the surface shape function
of spheroid to describe the boundary conditions, the resulting acoustic scattering field
is obtainable [43][44]. Based on the derived scattering field, the radiation force on the
prolate spheroids in Bessel beams can be estimated [45][46][47][48]. Similarly, the
radiation force and torque exerted on specific corrugated circular and elliptical
cylinders can be solved once the shape function is given [49]. Alternatively, this
difficulty could also be bypassed if (i) the radiation force and torque are calculated
through the far-field method where the radiation stress is integrated on a far-field
spherical control surface [24][26], and (ii) the incident and scattered partial wave
expansions (precisely, the spherical Bessel and Hankel functions [35]) in spheroidal
coordinate system asymptotically match the expansions in the spherical coordinate
system at a far-field, an analytical solution of the acoustic radiation force and torque on

a prolate spheroidal particle in plane waves with are able to obtain [50][51][52].

In fact, exact solutions can be found for only a limited class of geometries
(separable geometries) where separation of variables is applicable. More specifically,
the problem must be able to formulate in a specific coordinate system where the locus
of points corresponding to one of the coordinates (typically, the radial coordinate) being

a constant coincides with the scatterer surface. For example, sphere and ellipsoid are



mapped to the spherical and the spheroidal coordinate systems, respectively. In this way,
the corresponding Helmholtz wave equation in the mapping coordinate system becomes
separable. For irregular bodies (or inseparable bodies), where exact separation of
variables is not possible, approximate analytical solutions, such as the perturbation
method [53] and approximate asymptotic formulations [54][55], have been developed
to model the wave-particle interaction. However, the former is only valid if the shape
is close to one of the separable geometries, and the latter is designed to work in
scenarios that the wavelength of the incident field is much smaller than the dimension
of the scatterers. More importantly, these approximate methods are not formulated in
spherical wavefunction series, meaning that the orthogonality of wavefunctions cannot
be employed to eliminate the integration of acoustic velocity potential fields in solving
radiation force and torque analytically. An available alternative to model the radiation
force and torque on the irregular bodies is the use of numerical techniques [41][56],
while it is limited by high computational cost. Furthermore, it is impractical to
dynamically analyze the motion of the objects if the object state varies continuously. A
general analytical result to evaluate the acoustic radiation torque on an irregular body
was presented by Fan [57]. However, this investigation mainly focused on established
a general theoretical framework of the acoustic radiation torque in the long-wavelength

limit and lacked discussion on the radiation force.

Our present work aims to present a general analytical solution for both the acoustic
radiation force and torque imparted on different axisymmetric, irregular bodies caused
by a traveling plane wave with arbitrary incidence. Conformal mapping is used to
transform the physical surface of the geometries into a spherical surface under a new
mapping quasi-spherical coordinate system [58][59][60]. In this way, the locus of all
points corresponding to the new radial coordinate being constant coincides with the
scatterer surface. Thus the boundary conditions are enforced easily. A set of spherical
angular eigenfunctions (Eq. (16), [59][61]) are chosen to yield an approximate closed-
form solution for the scattering expansion coefficients. Consider that the new mapping
coordinate system is designed to asymptotically match the spherical coordinate system
at the far-field, the acoustic radiation force and torque integrated on a far-field control
surface under the spherical coordinate system (or the Cartesian coordinate system) can

be asymptotically derived by employing the scattering expansion coefficients obtained



in the new coordinate system. This technique has been demonstrated to be a viable route
for solving the acoustic radiation force and torque to manipulate the axisymmetric

bodies with irregular cross-sections.

The rest of the paper is organized as follows. In Sec. 2, the theoretical basis for the
formulations is presented. Based on conformal mapping transformation, we start with
developing a new orthogonal coordinate system where the exterior of the irregular
surface of the scatterers is defined by the new radial coordinate at u = uy = 0 in Sec.
2.1. In Sec. 2.2, the partial-wave series solution to the transformed Helmholtz equation
is given. In Sec. 2.3, a set of spherical angular eigenfunctions [61] are introduced,
multiplying and integrating over the boundary conditions to generate the system of
equations, which is then solved for the scattering expansion coefficients (referred to
Appendix C) and used to determine the scattering potential amplitude. In Sec. 2.4, the
acoustic radiation force and torque are obtained by a surface integration of the particles
using the potential amplitude developed in Sec. 2.3. In Sec. 3, the acoustic radiation
force and torque excited by plane wave fields on several irregular bodies (including
sphere, ellipsoid, cone, and diamond) over a wide range of frequencies and incident
angles are presented, based on either theoretical method or full three-dimensional
numerical simulations. Further discussion is given, followed by comprehensive

validations. A summary is made in Sec. 4.



2. Theoretical model

Evaluation of the acoustic radiation force and torque, resulting from the momentum
transfer that arises from sound scattering phenomena, on an inseparable, irregular body
is complex because the scattering wave field is difficult to formulate along the line of
separation of variables. For the separable geometries, the scattering wave field can be
immediately obtained by applying the boundary conditions where the locus of the
points can be simply expressed by one of the coordinates being a constant, coincided
with the scatterer surface. Then, the acoustic radiation force and torque can be evaluated
(such as the spherical particle [34] and the ellipsoidal particle [52]). However, the locus
of the points on the axisymmetric, irregular scatterer surfaces is generally formulated
by radial and polar angular coordinates. The challenge is to describe the irregular
surface in a new mapping coordinate system, where the separation of variables can be

applied in exactly the same way as the natural physical space with regular geometries.

2.1. Conformal mapping transformation

Cartesian system: (x, y, z)
X Spherical system: (r, €, @)
New mapping system: (1, w, V)

body surface:
7o(r, 8, )
Fo(ug, w, v)

Figure 1: Mapping of the axisymmetric body with arbitrary profile contour. The
body is symmetric about the z-axis. The surface position vector 7y(r,8, @) is

dependent on the radial coordinate, r = r(8, ¢), the polar angular coordinate, 6,



and the azimuthal angular coordinate, ¢, in the spherical coordinate system. The
body surface in the new mapped coordinate system of (u, w,v) can be described by
the new radial coordinate u = u, = 0, independent with the new polar angular
coordinate, w, and the new azimuthal angular coordinate, v. On the zOf slice
plane (as marked by red in left-hand side sub-figure), the radial slice function,

1,(8) = 1.(6, @) can be described by the new coordinates of (uy,w) as r,(8) =

Vg% (g, w) + f2(ug,w) in the real-form, or 7,(8) = g(ug,w) + f(up,w) -1 in
the complex-form (the azimuthal angular coordinates, ¢ or v, are not involved for
the axisymmetric reason). The mapping function g(ugy, w) corresponds to the length

along the z-axis, and mapping function f(uy, w) is the projection in the xy-plane.

Figure 1 shows the geometry and mapping information of an axisymmetric body
on different coordinate systems. The center of mass of the irregular body is set to
coincide with the origin of the Cartesian and the spherical coordinate systems.
Conformal mapping transformation is used to map the irregular surface to a new quasi-
spherical coordinate system of (u, w, v), namely the new mapping coordinate system,
where the locus of all points on the body surface for the new radial coordinate, u, is
equal to a constant, u = uy = 0. The new polar angular coordinate of the mapping
coordinate system, w, corresponds to the spherical polar angular coordinate, 8. These
two polar angular coordinates are not equal, while they can be mutually represented by
the Fourier series on the body surface (Eq. (A.2)). For a body symmetric along the z-
axis, the new azimuthal angular coordinate, v, remains identical with the spherical
azimuthal angular coordinate ¢, varied from 0 to 2m. Two mapping functions,
f(u,w) and g(u,w), are introduced to trigonometry prescribe of the body surface,

u = uy, inthe x, y and z directions of the Cartesian coordinate system

x(uo, w, '17) = f(uO; W) ' COS(U) (1)
y(u0I w, v) = f(uOI W) ' Sin(v) .
Z(UO, W) = g(UO; W)

Note that the partial derivatives of the mapping functions should satisfy f,(u,w) =

gwu,w) or f,(u,w)=—g,(u,w) to achieve the orthogonality of the new

coordinate system (Appendix B).

Consider that the axisymmetric property of the irregular body, the shape of the

boundary of any cross-sectional slice for any specified azimuthal angle ¢ € [0,2m] is
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identical. Hence, the body surface can be regarded as a cross-sectional slice rotating
along the azimuthal angular coordinate for a 2m period. We define the zOf plane to
present the boundary of the cross-sectional slice as shown in Fig. 1. In this way, a
general three-dimensional mapping is simplified to a two-dimensional mapping of
(u,w) on the zOf plane with an independent new azimuthal angular coordinate v,
which is identical to the azimuthal angular coordinate ¢, i.e., v = ¢. Specifically, we

derive the following associated conformal mapping relationship on the body surface,

U = ug, as
rs(e) = rs(uO' W) = \/gz(uo, W) +f2(u0,w) (2)
0 (ug,w) = cos™? (g(uo,w) (U w)) ,
0=v s\“%0»

where 1,(ug,w) (or 1,(0)) is defined as the slice function, used to describe the

boundary of the slice on the zOf plane.

As there should be only one value of the given slice function 7,(8) for each 6,
the mapping procedure for the axisymmetric body is commenced by expanding function

1,(8) in a Fourier series relative to the polar angle, 6, as

°° 3)
n(0) =a+ Z[Ancos(ne) + B,sin(nf)],
n=1

where a is the average radius of the body, and A,, and B, are the Fourier series
coefficients. Note that the Fourier expansion is performed for the period of 2w, while
the polar angular coordinate 6 is defined from O to . Consequently, although the
series is intentionally computed based on the periodic extension from m to 2m, the
polar angle is only meaningful in the range of [0, ]. Equation (3) can be rewritten in

terms of exponentials as

i 4)
n(0) =a+ Z[R,";eing + R,e7 M9,
n=1

where R, = %(An + B,) and the superscript symbol * means taking conjugation of

the corresponding variable. It is convenient to describe the boundary of the slice using
the complex system
. R , , (5)
r,(6)e? = ae® + Z[Rr*lel(un)e + Ryel-m9],
n=1
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The real part of 7,(8)e'® corresponds to the projection value of 7,(6) in the z-axis

and imaginary part of 7,(6)e® is the projection value in f-axis for the real zOf slice

plane.

Assume that the complex mapping function M(u,w) = g(u,w) + f(u,w) -i

follows the conformal mapping form [58]

°° (6)
M(u, W) — C_1eu+Wi + Z Cne—n(u+wi)’
n=0
g, w) = c_;e*cos(w) + Z cp,e”™cos(nw)
n=0
fu,w) = c_,e%sin(w) — Z cpe sin(nw)
n=0
where the mapping coefficients c¢,,n = —1,0,1, -+, 00 are used to map the boundary

of the slice from the (7,(6),0) system to the (g(u, w), f(u, W)) system. For a
specific irregular body, a set of mapping coefficients can be determined by equating the
slice function given in Eq. (5) to the mapping function M(u,w) on the boundary of
the slice with u = uy = 0, detailed in Appendix A. It can be found that the new
coordinate system becomes a spherical coordinate system when the new radial
coordinate tends to be infinite, u — oo. Consequently, the acoustic radiation force and
torque evaluated using the far-field data are directly available to the existing results

given in the new coordinate system without performing an inverse mapping.

Table 1: Mapping coefficients for various axisymmetric bodies in calculations. The

average radius of these bodies is set to a = 50 um.

Mapping coefficients Sphere Ellipsoid Cone Diamond
c_1 a a a a

Co 0 0 0 0

1 0 a/5 0 0

Cy 0 0 a/8 0

C3 0 0 0 a/10
Cp,n >3 0 0 0 0

10



Figure 2: Visualization of the new orthogonal, axisymmetric coordinate systems for
various irregular axisymmetric bodies. For the axisymmetric geometries, the three-
dimensional conformal mapping procedure is reduced to a two-dimensional process
between the zOf slice plane (defined and illustrated in Fig. 1) and the uw plane
using Eqgs. (1) and (6). Note that the three-dimensional conformal mapping between
the spherical coordinate system, the r8¢ system, and the new coordinate system,
the uwv system, can be immediately connected with the help of mapping functions,
gu,w) and f(u,w) (referred to Eq. (2)). The contours of the new radial
coordinate u are plotted by solid black curves, while the contours of the new polar
coordinate w are highlighted by solid red curves. Curves u = 0,0.5,0.8, and w =
n/10, m/2, 97 /10 are emphasized, with the inner curve being u = 0 along the
surface of the irregular bodies. The corresponding mapping coefficients used to
define the new coordinate systems applicable to a) sphere, b) ellipsoid, ¢) cone, and

d) diamond are specified in Tab. 1.
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The mapping coefficients, c,, for various irregular bodies are given in Tab. 1, and
the corresponding mapping coordinate systems are shown in Fig. 2. It can be seen from
Fig. 2 that the new coordinate system tends to be the spherical coordinate system with

the increase of the new radial coordinate u.

2.2. Solution of the Helmholtz wave equation

AZ

Figure 3: A diagram describing the interaction of an external plane wave with an
axisymmetric body that is symmetric about the z-axis. The incidence angle of the
external plane wave, @.,, is described by its wave vector k = (k, Oine) Pinc)- The
excited scattering potential from the irregular body is defined as ¢, with respect to

the coordinate systems O. A summation of the potential fields of the external and

scattered waves for the same point gives the total potential amplitude at that position.

Consider a time-harmonic acoustic plane wave with arbitrary incidence interacting

with an axisymmetric body, as shown in Fig. 3. The center of mass of the body defines
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a coordinate system denoted as O, and the axis of symmetry of the body coincides with
the z-axis (cf. Fig. 1). The acoustic velocity potential amplitude of the external incident
wave at a specific position vector 7 = (7,0, @) is Pex(7) (denoted as ey), with
angular frequency w propagating in a homogeneously inviscid fluid of density p,

and adiabatic speed of sound cg. The incident wave with a wavenumber of k = cﬁ is
S

characterized by the wave vector k = (k, Oinc Pinc) Where the polar and azimuthal

angles (Oine Pinc) give the wave propagating direction. In this case, the plane wave,

Doy = eik? (unit amplitude), can be formulated by a partial wave series as [35]

Boc = ) Cumli 7

nm
where the hat symbol * represents the complex amplitude of the corresponding
variable. Abbreviation Y., ., = Yn-o Dme—c- Lhe expansion coefficients of the partial

wave series

Anm = 1MATY (Oines Pinc)” 3
are also referred to as the external beam-shape coefficients. Y™ (0i,c @inc) 1S the

spherical harmonic function of n-th order and m-th degree determined by the
incidence angle of the incident plane wave (6, @inc) - Abbreviation JJ* =
Jn(kr)Y™ (0, @). j,(kr) is the spherical Bessel function of order n at a position r
and Y,(6, @) is the spherical harmonic function of n-th order and m-th degree at the

angular position (6, @).

The total potential field ¢(#) (also denoted as ¢) excited by the external wave at
a specific position 7 with respect to the spherical coordinate system O satisfies the
Helmholtz wave equation

(V> +k*)¢ =0, ©)
where V? is the Laplacian operator. Physically, the total potential field is contributed

by the external potential field ¢., and the scattering potential field reflected by the
irregular body ¢..(7) (denoted as ¢.)

(ﬁ = (ﬁex + (’ﬁSC' (10)

The solution of the Helmholtz wave equation, Eq. (9), can be theoretically expressed
by a partial wave series [35]. In order to keep consistent with the series expression of
the external potential field, the velocity potential function for the scattered field by the

spherical coordinate system O can be described as
13



~ (11)
OPsc = Z Snmaanrrlnr

nm
where the unknown scattering coefficients, s,,,, represent the scattering effects from
the irregular body excited by the external plane wave. A combining function H)' =

h,(kr)Y,™(0, ¢). h,(kr) isthe Hankel function of the first kind at position .

The conformal mapping transforms the Helmholtz wave equation (Eq. (9)) into
[61]

(V2 + k23 (u, w))$(w, w,v) = 0, (12)

where J(u,w) is the Jacobian of the transformation from (7,(6),60) system to
(u,w) system. Evidently, if ¢ is any solution of the Helmholtz equation, Eq. (9), in
the spherical coordinate system, then ¢(u, w,v) is a solution of conformal mapping
coordinate system, Eq. (12) [62]. Using the mapping relationships given in Eq. (2), the
external and scattering potential fields on the new coordinate system can be expressed
by transforming Eqgs. (7) and (11)

13
$€X(u’ W’ v) = 2 anm]?";n (u’ W’ v)’ ( )

nm

and

~ (14)
Psc (uw,w,v) = z SnmaanrT (uw,w,v),

nm
where abbreviations J7'(u, w,v) = j, (kr(u, w))Y,{"(B (u,w),v) and H*(u,w,v) =
hn(kr(u, w))Y,{"(H (u,w),v) . The quantities r(u,w) and 6(u,w) can be
determined by Egs. (2) and (6). The summation of Egs. (13) and (14) gives the total
potential field in terms of the new coordinates (u, w, v), which also is the solution of

Eq. (12).

In order to solve the unknown scattering coefficients s,,,,,, we need to apply the
boundary condition on the interface between the irregular body and the host fluid (u =

uo = 0).
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2.3. Scattering coefficients of irregular bodies

To solve the potential field, the double infinite summations in Egs. (13) and (14)
must be truncated by a truncation number N, which limits the summations from
Ym0 oo 10 Ynm = Yom=o 2m=_n- It can be seen that the total number of
unknown variables of the scattering coefficients s, in Eq. (14) includes (N + 1) X

(2N + 1) system of equations is required to obtain the scattering coefficients s,,,.

For simplicity, the case of a sound-soft boundary will be discussed, but the issue is
the same for the sound-hard case, which is derived in Appendix B. The Dirichlet
boundary condition requires that the total potential vanishes on the surface of the
scatterer @ (Ug, W, V) + P (g, w,v) = 0 (derived from Eqs. (13) and (14)), which
gives

(15)
Z anm]rrln(uol w,v) + Z Snmaangﬁl(uo: w,v) = 0.

nm nm
The system of equations necessary to satisfy this boundary condition is generated by

multiplying both sides of this equation by a set of spherical angular eigenfunctions [61]
(16)

lp;r%’ (W, ’l]) = P:},(COS(W))Sin(W)e—im’v

and integrating over the range of w and v

f: foz’f [;n A7 (Ug, W, V)

+ Z Snm Anm HI (Ug, W, v)‘ 1/)1’;’3’ (w, v)dvdw = 0.

nm

(17)

Considering the orthogonality relationship fozn e™ . e "MW dw = 21168, ,, and the
definition of the spherical harmonic function Yo, ) =

(2n+1) . (n—-m)!

pr P (cos(G))eim"’ [35], the above equation becomes

N N (18)

! ! 1A 1A
n,m n,om __
E anm’rn + E Snm’anm'An =0,

n=0 n=0

(' =01, ,N:m' = —N,,0,-,N)

. n',m’ n',m'
where the structural functions [, * and A, are
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’ (19)
2n+1) . (n —m)!

FTT).l,'m, 2.1; [jn(kr(uo,w))\/ o (n_l_m)!P,}’"(cosH(uo,w))

P (cos(w) )sin(w)]dw

o' m! T 2n+1) (n—m)! '
Ay’ :fo [hn(kr(uOrW))\/ n4n. .(Z-l-Z)!Pn (cos@(uo,w))

\ P (cos(w))sin(w)]dw

Equation (18) immediately provides a set of N + 1 equations for each fixed m’ and
totally a set of (N 4+ 1) X (2N + 1) equations. Hence, by solving the system of linear
equations, the scattering coefficients of the irregular body excited by a progressive
plane wave are determined. A method to solve the system of equations is given in

Appendix C.

2.4. Acoustic radiation force and torque

The acoustic radiation force on an object due to scattering phenomena was obtained
as a surface integration R, which should involve the object [24][25]

F= fR (LYdAy — py fR dA, - (i), (20)

where the angle bracket (-) denotes the time average of the variable therein. L is the

acoustic Lagrange density defined as L = %poﬁ ‘U — p?, where poi i is the

2poc
flux of momentum density. The acoustic velocity and the acoustic pressure are
decomposed as U = Uy + Uy, and p = pey + Psc, respectively, with subscripts o
and -,. for the external incident and scattered waves. The spherical surface R

surrounding the scattering particle is sufficiently far to involve the scatterer, and the
direction of the integration element dA)R is along the outer normal of the surface. Three
factors are now considered: (i) for the external incident wave which does not contribute

to the radiation force, i.e., fR(LeX)d/TR—pO fRd/TR-(ﬂ’eXﬁex) =0, the acoustic

— — 1

. L . 1
Lagrange density for the incident wave is defined as L., = > Pollex " Uex

_ 2 . o
2pacz Pexs (11)
the Sommerfeld radiation condition requires the acoustic Lagrange density for the

: . 1 - — 1
scattering wave to satisfy Ly, = 7 Pollsc " Usc

ey p2 = 0; and (iii) the pressure and
0ts
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the particle velocity can be expressed by the potential field as —p, Z—‘f =p and V¢ =

u. Equation (20) is reduced to
(21)

2 .

S Pow . icg -

F= J. 2 [(¢ex¢sc)er + <¢sc¢sc) + (_ ¢scv¢sc)] dAR'
R Cé W

where €, is the unit outer normal vector of the spherical surface R. The sum of terms

makes two types of contributions, (i) squares of ¢, representing the force from the

scattered wave, and (i1) the mixed term meaning the force from interference between

the incident and scattered waves.

Consequently, the acoustic radiation force on the irregular body can be evaluated

under the Cartesian coordinate system by substituting Egs. (7) and (11) into Eq. (21),
using the relationship (XY) = %Re()? 17*) . Considering the orthogonality and the

recurrence properties of the spherical harmonics function [63] to simplify the

expressions, we finally yield

Po (22)

Fe = ZRe[i ' Z anm (1 + Snm)("qgl:ll n+1m1

nm
_Brrlnjllb;—l,m+1+Crrlr}+_11b:1+1,m—1 - ‘Drrfl—_llb:t—l,m—l)]'
E, =R (1 + Spm) (AT by,
y 4 el ) anm Snm n+1 On+1,m+1

nm
m+1y,* m—17p,* m-—1p,*
_Bn—l bn—l,m+1_cn+1 bn+1,m—1 + Dn—l bn—l,m—l)]'

Po . ’
F, = 7R6[1 ' Z Anm (1 + Spm) (ER41bn41,m

nm
_Trrln—lb:l—l,m)]t
where abbreviation b,,,,, = Q. * Spm and symbol Re means taking the real part of
the expression. The weighting coefficients A;', By, Cn, Dy, &, and F, are given

as

= n+m-1Mn+m) Bm = m-m+2)(n—m+1)
nT o en-1D@n+1) T T Cn+1D(2n+3)

em — n—-m-1Dn-m) —_— m+m+2)(n+m+1)
" en=-DCn+1) T Cn+ 1D(@2n+3)

em = n—m)(n+m) Fm m-m+1Dn+m+1)
nT [en=-DCn+1D) " 2n+1)@2n+3)
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The acoustic radiation torque on an object have also been derived as a surface
integration of the object [26]

T = —p, L((d/TR ) - (F x D)), (23)

Following relationships —p, % = p and V¢ = U, the potential form of Eq. (23) is

o d N
T = —po fR <a—‘f iR ) dAg @9

where K = —i(7 X V) representing the angular momentum operator [63]. Similarly,

we decompose the total potential field ¢ into the potential fields of external wave ¢,

and scattered wave ¢, and eliminate the time-averaged effects using relationship
(XY) = %Re()? Y*). The acoustic torque given in Eq. (24) becomes
(25)

Kd)sc dAR

f _Fo R l ¢ex K{b\sc d)ex (%c ¢sc

By substituting Eqgs. (7) and (11) into Eq. (25), with the help of relationships
K, and K, are the Cartesian components of K ), the acoustic radiation torque on the

irregular body can be formulated under the Cartesian coordinate system as

Po . o 26
Tx = ERGZ anm(l + Snm)(g:lnbnm+1+gnmbn'm_1) ( )
T Imz A (1 + Snm)(qubn m+1 gnmbr*l,m—l)'
__ Po .
T, = ﬁReZ Apm (1 + Snm)mbn,m
nm

where symbol Im means taking the imaginary part of the expression and the weighting

coefficient G* = \/(n —m)(n + m + 1).

In the limit of great distances from the scatterer (integrating surface R is far away
from the scatterer), the new coordinate system becomes spherical, and therefore the
scattering coefficients, S,,,, used in Egs. (22) and (26) are acceptable by solving the
system of equations in Eq. (18). Following Egs. (22) and (26), the acoustic radiation
force and torque on the axisymmetric irregular body can be evaluated. Finally, we
would like to emphasize that the codes used to calculate the radiation force and torque

are open-access in [64].
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Note that both the theoretical and numerical models consider the inviscid
approximation. Actually, fluids may support shear stress within the particle boundary
layer, which may cause viscous effects on radiation force [65] and torque [66]. However,
the inviscid method is approximately correct for manipulated objects significantly

larger than the thickness of the acoustic boundary layer [67][68]

(27)
2
5= |Ho
Pow

where p, isthe dynamic viscosity of the fluid. In our interests, the driving frequencies
range from 2 MHz to 8§ MHz, and the boundary layer widths vary from 0.4 pm to 0.2
um in water at room temperature, which is much smaller than the average radius of the
manipulated objects used in this work (a = 50 um, referred to Tab. 3). Hence, the

viscous contributions on the acoustic radiation force and torque can be discarded.
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3. Results and discussion

3.1. Truncation number

We need to impose a truncation number of partial wave series, N, in the number
of modes entering the computations of acoustic radiation force in Eq. (22) and acoustic
radiation torque in Eq. (26). In this paper, the truncation number N is determined using

a coefficient-ratio condition

s (28)
q = max N4l < 0.01.
SN,0
(n=12,--,10)

We increase the truncation number N until the ratio g is smaller than 0.01 to save
computational time by ignoring the diminishing contributions in the series [45]. In Tab.
2, we list the ratio values and computational time for different N and find N > 10 to
be satisfactory, while the patrial wave series is truncated as N = 10 in subsequent

studies.

Table 2: Convergence analysis using coefficient-ratio, g, in different truncation

numbers and various irregular bodies. In all cases, the size parameter ka = 1.68.

N=38 N=9 N=10 N=11 N=12
Ellipsoid 0.78 % 0.67 % 0.59 % 0.52 % 0.48 %
Cone 1.16 % 0.97 % 0.83 % 0.67 % 0.44 %
Diamond 1.29 % 1.07 % 0.92 % 0.73 % 0.71 %
CPU Time ~45s ~6.0s ~79s ~95s ~13.5s
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3.2. Validation and discussion

a PML b PML

C PML d

Figure 4: Sketch of the finite-element mesh used to compute the acoustic radiation
force and torque on various bodies of a) sphere, b) ellipsoid, ¢) cone, and d) diamond.
The numerical model comprises a cubic region as the simulation domain surrounding
by a layer of acoustic perfectly matched layer (PML) with the thickness of A/2. The
center of mass of the irregular bodies is placed at the origin of the simulation domain.
The simulation domain is divided into two sub-domains by the light blud surface
(radius of 3.5a). A finer mesh (maximum element size is 1/65) with ~4.5 x 10°
elements is defined inside the volume enclosed by the light blue surface. Outside this
region, a coarser mesh (maximum element size is A/6) is used with ~0.8 x 10°
elements. The red-dashed surface (radius of 2.5a) depicts the integration control
surface R, placed inside the domain with finer mesh to increase the numerical

accuracy of the integrations.

We have performed a set of finite-element simulations of the wave-body interaction
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in water to validate the acoustic radiation force and torque as prescribed in Egs. (22)
and (26). The full three-dimensional simulations are established in COMSOL
Multiphysics 5.5 (COMSOL). The geometric settings are described as follows. A cubic
region (30a X 30a X 30a) is defined as the simulation domain. The center of mass of
the irregular bodies and the center of the simulation domain are both placed at the origin
of the Cartesian coordinate system. A spherical surface with a radius of 3.5a (marked
by light blue circles in Fig. 4) is defined to divide the whole simulation domain into
two sub-domains, a finer mesh domain and a coarser mesh domain inside and outside
the surface, respectively. We set another spherical surface R (marked by red-dashed
circles in Fig. 4) with a radius of 2.5a inside the finer mesh domain as the integration
surface to compute the numerical radiation force and torque as prescribed in Egs. (20)
and (23). A detailed numerical scheme in computing Egs. (20) and (23) under the
Cartesian coordinate system is given in Appendix D. The cross-sectional sketch (xz-
plane) of the finite-element model and mesh distribution inside the finer mesh domain

is displayed in Fig. 4.

The sound-soft boundary condition for the irregular bodies is applied in the
numerical simulations, corresponding to the scattering coefficients solving in Eq. (18)
used in evaluating the radiation force and torque by our method. Note that the scattering
coefficients for the sound-hard boundary condition can be found in Appendix B. The
Sommerfeld radiation condition is required to eliminate the acoustic Lagrange density
of scattering waves in yielding Eq. (22), which is achieved by applying the perfect
matched layer (PML) surrounding the simulation domain. The incident plane wave with
unit pressure amplitude is set in COMSOL as a “background pressure field”. To verify
the correctness of the numerical integrations for the radiation force and torque, we have
performed a mesh convergence analysis by gradually increasing the mesh density inside
the finer mesh domain. It is found that when the maximum element size inside the finer
mesh domainis A/65 (as illustrated in Fig. 4), the evaluated radiation force and torque
become less sensitive (vary within 1.0 %) with further increase of the mesh density.
Following the above considerations, we summarize the simulational parameters in Tab.
3. It is worth mentioning that the computational time of each numerical simulation will
take about 10 minutes, which is much higher than the time cost in our method (seeing

Tab. 2).
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Table 3: General parameters used in the finite-element simulations in COMSOL at
room temperature and pressure. Note that the geometry of different irregular bodies is

formulated in Eq. (2), where the mapping functions and mapping coefficients are given

in Eq. (6) and Tab. 1, respectively.

Parameter Value
Average radius of bodies (a) 50 um
Density (water pg) 1000 kg/m?3
Speed of sound (water c) 1500 m/s
Pressure peak (pg) 1 Pa

Incidence polar angle (6;,.)
Frequency of external wave (f)

Size parameter (ka)

0, m/6, m/3, m/2 rad
2,3,4,5,6,7 MHz
0.4,0.6,0.8,1.1,1.3, 1.5

Wavelength (1) ¢/ fo
Cubic simulational domain 30a x 30a x 30a
Radius of integrating surface R 2.5a
Radius of finer mesh domain 3.5a
Maximum element size (finer mesh domain) A/ 65
Maximum element size (coarser mesh domain) A/6

PML depth A2

CPU Intel 17-6700HQ 2.6 GHz
Operating system Windows 10
Maximum memory usage ~16 GB
Computational time per case ~ 10 min

To compare the obtained numerical results with theory, we use the normalized root-

mean-square error (NRMSE),

(29)

~ = 2
{E = E i = i)

1 ~ — z
Errp; = \/ﬁ Ym=1(Dim = Dim)
where M is the number of sampling points (referred to the parameters listed in Tab. 3,
M = 24 for frequencies ranging from 2 to 7 MHz with the interval of 1 MHz, while

the incident polar angles are set to 0,7/6,m/3, /2 rad). The errors for the acoustic
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radiation force and torque along the i-th direction (i = x,y, z) are denoted by Er7g;

[Ti_m—min(Ti,m)]
[max(Ti_m)—min(Ti,m)]

[Fi_m—min(Fi,m)]
[maX(Fi,m)—min(Fi,m)]

and Errp;, respectively. Y, = and Dy, =

with a bar-hat mean, respectively, the normalized acoustic radiation force and torque
on the i-th axis evaluated by numerical simulations, while those with a tilde-hat are the

corresponding normalized results based on theoretical calculations.

T~ 14
75 gt
inc [’ad]

Tl
/6

Numo Ana—

Figure 5: Theoretical and numerical calculations of the acoustic radiation force
efficiencies, F, = F/[(ma’po)/(2poc§)] and F, = F,/[(ma’py)/(2pocd)], and
torque efficiency, T, = T,/[(ma®p,)/(2pocé)], resulting from an incident plane
wave (p = 1 Pa) acting on a soft spherical body (average radius of a = 50 um) as a
function of the polar angle of the incident wave, 6;,., and the scaled size parameters,
ka. Sub-figures a) and c¢) display the plots for the acoustic radiation force efficiencies
along, respectively, x- and z- axes, while sub-figure b) displays the acoustic
radiation torque efficiency along the y-axis. The circle markers represent the results
based on the full three-dimensional numerical simulations, and the solid lines are
derived from the theoretical calculations. The polar angle of incident wave ranges
from 0" or +z-axis (black lines and circles) to 90° or + x-axis (orange lines and
circles). Sub-figure d) illustrates an incident plane wave with arbitrary polar angles
interacting with a spherical body under the Cartesian coordinate system. The center
of mass of the spherical body coincides with the origin of the Cartesian coordinate

system.
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Figure 6: The same as in Fig. 5, but replaced the spherical body with ellipsoid
(depicted in the lower-left corner of Fig. 2b). Note that the scale range for the acoustic
radiation torque efficiency in sub-figure b) is replaced with [—0.34,0.34] to better

illustrate the results.

a 773
inc [I‘ad]

Numo Ana—

Figure 7: The same as in Fig. 5, but replaced the spherical body with cone (depicted
in the lower-left corner of Fig. 2¢). Note that the scale range for the acoustic radiation
torque efficiency in sub-figure b) is replaced with [—0.34,0.34] to better illustrate

the results.
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Figure 8: The same as in Fig. 5, but replaced the spherical body with diamond
(depicted in the lower-left corner of Fig. 2d).

Table 4: The normalized root-mean-square error (NRMSE) of the acoustic radiation

force and torque compared with numerical results, defined in Eq. (29)

i=x =y 1=z

Sphere Errg; [%] 2.15 5.56 5.02
Errr; [%] < 0.01 < 0.01 < 0.01

Ellipsoid Errg; [%] 1.66 5.16 4.45
Errp; [%] < 0.01 2.55 < 0.01

Cone Errg; [%] 2.19 5.55 5.12
Erry; [%] 0.03 2.76 0.02

Diamond Errg; [%] 2.18 4.64 5.00
Errr; [%] 0.06 1.04 0.03

The theoretical evaluations of the acoustic radiation force and torque using Egs.
(22) and (26) compared with those calculations from full numerical simulations using
Egs. (20) and (23) (referred to Egs. (D.2) and (D.3) in Appendix D for the specific
numerical schemes) on various irregular geometries. Consider that the values computed
for the radiation force, F;, (i = x,y,z), and torque, T;, (i = x,y,z), are extremely

small, we dimensionless the radiation force and torque. Specifically, the dimensionless

26



radiation force efficiency is scaled as F; = F;/[(ma®p,)/(2pocé)] , and the
dimensionless radiation torque efficiency is T; = T;/[(ra®p,)/(2poc?)] as shown in
Figs. 5 to 9. Considering the axisymmetric physics, we set the azimuthal angle of the
incident plane wave as @;,. = 0, which means the plane wave is propagated on the
xz-plane. Consequently, the acoustic radiation force along y-axis, F,, and the acoustic
radiation torque along x- and z-axes, T, and T,, are significantly weaker than the
corresponding values on other sensitive directions, i.e., F,~F, > E,~0 and T, >
T,~T,~0. Therefore, we only plot and discuss the acoustic radiation force efficiencies
along x- and z-axes, F, and F,, as well as the acoustic radiation torque efficiency
along y-axis, T, y, resulting from the incident plane wave with different frequencies and
polar angles interacting with the irregular bodies. However, the NRMSEs of all x, y,
and z components of the acoustic radiation force and torque compared the theoretical
evaluations with the numerical results based on Eq. (29) are listed in Tab. 4. Both visual
inspections and NRMSEs indicate an excellent agreement of acoustic radiation force
and torque between our method and the full numerical simulations, while our
formulations cost a shorter computational time than those based on the full finite-

element method.

Figure 9: The stable positions of a) sphere, b) ellipsoid, ¢) cone, and d) diamond

under the acoustic radiation torque excited by a traveling plane wave. The definition
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of the polar angle, 8;,., of the incident wave as well as the Cartesian coordinate
system are the same as those described in Figs. 5 to 8. The radiation torque will rotate
the manipulated body (under unstable conditions) until the body remains stable in its

corresponding (strong) stable state.

For the same value of the average radius of different bodies (a = 50 um), the
acoustic radiation forces illustrated in sub-figures a and ¢ of Figs. 5, 6, 7, and 8 are
basically identical, indicated that the radiation force is not heavily affected by the
differences of scatterer geometries. Additionally, with size parameter ka (i.e.,
frequency f,) increases and for the same incident polar angle 6, ., the radiation forces
decrease monotonically before leveling off after ka > 1.5, meaning that the more
acquirable low-frequency wave field provides higher efficiency in manipulating soft
objects. As the polar angle 6;,. increases, F, increases. The exact opposite situation
is encountered for the z-component, E,. For 6;,. = 0 orm/2, E, or E, vanishes as
required by symmetry. By contrast, as can be found in sub-figure b of Figs. 5, 6, 7, and
8, the acoustic radiation torques are strongly dependent on the shape of the irregular
bodies. For the sphere (Fig. 5b), the radiation torque Ty vanishes as required by
symmetry. In different size parameters ka (i.e., frequencies f;) and incidence 6,
for the ellipsoid and cone (Figs. 6b and 7b), the radiation torques Ty are negative,
meaning that the sense of rotation is in the counter-clockwise direction under xz-plane,
whereas for diamond (Fig. 8b), the radiation torque Ty reverses sign, meaning that the
sense of rotation is in the clockwise direction. Furthermore, the radiation torque reaches
a maximum (in the absolute sense) at 6;,. = m/4 for ellipsoid and diamond. The
difference is that for the cone, the radiation torque increases as 0;,. increases and
maximum efficiency is obtained at 6;,. = m/2. It can be seen from Fig. 9 that the
radiation torque prefers to rotate the irregular bodies and finally stabilizes them in
strong stable positions (a slight deviation of the incident angle will disrupt the balance
of the body in a weak stable position). Consequently, the symmetry axis of the body is
consistent or orthogonal to the propagation direction of the incident wave. This feature

allows us to rotate the irregular bodies by adjusting the incident wave fields.
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4. Concluding remarks

We have presented an explicit analytical method to compute the acoustic radiation
force and torque acting on various axisymmetric, irregular bodies excited by a plane
traveling wave with arbitrary incidences in the inviscid fluid based on conformal
mapping procedure and partial wave series expansion. Two mapping functions and a
set of mapping coefficients (referred to Appendix A and Tab. 1) were introduced to
conformally map the variables to a new orthogonal coordinate system, where the
irregular surface can be exactly described by the new radial coordinate as u = uy =0
(i.e., a spherical surface in the new coordinate system). As a result, the boundary
conditions on the surface are much more easily to enforce, and remain intact after the
transformation due to the angle-preserving nature. The closed-form scattering
expansion coefficients used to specify the scattering field were obtained by solving a
set of the system of equations (referred to Appendix C), which is designed to eliminate
the angular coordinates and satisfy the boundary conditions by multiplying a set of
spherical angular eigenfunctions and integrating over the definition of angular
coordinates. Then, the asymptotic radiation force and torque could be attained based on

the solved scattering expansion coefficients.

Here, acoustic radiation force and torque exerted, respectively, on a sphere, an
ellipsoid, a cone, and a diamond with sound-soft boundary condition (and sound-hard
boundary condition is derived in Appendix B) suspended in water were calculated and
analyzed. Validations of the analytical solution (seeing Figs. 5 to 8) were conducted
through comparisons of the current results with the full three-dimensional numerical
solutions (the numerical scheme is given in Appendix D). It could be found that the
analytical method requires much less computational time (~ 7.9 s by common personal
computers, Tab. 2) without loss of accuracy (NRMSEs < 5.0 %, Tab. 4). Furthermore,
the radiation force tendencies reveal that the radiation force is basically identical
regardless of the differences in geometry. Consequently, it is acceptable for the wave-
driven methods to neglect the geometric differences of objects in transportation. By
contrast, the radiation torque is closely related to the cross-sectional shape of irregular

bodies. It is apt to rotate the axisymmetric body so that the axis of symmetry is

consistent with or orthogonal to the propagation direction of the incident wave (seeing
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Fig. 9), which provides theoretical guidance for the use of the acoustic wave fields to

rotate specific irregular geometries.
We propose an effective and efficient method to predict the motion of various

irregular objects, which helps to understand the behavior of the irregular bodies over a

wide range of size parameters in the acoustic wave fields.
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Appendix A: Determination of mapping coefficients

A method to determine the mapping coefficients can be found in work [59], here
we have given as below. On the boundary of the slice of the irregular body, we equating
1.(8)e® in Eq. (5) to complex mapping function M(u,w) in Eq. (6) with u = uy=0
yields

= o (A.1)
aei@ + E[R;klei(1+n)9 + Rnei(l—n)ﬂ] — c_leiW + z Cne—inw )
n=1 n=0

Since the boundary of the slice is a periodic function, the deviation of 8 from w can
be represented as a Fourier series

o (A.2)
0=w+ z [E,,cos(nw) + E,sin(nw)].
n=1

In the above equation, the series coefficients E,, and F, are unknown, while can be

determined by orthogonality relationship of complex exponential functions | Ozn el .

e ™ dw = 216, ;m, Where 8, is the Kronecker delta function. We multiply both
sides of Eq. (A.1) by %e_imw and integrating over w from 0 to 2m

1 2r ® (A3)
[ emimw]) geif 4 Z[R;;ei(1+n)6 + R0 dw =0, m>1
2m J, 4
n=

1 (2 O | '
—J e” ™ lgel® + Z[R,’;el(”")e + Rnel(l_")e]}dw =c_pm<1
2m J,
n=1

Based on Eq. (A.3), the series coefficients E, and F, can be solved using the upper
equation, which are then used to obtain the mapping coefficients through the lower

equation.

Appendix B: Neumann boundary condition
Based on the mapping relationships given in Eq. (1), the position vector can be
generally expressed as

7 = f(u,w) - cos(v)é, + f(u,w) - sin(v)e, + g(u, w)é, (B.1)
where €, €,,and €, are unit vectors along the corresponding coordinate axes. In the

new coordinate system, the orthogonal coordinate system is desirable since it facilitates
the computation of the normal particle velocity on the boundary. Orthogonality of the

new coordinate system requires that the partial derivative of the position vector 7 in
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Eq. (B.1) satisfies

Ty'Ty,=0;7-7,=07,-7, =0, (B.2)
where the subscripts mean the partial derivative of corresponding variables.
Considering the mapping relationship given in Eq. (B.1), the partial derivatives of the

position vector with respect to each of the variables are

. = fuw,w) - cos(v)é, + f,,(u,w) - Sin(v)gy + gu(u, we, -

Ty = fw,w) - cos(v)é, + f,,(u,w) - sin(v)e, + g, (u,w)é, ,
7, = —f(u,w) - sin(v)é, + f (u,w) - cos(v)é,

Inserting Eq. (B.3) into Eq. (B.2), it can prove that the new coordinate system could be

orthogonal if the mapping functions satisfy

fu(ur W) = gw(u: W) or fw(u; W) = gu(u, W) . (B4)

The Neumann boundary condition requires that the normal particle velocity
vanishes on the scatterer surface 7 - V[(f)ex (g, W, 1) + Pg.(ug, W, v)] = 0, where 7 is
the outer normal vector to the surface. It can be found that the mapping functions given
in Eq. (6) satisfy the orthogonal requirements in Eq. (B.4). Consequently, the gradient
of the potential field is

¢ (ug, w,v) 7, N 0p(ug,w,v) 7, 0P (ug, w,v) 7, (B.3)

Voo, w,v) = ou T, ow T ov 7,

where vectors 7,, 7,, and 7, are given in Eq. (B.3). As the scatterer surface has been
defined by u = u, = 0, the outer normal vector 71 is parallel to 7,. Hence, the
Neumann boundary condition becomes

1 0] Pexuto, w, v) + bye (g, w,v)] (B.6)

Ny o

Inserting Egs. (13) and (14) into the above equation, multiplying both sides by the

=0

spherical angular eigenfunctions and considering the orthogonality relationship

fZ” einw

) &7 ™Y dw = 2768, ,, we finally yield

N N (B.7)
Z anm'rrrll.u'm + Z Snm'anm’Arrll,iIn =0,
n=0 n=0

(n’ :0,1,...,N; ! :—N’...,O,.-.'N)

! ! !/ !/
where T,/ and Ay;" are the partial derivative of the new radial coordinate of

! ! ! !
structural functions [ "™ and Ay, ™ given in Eq. (19):
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(B.8)

ror
( n''m
n'm' (')Fn
nu - au
U=ug
n',m’
,
An,'m, _ (')An
)
U=ug

Appendix C: Solution of the system of equations

Based on Eq. (18), for each combination of (n’,m’), we can obtain an additional
equation to close the system. There are totally (N + 1) X (2N + 1) additional
equations and (N + 1) X (2N + 1) unknown scattering coefficients s,,,,». For a
fixed index of m’, the change of index of n’ =0,1,:,N is able to provide N + 1

additional equations as

om’ om’ om’ (C.1)
aOm’AO alm’Al o aNm’AN Som/ AO,m’
1,m’ 1m’ 1m’ Sim! 1,m’
aOm,AO alm,Al aNm/AN . 1.m — A '
. . . ,
Nm' Nm' Nm'| LSnm/ ANmM
aOm’AO alm’Al o aNm’AN

where abbreviation A"™ = ¥YN_ q ™™ Solving the above linear equations can
get N + 1 scattering coefficients s,,,,» (n' = 0,1,---, N). The change of index of m’
from —N to N givesatotalof 2N + 1 linear systems, and therefore all the unknown
scattering  coefficients s,y (' =0,1,---,N;m' = —=N,---,0,---,N) can be

determined by solving 2N + 1 linear systems, corresponding to different index of m'.

Appendix D: Numerical evaluation of radiation force and

torque
The outer normal vector of integrating surface R can be expressed as dfTR =
erdAg, where eg = (ai, al, ai) defined as the unit outer normal vector of spherical
R R R

surface R with a radius of ag = /x2+y?+z2. The point position on the integrating

surface is denoted as (x,y,z) under the Cartesian coordinate system. Inserting dfTR =
erdAg into Egs. (20) and (23), using a tensor relation ég - (uu) = (€g - u)u, we arrive

at
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(D.1)

f a5 - 2p2>éRdAR — o f (B - D)T)dAg
R
7= fR (r- ﬂ) : (F x ))dAg

Using the relationship (XY) = %Re()? Y*), the radiation force and torque are

rearranged along corresponding coordinate axes under the Cartesian coordinate system

as
L, 1 D.2
X
_Po j [— Re(a, - 2%) + —Re(ﬁx : a; + —Re(ﬁx : a;)] dAy,
2 Jrlag ag
F,=F-é fl [ Re(% - u
=F-e,=| =——/|poRe(u
y y R4aR 0
X
_Po [—Re(ﬁy-ﬁ;)+lRe(uy )+ Re(uy uz)] dAg,
2 R ar ag
5> 1z N e
F, = eZ_LZa_[’DO 'P)]dAR
X z
_Po [— Re(q, - @) + - Re(@, - @) + — Re (i, - a;)] dAyg,
2 R ar ag ar
and
. 2 _ 2 (D.3)
To=T 8, =22 2Re(a,-a5) + Re(, - 0})
+—Re(l, - 0;) — Re(ﬁx- )——Re(uy uy)dAR,
R
. Xz
T,=T-é, = —@f —Re(@, - T +—Re(ux
z2—xz Xy . o
+ Re(l, - i, ——Re(uy-ug) ——Re(uz-uz)dAR,
R ar ar
2
T,=T8,= Po Y Re(ﬁx )+ Re(uy
2 Jp  ag

XZ N Xy o
+— Re(uy -Q3) — —Re(@l, - i) — — Re(ux -1i;)dAg .
ar ar ar
Here p and U = (ﬁx, ﬁy,ﬁz) are the complex amplitudes of acoustic pressure and
particle velocity, respectively. é,, €,,and €, are unit vectors along the corresponding

axes.
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