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With the attributes of being biocompatible, label-free, and contact-free, sound has been 

widely used to manipulate micro-objects, such as cells, soft matters, and living things, 

by the acoustic radiation force and torque arising from wave scattering. The analytical 

theory exists for the acoustic radiation force and torque on separable geometries, 

including sphere and ellipsoid. However, it is still a challenge to handle irregular 

surfaces subject to non-orthogonal and inseparable boundary conditions. Here, we 

present a calculation method for an axisymmetric geometry with irregular cross-section 

excited by a time-harmonic plane wave with arbitrary incidence in the inviscid fluid. 

The method is based on conformal mapping from the irregular surface to a sphere in 

the new coordinate system. In this way, the separation of variables can be used to solve 

the corresponding Helmholtz wave equation subjecting to the spherical boundary 

conditions in the new coordinate system. The radiation force and the torque are 

asymptotically obtained using the far-field, closed-form solutions. The method is 

validated by comparisons with full 3D numerical solutions over a wide range of 

frequencies and incident angles. With a typical discrepancy of less than 5%, the 

proposed method is much more efficient than the full numerical simulations (via finite 

element method). Furthermore, it is found that the radiation force acting on different 

geometries follows the same tendency. The difference is that the presence of the 
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radiation torque ensures that the symmetry axis of the irregular bodies is coincident 

with or orthogonal to the wave propagating direction.  

 

Keywords: Acoustic radiation force, Acoustic radiation torque, Conformal 

transformation, Axisymmetric irregular geometries  
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1. Introduction 

The manipulation of microparticles is essential for particle separation [1][2], 

agglomeration [3][4], transport [5][6][7][8], pattern formation [9][10][11], and imaging 

[12][13][14][15]. These applications potentially promote the biochemistry and medical 

industries in specific subjects, including migration of microorganisms [16], assembly 

of colloidal structure [17], and development of novel bioprinting method [18]. Various 

techniques, such as magnetic [19], optical [20][21], and acoustic [7], can spatially 

contactless manipulation of particles. However, the magnetic and electronic techniques 

require the particles or media to be magnetically susceptible or electrically polarizable. 

Optical alternatives are limited by sample damage due to extensive heating by lasers 

[22]. By contrast, acoustic methods are free from such constraints, and have superior 

efficiency and low-power operation [23], thereby preventing excessive heat from 

deactivating organisms. Acoustic waves exert acoustic radiation force and torque on 

objects because of the momentum transfer that arises from acoustic scattering effects 

of the wave-particle interaction [24][25][26][27]; these second-order force and torque, 

caused by inherent nonlinearities in the governing physics [28], manipulate the 

behavior of the objects. The careful control of these effects enables handling particles 

ranged from 1 μm [29] to 1 cm [30][31] in a contactless manner. 

 

For Rayleigh particles, where the scattering effect is negligible, the acoustic 

radiation force on the particles due to the known incident fields can be easily evaluated 

according to Gorkov’s theory [32]. In this way, the particles are typically trapped at the 

pressure nodes of incident driving fields [5][7][33]. By contrast, the effect of the 

acoustic radiation torque on these Rayleigh particles is insignificant [34], thereby 

attracting less attention. 

 

Beyond the Rayleigh regime, the complex scattering phenomena become 

considerable. The partial wave expansion is a powerful and effective tool in describing 

the scattering fields [35]. For a single sphere system, starting from the partial wave 

expansion of the incident and scattered waves in the spherical coordinate system, the 

analytical expressions of the acoustic radiation force and torque are derived concerning 

the expansion coefficients. The boundary conditions of the spherical particles and the 
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orthogonality of the spherical wavefunctions (the basis functions) are employed to 

decouple each mode and obtain a system of linear equations for the unknown scattering 

expansion coefficients [36][37]. Additionally, for the multi-sphere system, the acoustic 

radiation interaction force and torque among particles excited by the plane waves [38] 

or the ultrasonic transducer arrays [39] have been developed with the help of the 

translation addition theorem [40]. 

 

An obvious limitation of the above studies is that they all assumed the manipulated 

object(s) to be spherical. In reality, most objects have a certain degree of asymmetry in 

their morphology, such as erythrocyte [41] and C. elegans [42]. When considering a 

prolate spheroidal object, the radial distance to the locus of any point on the object 

surface depends on the angular coordinates. Consequently, the spherical wavefunctions 

are not necessarily orthogonal, which renders closed-form exact solutions of the 

scattering expansion coefficients for the radiation force and torque as difficult to be 

attained on the spherical coordinate system. By introducing the surface shape function 

of spheroid to describe the boundary conditions, the resulting acoustic scattering field 

is obtainable [43][44]. Based on the derived scattering field, the radiation force on the 

prolate spheroids in Bessel beams can be estimated [45][46][47][48]. Similarly, the 

radiation force and torque exerted on specific corrugated circular and elliptical 

cylinders can be solved once the shape function is given [49]. Alternatively, this 

difficulty could also be bypassed if (i) the radiation force and torque are calculated 

through the far-field method where the radiation stress is integrated on a far-field 

spherical control surface [24][26], and (ii) the incident and scattered partial wave 

expansions (precisely, the spherical Bessel and Hankel functions [35]) in spheroidal 

coordinate system asymptotically match the expansions in the spherical coordinate 

system at a far-field, an analytical solution of the acoustic radiation force and torque on 

a prolate spheroidal particle in plane waves with are able to obtain [50][51][52]. 

 

In fact, exact solutions can be found for only a limited class of geometries 

(separable geometries) where separation of variables is applicable. More specifically, 

the problem must be able to formulate in a specific coordinate system where the locus 

of points corresponding to one of the coordinates (typically, the radial coordinate) being 

a constant coincides with the scatterer surface. For example, sphere and ellipsoid are 
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mapped to the spherical and the spheroidal coordinate systems, respectively. In this way, 

the corresponding Helmholtz wave equation in the mapping coordinate system becomes 

separable. For irregular bodies (or inseparable bodies), where exact separation of 

variables is not possible, approximate analytical solutions, such as the perturbation 

method [53] and approximate asymptotic formulations [54][55], have been developed 

to model the wave-particle interaction. However, the former is only valid if the shape 

is close to one of the separable geometries, and the latter is designed to work in 

scenarios that the wavelength of the incident field is much smaller than the dimension 

of the scatterers. More importantly, these approximate methods are not formulated in 

spherical wavefunction series, meaning that the orthogonality of wavefunctions cannot 

be employed to eliminate the integration of acoustic velocity potential fields in solving 

radiation force and torque analytically. An available alternative to model the radiation 

force and torque on the irregular bodies is the use of numerical techniques [41][56], 

while it is limited by high computational cost. Furthermore, it is impractical to 

dynamically analyze the motion of the objects if the object state varies continuously. A 

general analytical result to evaluate the acoustic radiation torque on an irregular body 

was presented by Fan [57]. However, this investigation mainly focused on established 

a general theoretical framework of the acoustic radiation torque in the long-wavelength 

limit and lacked discussion on the radiation force.  

 

Our present work aims to present a general analytical solution for both the acoustic 

radiation force and torque imparted on different axisymmetric, irregular bodies caused 

by a traveling plane wave with arbitrary incidence. Conformal mapping is used to 

transform the physical surface of the geometries into a spherical surface under a new 

mapping quasi-spherical coordinate system [58][59][60]. In this way, the locus of all 

points corresponding to the new radial coordinate being constant coincides with the 

scatterer surface. Thus the boundary conditions are enforced easily. A set of spherical 

angular eigenfunctions (Eq. (16), [59][61]) are chosen to yield an approximate closed-

form solution for the scattering expansion coefficients. Consider that the new mapping 

coordinate system is designed to asymptotically match the spherical coordinate system 

at the far-field, the acoustic radiation force and torque integrated on a far-field control 

surface under the spherical coordinate system (or the Cartesian coordinate system) can 

be asymptotically derived by employing the scattering expansion coefficients obtained 
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in the new coordinate system. This technique has been demonstrated to be a viable route 

for solving the acoustic radiation force and torque to manipulate the axisymmetric 

bodies with irregular cross-sections. 

 

The rest of the paper is organized as follows. In Sec. 2, the theoretical basis for the 

formulations is presented. Based on conformal mapping transformation, we start with 

developing a new orthogonal coordinate system where the exterior of the irregular 

surface of the scatterers is defined by the new radial coordinate at 𝑢 = 𝑢0 = 0 in Sec. 

2.1. In Sec. 2.2, the partial-wave series solution to the transformed Helmholtz equation 

is given. In Sec. 2.3, a set of spherical angular eigenfunctions [61] are introduced, 

multiplying and integrating over the boundary conditions to generate the system of 

equations, which is then solved for the scattering expansion coefficients (referred to 

Appendix C) and used to determine the scattering potential amplitude. In Sec. 2.4, the 

acoustic radiation force and torque are obtained by a surface integration of the particles 

using the potential amplitude developed in Sec. 2.3. In Sec. 3, the acoustic radiation 

force and torque excited by plane wave fields on several irregular bodies (including 

sphere, ellipsoid, cone, and diamond) over a wide range of frequencies and incident 

angles are presented, based on either theoretical method or full three-dimensional 

numerical simulations. Further discussion is given, followed by comprehensive 

validations. A summary is made in Sec. 4. 
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2. Theoretical model 

Evaluation of the acoustic radiation force and torque, resulting from the momentum 

transfer that arises from sound scattering phenomena, on an inseparable, irregular body 

is complex because the scattering wave field is difficult to formulate along the line of 

separation of variables. For the separable geometries, the scattering wave field can be 

immediately obtained by applying the boundary conditions where the locus of the 

points can be simply expressed by one of the coordinates being a constant, coincided 

with the scatterer surface. Then, the acoustic radiation force and torque can be evaluated 

(such as the spherical particle [34] and the ellipsoidal particle [52]). However, the locus 

of the points on the axisymmetric, irregular scatterer surfaces is generally formulated 

by radial and polar angular coordinates. The challenge is to describe the irregular 

surface in a new mapping coordinate system, where the separation of variables can be 

applied in exactly the same way as the natural physical space with regular geometries. 

 

2.1. Conformal mapping transformation 

 

Figure 1: Mapping of the axisymmetric body with arbitrary profile contour. The 

body is symmetric about the 𝑧 -axis. The surface position vector 𝑟0(𝑟, 𝜃, 𝜑)  is 

dependent on the radial coordinate, 𝑟 = 𝑟(𝜃, 𝜑), the polar angular coordinate, 𝜃, 
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and the azimuthal angular coordinate, 𝜑, in the spherical coordinate system. The 

body surface in the new mapped coordinate system of (𝑢, 𝑤, 𝑣) can be described by 

the new radial coordinate 𝑢 = 𝑢0 = 0 , independent with the new polar angular 

coordinate, 𝑤 , and the new azimuthal angular coordinate, 𝑣 . On the 𝑧𝑂𝑓  slice 

plane (as marked by red in left-hand side sub-figure), the radial slice function, 

𝑟s(𝜃) = 𝑟s(𝜃, 𝜑) can be described by the new coordinates of (𝑢0, 𝑤) as 𝑟s(𝜃) =

√𝑔2(𝑢0, 𝑤) + 𝑓
2(𝑢0, 𝑤)  in the real-form, or 𝑟s(𝜃) = 𝑔(𝑢0, 𝑤) + 𝑓(𝑢0, 𝑤) ∙ i  in 

the complex-form (the azimuthal angular coordinates, 𝜑 or 𝑣, are not involved for 

the axisymmetric reason). The mapping function 𝑔(𝑢0, 𝑤) corresponds to the length 

along the 𝑧-axis, and mapping function 𝑓(𝑢0, 𝑤) is the projection in the 𝑥𝑦-plane. 

 

Figure 1 shows the geometry and mapping information of an axisymmetric body 

on different coordinate systems. The center of mass of the irregular body is set to 

coincide with the origin of the Cartesian and the spherical coordinate systems. 

Conformal mapping transformation is used to map the irregular surface to a new quasi-

spherical coordinate system of (𝑢, 𝑤, 𝑣), namely the new mapping coordinate system, 

where the locus of all points on the body surface for the new radial coordinate, 𝑢, is 

equal to a constant, 𝑢 = 𝑢0 = 0. The new polar angular coordinate of the mapping 

coordinate system, 𝑤, corresponds to the spherical polar angular coordinate, 𝜃. These 

two polar angular coordinates are not equal, while they can be mutually represented by 

the Fourier series on the body surface (Eq. (A.2)). For a body symmetric along the 𝑧-

axis, the new azimuthal angular coordinate, 𝑣 , remains identical with the spherical 

azimuthal angular coordinate 𝜑 , varied from 0 to 2𝜋 . Two mapping functions, 

𝑓(𝑢,𝑤) and 𝑔(𝑢,𝑤), are introduced to trigonometry prescribe of the body surface, 

𝑢 = 𝑢0, in the 𝑥, 𝑦 and 𝑧 directions of the Cartesian coordinate system 

{

𝑥(𝑢0, 𝑤, 𝑣) = 𝑓(𝑢0, 𝑤) ∙ cos(𝑣)

𝑦(𝑢0, 𝑤, 𝑣) = 𝑓(𝑢0, 𝑤) ∙ sin(𝑣)

𝑧(𝑢0, 𝑤) = 𝑔(𝑢0, 𝑤)                   

 . 

(1) 

Note that the partial derivatives of the mapping functions should satisfy 𝑓𝑢(𝑢, 𝑤) =

𝑔𝑤(𝑢, 𝑤)  or 𝑓𝑤(𝑢, 𝑤) = −𝑔𝑢(𝑢, 𝑤)  to achieve the orthogonality of the new 

coordinate system (Appendix B). 

 

Consider that the axisymmetric property of the irregular body, the shape of the 

boundary of any cross-sectional slice for any specified azimuthal angle 𝜑 ∈ [0,2𝜋] is 
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identical. Hence, the body surface can be regarded as a cross-sectional slice rotating 

along the azimuthal angular coordinate for a 2𝜋 period. We define the 𝑧𝑂𝑓 plane to 

present the boundary of the cross-sectional slice as shown in Fig. 1. In this way, a 

general three-dimensional mapping is simplified to a two-dimensional mapping of 

(𝑢, 𝑤) on the 𝑧𝑂𝑓 plane with an independent new azimuthal angular coordinate 𝑣, 

which is identical to the azimuthal angular coordinate 𝜑, i.e., 𝑣 = 𝜑. Specifically, we 

derive the following associated conformal mapping relationship on the body surface, 

𝑢 = 𝑢0, as 

{

𝑟s(𝜃) = 𝑟s(𝑢0, 𝑤) = √𝑔
2(𝑢0, 𝑤) + 𝑓

2(𝑢0, 𝑤)

𝜃(𝑢0, 𝑤) = cos
−1 (

𝑔(𝑢0, 𝑤)
𝑟s(𝑢0, 𝑤)
⁄ )        

𝜑 = 𝑣                                                                     

, 

(2) 

where 𝑟s(𝑢0, 𝑤)  (or 𝑟s(𝜃) ) is defined as the slice function, used to describe the 

boundary of the slice on the 𝑧𝑂𝑓 plane. 

 

As there should be only one value of the given slice function 𝑟s(𝜃) for each 𝜃, 

the mapping procedure for the axisymmetric body is commenced by expanding function 

𝑟s(𝜃) in a Fourier series relative to the polar angle, 𝜃, as  

𝑟s(𝜃) = 𝑎 +∑[𝐴𝑛cos(𝑛𝜃) + 𝐵𝑛sin(𝑛𝜃)]

∞

𝑛=1

, 

(3) 

where 𝑎  is the average radius of the body, and 𝐴𝑛  and 𝐵𝑛  are the Fourier series 

coefficients. Note that the Fourier expansion is performed for the period of 2𝜋, while 

the polar angular coordinate 𝜃  is defined from 0 to 𝜋 . Consequently, although the 

series is intentionally computed based on the periodic extension from 𝜋 to 2𝜋, the 

polar angle is only meaningful in the range of [0, 𝜋]. Equation (3) can be rewritten in 

terms of exponentials as 

𝑟s(𝜃) = 𝑎 +∑[𝑅𝑛
∗ei𝑛𝜃 + 𝑅𝑛e

−i𝑛𝜃]

∞

𝑛=1

, 

(4) 

where 𝑅𝑛 =
1

2
(𝐴𝑛 + 𝐵𝑛) and the superscript symbol ∗ means taking conjugation of 

the corresponding variable. It is convenient to describe the boundary of the slice using 

the complex system 

𝑟s(𝜃)e
𝜃i = 𝑎e𝜃i +∑[𝑅𝑛

∗ei(1+𝑛)𝜃 + 𝑅𝑛e
i(1−𝑛)𝜃]

∞

𝑛=1

. 

(5) 
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The real part of 𝑟s(𝜃)e
i𝜃 corresponds to the projection value of 𝑟s(𝜃) in the 𝑧-axis 

and imaginary part of 𝑟s(𝜃)e
i𝜃 is the projection value in 𝑓-axis for the real 𝑧𝑂𝑓 slice 

plane. 

 

Assume that the complex mapping function 𝑀(𝑢,𝑤) = 𝑔(𝑢,𝑤) + 𝑓(𝑢,𝑤) ∙ i 

follows the conformal mapping form [58]  

𝑀(𝑢,𝑤) = 𝑐−1e
𝑢+𝑤i +∑𝑐𝑛e

−𝑛(𝑢+𝑤i)

∞

𝑛=0

, 

{
 
 

 
 𝑔(𝑢,𝑤) = 𝑐−1e

𝑢cos(𝑤) +∑𝑐𝑛e
−𝑛𝑢cos(𝑛𝑤)

∞

𝑛=0

𝑓(𝑢,𝑤) = 𝑐−1e
𝑢sin(𝑤) −∑𝑐𝑛e

−𝑛𝑢sin(𝑛𝑤)

∞

𝑛=0

, 

(6) 

where the mapping coefficients 𝑐𝑛, 𝑛 = −1,0,1,⋯ ,∞ are used to map the boundary 

of the slice from the (𝑟s(𝜃), 𝜃)  system to the (𝑔(𝑢,𝑤), 𝑓(𝑢, 𝑤))  system. For a 

specific irregular body, a set of mapping coefficients can be determined by equating the 

slice function given in Eq. (5) to the mapping function 𝑀(𝑢,𝑤) on the boundary of 

the slice with 𝑢 = 𝑢0 = 0 , detailed in Appendix A. It can be found that the new 

coordinate system becomes a spherical coordinate system when the new radial 

coordinate tends to be infinite, 𝑢 → ∞. Consequently, the acoustic radiation force and 

torque evaluated using the far-field data are directly available to the existing results 

given in the new coordinate system without performing an inverse mapping. 

 

Table 1: Mapping coefficients for various axisymmetric bodies in calculations. The 

average radius of these bodies is set to 𝑎 = 50 μm. 

Mapping coefficients Sphere Ellipsoid Cone Diamond 

𝑐−1  𝑎  𝑎  𝑎  𝑎  

𝑐0  0 0 0 0 

𝑐1  0 𝑎 / 5  0 0 

𝑐2  0 0 𝑎 / 8  0 

𝑐3  0 0 0 𝑎 / 10  

𝑐𝑛, 𝑛 > 3  0 0 0 0 
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Figure 2: Visualization of the new orthogonal, axisymmetric coordinate systems for 

various irregular axisymmetric bodies. For the axisymmetric geometries, the three-

dimensional conformal mapping procedure is reduced to a two-dimensional process 

between the 𝑧𝑂𝑓 slice plane (defined and illustrated in Fig. 1) and the 𝑢𝑤 plane 

using Eqs. (1) and (6). Note that the three-dimensional conformal mapping between 

the spherical coordinate system, the 𝑟𝜃𝜑 system, and the new coordinate system, 

the 𝑢𝑤𝑣 system, can be immediately connected with the help of mapping functions, 

𝑔(𝑢,𝑤)  and 𝑓(𝑢,𝑤)  (referred to Eq. (2)). The contours of the new radial 

coordinate 𝑢 are plotted by solid black curves, while the contours of the new polar 

coordinate 𝑤 are highlighted by solid red curves. Curves 𝑢 = 0, 0.5, 0.8, and 𝑤 =

𝜋/10, 𝜋/2, 9𝜋/10 are emphasized, with the inner curve being 𝑢 = 0 along the 

surface of the irregular bodies. The corresponding mapping coefficients used to 

define the new coordinate systems applicable to a) sphere, b) ellipsoid, c) cone, and 

d) diamond are specified in Tab. 1. 
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The mapping coefficients, 𝑐𝑛, for various irregular bodies are given in Tab. 1, and 

the corresponding mapping coordinate systems are shown in Fig. 2. It can be seen from 

Fig. 2 that the new coordinate system tends to be the spherical coordinate system with 

the increase of the new radial coordinate 𝑢. 

 

2.2. Solution of the Helmholtz wave equation 

 

Figure 3: A diagram describing the interaction of an external plane wave with an 

axisymmetric body that is symmetric about the 𝑧-axis. The incidence angle of the 

external plane wave, 𝜙̂ex, is described by its wave vector 𝑘⃗⃗ = (𝑘, 𝜃inc, 𝜑inc). The 

excited scattering potential from the irregular body is defined as 𝜙̂sc with respect to 

the coordinate systems 𝑂. A summation of the potential fields of the external and 

scattered waves for the same point gives the total potential amplitude at that position. 

 

Consider a time-harmonic acoustic plane wave with arbitrary incidence interacting 

with an axisymmetric body, as shown in Fig. 3. The center of mass of the body defines 
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a coordinate system denoted as 𝑂, and the axis of symmetry of the body coincides with 

the 𝑧-axis (cf. Fig. 1). The acoustic velocity potential amplitude of the external incident 

wave at a specific position vector 𝑟 = (𝑟, 𝜃, 𝜑)  is 𝜙̂ex(𝑟)  (denoted as 𝜙̂ex ), with 

angular frequency 𝜔  propagating in a homogeneously inviscid fluid of density 𝜌0 

and adiabatic speed of sound 𝑐s. The incident wave with a wavenumber of 𝑘 =
𝜔

𝑐s
 is 

characterized by the wave vector 𝑘⃗⃗ = (𝑘, 𝜃inc, 𝜑inc) where the polar and azimuthal 

angles (𝜃inc, 𝜑inc) give the wave propagating direction. In this case, the plane wave, 

𝜙̂ex = e
i𝑘⃗⃗𝑟 (unit amplitude), can be formulated by a partial wave series as [35] 

𝜙̂ex =∑𝑎𝑛𝑚𝐽𝑛
𝑚

𝑛,𝑚

, 
(7) 

where the hat symbol ∙ ̂ represents the complex amplitude of the corresponding 

variable. Abbreviation ∑ ≡𝑛,𝑚 ∑ ∑ .+∞
𝑚=−∞

∞
𝑛=0  The expansion coefficients of the partial 

wave series 

𝑎𝑛𝑚 = i𝑛4𝜋𝑌𝑛
𝑚(𝜃inc, 𝜑inc)

∗ (8) 

are also referred to as the external beam-shape coefficients. 𝑌𝑛
𝑚(𝜃inc, 𝜑inc)  is the 

spherical harmonic function of 𝑛 -th order and 𝑚 -th degree determined by the 

incidence angle of the incident plane wave (𝜃inc, 𝜑inc) . Abbreviation 𝐽𝑛
𝑚 ≡

𝑗𝑛(𝑘𝑟)𝑌𝑛
𝑚(𝜃, 𝜑). 𝑗𝑛(𝑘𝑟) is the spherical Bessel function of order 𝑛 at a position 𝑟 

and 𝑌𝑛
𝑚(𝜃, 𝜑) is the spherical harmonic function of 𝑛-th order and 𝑚-th degree at the 

angular position (𝜃, 𝜑). 

 

The total potential field 𝜙̂(𝑟) (also denoted as 𝜙̂) excited by the external wave at 

a specific position 𝑟 with respect to the spherical coordinate system 𝑂 satisfies the 

Helmholtz wave equation 

(∇2 + 𝑘2)𝜙̂ = 0, (9) 

where ∇2 is the Laplacian operator. Physically, the total potential field is contributed 

by the external potential field 𝜙̂ex and the scattering potential field reflected by the 

irregular body 𝜙̂sc(𝑟) (denoted as 𝜙̂sc) 

𝜙̂ = 𝜙̂ex + 𝜙̂sc. (10) 

The solution of the Helmholtz wave equation, Eq. (9), can be theoretically expressed 

by a partial wave series [35]. In order to keep consistent with the series expression of 

the external potential field, the velocity potential function for the scattered field by the 

spherical coordinate system 𝑂 can be described as 
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𝜙̂sc =∑𝑠𝑛𝑚𝑎𝑛𝑚𝐻𝑛
𝑚

𝑛,𝑚

, 
(11) 

where the unknown scattering coefficients, 𝑠𝑛𝑚, represent the scattering effects from 

the irregular body excited by the external plane wave. A combining function 𝐻𝑛
𝑚 ≡

ℎ𝑛(𝑘𝑟)𝑌𝑛
𝑚(𝜃, 𝜑). ℎ𝑛(𝑘𝑟) is the Hankel function of the first kind at position 𝑟. 

 

The conformal mapping transforms the Helmholtz wave equation (Eq. (9)) into  

[61] 

(∇2 + 𝑘2ℑ(𝑢,𝑤))𝜙̂(𝑢, 𝑤, 𝑣) = 0, 
(12) 

where ℑ(𝑢,𝑤)  is the Jacobian of the transformation from (𝑟s(𝜃), 𝜃)  system to 

(𝑢, 𝑤) system. Evidently, if 𝜙̂ is any solution of the Helmholtz equation, Eq. (9), in 

the spherical coordinate system, then 𝜙̂(𝑢, 𝑤, 𝑣) is a solution of conformal mapping 

coordinate system, Eq. (12) [62]. Using the mapping relationships given in Eq. (2), the 

external and scattering potential fields on the new coordinate system can be expressed 

by transforming Eqs. (7) and (11) 

𝜙̂ex(𝑢, 𝑤, 𝑣) =∑𝑎𝑛𝑚𝐽𝑛
𝑚(𝑢, 𝑤, 𝑣)

𝑛,𝑚

, 
(13) 

and 

𝜙̂sc(𝑢, 𝑤, 𝑣) =∑𝑠𝑛𝑚𝑎𝑛𝑚𝐻𝑛
𝑚(𝑢, 𝑤, 𝑣)

𝑛,𝑚

, 
(14) 

where abbreviations 𝐽𝑛
𝑚(𝑢, 𝑤, 𝑣) ≡ 𝑗𝑛(𝑘𝑟(𝑢, 𝑤))𝑌𝑛

𝑚(𝜃(𝑢, 𝑤), 𝑣) and 𝐻𝑛
𝑚(𝑢, 𝑤, 𝑣) ≡

ℎ𝑛(𝑘𝑟(𝑢, 𝑤))𝑌𝑛
𝑚(𝜃(𝑢, 𝑤), 𝑣) . The quantities 𝑟(𝑢, 𝑤)  and 𝜃(𝑢, 𝑤)  can be 

determined by Eqs. (2) and (6). The summation of Eqs. (13) and (14) gives the total 

potential field in terms of the new coordinates (𝑢, 𝑤, 𝑣), which also is the solution of 

Eq. (12). 

 

In order to solve the unknown scattering coefficients 𝑠𝑛𝑚, we need to apply the 

boundary condition on the interface between the irregular body and the host fluid (𝑢 =

𝑢0 = 0). 
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2.3. Scattering coefficients of irregular bodies 

To solve the potential field, the double infinite summations in Eqs. (13) and (14) 

must be truncated by a truncation number 𝑁 , which limits the summations from 

∑ ≡𝑛,𝑚 ∑ ∑  +∞
𝑚=−∞

∞
𝑛=0 to ∑ ≡𝑛,𝑚 ∑ ∑ .𝑁

𝑚=−𝑁
𝑁
𝑛=0  It can be seen that the total number of 

unknown variables of the scattering coefficients 𝑠𝑛𝑚 in Eq. (14) includes (𝑁 + 1) ×

(2𝑁 + 1) system of equations is required to obtain the scattering coefficients 𝑠𝑛𝑚. 

 

For simplicity, the case of a sound-soft boundary will be discussed, but the issue is 

the same for the sound-hard case, which is derived in Appendix B. The Dirichlet 

boundary condition requires that the total potential vanishes on the surface of the 

scatterer 𝜙̂ex(𝑢0, 𝑤, 𝑣) + 𝜙̂sc(𝑢0, 𝑤, 𝑣) = 0 (derived from Eqs. (13) and (14)), which 

gives 

∑𝑎𝑛𝑚𝐽𝑛
𝑚(𝑢0, 𝑤, 𝑣)

𝑛,𝑚

+∑𝑠𝑛𝑚𝑎𝑛𝑚𝐻𝑛
𝑚(𝑢0, 𝑤, 𝑣)

𝑛,𝑚

= 0. 
(15) 

The system of equations necessary to satisfy this boundary condition is generated by 

multiplying both sides of this equation by a set of spherical angular eigenfunctions [61]  

𝜓𝑛′
𝑚′
(𝑤, 𝑣) = 𝑃𝑛′

𝑚′
(cos(𝑤))sin(𝑤)e−i𝑚

′𝑣 
(16) 

and integrating over the range of 𝑤 and 𝑣  

∫ ∫ [∑𝑎𝑛𝑚𝐽𝑛
𝑚(𝑢0, 𝑤, 𝑣)

𝑛,𝑚

2𝜋

0

𝜋

0

+∑𝑠𝑛𝑚𝑎𝑛𝑚𝐻𝑛
𝑚(𝑢0, 𝑤, 𝑣)

𝑛,𝑚

]𝜓𝑛′
𝑚′
(𝑤, 𝑣)d𝑣d𝑤 = 0.  

(17) 

Considering the orthogonality relationship ∫ ei𝑛𝑤 ∙ e−i𝑚𝑤
2𝜋

0
d𝑤 = 2𝜋𝛿𝑛,𝑚  and the 

definition of the spherical harmonic function 𝑌𝑛
𝑚(𝜃, 𝜑) =

√
(2𝑛+1)

4𝜋
∙
(𝑛−𝑚)!

(𝑛+𝑚)!
𝑃𝑛
𝑚(cos(𝜃))ei𝑚𝜑 [35], the above equation becomes 

∑𝑎𝑛𝑚′Γ𝑛
𝑛′,𝑚′

𝑁

𝑛=0

+∑𝑠𝑛𝑚′𝑎𝑛𝑚′Λ𝑛
𝑛′,𝑚′

𝑁

𝑛=0

= 0,

(𝑛′ = 0,1,⋯ ,𝑁;𝑚′ = −𝑁,⋯ ,0,⋯ ,𝑁)

 

(18) 

where the structural functions Γ𝑛
𝑛′,𝑚′

 and Λ𝑛
𝑛′,𝑚′

 are 
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{
 
 
 
 

 
 
 
 
Γ𝑛
𝑛′,𝑚′

= ∫ [𝑗𝑛(𝑘𝑟(𝑢0, 𝑤))√
(2𝑛 + 1)

4𝜋
∙
(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛
𝑚′
(cos𝜃(𝑢0, 𝑤))

𝜋

0

𝑃𝑛′
𝑚′
(cos(𝑤))sin(𝑤)]d𝑤

Λ𝑛
𝑛′,𝑚′

= ∫ [ℎ𝑛(𝑘𝑟(𝑢0, 𝑤))√
(2𝑛 + 1)

4𝜋
∙
(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛
𝑚′
(cos𝜃(𝑢0, 𝑤))

𝜋

0

𝑃𝑛′
𝑚′
(cos(𝑤))sin(𝑤)]d𝑤

. 

(19) 

Equation (18) immediately provides a set of 𝑁 + 1 equations for each fixed 𝑚′ and 

totally a set of (𝑁 + 1) × (2𝑁 + 1) equations. Hence, by solving the system of linear 

equations, the scattering coefficients of the irregular body excited by a progressive 

plane wave are determined. A method to solve the system of equations is given in 

Appendix C. 

 

2.4. Acoustic radiation force and torque 

The acoustic radiation force on an object due to scattering phenomena was obtained 

as a surface integration R, which should involve the object [24][25] 

𝐹⃗ = ∫ 〈𝐿〉d𝐴R

 

R

− 𝜌0∫d𝐴R ∙ 〈𝑢⃗⃗𝑢⃗⃗〉
 

R

, 
(20) 

where the angle bracket 〈∙〉 denotes the time average of the variable therein. 𝐿 is the 

acoustic Lagrange density defined as 𝐿 =
1

2
𝜌0𝑢⃗⃗ ∙ 𝑢⃗⃗ −

1

2𝜌0𝑐s
2 𝑝

2, where 𝜌0𝑢⃗⃗ ∙ 𝑢⃗⃗ is the 

flux of momentum density. The acoustic velocity and the acoustic pressure are 

decomposed as 𝑢⃗⃗ = 𝑢⃗⃗ex + 𝑢⃗⃗sc  and 𝑝 = 𝑝ex + 𝑝sc , respectively, with subscripts ∙ex 

and ∙sc  for the external incident and scattered waves. The spherical surface R 

surrounding the scattering particle is sufficiently far to involve the scatterer, and the 

direction of the integration element d𝐴R is along the outer normal of the surface. Three 

factors are now considered: (i) for the external incident wave which does not contribute 

to the radiation force, i.e., ∫ 〈𝐿ex〉d𝐴R
 

R
− 𝜌0 ∫ d𝐴R ∙ 〈𝑢⃗⃗ex𝑢⃗⃗ex〉

 

R
= 0 , the acoustic 

Lagrange density for the incident wave is defined as 𝐿ex =
1

2
𝜌0𝑢⃗⃗ex ∙ 𝑢⃗⃗ex −

1

2𝜌0𝑐s
2 𝑝ex

2 ; (ii) 

the Sommerfeld radiation condition requires the acoustic Lagrange density for the 

scattering wave to satisfy 𝐿sc =
1

2
𝜌0𝑢⃗⃗sc ∙ 𝑢⃗⃗sc −

1

2𝜌0𝑐s
2 𝑝sc

2 = 0; and (iii) the pressure and 
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the particle velocity can be expressed by the potential field as −𝜌0
𝜕𝜙

𝜕𝑡
= 𝑝 and ∇𝜙 =

𝑢⃗⃗. Equation (20) is reduced to  

𝐹⃗ = ∫
𝜌0𝜔

2

𝑐s
2
[〈𝜙ex𝜙sc〉𝑒𝑟 + 〈𝜙sc𝜙sc〉 + 〈

i𝑐s
𝜔
𝜙sc∇𝜙sc〉] d𝐴R

 

R

, 

(21) 

where 𝑒𝑟 is the unit outer normal vector of the spherical surface R. The sum of terms 

makes two types of contributions, (i) squares of 𝜙sc representing the force from the 

scattered wave, and (ii) the mixed term meaning the force from interference between 

the incident and scattered waves. 

 

Consequently, the acoustic radiation force on the irregular body can be evaluated 

under the Cartesian coordinate system by substituting Eqs. (7) and (11) into Eq. (21), 

using the relationship 〈𝑋𝑌〉 =
1

2
Re(𝑋̂𝑌̂∗) . Considering the orthogonality and the 

recurrence properties of the spherical harmonics function [63] to simplify the 

expressions, we finally yield 

𝐹𝑥 =
𝜌0
4

Re[i ∙∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)(𝒜𝑛+1
𝑚+1𝑏𝑛+1,𝑚+1

∗

𝑛,𝑚

                          −ℬ𝑛−1
𝑚+1𝑏𝑛−1,𝑚+1

∗ +𝒞𝑛+1
𝑚−1𝑏𝑛+1,𝑚−1

∗ − 𝒟𝑛−1
𝑚−1𝑏𝑛−1,𝑚−1

∗ )],

 

𝐹𝑦 =
𝜌0
4

Re[∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)(𝒜𝑛+1
𝑚+1𝑏𝑛+1,𝑚+1

∗

𝑛,𝑚

                              −ℬ𝑛−1
𝑚+1𝑏𝑛−1,𝑚+1

∗ −𝒞𝑛+1
𝑚−1𝑏𝑛+1,𝑚−1

∗ + 𝒟𝑛−1
𝑚−1𝑏𝑛−1,𝑚−1

∗ )],

 

𝐹𝑧 =
𝜌0
2

Re[i ∙∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)(ℰ𝑛+1
𝑚 𝑏𝑛+1,𝑚

∗

𝑛,𝑚

−ℱ𝑛−1
𝑚 𝑏𝑛−1,𝑚

∗ )],                                      

 

(22) 

where abbreviation 𝑏𝑛𝑚 = 𝑎𝑛𝑚 ∙ 𝑠𝑛𝑚 and symbol Re means taking the real part of 

the expression. The weighting coefficients 𝒜𝑛
𝑚, ℬ𝑛

𝑚, 𝒞𝑛
𝑚, 𝒟𝑛

𝑚, ℰ𝑛
𝑚, and ℱ𝑛

𝑚 are given 

as 

𝒜𝑛
𝑚 = −√

(𝑛 +𝑚 − 1)(𝑛 + 𝑚)

(2𝑛 − 1)(2𝑛 + 1)
, ℬ𝑛

𝑚 = √
(𝑛 −𝑚 + 2)(𝑛 −𝑚 + 1)

(2𝑛 + 1)(2𝑛 + 3)
,  

𝒞𝑛
𝑚 = √

(𝑛 −𝑚 − 1)(𝑛 − 𝑚)

(2𝑛 − 1)(2𝑛 + 1)
,𝒟𝑛

𝑚 = −√
(𝑛 +𝑚 + 2)(𝑛 + 𝑚 + 1)

(2𝑛 + 1)(2𝑛 + 3)
,  

ℰ𝑛
𝑚 = √

(𝑛 −𝑚)(𝑛 + 𝑚)

(2𝑛 − 1)(2𝑛 + 1)
, ℱ𝑛

𝑚 = −√
(𝑛 −𝑚 + 1)(𝑛 +𝑚 + 1)

(2𝑛 + 1)(2𝑛 + 3)
. 
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The acoustic radiation torque on an object have also been derived as a surface 

integration of the object [26] 

𝑇⃗⃗ = −𝜌0∫〈(𝑑𝐴R ∙ 𝑢⃗⃗) ∙ (𝑟 × 𝑢⃗⃗)〉
 

R

. 
(23) 

Following relationships −𝜌0
𝜕𝜙

𝜕𝑡
= 𝑝 and ∇𝜙 = 𝑢⃗⃗, the potential form of Eq. (23) is 

𝑇⃗⃗ = −𝜌0∫ 〈
𝜕𝜙

𝜕𝑡
∙ i𝐾⃗⃗⃗𝜙〉 𝑑𝐴R

 

R

, 
(24) 

where 𝐾⃗⃗⃗ = −i(𝑟 × ∇) representing the angular momentum operator [63]. Similarly, 

we decompose the total potential field 𝜙 into the potential fields of external wave 𝜙ex 

and scattered wave 𝜙sc  and eliminate the time-averaged effects using relationship 

〈𝑋𝑌〉 =
1

2
Re(𝑋̂𝑌̂∗). The acoustic torque given in Eq. (24) becomes 

𝑇⃗⃗ = −
𝜌0
2
Re∫ [

𝜕𝜙̂ex
∗

𝜕𝑟
i𝐾⃗⃗⃗𝜙̂sc − 𝜙̂ex

∗ i𝐾⃗⃗⃗
𝜕𝜙̂sc
𝜕𝑟

+
𝜕𝜙̂sc

∗

𝜕𝑟
i𝐾⃗⃗⃗𝜙̂sc] d𝐴R

 

R

.  

(25) 

By substituting Eqs. (7) and (11) into Eq. (25), with the help of relationships 

(𝐾𝑥 ± i𝐾𝑥)𝑌𝑛
𝑚(𝜃, 𝜑) = 𝒢𝑛

𝑚𝑌𝑛
𝑚±1(𝜃, 𝜑)  and 𝐾𝑧𝑌𝑛

𝑚(𝜃, 𝜑) = 𝑚𝑌𝑛
𝑚(𝜃, 𝜑)  [63] (𝐾𝑥 , 

𝐾𝑦, and 𝐾𝑧 are the Cartesian components of 𝐾⃗⃗⃗), the acoustic radiation torque on the 

irregular body can be formulated under the Cartesian coordinate system as 

𝑇𝑥 =
𝜌0
4𝑘

Re∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)(𝒢𝑛
𝑚𝑏𝑛,𝑚+1

∗ +𝒢𝑛
−𝑚𝑏𝑛,𝑚−1

∗ )

𝑛,𝑚

𝑇𝑦 =
𝜌0
4𝑘

Im∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)(𝒢𝑛
𝑚𝑏𝑛,𝑚+1

∗ −𝒢𝑛
−𝑚𝑏𝑛,𝑚−1

∗ )

𝑛,𝑚

𝑇𝑧 =
𝜌0
2𝑘

Re∑𝑎𝑛𝑚(1 + 𝑠𝑛𝑚)𝑚𝑏𝑛,𝑚
∗

𝑛,𝑚

                              

, 

(26) 

where symbol Im means taking the imaginary part of the expression and the weighting 

coefficient 𝒢𝑛
𝑚 = √(𝑛 −𝑚)(𝑛 + 𝑚 + 1). 

 

In the limit of great distances from the scatterer (integrating surface R is far away 

from the scatterer), the new coordinate system becomes spherical, and therefore the 

scattering coefficients, 𝑠𝑛𝑚, used in Eqs. (22) and (26) are acceptable by solving the 

system of equations in Eq. (18). Following Eqs. (22) and (26), the acoustic radiation 

force and torque on the axisymmetric irregular body can be evaluated. Finally, we 

would like to emphasize that the codes used to calculate the radiation force and torque 

are open-access in [64]. 
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Note that both the theoretical and numerical models consider the inviscid 

approximation. Actually, fluids may support shear stress within the particle boundary 

layer, which may cause viscous effects on radiation force [65] and torque [66]. However, 

the inviscid method is approximately correct for manipulated objects significantly 

larger than the thickness of the acoustic boundary layer [67][68] 

𝛿 = √
2𝜇0
𝜌0𝜔

 , 

(27) 

where 𝜇0 is the dynamic viscosity of the fluid. In our interests, the driving frequencies 

range from 2 MHz to 8 MHz, and the boundary layer widths vary from 0.4 μm to 0.2 

μm in water at room temperature, which is much smaller than the average radius of the 

manipulated objects used in this work (𝑎 = 50 μm , referred to Tab. 3). Hence, the 

viscous contributions on the acoustic radiation force and torque can be discarded. 
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3. Results and discussion 

3.1. Truncation number 

We need to impose a truncation number of partial wave series, 𝑁, in the number 

of modes entering the computations of acoustic radiation force in Eq. (22) and acoustic 

radiation torque in Eq. (26). In this paper, the truncation number 𝑁 is determined using 

a coefficient-ratio condition  

𝑞 = max |
𝑠𝑁+𝑛,0
𝑠𝑁,0

| ≤ 0.01 .

(𝑛 = 1,2,⋯ ,10)

 

(28) 

We increase the truncation number 𝑁 until the ratio 𝑞 is smaller than 0.01 to save 

computational time by ignoring the diminishing contributions in the series [45]. In Tab. 

2, we list the ratio values and computational time for different 𝑁 and find 𝑁 ≥ 10 to 

be satisfactory, while the patrial wave series is truncated as 𝑁 = 10  in subsequent 

studies. 

 

Table 2: Convergence analysis using coefficient-ratio, 𝑞 , in different truncation 

numbers and various irregular bodies. In all cases, the size parameter 𝑘𝑎 =  1.68. 

 N = 8 N = 9 N = 10 N = 11 N = 12 

Ellipsoid 0.78 % 0.67 % 0.59 % 0.52 % 0.48 % 

Cone 1.16 % 0.97 % 0.83 % 0.67 % 0.44 % 

Diamond 1.29 % 1.07 % 0.92 % 0.73 % 0.71 % 

CPU Time ~ 4.5 s ~ 6.0 s ~ 7.9 s ~ 9.5 s ~ 13.5 s 
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3.2. Validation and discussion 

 

Figure 4: Sketch of the finite-element mesh used to compute the acoustic radiation 

force and torque on various bodies of a) sphere, b) ellipsoid, c) cone, and d) diamond. 

The numerical model comprises a cubic region as the simulation domain surrounding 

by a layer of acoustic perfectly matched layer (PML) with the thickness of 𝜆/2. The 

center of mass of the irregular bodies is placed at the origin of the simulation domain. 

The simulation domain is divided into two sub-domains by the light blud surface 

(radius of 3.5𝑎). A finer mesh (maximum element size is 𝜆/65) with ~4.5 × 105 

elements is defined inside the volume enclosed by the light blue surface. Outside this 

region, a coarser mesh (maximum element size is 𝜆/6) is used with ~0.8 × 105 

elements. The red-dashed surface (radius of 2.5𝑎) depicts the integration control 

surface R , placed inside the domain with finer mesh to increase the numerical 

accuracy of the integrations. 

 

We have performed a set of finite-element simulations of the wave-body interaction 



22 

 

in water to validate the acoustic radiation force and torque as prescribed in Eqs. (22) 

and (26). The full three-dimensional simulations are established in COMSOL 

Multiphysics 5.5 (COMSOL). The geometric settings are described as follows. A cubic 

region (30𝑎 × 30𝑎 × 30𝑎) is defined as the simulation domain. The center of mass of 

the irregular bodies and the center of the simulation domain are both placed at the origin 

of the Cartesian coordinate system. A spherical surface with a radius of 3.5𝑎 (marked 

by light blue circles in Fig. 4) is defined to divide the whole simulation domain into 

two sub-domains, a finer mesh domain and a coarser mesh domain inside and outside 

the surface, respectively. We set another spherical surface R (marked by red-dashed 

circles in Fig. 4) with a radius of 2.5𝑎 inside the finer mesh domain as the integration 

surface to compute the numerical radiation force and torque as prescribed in Eqs. (20) 

and (23). A detailed numerical scheme in computing Eqs. (20) and (23) under the 

Cartesian coordinate system is given in Appendix D. The cross-sectional sketch (𝑥𝑧-

plane) of the finite-element model and mesh distribution inside the finer mesh domain 

is displayed in Fig. 4. 

 

The sound-soft boundary condition for the irregular bodies is applied in the 

numerical simulations, corresponding to the scattering coefficients solving in Eq. (18) 

used in evaluating the radiation force and torque by our method. Note that the scattering 

coefficients for the sound-hard boundary condition can be found in Appendix B. The 

Sommerfeld radiation condition is required to eliminate the acoustic Lagrange density 

of scattering waves in yielding Eq. (22), which is achieved by applying the perfect 

matched layer (PML) surrounding the simulation domain. The incident plane wave with 

unit pressure amplitude is set in COMSOL as a “background pressure field”. To verify 

the correctness of the numerical integrations for the radiation force and torque, we have 

performed a mesh convergence analysis by gradually increasing the mesh density inside 

the finer mesh domain. It is found that when the maximum element size inside the finer 

mesh domain is 𝜆/65 (as illustrated in Fig. 4), the evaluated radiation force and torque 

become less sensitive (vary within 1.0 %) with further increase of the mesh density. 

Following the above considerations, we summarize the simulational parameters in Tab. 

3. It is worth mentioning that the computational time of each numerical simulation will 

take about 10 minutes, which is much higher than the time cost in our method (seeing 

Tab. 2). 
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Table 3: General parameters used in the finite-element simulations in COMSOL at 

room temperature and pressure. Note that the geometry of different irregular bodies is 

formulated in Eq. (2), where the mapping functions and mapping coefficients are given 

in Eq. (6) and Tab. 1, respectively. 

Parameter Value 

Average radius of bodies (𝑎) 50 μm 

Density (water 𝜌0) 1000 kg/m3 

Speed of sound (water 𝑐s) 1500 m/s 

Pressure peak (𝑝0) 1 Pa 

Incidence polar angle (𝜃inc) 0, 𝜋/6, 𝜋/3, 𝜋/2 rad 

Frequency of external wave (𝑓0) 2, 3, 4, 5, 6, 7 MHz 

Size parameter (𝑘𝑎) 0.4, 0.6, 0.8, 1.1, 1.3, 1.5 

Wavelength (𝜆) 𝑐s / 𝑓0 

Cubic simulational domain 30𝑎 × 30𝑎 × 30𝑎 

Radius of integrating surface R 2.5𝑎 

Radius of finer mesh domain 3.5𝑎 

Maximum element size (finer mesh domain) 𝜆 / 65 

Maximum element size (coarser mesh domain) 𝜆 / 6 

PML depth 𝜆 / 2 

CPU Intel i7-6700HQ 2.6 GHz 

Operating system Windows 10 

Maximum memory usage ~ 16 GB 

Computational time per case ~ 10 min 

 

To compare the obtained numerical results with theory, we use the normalized root-

mean-square error (NRMSE), 

{
 

 𝐸𝑟𝑟F,𝑖 = √
1

𝑀
∑ (𝑌̃𝑖,𝑚 − 𝑌̅𝑖,𝑚)

2𝑀
𝑚=1

𝐸𝑟𝑟T,𝑖 = √
1

𝑀
∑ (𝐷̃𝑖,𝑚 − 𝐷̅𝑖,𝑚)

2𝑀
𝑚=1

  ,  

(29) 

where 𝑀 is the number of sampling points (referred to the parameters listed in Tab. 3, 

𝑀 = 24 for frequencies ranging from 2 to 7 MHz with the interval of 1 MHz, while 

the incident polar angles are set to 0, 𝜋/6, 𝜋/3, 𝜋/2 rad). The errors for the acoustic 



24 

 

radiation force and torque along the 𝑖-th direction (𝑖 = 𝑥, 𝑦, 𝑧) are denoted by 𝐸𝑟𝑟F,𝑖 

and 𝐸𝑟𝑟T,𝑖 , respectively. 𝑌𝑖,𝑚 =
[𝐹𝑖,𝑚−min(𝐹𝑖,𝑚)]

[max(𝐹𝑖,𝑚)−min(𝐹𝑖,𝑚)]
  and 𝐷𝑖,𝑚 =

[𝑇𝑖,𝑚−min(𝑇𝑖,𝑚)]

[max(𝑇𝑖,𝑚)−min(𝑇𝑖,𝑚)]
 

with a bar-hat mean, respectively, the normalized acoustic radiation force and torque 

on the 𝑖-th axis evaluated by numerical simulations, while those with a tilde-hat are the 

corresponding normalized results based on theoretical calculations. 

 

 

Figure 5: Theoretical and numerical calculations of the acoustic radiation force 

efficiencies, 𝐹̃𝑥 = 𝐹𝑥/[(𝜋𝑎
2𝑝0)/(2𝜌0𝑐0

2)]  and 𝐹̃𝑧 = 𝐹𝑧/[(𝜋𝑎
2𝑝0)/(2𝜌0𝑐0

2)] , and 

torque efficiency, 𝑇̃𝑦 = 𝑇𝑦/[(𝜋𝑎
3𝑝0)/(2𝜌0𝑐0

2)], resulting from an incident plane 

wave (𝑝̂ = 1 Pa) acting on a soft spherical body (average radius of 𝑎 = 50 μm) as a 

function of the polar angle of the incident wave, 𝜃inc, and the scaled size parameters, 

𝑘𝑎. Sub-figures a) and c) display the plots for the acoustic radiation force efficiencies 

along, respectively, 𝑥 - and 𝑧 - axes, while sub-figure b) displays the acoustic 

radiation torque efficiency along the 𝑦-axis. The circle markers represent the results 

based on the full three-dimensional numerical simulations, and the solid lines are 

derived from the theoretical calculations. The polar angle of incident wave ranges 

from 0° or +𝑧-axis (black lines and circles) to 90° or + 𝑥-axis (orange lines and 

circles). Sub-figure d) illustrates an incident plane wave with arbitrary polar angles 

interacting with a spherical body under the Cartesian coordinate system. The center 

of mass of the spherical body coincides with the origin of the Cartesian coordinate 

system. 
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Figure 6: The same as in Fig. 5, but replaced the spherical body with ellipsoid 

(depicted in the lower-left corner of Fig. 2b). Note that the scale range for the acoustic 

radiation torque efficiency in sub-figure b) is replaced with [−0.34,0.34] to better 

illustrate the results. 

 

 

Figure 7: The same as in Fig. 5, but replaced the spherical body with cone (depicted 

in the lower-left corner of Fig. 2c). Note that the scale range for the acoustic radiation 

torque efficiency in sub-figure b) is replaced with [−0.34,0.34] to better illustrate 

the results. 
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Figure 8: The same as in Fig. 5, but replaced the spherical body with diamond 

(depicted in the lower-left corner of Fig. 2d). 

 

Table 4: The normalized root-mean-square error (NRMSE) of the acoustic radiation 

force and torque compared with numerical results, defined in Eq. (29) 

 𝑖 = 𝑥 𝑖 = 𝑦 𝑖 = 𝑧 

Sphere 𝐸𝑟𝑟F,𝑖 [%] 2.15 5.56 5.02 

𝐸𝑟𝑟T,𝑖 [%] < 0.01 < 0.01 < 0.01 

Ellipsoid 𝐸𝑟𝑟F,𝑖 [%] 1.66 5.16 4.45 

𝐸𝑟𝑟T,𝑖 [%] < 0.01 2.55 < 0.01 

Cone 𝐸𝑟𝑟F,𝑖 [%] 2.19 5.55 5.12 

𝐸𝑟𝑟T,𝑖 [%] 0.03 2.76 0.02 

Diamond 𝐸𝑟𝑟F,𝑖 [%] 2.18 4.64 5.00 

𝐸𝑟𝑟T,𝑖 [%] 0.06 1.04 0.03 

 

The theoretical evaluations of the acoustic radiation force and torque using Eqs. 

(22) and (26) compared with those calculations from full numerical simulations using 

Eqs. (20) and (23) (referred to Eqs. (D.2) and (D.3) in Appendix D for the specific 

numerical schemes) on various irregular geometries. Consider that the values computed 

for the radiation force, 𝐹𝑖 , (𝑖 = 𝑥, 𝑦, 𝑧) , and torque, 𝑇𝑖 , (𝑖 = 𝑥, 𝑦, 𝑧) , are extremely 

small, we dimensionless the radiation force and torque. Specifically, the dimensionless 
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radiation force efficiency is scaled as 𝐹̃𝑖 = 𝐹𝑖/[(𝜋𝑎
2𝑝0)/(2𝜌0𝑐0

2)] , and the 

dimensionless radiation torque efficiency is 𝑇̃𝑖 = 𝑇𝑖/[(𝜋𝑎
3𝑝0)/(2𝜌0𝑐0

2)] as shown in 

Figs. 5 to 9. Considering the axisymmetric physics, we set the azimuthal angle of the 

incident plane wave as 𝜑inc = 0, which means the plane wave is propagated on the 

𝑥𝑧-plane. Consequently, the acoustic radiation force along 𝑦-axis, 𝐹𝑦, and the acoustic 

radiation torque along 𝑥- and 𝑧-axes, 𝑇𝑥 and 𝑇𝑧, are significantly weaker than the 

corresponding values on other sensitive directions, i.e., 𝐹𝑥~𝐹𝑧 ≫ 𝐹𝑦~0  and 𝑇𝑦 ≫

𝑇𝑥~𝑇𝑦~0. Therefore, we only plot and discuss the acoustic radiation force efficiencies 

along 𝑥- and 𝑧-axes, 𝐹̃𝑥 and 𝐹̃𝑧, as well as the acoustic radiation torque efficiency 

along 𝑦-axis, 𝑇̃𝑦, resulting from the incident plane wave with different frequencies and 

polar angles interacting with the irregular bodies. However, the NRMSEs of all 𝑥, 𝑦, 

and 𝑧 components of the acoustic radiation force and torque compared the theoretical 

evaluations with the numerical results based on Eq. (29) are listed in Tab. 4. Both visual 

inspections and NRMSEs indicate an excellent agreement of acoustic radiation force 

and torque between our method and the full numerical simulations, while our 

formulations cost a shorter computational time than those based on the full finite-

element method.  

 

 

Figure 9: The stable positions of a) sphere, b) ellipsoid, c) cone, and d) diamond 

under the acoustic radiation torque excited by a traveling plane wave. The definition 



28 

 

of the polar angle, 𝜃inc, of the incident wave as well as the Cartesian coordinate 

system are the same as those described in Figs. 5 to 8. The radiation torque will rotate 

the manipulated body (under unstable conditions) until the body remains stable in its 

corresponding (strong) stable state. 

 

For the same value of the average radius of different bodies (𝑎 = 50 μm ), the 

acoustic radiation forces illustrated in sub-figures a and c of Figs. 5, 6, 7, and 8 are 

basically identical, indicated that the radiation force is not heavily affected by the 

differences of scatterer geometries. Additionally, with size parameter 𝑘𝑎  (i.e., 

frequency 𝑓0) increases and for the same incident polar angle 𝜃inc, the radiation forces 

decrease monotonically before leveling off after 𝑘𝑎 > 1.5 , meaning that the more 

acquirable low-frequency wave field provides higher efficiency in manipulating soft 

objects. As the polar angle 𝜃inc increases, 𝐹̃𝑥 increases. The exact opposite situation 

is encountered for the 𝑧-component, 𝐹̃𝑧. For 𝜃inc = 0 or 𝜋/2, 𝐹̃𝑥 or 𝐹̃𝑧 vanishes as 

required by symmetry. By contrast, as can be found in sub-figure b of Figs. 5, 6, 7, and 

8, the acoustic radiation torques are strongly dependent on the shape of the irregular 

bodies. For the sphere (Fig. 5b), the radiation torque 𝑇̃𝑦  vanishes as required by 

symmetry. In different size parameters 𝑘𝑎 (i.e., frequencies 𝑓0) and incidence 𝜃inc, 

for the ellipsoid and cone (Figs. 6b and 7b), the radiation torques 𝑇̃𝑦 are negative, 

meaning that the sense of rotation is in the counter-clockwise direction under 𝑥𝑧-plane, 

whereas for diamond (Fig. 8b), the radiation torque 𝑇̃𝑦 reverses sign, meaning that the 

sense of rotation is in the clockwise direction. Furthermore, the radiation torque reaches 

a maximum (in the absolute sense) at 𝜃inc ≈ 𝜋/4  for ellipsoid and diamond. The 

difference is that for the cone, the radiation torque increases as 𝜃inc  increases and 

maximum efficiency is obtained at 𝜃inc ≈ 𝜋/2 . It can be seen from Fig. 9 that the 

radiation torque prefers to rotate the irregular bodies and finally stabilizes them in 

strong stable positions (a slight deviation of the incident angle will disrupt the balance 

of the body in a weak stable position). Consequently, the symmetry axis of the body is 

consistent or orthogonal to the propagation direction of the incident wave. This feature 

allows us to rotate the irregular bodies by adjusting the incident wave fields. 
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4. Concluding remarks 

We have presented an explicit analytical method to compute the acoustic radiation 

force and torque acting on various axisymmetric, irregular bodies excited by a plane 

traveling wave with arbitrary incidences in the inviscid fluid based on conformal 

mapping procedure and partial wave series expansion. Two mapping functions and a 

set of mapping coefficients (referred to Appendix A and Tab. 1) were introduced to 

conformally map the variables to a new orthogonal coordinate system, where the 

irregular surface can be exactly described by the new radial coordinate as 𝑢 = 𝑢0 = 0 

(i.e., a spherical surface in the new coordinate system). As a result, the boundary 

conditions on the surface are much more easily to enforce, and remain intact after the 

transformation due to the angle-preserving nature. The closed-form scattering 

expansion coefficients used to specify the scattering field were obtained by solving a 

set of the system of equations (referred to Appendix C), which is designed to eliminate 

the angular coordinates and satisfy the boundary conditions by multiplying a set of 

spherical angular eigenfunctions and integrating over the definition of angular 

coordinates. Then, the asymptotic radiation force and torque could be attained based on 

the solved scattering expansion coefficients. 

 

Here, acoustic radiation force and torque exerted, respectively, on a sphere, an 

ellipsoid, a cone, and a diamond with sound-soft boundary condition (and sound-hard 

boundary condition is derived in Appendix B) suspended in water were calculated and 

analyzed. Validations of the analytical solution (seeing Figs. 5 to 8) were conducted 

through comparisons of the current results with the full three-dimensional numerical 

solutions (the numerical scheme is given in Appendix D). It could be found that the 

analytical method requires much less computational time (~ 7.9 s by common personal 

computers, Tab. 2) without loss of accuracy (NRMSEs ≤ 5.0 %, Tab. 4). Furthermore, 

the radiation force tendencies reveal that the radiation force is basically identical 

regardless of the differences in geometry. Consequently, it is acceptable for the wave-

driven methods to neglect the geometric differences of objects in transportation. By 

contrast, the radiation torque is closely related to the cross-sectional shape of irregular 

bodies. It is apt to rotate the axisymmetric body so that the axis of symmetry is 

consistent with or orthogonal to the propagation direction of the incident wave (seeing 
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Fig. 9), which provides theoretical guidance for the use of the acoustic wave fields to 

rotate specific irregular geometries. 

 

We propose an effective and efficient method to predict the motion of various 

irregular objects, which helps to understand the behavior of the irregular bodies over a 

wide range of size parameters in the acoustic wave fields. 
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Appendix A: Determination of mapping coefficients 

A method to determine the mapping coefficients can be found in work [59], here 

we have given as below. On the boundary of the slice of the irregular body, we equating 

𝑟s(𝜃)e
i𝜃 in Eq. (5) to complex mapping function 𝑀(𝑢,𝑤) in Eq. (6) with 𝑢 = 𝑢0=0 

yields 

𝑎ei𝜃 +∑[𝑅𝑛
∗ei(1+𝑛)𝜃 + 𝑅𝑛e

i(1−𝑛)𝜃]

∞

𝑛=1

= 𝑐−1e
i𝑤 +∑𝑐𝑛e

−i𝑛𝑤

∞

𝑛=0

 . 

(A.1) 

Since the boundary of the slice is a periodic function, the deviation of 𝜃 from 𝑤 can 

be represented as a Fourier series 

𝜃 = 𝑤 +∑[𝐸𝑛cos(𝑛𝑤) + 𝐹𝑛sin(𝑛𝑤)]

∞

𝑛=1

. 

(A.2) 

In the above equation, the series coefficients 𝐸𝑛 and 𝐹𝑛 are unknown, while can be 

determined by orthogonality relationship of complex exponential functions ∫ ei𝑛𝑤 ∙
2𝜋

0

e−i𝑚𝑤 d𝑤 = 2𝜋𝛿𝑛,𝑚, where 𝛿𝑛,𝑚 is the Kronecker delta function. We multiply both 

sides of Eq. (A.1) by 
1

2𝜋
e−i𝑚𝑤 and integrating over 𝑤 from 0 to 2𝜋  

{
 
 

 
 1

2𝜋
∫ e−i𝑚𝑤 {𝑎ei𝜃 +∑[𝑅𝑛

∗ei(1+𝑛)𝜃 + 𝑅𝑛e
i(1−𝑛)𝜃]

∞

𝑛=1

} d𝑤 = 0,
2𝜋

0

      𝑚 > 1

1

2𝜋
∫ e−i𝑚𝑤 {𝑎ei𝜃 +∑[𝑅𝑛

∗ei(1+𝑛)𝜃 + 𝑅𝑛𝑒
i(1−𝑛)𝜃]

∞

𝑛=1

} d𝑤 = 𝑐−𝑚,
2𝜋

0

 𝑚 ≤ 1

. 

(A.3) 

Based on Eq. (A.3), the series coefficients 𝐸𝑛 and 𝐹𝑛 can be solved using the upper 

equation, which are then used to obtain the mapping coefficients through the lower 

equation. 

 

Appendix B: Neumann boundary condition 

Based on the mapping relationships given in Eq. (1), the position vector can be 

generally expressed as  

𝑟 = 𝑓(𝑢, 𝑤) ∙ cos(𝑣)𝑒𝑥 + 𝑓(𝑢,𝑤) ∙ sin(𝑣)𝑒𝑦 + 𝑔(𝑢, 𝑤)𝑒𝑧 (B.1) 

where 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 are unit vectors along the corresponding coordinate axes. In the 

new coordinate system, the orthogonal coordinate system is desirable since it facilitates 

the computation of the normal particle velocity on the boundary. Orthogonality of the 

new coordinate system requires that the partial derivative of the position vector 𝑟 in 



32 

 

Eq. (B.1) satisfies 

𝑟𝑢 ∙ 𝑟𝑤 = 0; 𝑟𝑢 ∙ 𝑟𝑣 = 0; 𝑟𝑣 ∙ 𝑟𝑤 = 0,  (B.2) 

where the subscripts mean the partial derivative of corresponding variables. 

Considering the mapping relationship given in Eq. (B.1), the partial derivatives of the 

position vector with respect to each of the variables are  

{

𝑟𝑢 = 𝑓𝑢(𝑢, 𝑤) ∙ cos(𝑣)𝑒𝑥 + 𝑓𝑢(𝑢, 𝑤) ∙ sin(𝑣)𝑒𝑦 + 𝑔𝑢(𝑢, 𝑤)𝑒𝑧 

𝑟𝑤 = 𝑓𝑤(𝑢, 𝑤) ∙ cos(𝑣)𝑒𝑥 + 𝑓𝑤(𝑢, 𝑤) ∙ sin(𝑣)𝑒𝑦 + 𝑔𝑤(𝑢, 𝑤)𝑒𝑧
𝑟𝑣 = −𝑓(𝑢, 𝑤) ∙ sin(𝑣)𝑒𝑥 + 𝑓(𝑢,𝑤) ∙ cos(𝑣)𝑒𝑦                          

  , 

(B.3) 

Inserting Eq. (B.3) into Eq. (B.2), it can prove that the new coordinate system could be 

orthogonal if the mapping functions satisfy 

𝑓𝑢(𝑢, 𝑤) = 𝑔𝑤(𝑢, 𝑤)  or  𝑓𝑤(𝑢, 𝑤) = 𝑔𝑢(𝑢, 𝑤) . (B.4) 

 

The Neumann boundary condition requires that the normal particle velocity 

vanishes on the scatterer surface 𝑛⃗⃗ ∙ ∇[𝜙̂ex(𝑢0, 𝑤, 𝑣) + 𝜙̂sc(𝑢0, 𝑤, 𝑣)] = 0, where 𝑛⃗⃗ is 

the outer normal vector to the surface. It can be found that the mapping functions given 

in Eq. (6) satisfy the orthogonal requirements in Eq. (B.4). Consequently, the gradient 

of the potential field is 

∇𝜙̂(𝑢0, 𝑤, 𝑣) =
𝜕𝜙̂(𝑢0, 𝑤, 𝑣)

𝜕𝑢

𝑟𝑢
𝑟𝑢
+
𝜕𝜙̂(𝑢0, 𝑤, 𝑣)

𝜕𝑤

𝑟𝑤
𝑟𝑤
+
𝜕𝜙̂(𝑢0, 𝑤, 𝑣)

𝜕𝑣

𝑟𝑣
𝑟𝑣

 

(B.5) 

where vectors 𝑟𝑢, 𝑟𝑤 and 𝑟𝑣 are given in Eq. (B.3). As the scatterer surface has been 

defined by 𝑢 = 𝑢0 = 0 , the outer normal vector 𝑛⃗⃗  is parallel to 𝑟𝑢 . Hence, the 

Neumann boundary condition becomes 

1

√𝑓𝑢
2 + 𝑓𝑤

2

𝜕[𝜙̂ex(𝑢0, 𝑤, 𝑣) + 𝜙̂sc(𝑢0, 𝑤, 𝑣)]

𝜕𝑢
= 0 

(B.6) 

Inserting Eqs. (13) and (14) into the above equation, multiplying both sides by the 

spherical angular eigenfunctions and considering the orthogonality relationship 

∫ ei𝑛𝑤 ∙ e−i𝑚𝑤
2𝜋

0
d𝑤 = 2𝜋𝛿𝑛,𝑚, we finally yield 

∑𝑎𝑛𝑚′Γ𝑛,𝑢
𝑛′,𝑚′

𝑁

𝑛=0

+∑𝑠𝑛𝑚′𝑎𝑛𝑚′Λ𝑛,𝑢
𝑛′,𝑚′

𝑁

𝑛=0

= 0,

(𝑛′ = 0,1,⋯ ,𝑁;𝑚′ = −𝑁,⋯ ,0,⋯ ,𝑁)

 

(B.7) 

where Γ𝑛,𝑢
𝑛′,𝑚′

  and Λ𝑛,𝑢
𝑛′,𝑚′

  are the partial derivative of the new radial coordinate of 

structural functions Γ𝑛
𝑛′,𝑚′

 and Λ𝑛
𝑛′,𝑚′

 given in Eq. (19): 
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{
 
 

 
 Γ𝑛,𝑢

𝑛′,𝑚′
=
𝜕Γ𝑛

𝑛′,𝑚′

𝜕𝑢
|

𝑢=𝑢0

Λ𝑛,𝑢
𝑛′,𝑚′

=
𝜕Λ𝑛

𝑛′,𝑚′

𝜕𝑢
|

𝑢=𝑢0

  . 

(B.8) 

 

Appendix C: Solution of the system of equations 

Based on Eq. (18), for each combination of (𝑛′, 𝑚′), we can obtain an additional 

equation to close the system. There are totally (𝑁 + 1) × (2𝑁 + 1)  additional 

equations and (𝑁 + 1) × (2𝑁 + 1)  unknown scattering coefficients 𝑠𝑛′𝑚′ . For a 

fixed index of 𝑚′, the change of index of 𝑛′ = 0,1,⋯ ,𝑁 is able to provide 𝑁 + 1 

additional equations as 

[
 
 
 
 𝑎0𝑚′Λ0

0,𝑚′
𝑎1𝑚′Λ1

0,𝑚′

𝑎0𝑚′Λ0
1,𝑚′

𝑎1𝑚′Λ1
1,𝑚′

⋯ 𝑎𝑁𝑚′Λ𝑁
0,𝑚′

⋯ 𝑎𝑁𝑚′Λ𝑁
1,𝑚′

⋮ ⋮

𝑎0𝑚′Λ0
𝑁,𝑚′

𝑎1𝑚′Λ1
𝑁,𝑚′

⋱ ⋮

⋯ 𝑎𝑁𝑚′Λ𝑁
𝑁,𝑚′

]
 
 
 
 

∙ [

𝑠0𝑚′

𝑠1𝑚′

⋮
𝑠𝑁𝑚′

] = [

A0,𝑚
′

A1,𝑚
′

⋮

A𝑁,𝑚
′

] 

(C.1) 

where abbreviation A𝑛
′,𝑚′

= ∑ 𝑎𝑛𝑚′Γ𝑛
𝑛′,𝑚′𝑁

𝑛=0 . Solving the above linear equations can 

get 𝑁 + 1 scattering coefficients 𝑠𝑛′𝑚′  (𝑛′ = 0,1,⋯ ,𝑁). The change of index of 𝑚′ 

from −𝑁 to 𝑁 gives a total of 2𝑁 + 1 linear systems, and therefore all the unknown 

scattering coefficients 𝑠𝑛′𝑚′  (𝑛′ = 0,1,⋯ ,𝑁;𝑚′ = −𝑁,⋯ ,0,⋯ ,𝑁)  can be 

determined by solving 2𝑁 + 1 linear systems, corresponding to different index of 𝑚′. 

 

Appendix D: Numerical evaluation of radiation force and 

torque 

The outer normal vector of integrating surface R can be expressed as d𝐴R =

𝑒Rd𝐴R, where 𝑒R = (
𝑥

𝑎R
,
𝑦

𝑎R
,
𝑧

𝑎R
) defined as the unit outer normal vector of spherical 

surface R with a radius of 𝑎R = √𝑥
2+𝑦2+𝑧2. The point position on the integrating 

surface is denoted as (𝑥, 𝑦, 𝑧) under the Cartesian coordinate system. Inserting d𝐴R =

𝑒Rd𝐴R into Eqs. (20) and (23), using a tensor relation 𝑒R ∙ (𝑢⃗⃗𝑢⃗⃗) = (𝑒R ∙ 𝑢⃗⃗)𝑢⃗⃗, we arrive 

at 
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{
 
 

 
 𝐹⃗ = ∫ 〈

𝜌0
2
𝑢⃗⃗ ∙ 𝑢⃗⃗ −

1

2𝜌0𝑐s
2
𝑝2〉 𝑒Rd𝐴R

 

R

− 𝜌0∫〈(𝑒R ∙ 𝑢⃗⃗)𝑢⃗⃗〉d𝐴R

 

R

𝑇⃗⃗ = −𝜌0∫〈(𝑒R ∙ 𝑢⃗⃗) ∙ (𝑟 × 𝑢⃗⃗)〉d𝐴R

 

R

                                            

  . 

(D.1) 

Using the relationship 〈𝑋𝑌〉 =
1

2
Re(𝑋̂𝑌̂∗) , the radiation force and torque are 

rearranged along corresponding coordinate axes under the Cartesian coordinate system 

as 

𝐹𝑥 = 𝐹⃗ ∙ 𝑒𝑥 = ∫
1

4

 

R

𝑥

𝑎R
[𝜌0Re(𝑢̂⃗⃗ ∙ 𝑢̂⃗⃗

∗) −
1

𝜌0𝑐s
2
Re(𝑝̂ ∙ 𝑝̂∗)] d𝐴R                            

−
𝜌0
2
∫ [

𝑥

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑥

∗) +
𝑦

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑦

∗ ) +
𝑧

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑧

∗)] d𝐴R

 

R

,

 

𝐹𝑦 = 𝐹⃗ ∙ 𝑒𝑦 = ∫
1

4

 

R

𝑦

𝑎R
[𝜌0Re(𝑢̂⃗⃗ ∙ 𝑢̂⃗⃗

∗) −
1

𝜌0𝑐s
2
Re(𝑝̂ ∙ 𝑝̂∗)] d𝐴R                            

−
𝜌0
2
∫ [

𝑥

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑥

∗) +
𝑦

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑦

∗ ) +
𝑧

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑧

∗)] d𝐴R

 

R

,

 

𝐹𝑧 = 𝐹⃗ ∙ 𝑒𝑧 = ∫
1

4

 

R

𝑧

𝑎R
[𝜌0Re(𝑢̂⃗⃗ ∙ 𝑢̂⃗⃗

∗) −
1

𝜌0𝑐s
2
Re(𝑝̂ ∙ 𝑝̂∗)] d𝐴R                            

−
𝜌0
2
∫ [

𝑥

𝑎R
Re(𝑢̂𝑧 ∙ 𝑢̂𝑥

∗) +
𝑦

𝑎R
Re(𝑢̂𝑧 ∙ 𝑢̂𝑦

∗ ) +
𝑧

𝑎R
Re(𝑢̂𝑧 ∙ 𝑢̂𝑧

∗)] d𝐴R

 

R

,

 

(D.2) 

and 

𝑇𝑥 = 𝑇⃗⃗ ∙ 𝑒𝑥 = −
𝜌0
2
∫
𝑥𝑦

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑧

∗) +
𝑦2 − 𝑧2

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑧

∗)
 

R

                       

+
𝑦𝑧

𝑎R
Re(𝑢̂𝑧 ∙ 𝑢̂𝑧

∗) −
𝑥2

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑦

∗ ) −
𝑦𝑧

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑦

∗ )d𝐴R ,         

 

𝑇𝑦 = 𝑇⃗⃗ ∙ 𝑒𝑦 = −
𝜌0
2
∫
𝑥𝑧

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑥

∗) +
𝑦𝑧

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑦

∗ )
 

R

                                

+
𝑧2 − 𝑥2

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑧

∗) −
𝑥𝑦

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑧

∗) −
𝑥𝑧

𝑎R
Re(𝑢̂𝑧 ∙ 𝑢̂𝑧

∗)d𝐴R ,

 

𝑇𝑧 = 𝑇⃗⃗ ∙ 𝑒𝑧 = −
𝜌0
2
∫
𝑥2 − 𝑦2

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑦

∗ ) +
𝑥𝑦

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑦

∗ )
 

R

                      

+
𝑥𝑧

𝑎R
Re(𝑢̂𝑦 ∙ 𝑢̂𝑧

∗) −
𝑥𝑦

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑥

∗) −
𝑦𝑧

𝑎R
Re(𝑢̂𝑥 ∙ 𝑢̂𝑧

∗)d𝐴R .         

 

(D.3) 

Here 𝑝̂ and 𝑢̂⃗⃗ = (𝑢̂𝑥, 𝑢̂𝑦, 𝑢̂𝑧)  are the complex amplitudes of acoustic pressure and 

particle velocity, respectively. 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 are unit vectors along the corresponding 

axes.  
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