

1 **Enhancing the removal of organic micropollutants by**
2 **nanofiltration membrane with Fe (III)–tannic acid interlayer:**
3 **Mechanisms and environmental implications**

4 Wenyu Liu ^a, Li Long ^a, Zhe Yang ^a, Li Wang ^a, Qimao Gan ^a, Shenghua Zhou ^a, Pulak

5 Sarkar ^a, Hao Guo ^{b,*}, Chuyang Y. Tang ^{a,*}

6 ^a Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong
7 Kong SAR, China

8 ^b Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate
9 School, Tsinghua University, Shenzhen 518055, China

10 * Corresponding authors

11 **Hao Guo** (ORCID: 0000-0002-0688-5431)

12 Tel: +86 15889350923

13 E-mail: guohao@sz.tsinghua.edu.cn

14 **Chuyang Y. Tang** (ORCID: 0000-0002-7932-6462)

15 Tel: +852 2859 1976

16 E-mail: tangc@hku.hk

17 **Abstract**

18 Nanofiltration technology has been applied in a variety of water treatment scenarios.
19 However, conventional thin-film composite (TFC) membranes fail to remove emerging
20 organic micropollutants (OMPs) efficiently. Here we applied thin-film nanocomposite
21 membrane with an interlayer (TFNi) of Fe (III)-tannic acid to remove various types of
22 OMPs, such as endocrine disrupting chemicals (EDCs), pharmaceutically active
23 compounds (PhACs), and perfluoroalkyl substances (PFASs). Compared to the pristine
24 TFC membrane, TFNi membrane exhibited crumpled morphology and its rejection
25 layer was denser, better cross-linked and possessed smaller average pore size with
26 narrower distribution. Significant enhancement in water-OMPs selectivity of PhACs
27 and PFASs was observed. The mechanism lies in the effects of interlayer in improving
28 the membrane permeance to water and meanwhile reducing the permeance to some
29 OMPs by enhancing size exclusion effects. This work confirms the effectiveness of
30 using TFNi membrane to simultaneously enhance the OMPs rejection and water
31 permeance. The unraveled mechanism might inspire the future development of high-
32 performance nanofiltration membranes targeting OMPs removal.

33 **Keywords**

34 Organic micropollutants; Nanofiltration membranes; Interlayer; Fe (III)-tannic acid

35 **1. Introduction**

36 The widespread emergence of organic micropollutants (OMPs) in aquatic environment,
37 such as endocrine disrupting chemicals (EDCs), pharmaceutically active compounds
38 (PhACs), and poly- or perfluoroalkyl substances (PFASs), has posed a great menace to
39 water safety (Houtz et al., 2013; Lapworth et al., 2012; Petrie et al., 2015;
40 Schwarzenbach et al., 2006; Tran et al., 2018). Although these OMPs are commonly
41 present at low concentration (e.g., ng/L– μ g/L), their ecotoxicological effects can be of
42 high concern (Fent et al., 2006; Williams et al., 2003). It has been reported that some
43 EDCs, PhACs, and PFASs at environmental concentration could impact the
44 reproduction, development, and locomotion of aquatic organisms (Krafft and Riess,
45 2015; Schmidt et al., 2011; Souza et al., 2013). Such toxic and bioaccumulating
46 compounds might exert adverse chronic effects on human health through multiple
47 exposure routes including direct skin contact and uptake of contaminated water or food
48 (Barbosa et al., 2016; Ben et al., 2018; Luo et al., 2014). Therefore, it is imperative to
49 effectively remove OMPs from water.

50 Nanofiltration (NF) technology has been extensively applied in water treatment
51 scenarios such as drinking water purification and water reclamation (Fane et al., 2011;
52 Guo et al., 2021a; Shannon et al., 2008; Tang et al., 2018). The most widely used NF
53 membranes are thin-film composite (TFC) membranes that consist of a dense
54 polyamide layer on the top of a porous polymer substrate (Lau et al., 2012; Warsinger
55 et al., 2018). Although TFC membranes often exhibit robust rejection of many solutes
56 including divalent salts (Warsinger et al., 2018), the removal efficiency of some OMPs,
57 especially those with relatively small molecular size, could be lower than 50% due to
58 weak size exclusion effects (Guo et al., 2019; Jin et al., 2010; Miyashita et al., 2009;
59 Van der Bruggen and Vandecasteele, 2002; Zhao et al., 2021). Moreover, the rejection

60 of some hydrophobic/polar OMPs (e.g., EDCs, nitrosodimethylamine) might be further
61 jeopardized by the unfavorable solute-membrane hydrophobic/polar interactions
62 (Nghiem et al., 2004, 2005; Schäfer et al., 2011; Steinle-Darling et al., 2007; Verliefde
63 et al., 2009). Such insufficient removal of concerned OMPs would significantly lower
64 the quality of product water.

65 To enhance the membrane rejection of OMPs, it is essential to improve the membrane
66 selectivity of water/OMPs, which is often indicated by the ratio of membrane
67 permeance to water (A) over that to OMPs (B_{OMP}) (Guo et al., 2022). Increasing the A
68 value and/or reducing the B_{OMP} value could benefit the membrane selectivity. For
69 instance, an effective approach to increase the membrane water/OMPs selectivity is to
70 introduce a highly selective coating layer on its surface to reduce the OMPs permeance
71 (Ben-David et al., 2010; Huang et al., 2021; Kim et al., 2008). However, this strategy
72 often suffers the decreased water permeance, which might result in higher energy
73 consumption (Guo et al., 2016; Guo et al., 2017a; Yang et al., 2019a). Similarly, thin
74 film nanocomposite (TFN) membranes also show limited enhancement of water/OMPs
75 selectivity due to the agglomeration of nanofillers (Dai et al., 2019; Lau et al., 2015;
76 Yang et al., 2020a; Zhao et al., 2019).

77 In recent years, a novel type of thin-film nanocomposite membranes with interlayered
78 structure (TFNi) has been reported to exhibit significantly enhanced water permeance
79 and rejection of solutes compared to conventional TFC membranes (Gao et al., 2019;
80 Karan et al., 2015; Sarango et al., 2018; Yang et al., 2020a; Yuan et al., 2019). The
81 interlayer, often made of nanoparticles (e.g., Ag nanoparticles, carbon nanotubes,
82 metal-organic frameworks, covalent organic frameworks) or interfacial coating
83 materials (e.g., polydopamine, iron-tannic acid), could optimize the water transport
84 pathways and facilitate better formation of polyamide layer (Li et al., 2015; Long et al.,

85 2022; Sarango et al., 2018; Yang et al., 2019b; Yang et al., 2020b; Yang et al., 2018;
86 Yuan et al., 2019). However, most of the research merely focused on water permeance
87 and salt rejection. There lacks an in-depth study of applying TFNi membranes to
88 remove various types of OMPs, which is a critical issue for the membrane-based water
89 treatment technology. Although it is reasonable to expect a better water/OMPs
90 selectivity considering the proven effects of interlayer in enhancing the membrane
91 water/salt selectivity, the specific role of interlayer in affecting the removal of OMPs
92 still needs systematic investigation.

93 In this study, we used iron-tannic acid, a highly selective material to OMPs (Guo et al.,
94 2019), as an interlayer of the TFNi membrane. The membrane properties such as
95 morphology, structures, chemical composition, surface charge, contact angle, and pore
96 size distribution were characterized. We also evaluated the membrane separation
97 performance including water permeance and rejection of salt, neutral molecules, and
98 OMPs (i.e., EDCs, PhACs, and PFASs). The major objectives are (1) to investigate the
99 effectiveness of TFNi membranes in the removal of OMPs of varied characteristics (e.g.,
100 size, hydrophobicity, charge) and (2) to understand how the interlayer tailors the
101 membrane properties and thereby influences the interactions between OMPs and
102 membranes. Our work may provide fundamental insights of designing high-
103 performance NF membranes targeting OMPs removal.

104 **2. Materials and methods**

105 **2.1. Materials and chemicals**

106 In this work, chemicals were of analytical grade unless specific description. All water-
107 based solution was prepared with Milli-Q water. Polysulfone (PSf, pellets,
108 MW~35,000), N,N-dimethylformamide (DMF), piperazine (PIP), trimesoyl chloride
109 (TMC) were purchased from Sigma-Aldrich. These chemicals, together with n-hexane
110 (HPLC grade, 95%, RCI Labscan), iron (III) chloride anhydrous (FeCl₃, Dieckmann),
111 tannic acid (TA, Macklin), tris (hydroxymethyl) aminomethane (Tris, Acros),
112 hydrochloric acid (HCl, 37 wt%, VWR) were used to fabricate membranes. Sodium
113 sulfate anhydrous (Na₂SO₄) and sodium chloride (NaCl) were purchased from
114 Dieckmann. Potassium chloride (KCl, 99.99%, Aladdin) was used to prepare
115 background electrolyte in zeta potential measurement. Neutral molecular probes (**Table**
116 **1**) used to determine membrane pore size were glycerol (Dieckmann), D-glucose (Uni-
117 Chem), D-(+)-sucrose (Dieckmann), D-(+)-raffinose pentahydrate (Sigma-Aldrich), and
118 dextran (D-Chem). OMPs investigated in this work included four EDCs, four PhACs,
119 and five PFASs (**Table 1**). Methylparaben (MP), ethylparaben (EP), propylparaben (PP),
120 benzylparaben (BP), sulfadiazine (SDZ), sulfamethoxazole (SMX), sulfamethazine
121 (SMZ), and trimethoprim (TMP) were purchased from Sigma-Aldrich. PFASs were
122 perfluorobutyric acid (PFBA, Alfa Aesar), potassium nonafluoro-1-butanesulfonate
123 (PFBS potassium salt, TCI), perfluoro (2-methyl-3-oxahexanoic) acid (Genx, Macklin),
124 sodium perfluorooctanoate (PFOA sodium salt, Alfa Aesar), potassium
125 perfluorooctanesulfonate (PFOS potassium salt, Sigma-Aldrich). Methanol (VWR)
126 was used to prepare 1 g/L OMPs stock solution. Methanol (Optima LC/MS, Fisher
127 Chemical), acetonitrile (Optima LC/MS, Fisher Chemical), formic acid (MS grade,
128 Waters), and ammonium acetate (TCI) were used to prepare LC-MS/MS mobile phase.

129 **2.2. Membrane fabrication**

130 The pristine substrate was synthesized via phase inversion method with a cast solution
131 of 15 wt% PSf in DMF following our previous work (Ma et al., 2017). To coat interlayer
132 onto PSf substrate, 1.2 g/L FeCl_3 solution was firstly poured onto substrate and then
133 dumped after 3 min. Droplets attached on the substrate surface were rolled off by a
134 PTFE roller. 4 g/L tannic acid (dissolved in Tris, pH 8.5 adjusted by HCl) was
135 subsequently poured onto substrate, reacting for 1 min before rinsed several times with
136 deionized water. To fabricate the TFNi membrane, the modified substrate was firstly
137 immersed in PIP solution (0.2 wt% in water) for 3 min. After removing extra PIP with
138 PTFE roller, the membrane was immediately soaked in TMC (0.1 wt% in hexane) to
139 conduct interfacial polymerization (IP) reaction. After reacting for 1 min, the membrane
140 was thoroughly rinsed with hexane and heat-cured in 60 °C oven for 5 min. The TFC
141 membrane was fabricated in the same procedures of IP with pristine PSf substrate.

142 **2.3. Membrane characterization**

143 The microscopic morphology of membrane surface was characterized by a field
144 emission scanning electron microscope (FE-SEM, S-4800, Hitachi, Japan) with an
145 accelerating voltage of 5 kV. The cross-sectional images were obtained from a
146 transmission electron microscope (STEM, Talos F200X, Thermo Scientific) at an
147 accelerating voltage of 200 kV. The element composition of membrane cross-section
148 was examined by energy-dispersive X-ray spectroscopy (EDX) equipped in the STEM.
149 The membrane surface roughness was measured by atomic force microscope (AFM,
150 Dimension Icon, Bruker, Germany) and the data were processed by using software
151 Gwyddion. Element composition of the membrane top surface was determined by using
152 an X-ray photoelectron spectrometer (XPS, K-Alpha, Thermo Scientific). The survey
153 spectra were acquired at a pass energy of 150 eV and energy step size of 1 eV. For high-

154 resolution spectra, the pass energy and energy step size were 50 eV and 0.1 eV,
155 respectively. Software Avantage was used to process XPS data. The membrane
156 functional groups were analyzed by using attenuated total reflection Fourier transform
157 infrared (ATR-FTIR) spectroscopy (Nicolet iS5 FTIR Spectrometer with iD5 ATR
158 Accessory, Thermo Scientific). The water contact angle was measured by using an
159 optical tensiometer (Attension Theta, Biolin Scientific, Sweden). The zeta potential of
160 membrane surface was measured by an electrokinetic analyzer (SurPASS 3, Anton Paar,
161 Austria) over a pH range from 3 to 10 with 1 mM KCl as background electrolyte. The
162 solution temperature was kept at 25 °C and pH was adjusted by adding HCl or KOH.

163 **2.4. Filtration experiments**

164 The filtration experiments were performed in a bench-scale cross-flow filtration setup
165 (**Fig. S1**). Feed solution (25 °C, pH 6.5–7.5) was composed of 1 g/L Na₂SO₄ for salt
166 filtration experiments and 200 mg/L single neutral solute for the neutral molecule
167 filtration tests. Membranes were pre-compacted at 5 bar with a crossflow velocity of
168 16.7 cm/s for two hours before sample collection. The conductivity proportional to salt
169 concentration was measured by a portable water tester (Ultrameter II 6PFC^E, Myron L).
170 A total organic carbon (TOC) analyzer (TOC-LCPH/CPN, Shimadzu, Japan) was used to
171 quantify the concentration of neutral molecules. All the experiments were repeated at
172 least three times. Water flux J_V (L m⁻² h⁻¹), water permeance A (L m⁻² h⁻¹ bar⁻¹), solute
173 rejection R (%), and solute permeance B (L m⁻² h⁻¹) were calculated as below:

174
$$J_V = \frac{\Delta m}{S \times \Delta t \times \rho} \quad (1)$$

175
$$A = \frac{J_V}{\Delta p - \Delta \pi} \quad (2)$$

176
$$R = (1 - \frac{C_p}{C_f}) \times 100\% \quad (3)$$

177
$$B = (\frac{1}{R} - 1) \times J_V \quad (4)$$

178 where Δm (kg) is the amount of permeate collected during a period of Δt (h), S (m²) is
179 the effective filtration area, ρ (kg L⁻¹) is the density of water, Δp (bar) is the applied
180 pressure, $\Delta\pi$ (bar) is the osmotic pressure across membrane, C_f and C_p refer to the solute
181 concentration of feed and permeate, respectively.

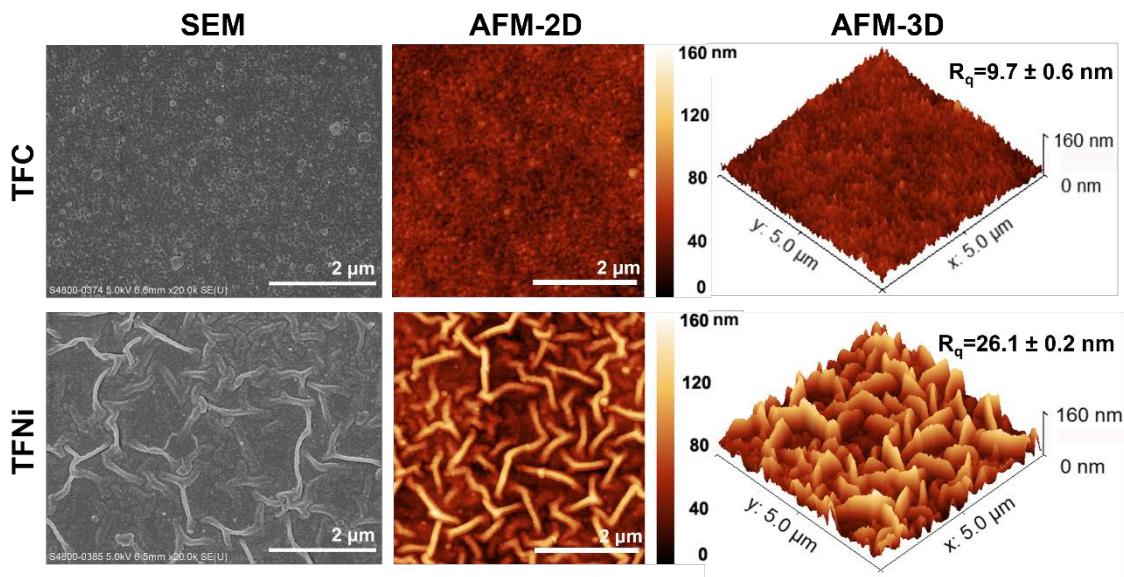
182 **2.5. OMPs analysis method**

183 A cocktail of all OMPs with each compound at a concentration of 200 µg/L was used
184 for OMPs rejection tests. 600 mg/L NaCl was added to simulate the typical ionic
185 strength relevant to water reuse. The feed solution was kept at 25 °C, pH 6.5–7.5.
186 Membranes were compacted at 5 bar with a crossflow velocity of 16.7 cm/s for six
187 hours in the presence of OMPs to reach stable rejection performance (**Fig. S2**) before
188 sample collection. The concentration of OMPs was analyzed by using liquid
189 chromatography with tandem mass spectrometry (LC-MS/MS, 1290 Infinity, Agilent;
190 3200 QTRAP, AB SCIEX, Singapore). The reversed-phase column (ZORBAX Eclipse
191 Plus C18, Agilent) was 2.1×50 mm in dimension with particle size of 1.8 µm. Detailed
192 LC-MS/MS settings can be found in our previous work (Guo et al., 2017b; Guo et al.,
193 2021b). OMPs rejection (R), and OMPs permeance (B) were calculated according to
194 **Eqs. (3) and (4)**.

195 **Table 1**

196 Physicochemical properties of organic micropollutants and molecular probes.

Classification	Compound	Formula	Molecular weight (Da)	Stokes radius ^a (nm)	pK _a ^b	Log K _{ow} ^b
Hydrophobic endocrine-disrupting chemicals (EDCs)	Methylparaben (MP)	C ₈ H ₈ O ₃	152.2	0.300	8.4	2.0
	Ethylparaben (EP)	C ₉ H ₁₀ O ₃	166.2	0.326	8.3	2.4
	Propylparaben (PP)	C ₁₀ H ₁₂ O ₃	180.2	0.351	8.2	2.9
	Benzylparaben (BP)	C ₁₄ H ₁₂ O ₃	228.2	0.395	8.2	3.6
Hydrophilic pharmaceutically active compounds (PhACs)	Sulfadiazine (SDZ)	C ₁₀ H ₁₀ N ₄ O ₂ S	250.3	0.398	6.4	-0.1
	Sulfamethoxazole (SMX)	C ₁₀ H ₁₁ N ₃ O ₃ S	253.3	0.376	1.6, 5.7	0.9
	Sulfamethazine (SMZ)	C ₁₂ H ₁₄ N ₄ O ₂ S	278.3	0.439	2.6, 7.6	0.1
	Trimethoprim (TMP)	C ₁₄ H ₁₈ N ₄ O ₃	290.3	0.466	3.2, 6.8	0.9
Negatively charged perfluoroalkyl substances (PFASs)	Perfluorobutyric acid (PFBA)	C ₄ HF ₇ O ₂	214.0	0.280	0.4	2.2
	Perfluorobutane sulfonic acid (PFBS)	C ₄ HF ₉ O ₃ S	300.1	0.337	0.1	2.3
	Perfluoro (2-methyl-3-oxahexanoic) acid (Genx)	C ₆ HF ₁₁ O ₃	330.0	0.359	2.8	3.6
	Perfluorooctanoic acid (PFOA)	C ₈ HF ₁₅ O ₂	414.1	0.415	1.3	1.6
	Perfluorooctane sulfonic acid (PFOS)	C ₈ HF ₁₇ O ₃ S	500.1	0.460	0.1	3.1
	Glycerol	C ₃ H ₈ O ₃	92.1	0.224	14.4	-1.8
Neutral hydrophilic molecules	Glucose	C ₆ H ₁₂ O ₆	180.1	0.323	12.9	-2.6
	Sucrose	C ₁₂ H ₂₂ O ₁₁	342.3	0.478	Solution is neutral	-3.7
	Raffinose	C ₁₈ H ₃₂ O ₁₆	504.0	0.585	to litmus	-5.1
	Dextran	C ₃₆ H ₆₂ O ₃₁	990.9	0.752		-13.0


197 ^a Stokes radius was calculated by using Wilke-Chang equation and Stokes-Einstein equation (Deen, 1987).199 ^b The dissociation constant (K_a) and octanol-water partitioning coefficient (K_{ow}) were
200 obtained from references (Guo et al., 2019; Guo et al., 2021b; Huang et al., 2021;
201 Steinle-Darling and Reinhard, 2008; Wang et al., 2015) and U.S. National Library of
202 Medicine (<https://pubchem.ncbi.nlm.nih.gov/>). The pK_a indicates charge characteristics
203 and log K_{ow} suggests hydrophobicity.

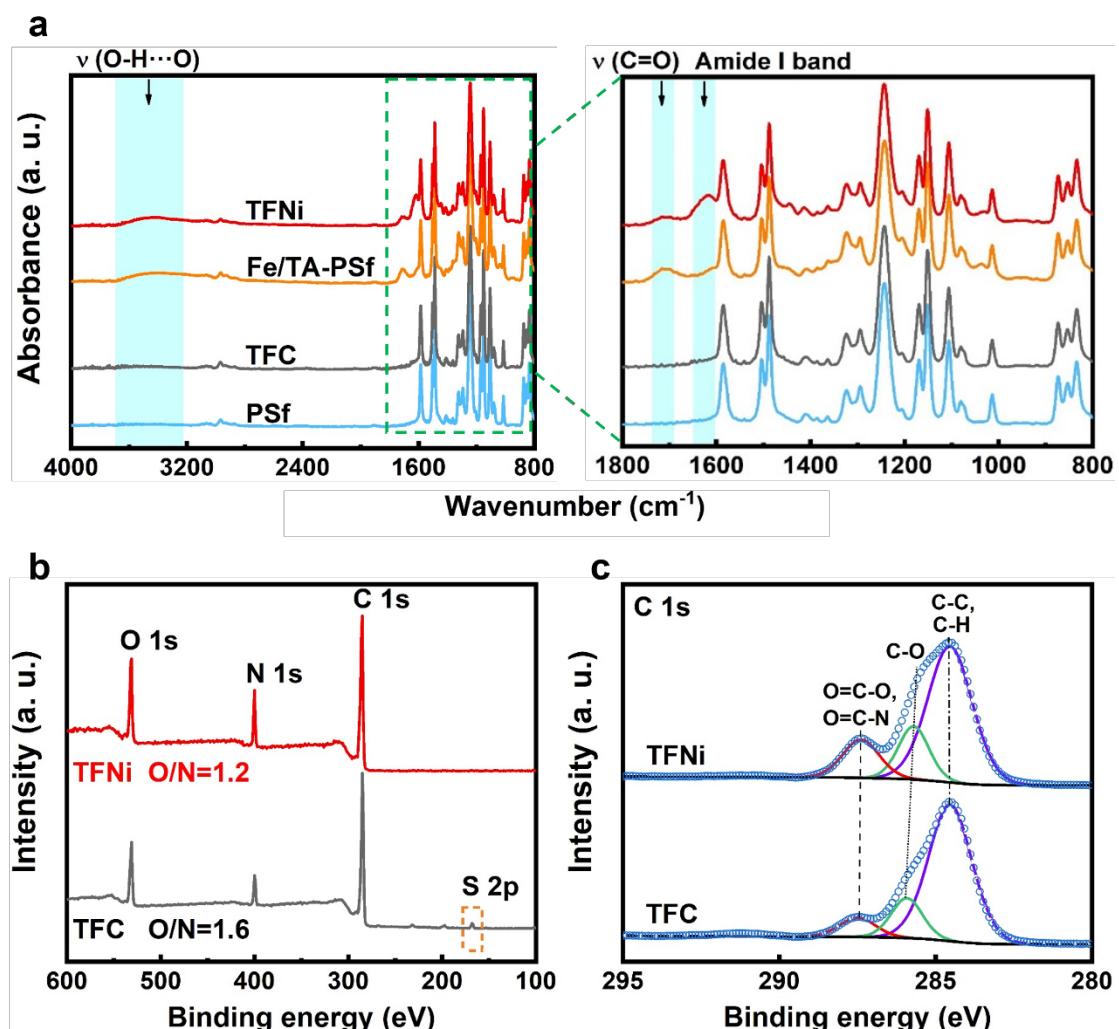
204 **3. Results and discussion**


205 **3.1. Characterization results**

206 The membrane microscopic morphology is shown in **Fig. 1**, the TFC membrane
207 exhibited nodular surface morphology, which is typical for most PIP/TMC-based NF
208 membranes. After introducing interlayer, the TFNi membrane presented strip-like
209 morphology with surface roughness significantly increased from 9.7 ± 0.6 nm to 26.1 ± 0.2 nm. This might be induced by the change of substrate physicochemical
210 properties—the Fe/TA coated substrates possessed smaller pore size (**Fig. S3**),
211 increased surface roughness (**Fig. S3**), and improved hydrophilicity (**Fig. S4a**), which
212 may alter the interfacial polymerization conditions and thereby affect the morphology
213 of polyamide layer (Yang et al., 2020a; Yuan et al., 2020; Zhai et al., 2018).

215 Apart from morphology difference, the microscopic structure also varied between TFC
216 and TFNi membranes. **Fig. 2** shows the TFNi membrane possessed distinct layered
217 structure—a crumpled polyamide layer with thickness of 20 ± 5 nm on the top (**Fig. 2a-c**),
218 an interlayer continuously spreading in the middle (**Fig. 2d**), and a porous
219 polysulfone substrate at the bottom (**Fig. 2e**). In contrast, the STEM-EDX image of
220 TFC membrane was less distinct (**Fig. S5**), and the color of polyamide layer appeared
221 lighter in the STEM images (**Fig. S6**). These observations indicate the TFC membrane
222 is probably looser than TFNi membrane (Tang et al., 2007a; Zhou et al., 2022), which
223 is also confirmed by ATR-FTIR and XPS deconvolution results that will be presented
224 in the next sub-section. In addition, we further notice that some nanovoids existed
225 between the interlayer and polyamide film (**Fig. 2b**), which is likely to favor higher
226 water permeance owing to self-guttering effect (Hu et al., 2023).

227
228 **Fig. 1.** SEM images, AFM-2D plane view, and AFM-3D view of the top surface for
229 TFC and TFNi membranes. The roughness R_q value is the root mean square average of
230 height deviations from the mean image data plane. Standard deviation was obtained
231 from three independently scanned images.



232
233 **Fig. 2.** (a) STEM cross-section image and (b) STEM-EDX elemental mapping of TFNi
234 membrane with (c) element nitrogen (N, blue) as an indicator for polyamide layer, (d)
235 iron (Fe, red) for interlayer, and (e) sulfur (S, yellow) for polysulfone substrate.
236 Thickness of polyamide layer as denoted in yellow was measured by software Image J.
237 Standard deviation was obtained by measuring at least ten positions.

238 The membrane chemical composition was characterized by ATR-FTIR and XPS. In
239 ATR-FTIR spectra (**Fig. 3a**), the stretching vibration peaks of hydroxyl groups (~3400
240 cm⁻¹) and carbonyl groups (1716 cm⁻¹) (Heredia-Guerrero et al., 2014) appeared
241 additionally in Fe/TA modified substrate compared to the pristine polysulfone substrate,
242 confirming the successful coating of interlayer. The amide I band (~1615 cm⁻¹) (Tang
243 et al., 2009) appeared more intense in the spectra of TFNi membrane than TFC
244 membrane possibly due to a relatively higher density of polyamide. It is worthwhile
245 note that the detection depth of FTIR ranges to several micrometers, thus the functional
246 groups from substrate could be well detected, which may dilute the signal of amide I
247 band especially when the polyamide layer is loose (Yang et al., 2022). Surprisingly,
248 sulfur—a typical element from the substrate, was detected in TFC membrane by XPS
249 of which the detection depth is normally less than 10 nm from the top surface (**Fig. 3b**).
250 This potentially indicates the distribution of polyamide in TFC membrane was non-
251 uniform, such that at some spots the polyamide might be too thin to cover the substrate
252 completely, leading to the detection of sulfur from substrate. Moreover, the atomic ratio
253 of oxygen over nitrogen (O/N) of TFNi membrane was smaller than TFC membrane,
254 suggesting a higher cross-linking degree of polyamide in TFNi membrane, which is
255 beneficial to improve separation performance.

256 In the high-resolution XPS spectra of C 1s (**Fig. 3c**), the normalized intensity of C=O
257 deconvoluted peak of C1s at ~287.6 eV was higher in TFNi membrane compared to
258 TFC membrane (see detailed data in **Table S1**). Since the detection depth of XPS is
259 normally less than 10 nm (Tang et al., 2007b) which is much lower than the thickness
260 of polyamide layer (**Table 2**), C=O is mainly attributed to the amide bond (O=C–N) or
261 the hydrolysis product (O=C–O) of TMC that constitutes polyamide layer. Accordingly,
262 a higher intensity of C=O potentially means higher content of polyamide on membrane

263 surface. This agrees well with previous STEM-EDX and ATR-FTIR results.
 264 The membrane surface charge for the TFC and TFNi membranes was negative and
 265 almost identical at pH~7 (Fig. S4b). This surface property affects the electrostatic
 266 repulsion toward the negatively charged PFASs as will be discussed in **Section 3.3**.
 267 Besides, the TFC membrane had a water contact angle of $59.4 \pm 9.3^\circ$ whereas that of
 268 TFNi membrane was $27.3 \pm 3.9^\circ$ (Table 2). Since the hydrophilic surface of the Fe/TA
 269 interlayer is completely blocked by the polyamide layer, such reduced contact angle
 270 might be partly related with the crumpled morphology of TFNi membrane.

271 **Fig. 3.** (a) ATR-FTIR spectra of NF membranes and their substrates. Spectra differences
 272 are highlighted and annotated with peak type where v stands for stretching vibration
 273 peaks. (b) XPS survey spectra of TFC and TFNi membranes. Element composition was
 274

275 identified by software Avantage. The atomic ratio of oxygen over nitrogen (O/N) was
276 obtained from high-resolution XPS scanning results of O 1s and N 1s. (c) High-
277 resolution XPS spectra of C 1s with deconvoluted peaks. Peak assignment is annotated
278 according to literature (Do et al., 2012; Tang et al., 2007b; Wilson and Langell, 2014).
279 Peak percentage can be found in **Table S1**.

280 **3.2. Separation performance**

281 The TFNi membrane exhibited nearly tripled water permeance and significantly higher
282 Na_2SO_4 rejection compared with the TFC membrane (**Table 2**). Such enhanced
283 performance of TFNi membrane has been extensively documented in literature (**Table**
284 **3**), with a great deal of discussion about the effects of interlayer in optimizing water
285 transport pathways and favoring better formation of polyamide rejection layer (Dai et
286 al., 2020; Gao et al., 2019; Li et al., 2015; Yang et al., 2020b; Zhang et al., 2016). In
287 this study, the increase of water permeance can be ascribed to (1) the gutter effect of
288 interlayer that shortens lateral distance of water transport inside the less permeable
289 polyamide layer (Long et al., 2022; Wang et al., 2022; Yang et al., 2020b), (2) self-
290 guttering effect of nanovoids contained in TFNi membrane that optimizes water
291 transport pathways (Hu et al., 2023), and (3) thinner and crumpled polyamide layer
292 which may provide more effective filtration area with less resistance (Shao et al., 2022;
293 Tan et al., 2018). Schematic illustrations of these effects are presented in **Table 3**. In
294 the current study, the gutter effect plays a major role in enhancing water permeance (see
295 details in **Supplementary materials S4**), which is consistent with existing modeling
296 (Hu et al., 2023; Wang et al., 2022) and experimental studies (Long et al., 2022; Yang
297 et al., 2020b).

298 In the filtration experiment of neutral hydrophilic molecules, we found the TFNi
299 membrane displayed higher rejection (**Fig. 4**). Based on the rejection value, the
300 membrane pore size can be determined with the assumption of log-normal distribution.
301 The mean pore radius of TFNi membrane was estimated at 0.61 ± 0.03 nm whereas that
302 of TFC membrane was 0.79 ± 0.08 nm, exhibiting a larger mean pore size with wider
303 distribution (**Fig. 4**). As a result of such distinct pore size difference, the molecular
304 weight cut-off (MWCO) of TFNi membrane was 270 Da, which was smaller than that

305 of TFC membrane (504 Da) (**Table 2**). Recalling the characterization results that show
306 the TFNi membrane possessed a denser and better cross-linked polyamide layer, this
307 separation performance toward neutral molecules further confirms the role of interlayer
308 in tuning the pore size of polyamide layer, which may help enhance size exclusion
309 effects in retaining OMPs (see OMPs rejection in **Section 3.3**).

310 Besides the enhanced separation performance as mentioned above, we also found the
311 extent of such enhancement was dependent on the heat treatment time. Specifically, the
312 water permeance and Na_2SO_4 rejection by TFC membrane decreased dramatically as
313 the heat treatment prolonged whereas the separation performance of TFNi membranes
314 remained almost the same (**Fig. S7a**). That is, the presence of interlayer has improved
315 the membrane endurance to heat-curing process, making it more competitive to be
316 applied in real production line where heat treatment is widely adopted. It is worthwhile
317 to note that even under short heat curing time (i.e., 0 min or 2 min), some OMPs
318 rejection was still enhanced by TFNi membrane (**Fig. S8**), indicating the role of
319 interlayer in facilitating better formation of polyamide layer which will be discussed in
320 **Section 3.3**. Furthermore, when the bare PSf substrate and Fe/TA-PSf substrate
321 received heat treatment in 60 °C oven for designated time, the water permeance of PSf
322 substrate dramatically decreased whereas that of the Fe/TA-PSf substrate was
323 comparable to the original state (i.e., substrate without any heat treatment) (**Fig. S7b**).
324 One possible explanation for these observations is that the substrate structure might be
325 deformed during heat-curing process, which might greatly increase the water transport
326 resistance from both the substrate and the polyamide layer due to pore shrinkage and
327 severe funnel effect (Wang et al., 2022; Zhan et al., 2020a). However, the interlayer-
328 coated substrate, endowed with rougher surface and smaller pore size (**Fig. S3**), might
329 resist the potential structural deformation so that avoid introducing additional resistance

330 to water, thus maintaining the water permeance (see schematic illustration in **Table 3**).

331 **Table 2**

332 Membrane properties.

	Water permeance ^a (L m ⁻² h ⁻¹ bar ⁻¹)	Na ₂ SO ₄ rejection ^a (%)	MWCO ^b (Da)	Mean pore radius ^b (nm)	Thickness of polyamide layer ^c (nm)	Contact angle ^d (°)
TFC	7.4 ± 4.3	80.0 ± 11.4	504	0.79 ± 0.08	36 ± 10	59.4 ± 9.3
TFNi	18.8 ± 3.4	94.4 ± 3.5	270	0.61 ± 0.03	20 ± 5	27.3 ± 3.9

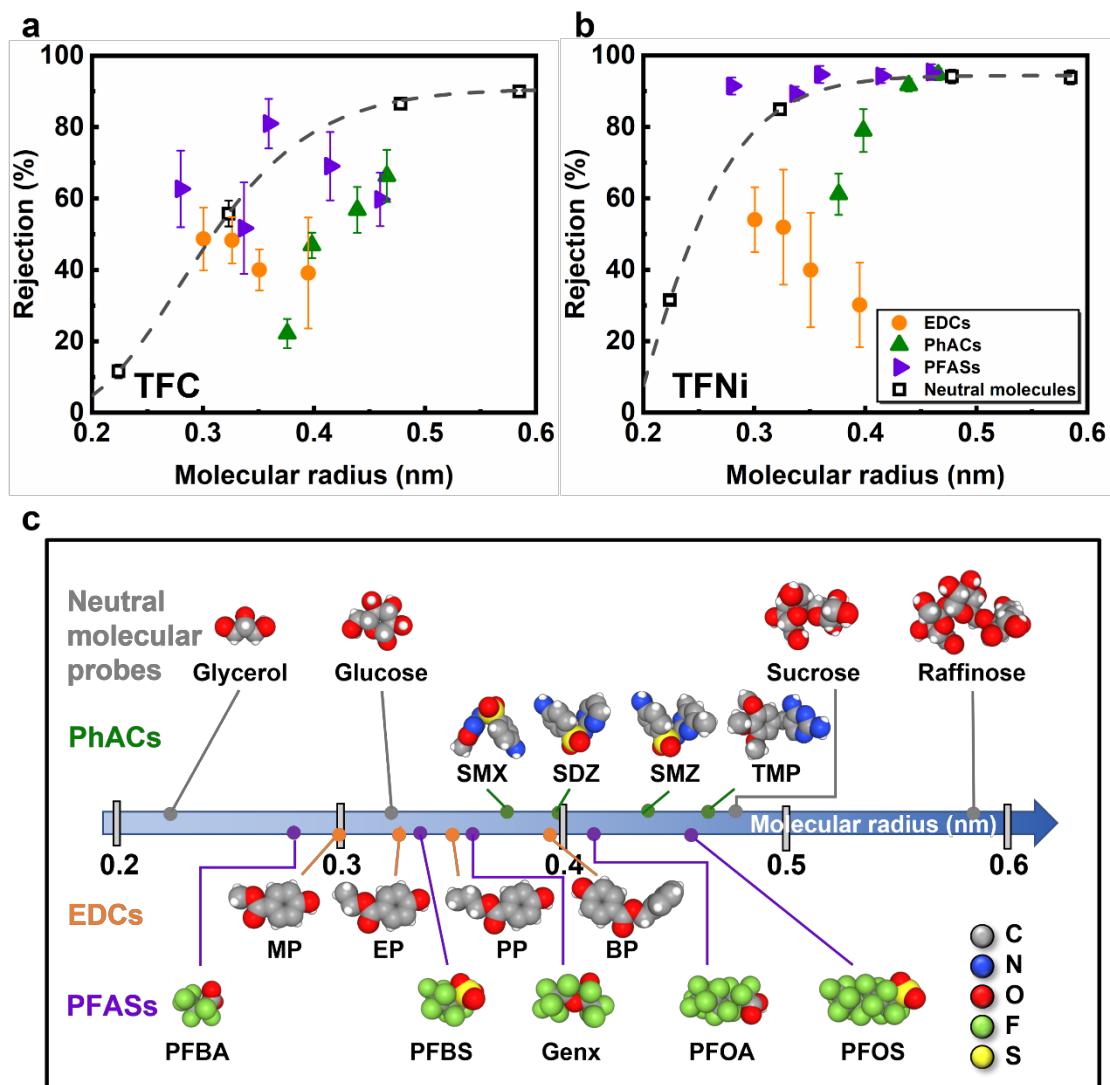
333 ^a Data were measured by using 1000 mg/L Na₂SO₄ as feed solution (25 °C, pH 7.0 ±
334 0.5) under the applied pressure of 5 bar at crossflow velocity of 16.7 cm/s. Experiments
335 were repeated at least three times.

336 ^b The molecular weight cut-off (MWCO) was determined by the neutral solute of which
337 the rejection was 90%. See estimation of pore size in **Supplementary materials S6**.

338 ^c Thickness of polyamide layer was measured from STEM image by software Image J
339 at more than ten different positions (**Fig. S6**).

340 ^d Water contact angle was obtained from at least five independent measurements.

341
342 **Fig. 4.** Rejection of neutral solutes by TFC and TFNi membranes as a function of
343 molecular radius. The solutes were glycerol, glucose, sucrose, raffinose, and dextran.
344 The data points were obtained from at least three measurements. The dash lines were
345 established assuming log-normal distribution of membrane pore size. Inset is the
346 distribution of pore radius derived from the rejection results of neutral solutes. The
347 mean pore radius and variance are also annotated. Pore size estimation method is
348 described in **Supplementary materials S6**.

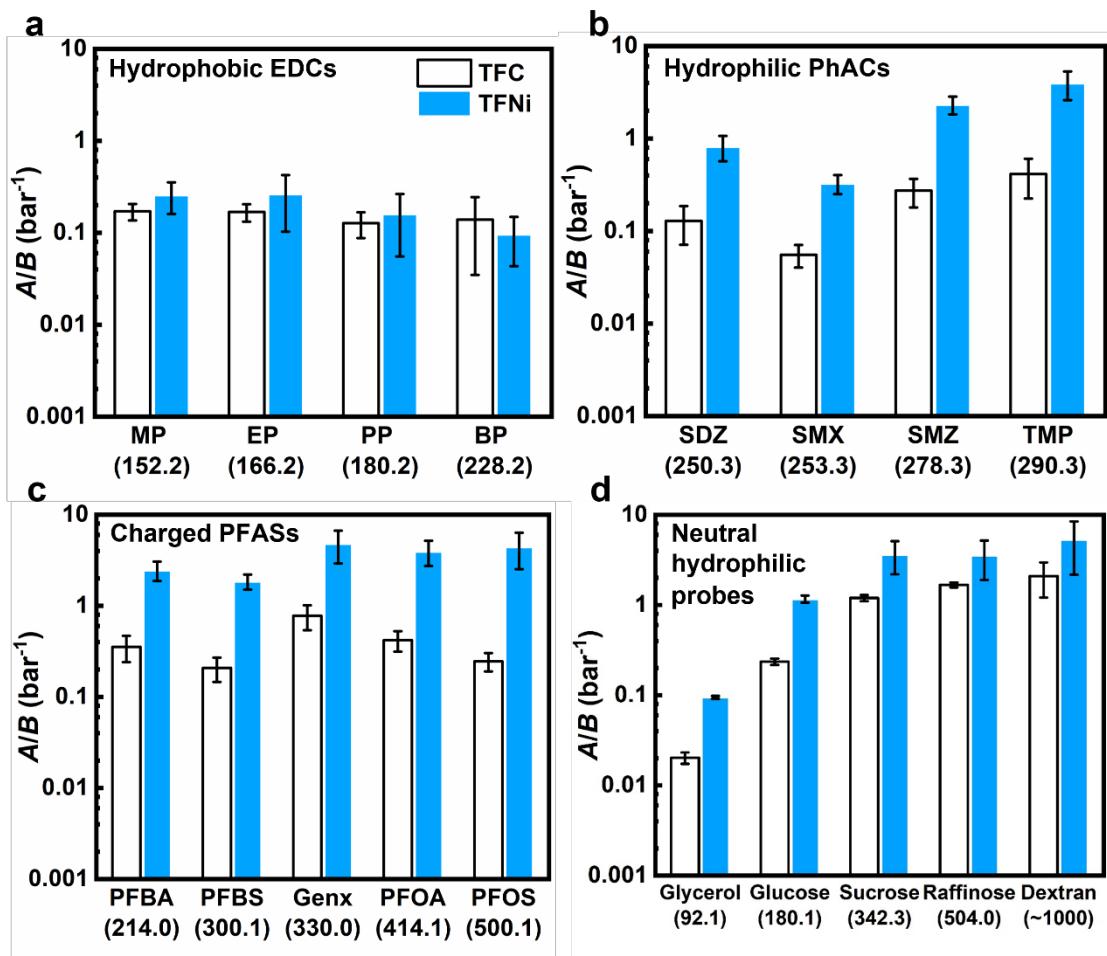

349 **3.3. Rejection and selectivity of OMPs**

350 **Fig. 5a** and **5b** present the rejection of OMPs by TFC and TFNi membranes as a
351 function of Stokes radius of solutes. The dash line is established by fitting the rejection
352 data of neutral molecular probes assuming log-normal distribution of membrane pore
353 size. Since the removal of these neutral hydrophilic surrogates by NF membrane is
354 governed by size exclusion (Bellona et al., 2004; Yang et al., 2017), here we term the
355 fitted curve as the size-exclusion (SE) curve. Note that the SE curve of TFNi membrane
356 was generally higher than TFC membrane as a result of smaller pore size (**Fig. 4**). Such
357 enhanced size exclusion effects also partially account for the improved rejection of
358 neutral hydrophilic PhACs and charged PFASs by TFNi membrane, as steric hindrance
359 is confirmed to be one of the major factors influencing the rejection of these two types
360 of OMPs by tight membranes (Nghiem et al., 2005; Tang et al., 2006; Wang et al., 2021).
361 However, the rejection of OMPs can also affected by additional mechanisms such as
362 charge interaction and hydrophobic interaction. Interesting results were found when we
363 compared the removal trend of OMPs against neutral molecular probes. For TFC
364 membrane, the rejection data of PFASs were scattered around the SE curve whereas
365 other pollutants fell below the line (**Fig. 5a**). For TFNi membrane, the rejection data of
366 PFASs were slightly above the SE curve whereas those of EDCs and some PhACs were
367 lower (**Fig. 5b**). Such deviation from the SE curve implies there might exist multiple
368 mechanisms influencing the retention of OMPs apart from size exclusion effects. For
369 example, the hydrophobic interactions between solutes and membranes might account
370 for the low rejection of EDCs. As shown in **Fig. S9**, the sorption amount of hydrophobic
371 EDCs onto membranes was generally higher than other hydrophilic compounds
372 probably due to hydrophobic interactions. Such high affinity to membrane would make
373 it easier for EDCs to transport across membrane via convection and diffusion, resulting

374 in lower rejection (Guo et al., 2016; Nghiem and Schäfer, 2002). According to **Fig. S10**,
375 the sorption and passage of all four EDCs increase with hydrophobicity (expressed as
376 K_{ow}) instead of molecular weight, confirming the presence of hydrophobic interactions
377 that has potentially jeopardized the rejection of hydrophobic OMPs. Nevertheless, the
378 electrostatic repulsion effects might counteract such unfavorable influence when the
379 solute is charged and the membrane pore size is sufficiently small compared to the
380 solute. For instance, as shown in **Fig. 5b**, the rejection of negatively charged PFASs by
381 TFNi membrane was slightly higher than the SE curve including the relatively
382 hydrophobic PFOA and PFOS (see K_{ow} in **Table 1**). Since the surface charge of TFNi
383 membrane is also negative, the electrostatic repulsion takes place to diminish the
384 approach of PFASs to the membrane surface, thus reducing the adsorption onto, and
385 subsequent partitioning into membrane, giving rise to higher rejection of PFASs than
386 those uncharged molecular probes (Steinle-Darling and Reinhard, 2008; Verliefde et al.,
387 2008). For the TFC membrane with negative surface charge similar to TFNi membrane
388 (**Fig. S4b**), the electrostatic interactions also play a role in making the rejection of
389 several PFASs higher than neutral molecules (**Fig. 5a**). However, the rejection of PFOA
390 and PFOS fell below the SE curve, indicating the electrostatic repulsion was weaker
391 than hydrophobic interactions. This is likely attributed to the large pore size of TFC
392 membrane that might reduce electrostatic repulsion (Wang and Lin, 2021) and
393 meanwhile increase the internal pore sorption of hydrophobic OMPs (Semião and
394 Schäfer, 2013) (see the higher sorption of PFOA and PFOS by TFC membrane
395 compared to TFNi membrane in **Fig. S9**). To better understand the combined effects of
396 size exclusion and charge interaction, Yang et al. (Yang et al., 2017) introduced an
397 effective molecular size (r_{eff}): $r_{eff} = r_s + k \cdot A_d$, where r_s is the Stokes radius accounting
398 for size exclusion effect and k is a proportionality constant accounting for electrostatic

399 interaction through the Debye length Λ_d . According to these authors, the overall
400 rejection is governed by the ratio of the effective molecular size over the membrane
401 pore size.

402 In addition to the size exclusion effects, hydrophobic interactions, and electrostatic
403 interactions, the rejection of OMPs by TFC and TFNi membranes could also be
404 influenced by structural effects. For example, the rejection of two PhACs (i.e., SMX
405 and SDZ) was apparently lower than the surrogates with similar properties of size,
406 charge, and hydrophilicity. This might be ascribed to the structural difference as
407 displayed in **Fig. 5c** that PhACs have cylindrical/linear structure whereas the surrogates
408 possess near-spherical shape. Since the Stokes radius is calculated assuming sphere
409 solutes (Deen, 1987), the actual size of PhACs would differ from neutral molecule
410 probes even of the same Stokes radius. Moreover, the SMX and SDZ are relatively
411 polar (Nghiem et al., 2005). It is therefore easier for these two linear PhACs to usher
412 through the membrane pores with polar interactions, resulting in lower rejection. In
413 contrast to the linear flexible molecules SMX and SDZ, PFASs such as PFOS and PFOA
414 have a rigid backbone despite their linear structure, which might explain their better
415 rejections compared to SMX and SDZ. In addition, the negatively charged PFASs also
416 benefit from the electrostatic repulsion by the negatively charged membrane surface as
417 discussed earlier.



418
419 **Fig. 5.** Rejection of EDCs, PhACs, PFASs, and neutral molecules by (a) TFC membrane
420 and (b) TFNi membrane correlated with solute molecular radius. Dash lines represent
421 the rejection trend of neutral molecules fitted by using log-normal cumulative density
422 function. (c) Solute properties including structural and size information. The 3D
423 structures were obtained from U.S. National Library of Medicine
424 (<https://pubchem.ncbi.nlm.nih.gov/>). For OMPs rejection experiments, a cocktail of
425 three types of OMPs were added (200 μ g/L, pH 7 ± 0.5 , 25 °C) with 600 mg/L NaCl as
426 background. For neutral molecules filtration experiment, feed solution contained single
427 solute (200 mg/L, pH 7 ± 0.5 , 25 °C). All the measurements were triplicated under the
428 applied pressure of 5 bar at crossflow velocity of 16.7 cm/s.

429 Besides the interactions between OMPs and membranes as discussed before, to
430 investigate whether TFNi membrane has enhanced the OMPs selectivity and how it
431 works, we further compared the water-solute selectivity (A/B) of TFC and TFNi
432 membranes (**Fig. 6**). We found the selectivity of EDCs (**Fig. 6a**) remained almost
433 unchanged whereas that of PhACs (**Fig. 6b**), PFASs (**Fig. 6c**), and neutral molecular
434 probes (**Fig. 6d**) was significantly improved after incorporating interlayer. To
435 understand whether the selectivity of the interlayer itself plays an important role in the
436 rejection behavior of the TFNi membrane, we also compared the selectivity of TFC and
437 TFNi membranes to that of an Fe/TA layer (**Supplementary materials S10**). Despite a
438 previous work (Guo et al., 2019) showing that the hydrophilic Fe/TA layer has relatively
439 high selectivity against hydrophobic EDCs such as MP, EP, PP, and BP, the TFNi
440 membrane in the current study did not show systematically enhanced rejection of EDCs.
441 This result seems to suggest that the polyamide rejection layer plays a more important
442 role than the Fe/TA interlayer with respect to the rejection of EDCs, although the
443 effectiveness of including a highly selective interlayer deserves further investigation in
444 future studies.

445 Accordingly, in terms of the underlying mechanism, the result presented in **Fig. 6** can
446 be interpreted from two major aspects (see schematic illustration in **Table 3**). For one
447 thing, the water permeance (A) of TFNi membrane has increased due to (1) gutter effect
448 of interlayer, (2) less structural deformation of substrate during heat treatment as
449 demonstrated in **Section 3.2**, and (3) less resistance from the thinner and crumpled
450 polyamide layer containing nanovoids. For another, the solute permeance (B) is greatly
451 affected by the better formed polyamide layer. Specifically, the polyamide layer of
452 TFNi membrane in this study was denser, better cross-linked and possessed smaller
453 average pore size with narrower distribution, which is beneficial to enhance size

454 exclusion effects thus reducing B value. Moreover, as stated previously, the electrostatic
455 repulsion might be enhanced as the membrane pore size becomes smaller, in which case
456 there would be synergic effects on reducing OMPs permeance. This may explain why
457 the selectivity improvement of charged PFASs by TFNi membrane was even higher
458 than that of neutral molecular probes of similar size. However, for those small and
459 hydrophobic EDCs, the selectivity enhancement was not obvious, which indicates the
460 unfavorable hydrophobic interactions were predominant in both TFC and TFNi
461 membranes. According to literature (Guo et al., 2019), the selectivity of these four
462 EDCs by the tight XLE membrane or non-polyamide based nanofiltration membrane
463 was relatively high. In view of this, to further improve the selectivity towards EDCs,
464 optimization of the formula of interlayer might be required to endow the membrane
465 with sufficiently small pore size, or the polyamide chemistry could be substituted with
466 novel materials to suppress hydrophobic interactions with EDCs.

467 **Fig. 6.** Water-solute selectivity (A/B) of (a) hydrophobic EDCs, (b) hydrophilic PhACs,

468 (c) negatively charged PFASs, and (d) neutral hydrophilic molecular probes by TFC
469 and TFNi membranes. In each graph, solutes are listed following the order of molecular
470 weight as annotated in bracket. Error bars were obtained from at least three filtration
471 experiments.

473 **Table 3**

474 Mechanism of enhanced membrane selectivity.

Effects of interlayer on membrane structure/property/performance	Schematic illustration	Influence on membrane selectivity	References
Gutter effect		Increased water permeance.	(Long et al., 2022; Wang et al., 2022; Yang et al., 2020b)
Resisting potential structural deformation of substrate		Increased water permeance.	(Wang et al., 2022; Zhan et al., 2020b)
Thinner and crumpled polyamide layer containing nanovoids		Increased water permeance.	(Hu et al., 2023; Shao et al., 2022; Tan et al., 2018)
Facilitating better formation of polyamide layer		Reduced permeance to PhACs, PFASs, and neutral molecular probes.	(Yang et al., 2020b; Yang et al., 2018; Zhang et al., 2020)

475 **4. Conclusions**

476 In this work, we performed IP reaction with 0.2 wt% PIP and 0.1 wt% TMC onto PSf
477 substrate to fabricate TFC membrane and chose Fe (III)-tannic acid as an interlayer to
478 prepare TFNi membrane. Different from the pristine TFC membrane, the TFNi
479 membrane presented crumpled morphology and its rejection layer was denser, better
480 cross-linked and possessed smaller average pore size with narrower distribution. After
481 introducing interlayer, the water permeance was doubled probably due to gutter effect,
482 smaller water resistance from the thinner and crumpled polyamide layer, and less pore
483 shrinkage of substrate during heat-curing process. We found there were several
484 mechanisms affecting the rejection of OMPs by TFC and TFNi membranes apart from
485 the dominant size exclusion effects. The significant enhancement in water-OMPs
486 selectivity (A/B) of PhACs and PFASs was attributed to the effects of interlayer in
487 increasing membrane permeance to water (A value) and meanwhile decreasing
488 permeance to OMPs (B value) by enhancing size exclusion effects. To further improve
489 the selectivity of water/EDCs, membrane structure and chemistry should be tuned to
490 enhance size exclusion and suppress hydrophobic interactions at the same time.

491 **Acknowledgements**

492 This work was supported by Guangdong-Hong Kong Technology Cooperation Funding
493 Scheme under the Innovation and Technology Fund of Hong Kong (GHP/181/20GD)
494 and Science and Technology Planning Project of Guangdong Province
495 (2021A0505110013). The work was also partially supported by the grant from the
496 Research Grants Council of the Hong Kong Special Administration Region, China
497 (GRF 17201921). We want to extend great gratitude to Dr. Chan Y. F. and Dr. Wong H.
498 M. of the Electron Microscope Unit of the University of Hong Kong (HKU) for the
499 STEM test. We appreciate the training of using LC-MS/MS from Ms. Chu H. of the
500 School of Biological Sciences, HKU. We also thank Mr. Chan T. O. of the Department
501 of Civil Engineering, HKU for making the cross-flow nanofiltration setup.

502 **References**

503 Barbosa, M.O., Moreira, N.F., Ribeiro, A.R., Pereira, M.F., Silva, A.M., 2016. Occurrence and removal
504 of organic micropollutants: An overview of the watch list of EU Decision 2015/495. *Water Res.* 94,
505 257-279.

506 Bellona, C., Drewes, J.E., Xu, P., Amy, G., 2004. Factors affecting the rejection of organic solutes during
507 NF/RO treatment—a literature review. *Water Res.* 38 (12), 2795-2809.

508 Ben-David, A., Bernstein, R., Oren, Y., Belfer, S., Dosoretz, C., Freger, V., 2010. Facile surface
509 modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds.
510 *J. Membr. Sci.* 357 (1-2), 152-159.

511 Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M., Qiang, Z., 2018. Occurrence, removal and risk of
512 organic micropollutants in wastewater treatment plants across China: Comparison of wastewater
513 treatment processes. *Water Res.* 130, 38-46.

514 Dai, R., Guo, H., Tang, C.Y., Chen, M., Li, J., Wang, Z., 2019. Hydrophilic selective nanochannels
515 created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic
516 endocrine-disrupting compounds. *Environ. Sci. Technol.* 53 (23), 13776-13783.

517 Dai, R., Li, J., Wang, Z., 2020. Constructing interlayer to tailor structure and performance of thin-film
518 composite polyamide membranes: A review. *Adv. Colloid Interface Sci.* 282, 102204.

519 Deen, W., 1987. Hindered transport of large molecules in liquid-filled pores. *AIChE J.* 33 (9), 1409-1425.

520 Do, V.T., Tang, C.Y., Reinhard, M., Leckie, J.O., 2012. Degradation of polyamide nanofiltration and
521 reverse osmosis membranes by hypochlorite. *Environ. Sci. Technol.* 46 (2), 852-859.

522 Fane, A., Tang, C., Wang, R., 2011. Treatise on water science. Elsevier, Oxford, pp. 301-335.

523 Fent, K., Weston, A.A., Caminada, D., 2006. Ecotoxicology of human pharmaceuticals. *Aquat. Toxicol.*
524 76 (2), 122-159.

525 Gao, S., Zhu, Y., Gong, Y., Wang, Z., Fang, W., Jin, J., 2019. Ultrathin polyamide nanofiltration
526 membrane fabricated on brush-painted single-walled carbon nanotube network support for ion
527 sieving. *ACS nano* 13 (5), 5278-5290.

528 Guo, H., Dai, R., Xie, M., Peng, L.E., Yao, Z., Yang, Z., Nghiem, L.D., Snyder, S.A., Wang, Z., Tang,
529 C.Y., 2022. Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal
530 of Organic Micropollutants for Water Reuse. *Environ. Sci. Technol. Lett.* 9 (4), 247-257.

531 Guo, H., Deng, Y., Tao, Z., Yao, Z., Wang, J., Lin, C., Zhang, T., Zhu, B., Tang, C.Y., 2016. Does
532 hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting
533 compounds? *Environ. Sci. Technol. Lett.* 3 (9), 332-338.

534 Guo, H., Deng, Y., Yao, Z., Yang, Z., Wang, J., Lin, C., Zhang, T., Zhu, B., Tang, C.Y., 2017a. A highly
535 selective surface coating for enhanced membrane rejection of endocrine disrupting compounds:
536 Mechanistic insights and implications. *Water Res.* 121, 197-203.

537 Guo, H., Li, X., Yang, W., Yao, Z., Mei, Y., Peng, L.E., Yang, Z., Shao, S., Tang, C.Y., 2021a.
538 Nanofiltration for drinking water treatment: a review. *Front. Chem. Sci. Eng.*, 1-18.

539 Guo, H., Peng, L.E., Yao, Z., Yang, Z., Ma, X., Tang, C.Y., 2019. Non-polyamide based nanofiltration
540 membranes using green metal-organic coordination complexes: implications for the removal of trace
541 organic contaminants. *Environ. Sci. Technol.* 53 (5), 2688-2694.

542 Guo, H., Yao, Z., Yang, Z., Ma, X., Wang, J., Tang, C.Y., 2017b. A one-step rapid assembly of thin film
543 coating using green coordination complexes for enhanced removal of trace organic contaminants by
544 membranes. *Environ. Sci. Technol.* 51 (21), 12638-12643.

545 Guo, H., Zhang, J., Peng, L.E., Li, X., Chen, Y., Yao, Z., Fan, Y., Shih, K., Tang, C.Y., 2021b. High-

546 efficiency capture and recovery of anionic perfluoroalkyl substances from water using PVA/PDDA
547 nanofibrous membranes with near-zero energy consumption. *Environ. Sci. Technol. Lett.* 8 (4), 350-
548 355.

549 Heredia-Guerrero, J.A., Benítez, J.J., Domínguez, E., Bayer, I.S., Cingolani, R., Athanassiou, A., Heredia,
550 A., 2014. Infrared and Raman spectroscopic features of plant cuticles: a review. *Front. Plant Sci.* 5,
551 305.

552 Houtz, E.F., Higgins, C.P., Field, J.A., Sedlak, D.L., 2013. Persistence of perfluoroalkyl acid precursors
553 in AFFF-impacted groundwater and soil. *Environ. Sci. Technol.* 47 (15), 8187-8195.

554 Hu, Y., Wang, F., Yang, Z., Tang, C.Y., 2023. Modeling nanovoid-enhanced water permeance of thin film
555 composite membranes. *J. Membr. Sci.*, 121555.

556 Huang, S., McDonald, J.A., Kuchel, R.P., Khan, S.J., Leslie, G., Tang, C.Y., Mansouri, J., Fane, A.G.,
557 2021. Surface modification of nanofiltration membranes to improve the removal of organic
558 micropollutants: Linking membrane characteristics to solute transmission. *Water Res.* 203, 117520.

559 Jin, X., Hu, J., Ong, S.L., 2010. Removal of natural hormone estrone from secondary effluents using
560 nanofiltration and reverse osmosis. *Water Res.* 44 (2), 638-648.

561 Karan, S., Jiang, Z., Livingston, A.G., 2015. Sub-10 nm polyamide nanofilms with ultrafast solvent
562 transport for molecular separation. *Science* 348 (6241), 1347-1351.

563 Kim, J.-H., Park, P.-K., Lee, C.-H., Kwon, H.-H., 2008. Surface modification of nanofiltration
564 membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water
565 treatment: Graft polymerization and cross-linking followed by functional group substitution. *J.*
566 *Membr. Sci.* 321 (2), 190-198.

567 Krafft, M.P., Riess, J.G., 2015. Per-and polyfluorinated substances (PFASs): Environmental challenges.
568 *Curr. Opin. Colloid Interface Sci.* 20 (3), 192-212.

569 Lapworth, D., Baran, N., Stuart, M., Ward, R., 2012. Emerging organic contaminants in groundwater: a
570 review of sources, fate and occurrence. *Environ. Pollut.* 163, 287-303.

571 Lau, W., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J.P., Ismail, A., 2015. A review on polyamide thin
572 film nanocomposite (TFN) membranes: History, applications, challenges and approaches. *Water Res.*
573 80, 306-324.

574 Lau, W., Ismail, A., Misdan, N., Kassim, M., 2012. A recent progress in thin film composite membrane:
575 A review. *Desalination* 287, 190-199.

576 Li, Y., Su, Y., Li, J., Zhao, X., Zhang, R., Fan, X., Zhu, J., Ma, Y., Liu, Y., Jiang, Z., 2015. Preparation of
577 thin film composite nanofiltration membrane with improved structural stability through the mediation
578 of polydopamine. *J. Membr. Sci.* 476, 10-19.

579 Long, L., Wu, C., Yang, Z., Tang, C.Y., 2022. Carbon Nanotube Interlayer Enhances Water Permeance
580 and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence.
581 *Environ. Sci. Technol.* 56 (4), 2656-2664.

582 Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., 2014. A review
583 on the occurrence of micropollutants in the aquatic environment and their fate and removal during
584 wastewater treatment. *Sci. Total Environ.* 473, 619-641.

585 Ma, X.-H., Yang, Z., Yao, Z.-K., Xu, Z.-L., Tang, C.Y., 2017. A facile preparation of novel positively
586 charged MOF/chitosan nanofiltration membranes. *J. Membr. Sci.* 525, 269-276.

587 Miyashita, Y., Park, S.-H., Hyung, H., Huang, C.-H., Kim, J.-H., 2009. Removal of N-nitrosamines and
588 their precursors by nanofiltration and reverse osmosis membranes. *J. Environ. Eng.* 135 (9), 788-795.

589 Nghiem, L.D., Schäfer, A.I., 2002. Adsorption and transport of trace contaminant estrone in NF/RO

590 membranes. *Environ. Eng. Sci.* 19 (6), 441-451.

591 Nghiem, L.D., Schäfer, A.I., Elimelech, M., 2004. Removal of natural hormones by nanofiltration
592 membranes: measurement, modeling, and mechanisms. *Environ. Sci. Technol.* 38 (6), 1888-1896.

593 Nghiem, L.D., Schäfer, A.I., Elimelech, M., 2005. Pharmaceutical retention mechanisms by
594 nanofiltration membranes. *Environ. Sci. Technol.* 39 (19), 7698-7705.

595 Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters
596 and the environment: current knowledge, understudied areas and recommendations for future
597 monitoring. *Water Res.* 72, 3-27.

598 Sarango, L., Paseta, L., Navarro, M., Zornoza, B., Coronas, J., 2018. Controlled deposition of MOFs by
599 dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration. *J. Ind. Eng.*
600 *Chem.* 59, 8-16.

601 Schäfer, A.I., Akanyeti, I., Semião, A.J., 2011. Micropollutant sorption to membrane polymers: a review
602 of mechanisms for estrogens. *Adv. Colloid Interface Sci.* 164 (1-2), 100-117.

603 Schmidt, W., O'Rourke, K., Hernan, R., Quinn, B., 2011. Effects of the pharmaceuticals gemfibrozil and
604 diclofenac on the marine mussel (*Mytilus spp.*) and their comparison with standardized toxicity tests.
605 *Mar. Pollut. Bull.* 62 (7), 1389-1395.

606 Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., Wehrli,
607 B., 2006. The challenge of micropollutants in aquatic systems. *Science* 313 (5790), 1072-1077.

608 Semião, A.J., Schäfer, A.I., 2013. Removal of adsorbing estrogenic micropollutants by nanofiltration
609 membranes. Part A—Experimental evidence. *J. Membr. Sci.* 431, 244-256.

610 Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., Mayes, A.M., 2008. Science
611 and technology for water purification in the coming decades. *Nature* 452 (7185), 301-310.

612 Shao, S., Zeng, F., Long, L., Zhu, X., Peng, L.E., Wang, F., Yang, Z., Tang, C.Y., 2022. Nanofiltration
613 membranes with crumpled polyamide films: a critical review on mechanisms, performances, and
614 environmental applications. *Environ. Sci. Technol.* 56 (18), 12811-12827.

615 Souza, M.S., Hallgren, P., Balseiro, E., Hansson, L.-A., 2013. Low concentrations, potential ecological
616 consequences: synthetic estrogens alter life-history and demographic structures of aquatic
617 invertebrates. *Environ. Pollut.* 178, 237-243.

618 Steinle-Darling, E., Reinhard, M., 2008. Nanofiltration for trace organic contaminant removal: structure,
619 solution, and membrane fouling effects on the rejection of perfluorochemicals. *Environ. Sci. Technol.*
620 42 (14), 5292-5297.

621 Steinle-Darling, E., Zedda, M., Plumlee, M.H., Ridgway, H.F., Reinhard, M., 2007. Evaluating the
622 impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse
623 osmosis rejection of seven nitrosoalklyamines, including NDMA. *Water Res.* 41 (17), 3959-3967.

624 Tan, Z., Chen, S., Peng, X., Zhang, L., Gao, C., 2018. Polyamide membranes with nanoscale Turing
625 structures for water purification. *Science* 360 (6388), 518-521.

626 Tang, C.Y., Fu, Q.S., Robertson, A., Criddle, C.S., Leckie, J.O., 2006. Use of reverse osmosis membranes
627 to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. *Environ. Sci. Technol.*
628 40 (23), 7343-7349.

629 Tang, C.Y., Kwon, Y.-N., Leckie, J.O., 2007a. Characterization of humic acid fouled reverse osmosis and
630 nanofiltration membranes by transmission electron microscopy and streaming potential
631 measurements. *Environ. Sci. Technol.* 41 (3), 942-949.

632 Tang, C.Y., Kwon, Y.-N., Leckie, J.O., 2007b. Probing the nano-and micro-scales of reverse osmosis
633 membranes—A comprehensive characterization of physiochemical properties of uncoated and coated

634 membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. *J. Membr. Sci.* 287
635 (1), 146-156.

636 Tang, C.Y., Kwon, Y.-N., Leckie, J.O., 2009. Effect of membrane chemistry and coating layer on
637 physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and
638 XPS characterization of polyamide and coating layer chemistry. *Desalination* 242 (1-3), 149-167.

639 Tang, C.Y., Yang, Z., Guo, H., Wen, J.J., Nghiem, L.D., Cornelissen, E., 2018. Potable water reuse
640 through advanced membrane technology. *Environ. Sci. Technol.* 52 (18), 10215-10223.

641 Tran, N.H., Reinhard, M., Gin, K.Y.-H., 2018. Occurrence and fate of emerging contaminants in
642 municipal wastewater treatment plants from different geographical regions-a review. *Water Res.* 133,
643 182-207.

644 Van der Bruggen, B., Vandecasteele, C., 2002. Modelling of the retention of uncharged molecules with
645 nanofiltration. *Water Res.* 36 (5), 1360-1368.

646 Verliefde, A.R., Cornelissen, E., Heijman, S., Verberk, J., Amy, G., Van der Bruggen, B., Van Dijk, J.,
647 2008. The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions
648 with nanofiltration. *J. Membr. Sci.* 322 (1), 52-66.

649 Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Hoek, E.M.V., Amy, G.L., Bruggen, B.V.d., van
650 Dijk, J.C., 2009. Influence of Solute-Membrane Affinity on Rejection of Uncharged Organic Solutes
651 by Nanofiltration Membranes. *Environ. Sci. Technol.* 43 (7), 2400-2406.

652 Wang, F., Yang, Z., Tang, C.Y., 2022. Modeling Water Transport in Interlayered Thin-Film
653 Nanocomposite Membranes: Gutter Effect vs Funnel Effect. *ACS ES&T Eng.* 2 (11), 2023-2033.

654 Wang, R., Lin, S., 2021. Pore model for nanofiltration: History, theoretical framework, key predictions,
655 limitations, and prospects. *J. Membr. Sci.* 620, 118809.

656 Wang, S., Li, L., Yu, S., Dong, B., Gao, N., Wang, X., 2021. A review of advances in EDCs and PhACs
657 removal by nanofiltration: Mechanisms, impact factors and the influence of organic matter. *Chem.*
658 *Eng. J.* 406, 126722.

659 Wang, X.-m., Li, B., Zhang, T., Li, X.-y., 2015. Performance of nanofiltration membrane in rejecting
660 trace organic compounds: Experiment and model prediction. *Desalination* 370, 7-16.

661 Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L.,
662 Mikelonis, A.M., Achilli, A., Ghassemi, A., 2018. A review of polymeric membranes and processes
663 for potable water reuse. *Prog. Polym. Sci.* 81, 209-237.

664 Williams, R.J., Johnson, A.C., Smith, J.J., Kanda, R., 2003. Steroid estrogens profiles along river
665 stretches arising from sewage treatment works discharges. *Environ. Sci. Technol.* 37 (9), 1744-1750.

666 Wilson, D., Langell, M., 2014. XPS analysis of oleylamine/oleic acid capped Fe₃O₄ nanoparticles as a
667 function of temperature. *Appl. Surf. Sci.* 303, 6-13.

668 Yang, L., She, Q., Wan, M.P., Wang, R., Chang, V.W.-C., Tang, C.Y., 2017. Removal of haloacetic acids
669 from swimming pool water by reverse osmosis and nanofiltration. *Water Res.* 116, 116-125.

670 Yang, W., Long, L., Guo, H., Wu, C., Zhou, S., Mei, Y., Peng, L.E., Liu, W., Yang, Z., Li, W., 2022. Facile
671 synthesis of nanofiltration membrane with asymmetric selectivity towards enhanced water recovery
672 for groundwater remediation. *J. Membr. Sci.*, 121038.

673 Yang, Z., Guo, H., Tang, C.Y., 2019a. The upper bound of thin-film composite (TFC) polyamide
674 membranes for desalination. *J. Membr. Sci.* 590, 117297.

675 Yang, Z., Guo, H., Yao, Z.-k., Mei, Y., Tang, C.Y., 2019b. Hydrophilic silver nanoparticles induce
676 selective nanochannels in thin film nanocomposite polyamide membranes. *Environ. Sci. Technol.* 53
677 (9), 5301-5308.

678 Yang, Z., Sun, P.-F., Li, X., Gan, B., Wang, L., Song, X., Park, H.-D., Tang, C.Y., 2020a. A critical review
679 on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent
680 developments, and environmental applications. *Environ. Sci. Technol.* 54 (24), 15563-15583.

681 Yang, Z., Wang, F., Guo, H., Peng, L.E., Ma, X.-h., Song, X.-x., Wang, Z., Tang, C.Y., 2020b.
682 Mechanistic insights into the role of polydopamine interlayer toward improved separation
683 performance of polyamide nanofiltration membranes. *Environ. Sci. Technol.* 54 (18), 11611-11621.

684 Yang, Z., Zhou, Z.-w., Guo, H., Yao, Z., Ma, X.-h., Song, X., Feng, S.-P., Tang, C.Y., 2018. Tannic
685 acid/Fe³⁺ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance.
686 *Environ. Sci. Technol.* 52 (16), 9341-9349.

687 Yuan, B., Zhao, S., Hu, P., Cui, J., Niu, Q.J., 2020. Asymmetric polyamide nanofilms with highly ordered
688 nanovoids for water purification. *Nat. Commun.* 11 (1), 6102.

689 Yuan, J., Wu, M., Wu, H., Liu, Y., You, X., Zhang, R., Su, Y., Yang, H., Shen, J., Jiang, Z., 2019. Covalent
690 organic framework-modulated interfacial polymerization for ultrathin desalination membranes. *J.*
691 *Mater. Chem. A* 7 (44), 25641-25649.

692 Zhai, Z., Jiang, C., Zhao, N., Dong, W., Lan, H., Wang, M., Niu, Q.J., 2018. Fabrication of advanced
693 nanofiltration membranes with nanostrand hybrid morphology mediated by ultrafast Noria-
694 polyethyleneimine codeposition. *J. Mater. Chem. A* 6 (42), 21207-21215.

695 Zhan, Z.-M., Xu, Z.-L., Zhu, K.-K., Tang, Y.-J., 2020a. How to understand the effects of heat curing
696 conditions on the morphology and performance of polypiperazine-amide NF membrane. *J. Membr.*
697 *Sci.* 597, 117640.

698 Zhan, Z.-M., Xu, Z.-L., Zhu, K.-K., Xue, S.-M., Ji, C.-H., Huang, B.-Q., Tang, C.Y., Tang, Y.-J., 2020b.
699 Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via
700 controlled hydrolysis. *J. Membr. Sci.* 604, 118067.

701 Zhang, M., Jin, W., Yang, F., Duke, M., Dong, Y., Tang, C.Y., 2020. Engineering a nanocomposite
702 interlayer for a novel ceramic-based forward osmosis membrane with enhanced performance.
703 *Environ. Sci. Technol.* 54 (12), 7715-7724.

704 Zhang, X., Lv, Y., Yang, H.-C., Du, Y., Xu, Z.-K., 2016. Polyphenol coating as an interlayer for thin-film
705 composite membranes with enhanced nanofiltration performance. *ACS Appl. Mater. Interfaces* 8 (47),
706 32512-32519.

707 Zhao, Y.-y., Liu, Y.-l., Wang, X.-m., Huang, X., Xie, Y.F., 2019. Impacts of metal-organic frameworks
708 on structure and performance of polyamide thin-film nanocomposite membranes. *ACS Appl. Mater.*
709 *Interfaces* 11 (14), 13724-13734.

710 Zhao, Y., Tong, X., Chen, Y., 2021. Fit-for-purpose design of nanofiltration membranes for simultaneous
711 nutrient recovery and micropollutant removal. *Environ. Sci. Technol.* 55 (5), 3352-3361.

712 Zhou, S., Long, L., Yang, Z., So, S.L., Gan, B., Guo, H., Feng, S.-P., Tang, C.Y., 2022. Unveiling the
713 Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt
714 Selectivity. *Environ. Sci. Technol.* 56 (14), 10279-10288.

1 **Supplementary materials**

2 **Enhancing the removal of organic micropollutants by**
3 **nanofiltration membrane with Fe (III)-tannic acid interlayer:**
4 **Mechanisms and environmental implications**

5 Wenyu Liu ^a, Li Long ^a, Zhe Yang ^a, Li Wang ^a, Qimao Gan ^a, Shenghua Zhou ^a, Pulak
6 Sarkar ^a, Hao Guo ^{b,*}, Chuyang Y. Tang ^{a,*}

7 ^a Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong
8 Kong SAR, China

9 ^b Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate
10 School, Tsinghua University, Shenzhen 518055, China

11 * Corresponding authors

12 **Hao Guo** (ORCID: 0000-0002-0688-5431)

13 Tel: +86 15889350923

14 E-mail: guohao@sz.tsinghua.edu.cn

15 **Chuyang Y. Tang** (ORCID: 0000-0002-7932-6462)

16 Tel: +852 2859 1976

17 E-mail: tangc@hku.hk

18 Number of pages (including the cover page): 16

19 Number of figures: 11

20 Number of tables: 2

21 Page 3 S1. Cross-flow nanofiltration setup

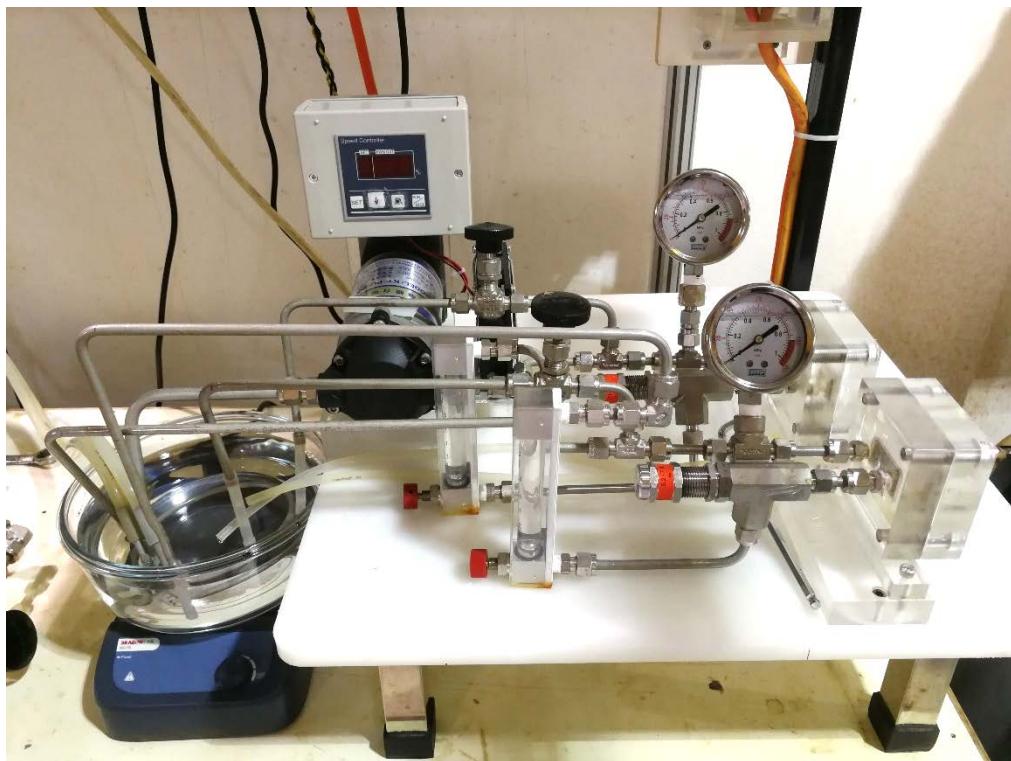
22 Page 4 S2. Comparison of OMPs rejection at different equilibrium time

23 Page 5 S3. Membrane characterization results

24 Page 8 S4. Estimation of enhancement of water permeance

25 Page 10 S5. Membrane separation performance

26 Page 11 S6. Estimation of membrane pore size

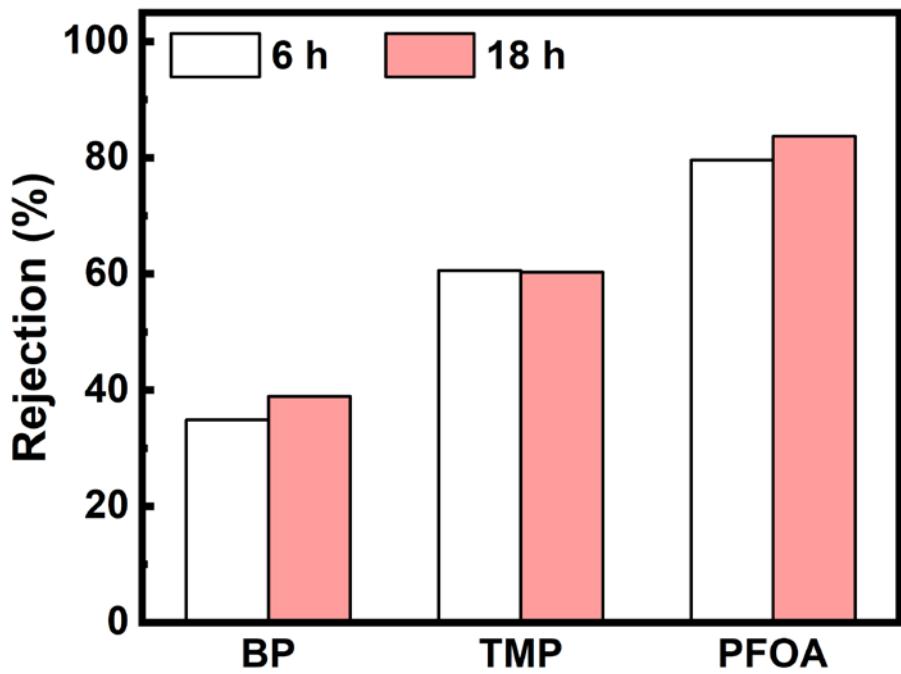

27 Page 12 S7. OMPs rejection by membranes with different heat treatment duration

28 Page 13 S8. Sorption of OMPs onto NF membranes

29 Page 14 S9. Passage and sorption of EDCs by TFC and TFNi membranes

30 Page 15 S10. OMPs selectivity of an Fe/TA layer

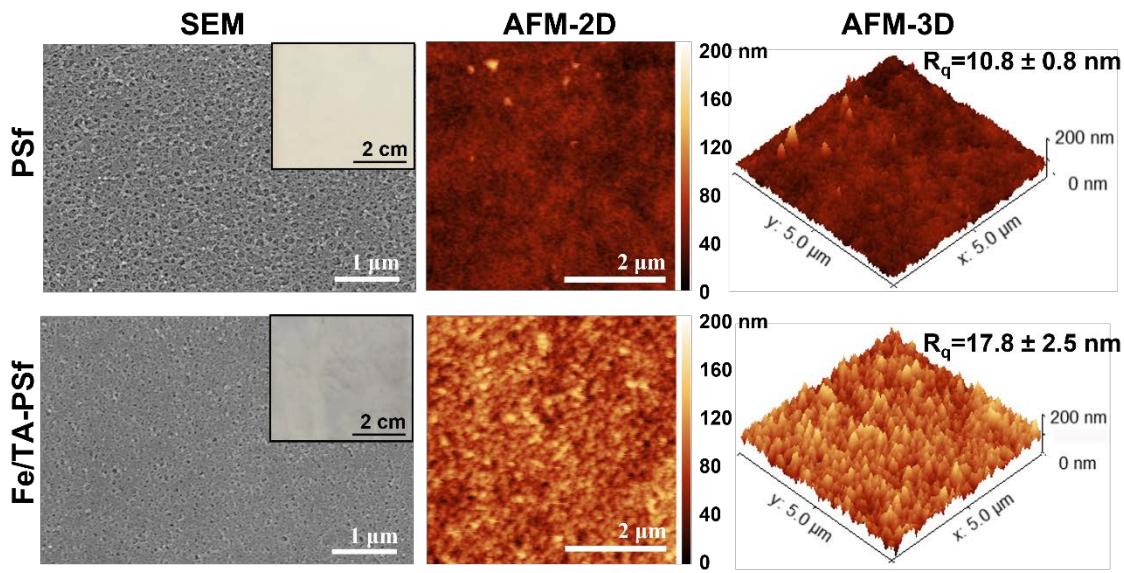
31 **S1. Cross-flow nanofiltration setup**

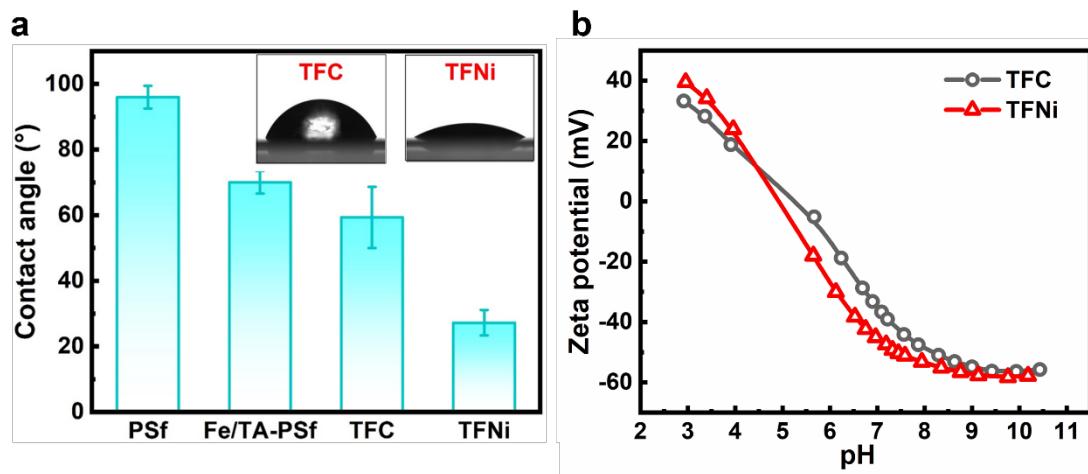


32

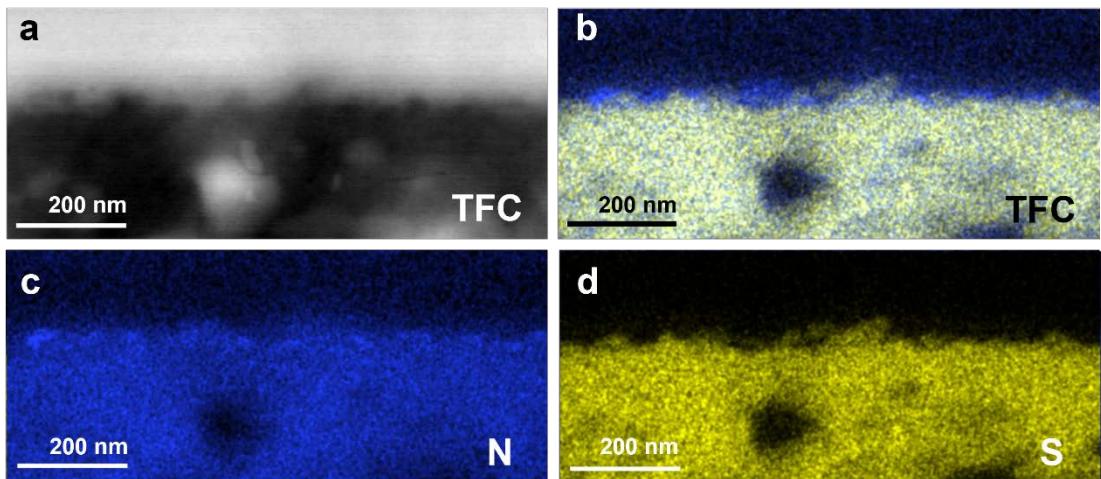
33 **Fig. S1.** Photo of cross-flow nanofiltration setup. During the filtration experiment, feed
34 solution was drawn by a diaphragm self-priming pump (KT-PU-400G, Kerter, China)
35 to two paralleled membrane cells made of polymethyl methacrylate (PMMA), each
36 with an effective filtration area of 8 cm² and a slit depth of 2.5 mm. Spacers were
37 imbedded inside the slit to generate cross flow. Retentate was circulated back into feed
38 through stainless steel pipes. Testing temperature was maintained at 25 °C by a cooling
39 system (ALGY-II, AOLINGHENGYE, China).

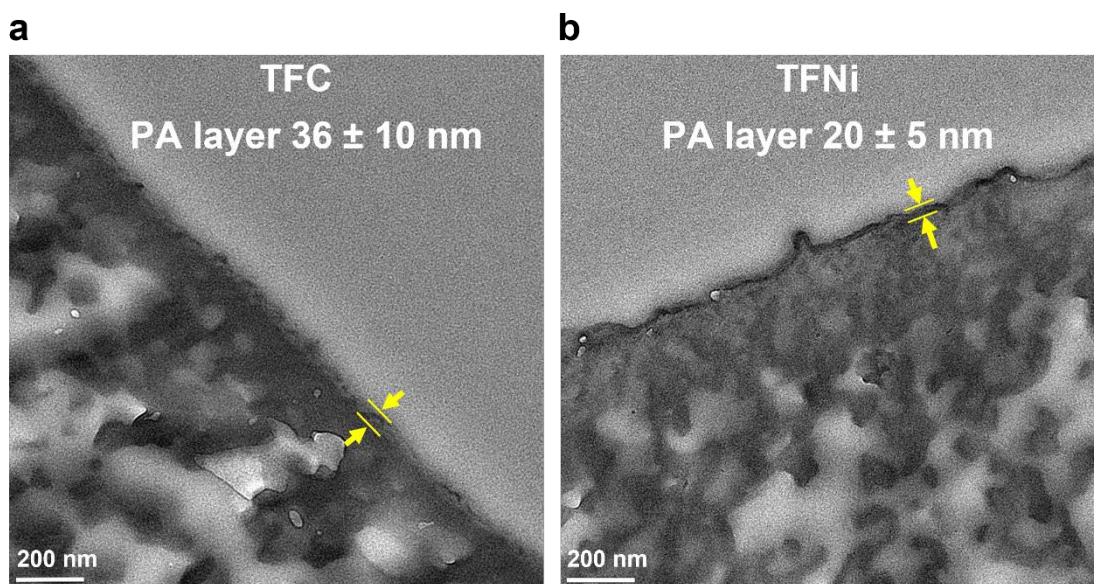
40 **S2. Comparison of OMPs rejection at different equilibrium time**


41 We performed some preliminary tests to compare the rejection of OMPs at different
42 equilibrium time (6 h vs. 18 h). No major difference was observed for rejection
43 measured at the two different durations, suggesting that the 6 h exposure to OMPs is
44 reasonable to achieve a stable rejection performance.


45

46 **Fig. S2.** Rejection of BP, TMP, and PFOA by TFC membrane after pre-compaction in
47 the presence of these OMPs for 6 hours and 18 hours.


48 **S3. Membrane characterization results**


49
50 **Fig. S3.** SEM images, AFM-2D plane view, and AFM-3D view of the top surface for
51 PSf and Fe/TA-PSf substrates. Inset are the digital photos of substrates. The roughness
52 R_q value was the root mean square average of height deviations from the mean image
53 data plane. Standard deviation was obtained from three independently scanned images.

54
55 **Fig. S4.** (a) Water contact angle of substrates and NF membranes. Insets are the digital
56 photos showing water contacting with NF membranes. Error bars were obtained from
57 at least five measurements. (b) Surface zeta potential of TFC and TFNi membranes at
58 pH from 3 to 10. The background electrolyte was 1 mM KCl. The solution temperature
59 was kept at 25 °C and pH was adjusted by adding HCl or KOH.

60
61 **Fig. S5.** (a) STEM cross-section image and (b) STEM-EDX elemental mapping of TFC
62 membrane with (c) element nitrogen (N, blue) as an indicator for polyamide layer, and
63 (d) sulfur (S, yellow) for polysulfone substrate.

64
65 **Fig. S6.** STEM cross-section images of (a) TFC membrane and (b) TFNi membrane.
66 Thickness of polyamide (PA) layer as denoted in yellow was measured by software
67 Image J. At least ten different positions were measured for each sample.

68 **Table S1**

69 Different bonding states of C 1s in TFC and TFNi membranes.

Binding energy (eV)	~284.6	~286.0	~287.6
Peak assignment	C–C, C–H	C–O	O=C–O, O=C–N
TFC	75.4%	15.8%	8.8%
TFNi	66.7%	17.9%	15.4%

70

71 **S4. Estimation of enhancement of water permeance**

72 Water flux J_V of NF membrane can be simply modeled by using Hagen-Poiseuille

73 equation (Wang and Lin, 2021):

74
$$J_V = \frac{r_p^2(\Delta p - \Delta \pi)}{8\eta L_e} \quad (S1)$$

75 where r_p is the membrane mean pore size, Δp is the hydraulic pressure applied, $\Delta \pi$ is

76 the osmotic pressure difference across membrane, η is the dynamic viscosity of water,

77 L_e is the effective membrane thickness defined by tortuosity τ , porosity ε , and thickness

78 **L** via **Eq. S2**:

79
$$L_e = \frac{\tau L}{\varepsilon} \quad (S2)$$

80 To take into account the influence of surface roughness on the measured water

81 permeance A , we further multiply J_V by membrane surface roughness ratio S :

82
$$A = \frac{J_V}{\Delta p - \Delta \pi} \times S = \frac{r_p^2 S}{8\eta L_e} \quad (S3)$$

83 where S is the ratio of membrane surface area over projected area obtained from AFM

84 result.

85 Based on characterization result (**Table S2**), the water permeance of TFNi membrane

86 is estimated to be **1.13** times of TFC membrane, which is much lower than the

87 experimental result of $A_{\text{TFNi}}/A_{\text{TFC}}$ (**2.54**).

88 It is important to note that the simple model presented above assumes water passes

89 through the polyamide layer in the normal direction, such that the transport distance is

90 governed by the thickness of the polyamide layer. In reality, the polyamide layer in a

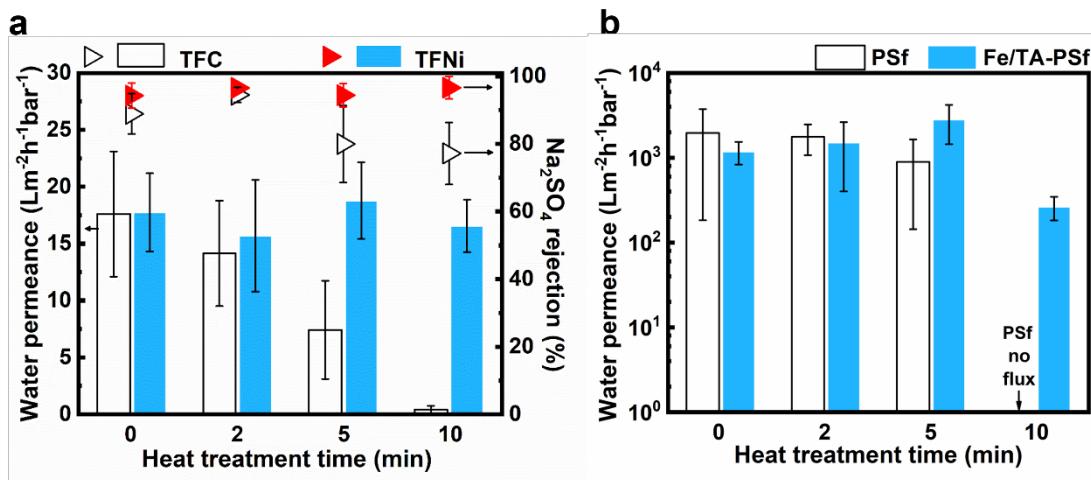
91 TFC membrane is supported by a substrate with certain porosity, which imposes a

92 critical geometrical constraint – water has to reach to the pores of the substrate after

93 passing through the polyamide layer. This geometrical constraint results in greatly

94 increased transport distance compared to the thickness of the polyamide layer (see
95 schematic illustration in **Table 3**), leading to major reduction in the available water
96 permeance (Long et al., 2022). Nevertheless, including a highly permeable interlayer
97 or nanovoids in the membrane can mitigate this inefficiency, as it allows water to pass
98 through the polyamide layer in the near-normal direction within the high-resistance
99 layer and then to transport in the lateral direction via the low-resistance interlayer or
100 nanovoids (**Table 3**) – a phenomenon known as the gutter effect (Wang et al., 2022).
101 In the current study, the major difference between the enhancement factor predicted
102 based on **Eq. S3** and the experimental value (1.13 vs. 2.54) can be attributed to
103 optimized water transport pathways due to the gutter effect, which is consistent with
104 existing modeling (Hu et al., 2023; Wang et al., 2022) and experimental studies (Long
105 et al., 2022; Yang et al., 2020).

106 **Table S2**


107 Parameters used to estimate enhancement of water permeance.

	r_p (nm)	S	L (nm)	τ	ε
TFC	0.79	1.06	36	Not measured,	Not measured,
TFNi	0.61	1.12	20	assumed to be the same.	assumed to be the same.

108

109 **S5. Membrane separation performance**

110

111 **Fig. S7.** Effects of heat treatment time on (a) membrane water permeance and Na_2SO_4
 112 rejection and (b) substrate water permeance. NF membranes received different heat
 113 treatment time in 60 °C oven immediately after IP reaction. Bare substrates without
 114 conducting IP reaction were also put into 60 °C oven for different curing time. Testing
 115 conditions are as follows: 1000 mg/L Na_2SO_4 , 25 °C, pH 6.5~7.5, crossflow velocity
 116 16.7 cm/s, 5 bar pre-compaction for two hours before testing NF membrane separation
 117 performance. Pure water, 25 °C, pH 6.5~7.5, crossflow velocity 16.7 cm/s, 3 bar pre-
 118 compaction for 30 min before testing substrate water permeance. Error bars were
 119 obtained from at least three measurements.

120 It is worthwhile to note that the PSf substrate became significantly less permeable to
 121 water after 10 min heat treatment. Since the heat treatment process has been widely
 122 adopted by membrane manufacturers, in this study we chose to heat-cure the
 123 membranes for five minutes after IP reaction to make the fabrication method
 124 comparable with practical situation.

125 **S6. Estimation of membrane pore size**

126 To determine the membrane pore size distribution, firstly we plotted neutral solute
 127 rejection data (R_t) against their Stokes radii (**Table 1**). Assuming the pore size follows
 128 log-normal distribution (Liang et al., 2020; Van der Bruggen and Vandecasteele, 2002;
 129 Youm and Kim, 1991), we used the “log-normal cdf” function (**Eq. S4**) to non-linear
 130 fit the scattered points in Origin Software. From the fitted statistics, we picked out the
 131 radius r_1 when the rejection is equal to 50% and r_2 corresponding to rejection of 84.13%.

132 Let the mean solute radius (\bar{r}_s) equal to r_1 and deviation (σ) equal to $(\ln r_1 - \ln r_2)$.
 133 Then, we calculated mean pore radius (\bar{r}_p) by using $\bar{r}_p = \frac{1}{0.416} \bar{r}_s$ which is obtained
 134 from modified Ferry’s model (**Eq. S5**) that considers the size exclusion effects and
 135 friction hindrance (Werber et al., 2016; Yang et al., 2017). Taking the \bar{r}_p and σ value
 136 into **Eq. S6**, finally we got the probability density function curve of pore size
 137 distribution as shown in **Fig.4**.

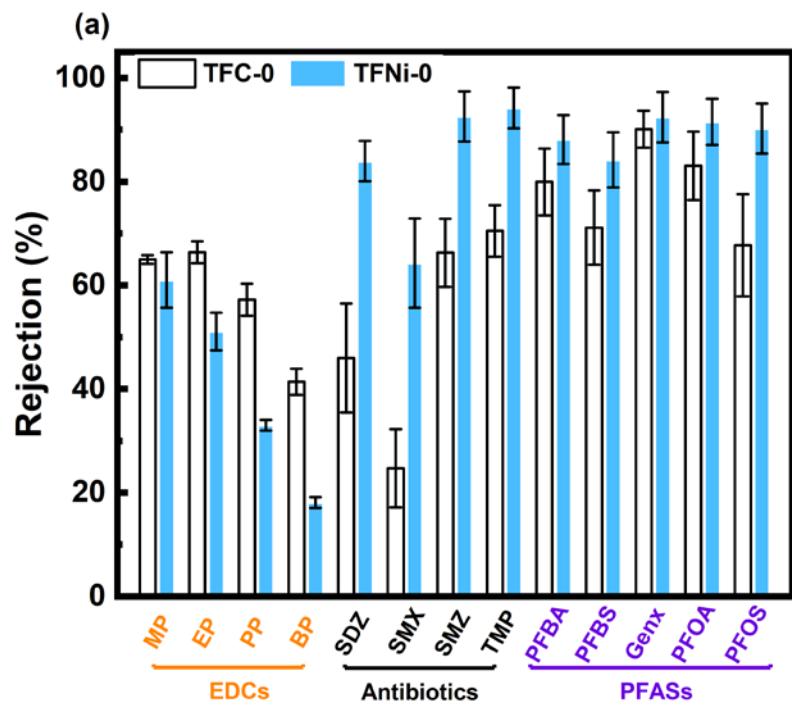
138
$$R_t = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y e^{-u^2/2} du \quad (S4)$$

139 where

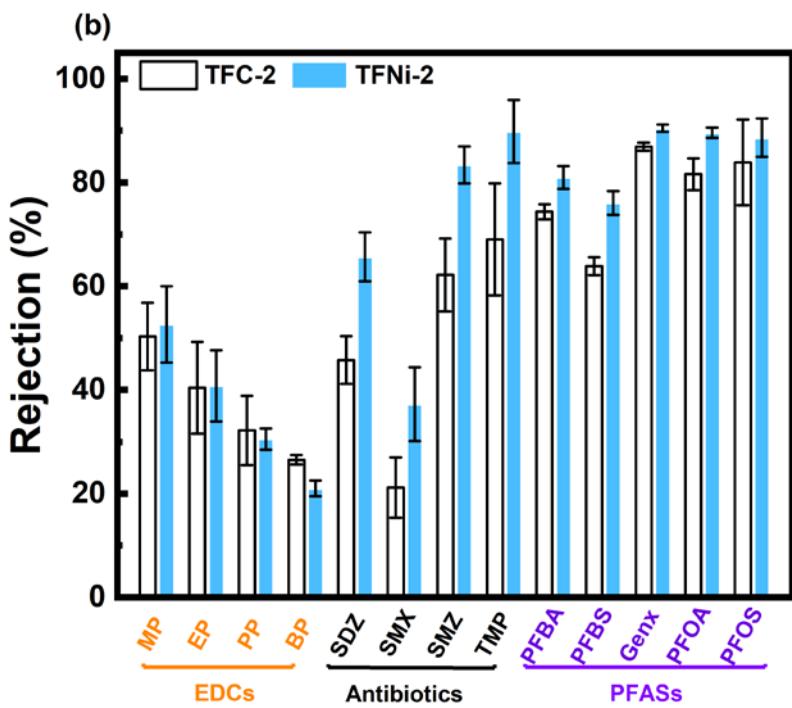
140
$$y = \frac{\ln r_s - \ln \bar{r}_s}{\sigma}$$

141
$$R_t = 1 - \{1 - [\lambda(\lambda - 2)]^2\} \exp(-0.7146\lambda^2) \quad (S5)$$

142 where

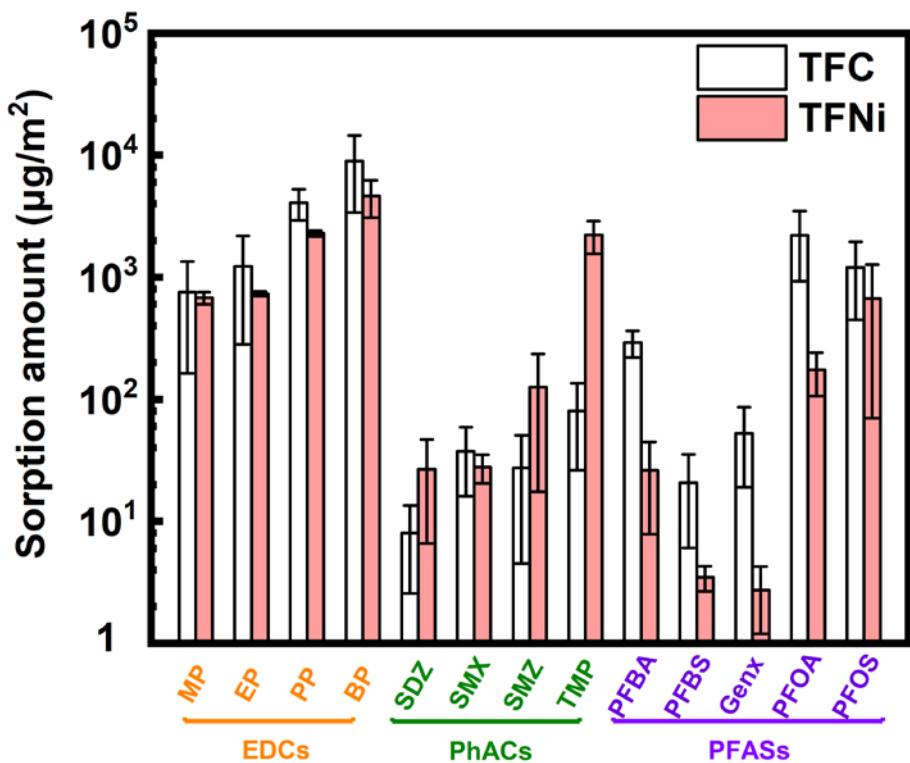

143
$$\lambda = \frac{r_s}{r_p}$$

144 When $R_t = 50\%$, $\lambda = 0.416$

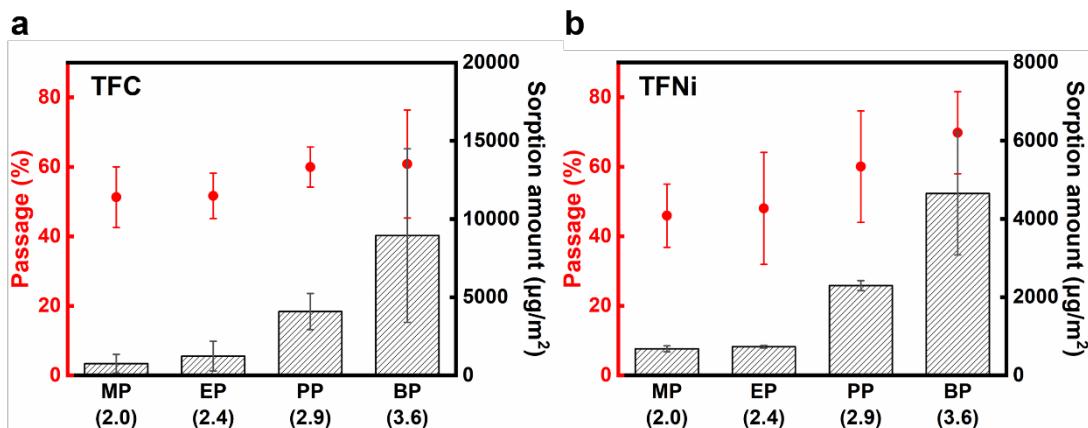

145
$$\bar{r}_p = \frac{1}{0.416} \bar{r}_s$$

146
$$\frac{dF(r_p)}{dr_p} = \frac{1}{r_p \sigma \sqrt{2\pi}} \exp \left[-\frac{(\ln r_p - \ln \bar{r}_p)^2}{2\sigma^2} \right] \quad (S6)$$

147 **S7. OMPs rejection by membranes with different heat treatment duration**



148

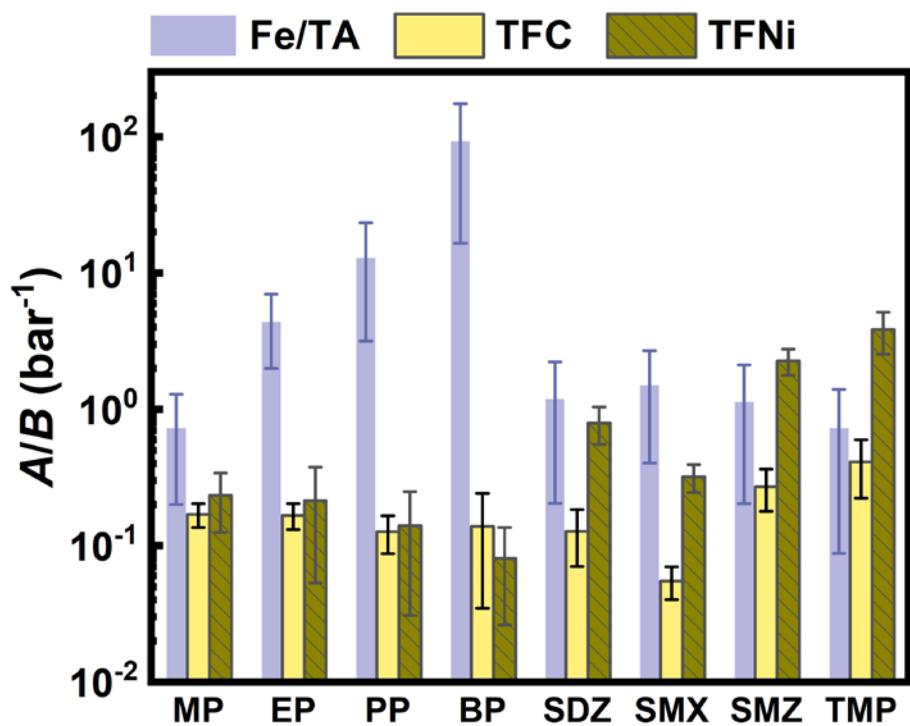

149

150 **Fig. S8.** Rejection of OMPs by TFC and TFNi membranes (a) without heat treatment
151 and (b) with 2 min heat curing time. Error bar was obtained from at least three
152 independent measurements.

153 **S8. Sorption of OMPs onto NF membranes**154
155 **Fig. S9.** Sorption amount of EDCs, PhACs, and PFASs onto TFC and TFNi membranes.

156 To determine the sorption amount of OMPs onto membranes, the membranes were
 157 taken out of cells after filtration test, soaked in 20 ml methanol, and shaken at 50 rpm
 158 for 24 hours. These extractions were then diluted with Milli-Q water to make a working
 159 solution of methanol:H₂O=1:4 for the analysis of PFBA, and methanol:H₂O=1:1 for
 160 other OMPs. Samples were analyzed by LC-MS/MS and the standard curve ranged
 161 from 0.1–500 μg/L. Error bars were obtained from three independent measurements.

162 **S9. Passage and sorption of EDCs by TFC and TFNi membranes**


163

164 **Fig. S10.** EDCs passage and sorption amount by (a) TFC membranes and (b) TFNi
165 membranes. The four EDCs are listed following the order of molecular weight
166 MP<EP<PP<BP with log K_{ow} value annotated in bracket. Error bars were obtained from
167 three independent measurements.

168 Passage and sorption amount of EDCs seem to increase with hydrophobicity even
169 though the molecular size increase at the same time, indicating the hydrophobic
170 interaction surpasses the size exclusion effects.

171 **S10. OMPs selectivity of an Fe/TA layer**

172

173

174 **Fig. S11.** Water-solute selectivity (A/B) of EDCs and PhACs by substrate coated with
 175 Fe/TA layer, TFC membrane, and TFNi membrane. Selectivity of the Fe/TA layer was
 176 obtained from our previous work (Guo et al., 2019).

177 **References**

178 Guo, H., Peng, L.E., Yao, Z., Yang, Z., Ma, X., Tang, C.Y., 2019. Non-polyamide based
179 nanofiltration membranes using green metal-organic coordination complexes:
180 implications for the removal of trace organic contaminants. *Environ. Sci. Technol.*
181 53 (5), 2688-2694.

182 Hu, Y., Wang, F., Yang, Z., Tang, C.Y., 2023. Modeling nanovoid-enhanced water
183 permeance of thin film composite membranes. *J. Membr. Sci.*, 121555.

184 Liang, Y., Zhu, Y., Liu, C., Lee, K.-R., Hung, W.-S., Wang, Z., Li, Y., Elimelech, M.,
185 Jin, J., Lin, S., 2020. Polyamide nanofiltration membrane with highly uniform sub-
186 nanometre pores for sub-1 Å precision separation. *Nat. Commun.* 11 (1), 2015.

187 Long, L., Wu, C., Yang, Z., Tang, C.Y., 2022. Carbon Nanotube Interlayer Enhances
188 Water Permeance and Antifouling Performance of Nanofiltration Membranes:
189 Mechanisms and Experimental Evidence. *Environ. Sci. Technol.* 56 (4), 2656-2664.

190 Van der Bruggen, B., Vandecasteele, C., 2002. Modelling of the retention of uncharged
191 molecules with nanofiltration. *Water Res.* 36 (5), 1360-1368.

192 Wang, F., Yang, Z., Tang, C.Y., 2022. Modeling Water Transport in Interlayered Thin-
193 Film Nanocomposite Membranes: Gutter Effect vs Funnel Effect. *ACS ES&T Eng.*
194 2 (11), 2023-2033.

195 Wang, R., Lin, S., 2021. Pore model for nanofiltration: History, theoretical framework,
196 key predictions, limitations, and prospects. *J. Membr. Sci.* 620, 118809.

197 Werber, J.R., Osuji, C.O., Elimelech, M., 2016. Materials for next-generation
198 desalination and water purification membranes. *Nat. Rev. Mater.* 1 (5), 1-15.

199 Yang, L., She, Q., Wan, M.P., Wang, R., Chang, V.W.-C., Tang, C.Y., 2017. Removal of
200 haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
201 *Water Res.* 116, 116-125.

202 Yang, Z., Wang, F., Guo, H., Peng, L.E., Ma, X.-h., Song, X.-x., Wang, Z., Tang, C.Y.,
203 2020. Mechanistic insights into the role of polydopamine interlayer toward
204 improved separation performance of polyamide nanofiltration membranes. *Environ.*
205 *Sci. Technol.* 54 (18), 11611-11621.

206 Youm, K.H., Kim, W.S., 1991. Prediction of intrinsic pore properties of ultrafiltration
207 membrane by solute rejection curves: effects of operating conditions on pore
208 properties. *J. Chem. Eng. Jpn.* 24 (1), 1-7.