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Abstract
In this paper, we propose VT-BPAN, a novel approach that combines the capabilities of Vision Transformer (VT), bilinear
pooling, and attention network fusion for effective human action recognition (HAR). The proposed methodology significantly
enhances the accuracy of activity recognition through the following advancements: (1) The introduction of an effective two-
stream feature pooling and fusion mechanism that combines RGB frames and skeleton data to augment the spatial–temporal
feature representation. (2) The development of a spatial lightweight vision transformer that mitigates computational costs.
The evaluation of this framework encompasses three widely employed video action datasets, demonstrating that the proposed
approach achieves performance on par with state-of-the-art methods.
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CNN Convolutional neural network
GNN Graph neural network
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1 Introduction

HAR simply means identifying human actions, plays an
important part in many engineering practices, for exam-
ple, surveillance systems that monitor various daily human
behaviors [1] and automatic navigation systems for the safe
operation of drivers [2]. In addition, it is also important
for many other related fields, including assistive robotics,
human–computer interaction [3] and video retrieval [4], etc.

In the early times, a majority of researches concentrated
on using grayscale video or RGB as an input to HAR [5],
since they were popular and easy for accessibility. How-
ever, the drawbacks of RGB images, such as sensitivity to
light and high noise, limited the applicability of HAR. Many
works using multi-modal data have appeared in recent years
[6–13], which are primarily driven by the fact that a variety
of accurate and economical sensors have been developed,
as well as the new generation of RGB-D cameras. Differ-
ent modalities, such as skeleton, audio, depth, event stream,
radar, etc., are employed forHAR.Depending on the applica-
tion scenario, the RGB-D cameras can capture depth images,
state information of the skeleton, and other state information.
Multi-modality of HAR has significant advantages [14, 15].
Zhao et al. [14] proposed a two-stream network consisting
of both recurrent neural network (RNN) and convolutional
neural network (CNN) for processing RGB and skeleton data
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independently. Song et al. [15] presented a continuous deep
CNN learning framework consisting of two skeleton-guided
streams, and the networkwas adopted to extract features from
RGB as well as optical streams.

Transformer [16] is considered as a novel deep learning
model, since it was proposed, and has recently led the field of
machine learning due to its powerful capabilities and promis-
ing future. Chen et al. [17] proposed a Multi-Modal Video
Transformer (MM-ViT) to realize video action recognition.
Currently, there are only a few works [18, 19] use Trans-
former in low-level vision, so further research is needed. As
the video is sequential, Transformer is intrinsically suitable
to video tasks [20, 21], and its performance begins to be
comparable to traditional CNNs and RNNs.

Although the aforementioned HAR method based on
multi-modal fusion has achieved satisfactory performance
on selected benchmark datasets, however, the objective of
effective modal fusion remains challenging. More specifi-
cally, there are at least threefold challenges. First, how to
obtain greater action context information from multi-modal
data, and how to capture more abundant feature information
through the attention mechanism integration model. Second,
in videos, most features are extracted from the full frame,
which includes a large amount of background noise, while
the object onwhich the action occurs is easily ignored. Third,
most existing multi-modal methods have complex structures
that require high computational costs. Therefore, it is neces-
sary to solve the multi-modal HAR problem efficiently.

Inspired by the aforementioned works, the main contribu-
tions of this paper are given below.

• Different from [35], we investigate two stream com-
plementary techniques to improve the fusion accuracy,
mainly including a spatial lightweight vision Trans-
former block and attentionmodule, which can effectively
implement fusion of multi-modal data and perform end-
to-end training.

• An effective data preprocessing method is employed for
RGB video and skeleton sequences, which can help the
network capture more abundant feature information, so
that human behavior can be captured more accurately.

• The semantic relations between various models can
be enhanced by the proposed VT-BPAN module. In
addition, a spatial lightweight improvement of vision
Transformer that is capable of reducing computational
costs is proposed.

• The proposed VT-BPAN module provides significant
improvements over existing research results in terms
of action recognition through experimental analysis of
multi-modal datasets.

The rest of this paper is organized as follows. Section2
provides an outline of the related work. Section3 describes

the proposed VT-BPAN in detail. Then, in Sect. 4, its exper-
imental implementation setup is presented as well as the
experimental results and discussion. Finally, Sect. 5 con-
cludes the paper.

2 RelatedWorks

2.1 Multi-modal Human Action Recognition Based
on RGBVideo and Skeleton

RGBmodalities are generally captured byRGBcameras. The
two-stream2DCNN framework generally consists of two 2D
CNN branches for HAR. The framework regarded as a clas-
sical two-stream framework was proposed by Simonyan and
Zisserman [22], which consisted of a spatial network and a
temporal network. Wang et al. [24] fused the classification
scores of videos that were split into three segments, and pro-
cessed each video into three segments with a two-stream net-
work. A long-term recursive convolutional network (LRCN)
consisting of 2D CNNs for extracting RGB features at the
frame level was presented in [6], and then, an LSTM was
employed to generate individual action labels.

Skeleton data can naturally carry joint position infor-
mations by coordinates. Therefore, compared to RGB, the
information is of a higher level. In addition, a much smaller
computation is required and are capable of being robust.
The human skeleton structure can represented as a graph,
where each of the vertices is viewed as a human joint and
the human skeleton is viewed as the connection between
the joints. In recent years, a number of graph convolution
networks (GNN) as well as GCN-based HAR methods [25,
26] have been introduced. Yan et al. [25] used GCN for
skeleton-based HAR by introducing Spatial–Temporal GCN
(ST-GCN), and both spatial and temporal modalities from
skeleton data could be learned. The two-stream Adaptive
GCN (2S-AGCN) was introduced in [26]. Moreover, Chi
et al. [27] introduced InfoGCN, it includes an information
bottleneck for learning abundant actions, and a GCN based
on attention to deduce the skeleton topology of contextual
relevance.

Transformers have shown significant potential in sequence
data processing. Therefore, a great number of methods [28,
29, 31] proposed the application of Transformers on skele-
ton sequences with a focus on spatial–temporal modeling.
In [31], a spatio-temporal tuple transformer (STTFormer)
framework was proposed. Plizzari et al. [29] presented a
structure of Spatial–Temporal Transformer Network (ST-
TR) in which the inter-frame motion dynamics and inter-
actions of intra-frame joint were considered to be learned by
spatial and temporal self-attention modules.
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2.2 Multi-modal Data FusionMethods

There are several works investigating deep learning archi-
tectures that fuse features of RGB and HAR skeletons.
Zolfaghari [32] illustrated a 3DCNN to deal with raw RGB
images pose, and motion. A Markov chain model was used
to fuse the streams to perform action classification. In [7],
a unit-level spatial–temporal LSTMwas presented, enabling
efficient fusion of features in LSTM units. Li et al. [34] pre-
sented a 2S model including R(2+1)D networks, ST-GCN
networks, and guidance blocks with enhanced information
related to the action in the video. Then, the model was clas-
sified with the use of score fusion. Based on a 3D CNN
network, Das et al. [51] introduced an approach using RGB
video as input and designed a pose-guided spatial–temporal
attention-based network. Xu et al. [35] introduced a BPAN
model spatial–temporal a bilinear pooling and attention
fusion approach, which implemented feature fusion effec-
tively.

3 ProposedModel

A novel VT-BPAN model of multi-modal HAR is proposed
for feature fusion. Specifically, first, the two deep learn-
ing frameworks are employed to extract features separately,
and then fuse the features by the VT-BPAN module. The
overall architecture of the network is depicted in Fig. 1.
Moreover, the proposed network is evaluated in an end-
to-end way. A feature fusion approach is specified in this
section, as well as a data preprocessing module and a feature
extraction technique. Different from previous method given
in Sect. 2, first, it utilizes a Vision Transformer architec-
ture, which has shown promising results in various computer
vision tasks, instead of traditional convolutional neural net-
works (CNNs) used in the previous approaches. This allows
the model to capture long-range dependencies and contex-
tual informationmore effectively. Additionally, the proposed
method incorporates bilinear pooling, which fuses features
from different modalities (RGB and skeleton) by computing
outer products, enabling multi-modal interactions. Further-
more, attention network fusion is employed to dynamically
weight the importanceof differentmodality-specific features,
enhancing the discriminative power of the model. These
novel components in the proposed method enable better inte-
gration and exploitation of multi-modal information, leading
to improved human action recognition performance.

3.1 PreprocessingModule

The RGB video is first cropped. The large amount of noise
and background are generally important factors that affect
the task of RGB video classification, and can also lead to

computational memory consumption. Thus, focusing video
detection tasks on the human body in RGB video is required,
this paper adopts the technique in [35] to crop the human
action in its input RGB image via pose mapping.

For the skeleton sequence, to better describe the spatial and
temporal sequence of the skeleton, we adopt temporal differ-
ences and relative coordinates. As shown in Fig. 3, based on
the distance among all joints in each frame and that of the
joint at the center, the relative coordinates xr can be obtained,
and xt denotes the time difference, and is computed below

xt = x [t + 1] − x [t] , (1)

where x[t] represents data at frame t , and the data of final
input is concatenated and joined by x , xr , and xt . Based on
2S-AGCN [26], with an origin channel C of 3, denoting the
3D coordinates at each joint. We use the preprocessing mod-
ule to extract more information features. The input channel
C is added to 9 by applying this module.

For 2S-AGCN, a spatial GCN block was proposed, which
can be calculated by the following equation:

fout =
Kv∑

k

Wk fin (Ak + Bk + Ck), (2)

where Kv refers to kernel dimension, AK refers to the adja-
cency matrix, Bk is similar to that of Mk in ST-GCN, and Ck

represents the learning sample graph.

3.2 Feature ExtractionModule

The recognition network model proposed in this paper is
composed of two streams, which mainly include RGB data
and skeleton data processing, for extracting temporal and
spatial features, respectively.Next, the network is specifically
described.

In general, R(2+1)D network [36] and 2S-AGCNnetwork
[9] are used for feature extraction, respectively. Specifi-
cally, for RGB video stream, pretraining on Kinetics-400
[37] is required. A sketch of the R(2+1)D recognition block
is depicted in Fig. 2. The convolution network splits the
calculation into two-dimensional convolution in spatial and
one-dimensional convolution in temporal terms.As the input,
it regards the video data with the size of 3 × T × 112 ×
112, where 3 denotes the amount of RGB channels, 112
corresponds to the image height andwidth, aswell as T corre-
sponds to the length of the sequence. For 3D skeleton stream.
The 2S-AGCN network [9] is adopted. First, the skeleton
processing data are obtained, as shown in Fig. 3. Then, it
takes the skeleton sequence with the size of T ×C ×V × M
as the input, where T represents the frame in the sequence,C
represents the channel amount, V represents the joints, and
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Fig. 1 An overall architecture
of the network, two data
preprocessing methods are
applied to extract features, and
the VT-BPAN block is
performed to fuse the features

Fig. 2 An overall of skeleton
preprocessing and the
architecture of R(2+1)D
network

M represents the skeletons within the frame. After R(2+1)D
block [36] and 2S-AGCN network as well as dimensional
transformation, the features have the same dimension.

3.3 Feature FusionModule

In this subsection, Transformer and Bilinear Pooling tech-
niques [38, 40] have been introduced to fuse the features
extracted by two preprocessing models. The proposed VT-
BPAN module is depicted in Fig. 4. The module integrates
the popular structure of Transformer block and gives a
lightweight improvement, as shown in Fig. 5, which can
efficiently fuse multi-modal for RGB-D action recognition.
Denote FRGB and FSKE refer to the features extracted from
the RGB and skeleton modules, respectively.

The specific approach to theTransformer block is described
in the following two aspects.

(1) As for the vision Transformer block, each standard
Transformer block is typically composed of multi-head
attention layers (MHA), feed-forward networks (FFN),
normalization of layers, and shortcut connections. In
practice, a set of query attention functions needs to be
computed simultaneously and packaged into a matrix Q,
and K and V denote the key matrices and value matrices.
The attention output can be computed by

Attention (Q, K , V ) = softmax

(
QKT

√
dk

)
V . (3)

Next, the different heads get different query matrices,
key matrices, and value matrices. The input vectors are
allowed to be projected into different representation sub-
spaces, andmoreover, theMHAallows themodel to focus
on information fromdifferent subspaces in different loca-
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Fig. 3 An overall of skeleton
preprocessing and the
architecture of 2S-AGCN with
temporal difference

Fig. 4 An overall architecture of our VT-BPAN model. It has two
streams, a skeleton sequence and an RGB frame, and the 2S-AGCN
network is for extracting skeleton features, while the R(2+1)D network

is for extracting RGB features. The features have three parts, the RGB
features, the skeleton features, and the eventual fusion features, and the
network is used for effective feature fusion

Fig. 5 a, b Block-wise comparison between the standard Transformer block and the spatial lightweight Transformer
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tions. The process is shown in the following:

MHA (Q, K , V ) = Concat (head1, . . . , headh)W
O ,

(4)

where headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
, the

projections are matrices of parameters with the follow-
ings dimensionsWQ

i ∈ Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,WV

i∈ Rdmodel×dv , and WO
i ∈ Rhdv×dmodel .

Each layer in the encoder contains a fully connected
FFN, in addition to the attention layer, and can be denoted
as the following function:

FFN(x) = max (0, xW1 + β1)W2 + β2, (5)

where W1 and W2 denote weight vectors, and β1 and β2

denote bias vectors.
(2) The spatial lightweight transformer encoder layer is

based on [29] and DelighT [30], with an improved model
of the network architecture and the dimensions of the
weights, as shown in Fig. 5b.

First, we consider squeezing the output feature informa-
tion. The shaped input tensor X with C × T × dm

Sk = σ
(
W̃1ReLU

(
XW̃2

)
+ b

)
, (6)

where W̃1 ∈ R
dm
r ×dm×C and W̃2 ∈ RC×1×dm denotes weight

vectors. σ represents the Sigmoid activation function. b
denotes the bias vector. The choice of parameter values is
based on the relevant literatures [16, 29] and [30] and the
source code.

Next, thematrices XQ ∈ RT×C×1×dk , XK ∈ RT×C×1×dk ,
and XV ∈ RT×C×1×dv are acquired from rearranging the
inputs. The transformation is applied to each frame sepa-
rately in the T dimension. The matrices Q, K , and V are
obtained by multiplying the matrices WQ ∈ Rdo×1×C , and
WK ∈ Rdo×1×C and WV ∈ Rdo×1×C , respectively, and then
by conducting dimensional transformation.

Unlike the existing spatial self-attention module, we first
squeeze the embedded dimension settings in each spatial
lightweight Transformer encoder layer. The formula for com-
puting the self-attention matrix is given here

Attention (Q, K , V ) = softmax

×
((

WQXQ
)
(WK XK )T√
dk

+ Sk

)
(WV XV ) . (7)

Due to the fact that dimension of T moves in the batch,
the parameters can be efficiently shared along the dimen-
sion of time and the transformations are applied separately in

each frame. Through the above transformation, self-attention
matrix has an output shape of T × do × dv . The algorithm
procedure is given in Algorithm 1.

Algorithm 1 Transformer algorithm procedures
Initialization:current period t , initial matrix Q, K , V , initial weight
W , W̃1, W̃2, initial the vectors β1, β2 and b. Attention (Q, K , V ) =
so f tmax

(
QKT√

dk

)
V ;

MHA: MHA (Q, K , V ) = Concat (head1, . . . , headh)WO ;
FFN: FFN(x) = max (0, xW1 + β1)W2 + β2;
Extrusion output feature information Sk =
σ

(
W̃1ReLU

(
XW̃2

)
+ b

)
;

Attention (Q, K , V ) = so f tmax
(

(WQXQ)(WK XK )T√
dk

+Sk
)

(WV XV ) .

Then, the output of our model can be obtained by a simple
reshaping.

Figure 5b shows that howwe integrate a spatial lightweight
transformation into the Transformer block. Compared with
the standard Transformer block and the lightweight Trans-
former block, the computational cost of calculating attention
is O

(
dmn2

)
and O

(
don2

)
, respectively, where do < dm .

Thus, the lightweight Transformer block has reduced the cost
of calculating attention by a factor of dm

do
. In our experiments,

we adopted do = dm
16 ; thus, it required 16× lessmultiplicative

addition operations compared to the Transformer structure.
Note that, the advantage of dot product is that it is faster and
more spatially efficient in operation, because it allows the
use of highly optimized matrix multiplication codes for its
implementation [16].

Consider a lightweight feed-forward network (FFN) struc-
ture, where the first layer reduces the dimension of the input
from dm to dm

r , while the second layer expands the dimen-

sion from dm
r to dm , with r being the reduction factor. The

lightweight FFN thereby reduces the amount of parameters
and operations in the FFNby a factor rd f = dm . In a standard
Transformer, the FFN dimensions are expanded a factor of
4. In the subsequent experiments, we adopted r = 4. Hence,
the lightweight FFN reduces the number of parameters of the
FFN by 16 ×.

In this work, the compact bilinear pooling (CBP) [40]
method is used for the fusion feature, and is described as
follows:

〈FRGB(X ), FSKE(Y)〉 =
∑

s∈S

∑

u∈U
〈xs, yu〉2

≈
∑

s∈S

∑

u∈U
〈φ(x), φ(y)〉 (8)

≡ 〈C(X ),C(Y)〉,

where C(X ) = ∑
s∈S φ(xs), C(Y) = ∑

s∈U φ(yu), and C
is the channel of the feature. Define Ffus as the fusion feature.
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Then, it can be normalized by L2 regularization

Ffus = Ffus
‖Ffus‖2 . (9)

Then, the obtained Ffus is taken and placed into the fully
connected layer and the ReLU layer. As a result, the new
fusion feature Ẑ f ∈ RC×1 is described by

Ẑ f = ReLU
(
W̃ · Ffus

)
, (10)

where W̃ denotes the weight matrix. To get more expressive
features based on attention, the network is designed similarly
to ECANet [39]. Conv1d is used for computing the attention
weights.

At the end of the proposed model architecture, the mul-
tilayer perceptron (MLP) is employed as a classification
module, where the batch normalization layer and the ReLU
function are connected sequentially. Then, a softmax func-
tion is employed to normalize the predictions to probabilistic
distributions. Finally, the two features are summed to obtain
an ultimate fusion feature Fend.

Due to the presence of two main tasks and the fact that
multitask learning is based on multiple objective optimiza-
tion models. We give a loss function that sums the losses of
these two tasks, which can be computed as follows:

L total = λ1LRGB + λ2LSKE, (11)

where λ1 and λ2 represent weighting factors, respectively.
LRGB denotes the loss of RGB stream and LSKE denotes the
loss of skeleton stream.

The overall algorithm of the VT-BPAN model is given in
Algorithm 2.

Algorithm 2 An overall algorithm of the VT-BPAN model
Initialization: RGB feature FRGB and SKE feature FSK E ;
Compute early Ff usion through CBP, Ff usion ← FRGB and FSK E ;
Compute Ff usion through the proposed Transformer encoder;
Compute Z f usion through the attention module;
Compute the loss function Ltotal ;
Obatin YRGB and YSK E and classified by MLP, and the two features
are summed to obtain an ultimate fusion feature Fend.

4 Experiments

Several experiments are conducted on two public datasets
to evaluate the effectiveness of the presented VT-BPAN for
HAR. In addition, an extensive ablation study is conducted
to investigate the performance of each module.

4.1 Datasets

(1) NTU-RGB+D Dataset [41]: The dataset is viewed as
one of the most extensively used datasets available for
HAR. It includes 56,880 video samples with a total of
60 action classes. In addition, it provides two classes of
action categories for assessment: cross-subject (CS) and
cross-view (CV). Based on both assessments, related
experiments were conducted and the first ranked recog-
nition accuracy was reported.

(2) NTU-RGB+D 120 Dataset [42]: NTU-RGB+D 120 has
more action classes,with a total of 120 action classes that
are classified into three major categories, including 82
daily actions, 26 interactive actions, aswell as 12 health-
related actions. It is composed of 114,480RGB+Dvideo
samples coming from 106 different human participants.

(3) UTD-MHAD Dataset [43]: The dataset contained 27
actions, which are implemented by 8 human subjects,
where each action is executed exactly 4 times. The
dataset is left with 861 sequences after removing the
three corrupted sequences. Four modalities including
skeleton and RGB were available. To obtain a fair com-
parison, an across-subject protocol was implemented
[43], with the data from subjects numbered 1, 3, 5, and 7
were employed for training, while the data from subjects
numbered 2, 4, 6, and 8 were given as test data.

4.2 Implementation Details

Two NVIDIA TITAN RTX GPUs are used to perform all
experiments on the PyTorch framework. For theRGB stream,
the resizing of the RGB frames is adjusted to 112×112, with
the video sequence length being set to 20 and the RGBmodel
being pretrained on the Kinetics-400 dataset [37]. For the
skeleton stream, with 50 being the set skeleton sequence
length, the other variables are the same choices as in [26].We
select the decay of weights and rate of learning as 0.0001 and
0.01, respectively, and the model optimization is performed
using stochastic gradient descent with cross entropy as the
loss function of the back-propagation gradient. The learning
rate is selected as 0.01.

4.3 Ablation Study

In this section, cross-topic benchmarks on the NTU-RGB+D
dataset are used to validate the effectiveness of the VT-BPAN
component proposed in this paper. To illustrate the perfor-
mance of the model, training and testing are evaluated in
each epoch. In addition, the accuracy of the model in each
epoch is recorded.

(1) Effect of fusion scheme: Various feature fusion schemes,
including average, multiplication, sum, concatenation,
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Fig. 6 Visualization results of vision Transformer fused self-attention module

Table 1 Impact of fusion scheme on performance

Methods Accuracy

Average 93.07

Multiplication 92.20

Max 92.35

Sum 93.09

Concatenation 93.16

BPAN (Resnet 18) 94.85

VT-BPAN [ours] 95.40

Bold value indicates better results than other filtering methods

and maximum, are verified. Table 1 shows the results.
As it can be seen in Table 1, the recognition accu-
racy is significantly improved by the fusion scheme and
reaches 95%.Moreover, the givenVT-BPANfusionmod-
ule achieves the best accuracy compared to the above
model.

(2) Effect of feature extraction models: In this paper, the
approach of video HAR can be briefly summarized in
twofold. In one hand, a 2D+1D framework is typically
used, where a 2D CNN is used for input of each frame,
and is followed by a 1D module, that converges the fea-
tures from each frame. The second approach alternatively
applies a 3DCNNwith stacked 3Dconvolutions tomodel
temporal and spatial semantics in conjunction. Based on
the results of [35], we compare the recognition accu-
racy of three convolutional neural networks [including
3D ResNet, MC3 ResNet [36], and R(2+1)D] based on
ResNet-18. The results show that the selected R(2+1)D
model reaches the best accuracy.

(3) Visualization analysis: For better representation of the
effect of the self-attention of VT-BPAN, we further
compare the only ECANet attention and the fusion self-
attention produced by VT-BPAN. The results are shown
in Fig. 6, it can be seen that for each input image,

the learned representation of the saliency map indicates
the importance of each pixel. VT-BPAN captures more
meaningful pixels.

4.4 ComparisonsWith the State-of-the-Art

For a fair comparison, we compare with algorithms that fuse
RGB features and skeleton features that appear compara-
ble to our work. As with the original evaluation scheme, it
is demonstrated the accuracy of the NTU-RGB+D, NTU-
RGB+D 120, and UTD-MHAD datasets, as presented in
Tables 2, 3, and 4. A comparison is made between our
method and simpler fusion-based (e.g., BI-LSTM [44]) as
well as attention-based methods (e.g., MMTM [47] and
BPAN [35]). Compared to the NTU-RGB+D dataset, the
UTD-MHAD as a smaller scale dataset still performs com-
parable to HAMLET [55]. Results of the evaluation indicate
that attention-based fusion approaches can obtain supe-
rior results. The approach used in this paper integrates a
Transformer-based bilinear pooling and an attention-based
strategy. The backbone network used is Resnet 18, which is
superior to the state-of-the-art results.

5 Conclusion

In this paper, a multi-modal HAR model has been proposed.
For temporal and spatial feature extraction, R(2+1)D and 2S-
AGCNhavebeen employed.Next, theVT-BPANmodule that
can obtain more expressive features by feature fusion and
vision Transformer attention mechanism has been proposed,
and in addition, a lightweight Transformer improvement has
been proposed.Various fusion strategies have been compared
to verify the superiority of theVT-BPANmodule. In addition,
we use fully connected perceptrons to get the final fusion
features. End-to-end training has been performed. It has been
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Table 2 Comparison of NTU-RGB+D dataset model with the state-of-the-art

Methods Year Multi-model CS CV

BI-LSTM [44] 2019 Yes 85.4 91.6

FUSION [45] 2020 Yes 91.8 94.9

MSAF [46] 2020 Yes 92.24 –

MMTM [47] 2020 Yes 91.9 95.3

VPN(I3D) [48] 2020 Yes 93.5 96.2

BPAN (Resnet 18) [35] 2021 Yes 94.85 97.4

VT-BPAN [ours(a)] 2022 Yes 95.40 97.67

Bold values indicate better results than other filtering methods

Table 3 Comparison of NTU-RGB+D 120 dataset model with the state-of-the-art

Methods Year Multi-model C-Sub C-Set

ST-LSTM [49] 2016 No 55.7 55.9

Two-streams ST-LSTM [42] 2019 Yes 61.2 63.1

separable STA [51] 2019 Yes 83.8 82.5

Verma et al. [52] 2020 Yes 76.7 77.9

VPN(I3D) [48] 2020 Yes 86.3 87.8

BPAN (Resnet 18) [35] 2021 Yes 86.6 88.1

VT-BPAN [ours(a)] 2022 Yes 86.7 88.6

Bold values indicate better results than other filtering methods

evaluated on the NTU-RGB+D dataset, the NTU-RGB+D
120 dataset, and theUTD-MHADdataset, and has performed
better than existingmethods.Given the limitations of existing
networks, future work will implement on fusion methods for
multi-modal data and heterogeneous networks.

6 Advantages, Hypothesis, and Limitations

Advantages: First, the method enables efficient extraction
of spatial relationships and long-range dependencies within
the RGB and skeleton features, leading to enhanced repre-
sentation learning for HAR. Second, the attention network
fusion mechanism effectively combines the RGB and skele-
ton features, leveraging the complementary information from
bothmodalities. This fusion approach facilitates amore com-
prehensive understanding of human actions by capturing
both appearance and motion cues. Finally, the integration of
these two techniques results in improved action recognition
performance, surpassing traditional methods and achieving
state-of-the-art results.

While the method of integrating Vision Transformer-
based Bilinear Pooling and Attention Network Fusion of
RGB and Skeleton Features for Human Action Recognition
offers several benefits, it also has certain limitations. Here
are some limitations of this approach:

1. Complexity and computational requirements: The inte-
gration of Vision Transformer-based Bilinear Pooling

Table 4 Comparison of UTD-MHAD dataset model with the state-of-
the-art

Methods Year Multi-model Top-1 Accuracy

JDM-CNN [53] 2017 Yes 88.10

MCRL [54] 2019 Yes 93.02

HAMLET [55] 2020 Yes 95.12

BPAN (Resnet 18) [35] 2021 Yes 95.07

VT-BPAN [ours] 2022 Yes 95.10

andAttentionNetwork Fusion introduces increased com-
plexity and computational requirements. Vision Trans-
formers are already computationally expensive due to
their self-attention mechanisms. Combining them with
bilinear pooling and attention network fusion further
exacerbates the computational cost, making the method
less efficient for real-time applications or systems with
limited computational resources.

2. Limited interpretability: Vision Transformers are known
for their black-box nature, meaning that they lack inter-
pretability. While they excel at capturing complex pat-
terns and relationships in visual data, understanding the
underlying reasoning for their predictions becomes chal-
lenging. This limitation persists when integrating them
with other techniques like bilinear pooling and attention
network fusion, which may hinder the ability to analyze
and interpret the model’s behavior.

3. Data requirements: The success of deep learning meth-
ods heavily relies on the availability of large and labeled
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datasets. Collecting and annotating diverse datasets for
action recognition, especially involving multiple modali-
ties like RGB and skeleton, can be a time-consuming and
expensive process.
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