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Abstract

Wind energy is one of the most significant renewable sources of energy while accurate
and reliable wind power forecasting methods may greatly benefit power system planning
and scheduling. Recently, many machine learning algorithms have shown significant advan-
tages in how to extract temporal features for wind power forecasting. However, wind
power curves in the time domain frequently display intermittent features and significant
uncertainty, which is not favorable to precise and reliable forecasting. In this paper, the
Diffusion and Channel Attention-based Wind Power Forecasting (DC-WPF) framework
is proposed, which transforms wind power data into the frequency domain while applying
advanced channel attention techniques to aid the model in capturing the frequency domain
information and ultimately enhancing accuracy. With high-accuracy results, DC-WPF then
proposes a diffusion-based framework to transform the point forecasting results into prob-
abilistic forecasts to capture the uncertainty. Finally, extensive experiments on six wind
power plants show that our method can improve the point forecasting accuracy of wind
power and provide advanced probabilistic forecasts at a multi-time scale.

1 INTRODUCTION

1.1 Backgrounds and motivations

In the modern world, renewable energy sources like wind
and photovoltaic (PV) are increasingly replacing conventional
fossil fuels [1]. This is due to the energy system’s reliance on
conventional fossil fuels, which are responsible for more than
75% of the world’s carbon dioxide (CO2) emissions and serious
environmental impact [2]. Countries all over the world have
established necessary legislation to encourage the growth of
renewable energy to decrease potential risks to the environment
from the energy sector. Among all renewable energies, Wind
power generation is a significant one and is used extensively in
many nations throughout the globe. CAs of the end of 2017,
China had 635 million kW installed capacity for the generation
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of renewable energy, which made up 35.7% of the country’s
installed electric power capacity. Additionally, 164 million kW
of installed wind power, or 9.2% of total installed capacity, is
available [3]. The European Council has repeatedly set objec-
tives for the proportion of renewable energy in recent years,
and in many EU member states, wind energy is predicted to
make up the bulk of these goals [4].

However, because of the variability of wind [5, 6] and the
fact that the wind power sources are exposed to the envi-
ronment more than traditional thermal power sources [7], the
uncertainty in wind power generation is very large, which
probably leads to detrimental impacts on the electric grid.
To solve such challenges, researchers are focusing heavily on
wind power forecasting, and power system operators may
reduce the risk of an unstable energy supply with precise and
reliable wind power predictions, which also allows them to
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make better decisions concerning the expansion of the wind
sector [8].

Even though accuracy and reliability are both important for
wind power forecasting. We seldom consider the relationship
between them. Therefore, this paper has two main concerns.
The first is to improve wind power point forecasting accuracy.
The other is to provide advanced probabilistic predictions based
on point forecasting and illustrate how point forecasting influ-
ences the probabilistic one to capture uncertainty, which may
ultimately increase wind power forecasting reliability.

1.2 Literature review

Extensive work has been done for wind power forecasting,
which can be roughly divided into three categories: persistence
method, statistical methods, and methods based on neural net-
works. The persistence method refers to simply considering
the current value as the future value based on the assumption
that they are highly correlated [9]. This kind of assumption is
unrealistic that it ignores the volatility of wind power. There-
fore, it only performs well in the very short-term situation. To
overcome such difficulties, some researchers applied statistical
methods like AR models and their variants ARX, ARMA, and
ARIMA to model the wind power data [10–12]. This model
assumes that the wind power sequence is auto-correlated and
tries to find the exact correlation. However, AR models only
focus on the temporal features of time series and have few
parameters, making it difficult to accurately model complex
wind power generation.

With the development of computing power these years, the
neural network has become a powerful tool for wind power
forecasting. It is believed that neural networks can fit arbitrary
functions with enough parameters [13]. In terms of high-
accuracy wind power forecasting, one of the networks called
long short-term memory(LSTM) has been proven to be very
suitable for wind power forecasting tasks with a large number of
experiments [14–16]. In addition, [17] proposed an architecture
of MST-GNN based on wind Transformer and GNN to give
advanced wind power forecasts. [18] proposed the Transformer
model, which is widely used in natural language processing, to
replace temporal context with an attention mechanism. In addi-
tion to pursuing high accuracy, many researchers also use neural
networks to provide probabilistic forecasting results to improve
the reliability of forecasting. [19] used an ensemble method
combining several distributions to give probabilistic results. [20]
calculated the point-based wind power prediction’s uncertainty
and obtained the wind power’s probabilistic prediction interval
using particle swarm optimization (PSO).

Even though neural networks have strong modeling capabil-
ities, wind power exhibits strong volatility in the time domain,
making it difficult to model effectively. Therefore, a natural idea
is to introduce frequency domain information to avoid such
difficulties [21]. Some researchers have used methods such as
Fourier Transform(FT) to transform wind power sequences
into the frequency domain and extract features [22] and [23]
proposes a novel integrated method for short-term wind power
forecasting, which first exact the frequency domain information

by fast Fourier transform(FFT). However, Fourier Transform
itself has certain limitations. According to [24], Fourier Trans-
form will introduce high-frequency components incorrectly
because of its problematic periodicity. And this will cause an
error value for boundary information, which is called the Gibbs
phenomenon. As shown in Figure 1, most of the wind power
energy is contained in the rather low-frequency range. Incor-
rect introduction of high-dimensional components can make it
difficult for the model to extract information correctly. There-
fore, how to correctly extract frequency domain information
to improve the accuracy and reliability of forecasting deserves
our attention.

To cope with such a situation, [25] adopts wavelet trans-
form to transform the wind power temporal information
into the frequency domain and input them into the con-
volutional neural network to extract features. [26] proposes
tests various combinations of Recurrent Kalman Filter (RKF),
Fourier Series (FS), Wavelet (WNN), and Artificial Neural Net-
work (ANN) to finally get 12 different hybrid models for
forecasting. Unlike simply using neural networks to extract
frequency domain information, combining frequency domain
information with attention mechanisms has become a new
trend in time series forecasting. [27] proposes a sequence-to-
sequence (Seq2Seq) LSTM model with attention mechanisms
and wavelet transform for reservoir-level forecasting. Based
on wavelet transform (WT), [28] decomposes and recon-
structs the time series of crude oil futures prices into a
low-frequency main sequence and several high-frequency noise
sequences and uses the BiLSTM-Attention-CNN model to
forecast the decomposition subsequences in turn. [29] proposes
a frequency-enhanced decomposition structure to decompose
the time series and integrate the Fourier enhancement mod-
ule and wavelet enhancement module into the encoder and
decoder of the Transformer. However, these forecasting mod-
els are not specific to wind power forecasting, and they all focus
on point forecasting. How to combine the extraction of wind
power sequence frequency domain information with an atten-
tion mechanism to provide more accurate forecasting results
still needs to be studied. Furthermore, how to extend the point
forecasting model to probabilistic forecasting to provide reliable
forecasting also needs to be considered.

1.3 Contributions

To address the existing research gaps mentioned above and
provide accurate and reliable wind power forecasting, this
paper proposes a framework called DC-WPF. The frame-
work combines a frequency domain-based attention mechanism
enhancement method with a conditional diffusion model to
improve the accuracy of wind power deterministic forecasting
while providing corresponding probabilistic forecasting results,
which enhances the reliability of the forecasting model.

The contributions of this paper are summarized below:

∙ To solve the problem that complex temporal features of
wind power make it difficult for the model to exact use-
ful things for the following forecasting, we combine a

 17521424, 2024, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12825, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



308 PENG ET AL.

FIGURE 1 Six real wind power datasets visualization in frequency domain, most of the energy is contained in the low-frequency range.

FIGURE 2 The architecture of the proposed framework DC-WPF. The DC-WPF consists of two parts: The upside part is the deterministic forecasting model
and the downside part (Conditional Diffusion) is the diffusion transformation module.

frequency-based channel attention mechanism with the
LSTM model to enhance the model, thereby greatly improv-
ing the accuracy.

∙ Based on highly accurate deterministic forecasting, we
apply conditional diffusion models to expand deterministic
forecasting to probabilistic one, enabling it to give forecast-

ing results under arbitrary confidence intervals, effectively
estimating the uncertainty of the forecasting model, and
improving forecasting reliability.

∙ Conduct a comprehensive case study based on real wind
power datasets at different time scales. The experiments
show that considering frequency information has a positive
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FIGURE 3 Difference of discrete Fourier transform and discrete cosine
transform [24].

ALGORITHM 1 Training process of diffusion-based transformation

impact on the model at a multi-time scale and our method
is competitive when it is compared with current widely used
methods.

2 PROBLEM STATEMENT

We will divide our task into two stages. One is the point
forecasting task, which aims to provide high-precision forecast-
ings, while the other is probabilistic forecasting, which aims to
provide reliable forecastings.

For point forecasting, our known quantities are the current
time point t0 and historical wind power data before that time
point Xt0−h1∶t0

= {xt0−h1
, xt0−h1+1, … , xt0

} and the quantity we
hope to obtain is the predicted value of wind power output in
the future Xt0+1∶t0+h2

= {xt0+1, xt0+2, … , xt0+h2
},

Xt0+1∶t0+h2
= P𝜃 (Xt0−h1∶t0

),

where h1 and h2 represent the input length and the prediction
length respectively. By adjusting their length, we can achieve
forecastings from a few hours to a day in advance.

Unlike general forecasting scenarios, our probabilistic fore-
casting is closely related to the results of point forecasting.
That is, we need to use the output of point forecasting as the
input for probabilistic forecasting, and ultimately obtain the
final probabilistic output.

ALGORITHM 2 Inference process of diffusion-based transformation

Xt0+1∶t0+h2
= Q𝜙(Xt0+1∶t0+h2

),

where Xt0+1∶t0+h2
represents multiple probabilistic sampling

samples at each forecasting time point. Through these sam-
ples, we can obtain the corresponding probability distribution
properties

3 METHODOLOGY

In this section, we will introduce how the channel mecha-
nism technique can assist our model to incorporate frequency
domain information to increase forecasting accuracy and how
the diffusion model transforms the deterministic forecasts into
probabilistic ones.

3.1 Overview of the DC-WPF framework

The entire design of our suggested approach DC-WPF is
depicted in Figure 2. To extract temporal features, we first feed
the wind power data into the LSTM module [30]. Then we use
Discrete Cosine Transform (DCT) [31] to transform the wind
power data into the frequency domain to avoid the error value
for boundary information stated in the introduction. Unlike
most frequency-based methods, we do not apply the inverse
transform, which can minimize additional computation. Similar
to [24], we apply a frequency-enhanced channel attention mech-
anism to extract frequency features and aggregate the results
for the final output. With this output, we build a conditional
denoising diffusion model to give the probabilistic results. In
the following sections, we will introduce the details of DCT
transformation and conditional diffusion models.

3.2 DCT and channel attention mechanism

3.2.1 Discrete cosine transform (DCT)

To capture the frequency features of the wind power data, we
focus on 1D DCT in this paper. Given a discrete sequence
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FIGURE 4 The network architecture of the conditional guided model.

X [k]
k=0∶N−1, we can rewrite it as linear combination of

multiple components as below,

X [k] =

√
2
N

N−1∑
n=0

x′[n] cos

⎛⎜⎜⎜⎝
(

n +
1

2

)
𝜋k

N

⎞⎟⎟⎟⎠, (1)

where x′[n] can be calculated as

x′[n] =
N−1∑
n=0

X [k]cos

⎛⎜⎜⎜⎝
(

n +
1

2

)
𝜋k

N

⎞⎟⎟⎟⎠. (2)

In this way, we generate a frequency domain spectrum from the
discrete sequence X [k]k=0∶N−1. Note that the DCT is similar to
DFT (discrete Fourier transform), and the difference between
them is that DCT converts the original signal into a real even
signal before transformation, avoiding the erroneous introduc-
tion of high-frequency components at the periodic edge (shown
in Figure 3).

3.2.2 Channel attention mechanism

As shown in Figure 2, we first input the wind power data into
the LSTM module to exact the time domain feature map and
we spilt them into N sub-groups(corresponding to C channels).
Then we use the DCT transform module to get the frequency
spectrum like this

Freqk
i
= DCTk(Vi ) =

√
2
L

L−1∑
n=0

V ′
i [n] cos

⎛⎜⎜⎜⎝
(

n +
1

2

)
𝜋k

L

⎞⎟⎟⎟⎠. (3)

After the DCT transformation, we stack all the channels, that is

Freq = DCT (V ) = concat
([

Freq0,Freq1, … ,Freq
N−1

])
.

(4)

Now we get the frequency information and we can use neu-
ral network structure like SE block [32] to learn the attention
weights like this

Fc − att = 𝜎(W2𝛿(W1DCT (V ))). (5)

In this way, each channel features interact with every frequency
components and it will encourage networks to enhance the
diversity of extracted features [24].

3.3 Diffusion-based conditional
transformation

Inspired by [33], we propose a conditional diffusion trans-
formation method, which is modified to time series data,
to transform the deterministic wind power forecasting into
probabilistic ones.

The diffusion model already can generate probabilistic results
based on the learned distribution. Given the ground-truth Y0
and its corresponding history data X , we assume that Y0 ∼

p(Y0). The goal of the denoising diffusion model is to learn
the conditional distribution p𝜙(Y0|X ). To achieve this goal, the
diffusion model will generate several samples Y1∶T concerning
T adding noise steps instead of directly generating the Y0. As
a result of the adding noise, we assume the final distribution
p(YT |X ) =  (0, I ) so that we can learn a model through maxi-
mizing the log-likelihood log p𝜙(Y0|X ) and this can be achieved
by minimizing the following ELBO derived from variational
inference:
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PENG ET AL. 311

TABLE 1 Hyperparameters of the LSTM module.

Hyperparameters hidden_size hidden_layers bias dropout_rate

(64,64) 2 True 0(0.1,0.25)

log p𝜙(Y0 ∣ X ) = log∫ p(YT ∣ X )Π1
t=T

p𝜙(Yt−1 ∣ X ,Yt )dY1∶T

≥ 𝔼q(Y1∶T ∣Y0,X )
[
log p𝜙(Y0∶T ∣ X ) − log q(Y1∶T ∣ Y0,X )

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

ELBO

.

(6)

Here the q(Y1∶T ∣ Y0,X ) is the forward process of a Markov
chain defined by DDPM [34]. Now since we have T generated
data, we can use the Bayes rule to break the original ELBO into
T parts as below

ELBO(Y0,X ) = 0(Y0,X ) +
T∑

t=2

t−1(Y0,X ) + T (Y0,X ),

(7)

where

0(Y0,X ) = 𝔼q[− log p𝜙(Y0 ∣ Y1,X )], (8)

t−1(Y0,X ) (9)

= 𝔼q[DKL(q(Yt−1 ∣ Yt ,Y0,X )‖p𝜙(Yt−1 ∣ Yt ,X ))],

= ‖�̃�t (Yt ,Y0, P𝜃 (X )) − 𝝁𝜙(Yt ,Y0, P𝜃 (X ), t )‖2
, (10)

T (Y0,X ) = 𝔼q[DKL(q(YT ∣ Y0,X )‖p(YT ∣ X ))]. (11)

Note that in the T step, the T (Y0,X ) is independent of the
parameter 𝜙. According to [35], 0(Y0,X ) has little impact on
the result that we can also ignore it. In this way, the diffusion
model can learn the distribution p𝜙(Y0 ∣ X ).

Since we already have advanced deterministic results, we pro-
pose to build a conditional diffusion model based on such
results like [33]. Unlike the DDPM, we assume that the final
step of the diffusion process is to be a normal distribution
 (P𝜃 (X ), I ). In this way, we can consider the determinis-
tic results P𝜃 (X ) as the prior knowledge to the relationship
between the history data X and the desired distribution p(Y0 ∣

X ). To achieve this goal, we need to modify the strategy of
adding noise.

With the same setting of the schedule parameters
{𝛼i , �̄�i}i=1∶T ∈ (0, 1) and {𝛽i , 𝛽i}i=1∶T ∈ (0, 1) in [34] and
[36], the conditional adding noise process for all diffusion steps
can be rewritten as below

Yt ∣ Yt−1, P𝜃 (X ) =
√

1 − 𝛽t Yt−1 + (1 −
√

1 − 𝛽t )P𝜃 (X ) + 𝜖,

𝜖 ∼  (0, 𝛽t I). (12)

Because of the additivity of the Gaussian distribution, we can
present the closed form of the relationship between the original
data and the data at each diffusion step like this

Yt ∣ Y0, P𝜃 (X ) =
√
𝛼t Y0 + (1 −

√
𝛼t )P𝜃 (X ) + �̄�,

�̄� ∼  (0, (1 − 𝛼t )I). (13)

Note that this formula shows that the forward process is a
process of gradually interpolating from the real value to the
predicted one, and ultimately becoming the predicted one.

Similar to DDPM [35] and [33], we can break the opti-
mized target into several parts. To get the t−1(Y0,X ), we
need to calculate the reverse process q(Yt−1 ∣ Yt ,Y0, P𝜃 (X )),
which can be represented by a normal distribution
 (Yt−1; �̃�(Yt ,Y0, P𝜃 (X )), 𝛽t I) as below

q(Yt−1 ∣ Yt ,Y0, P𝜃 (X )) (14)

= q(Yt ∣ Yt−1,Y0, P𝜃 (X ))
q(Yt−1 ∣ Y0, P𝜃 (X ))

q(Yt ∣ Y0, P𝜃 (X ))
, (15)

= q(Yt ∣ Yt−1, P𝜃 (X ))
q(Yt−1 ∣ Y0, P𝜃 (X ))

q(Yt ∣ Y0, P𝜃 (X ))
, (16)

∝ exp
⎛⎜⎜⎝−

1
2

⎛⎜⎜⎝
(Yt −

√
𝛼t Yt−1 − (1 −

√
𝛼t )P𝜃 (X ))

2

𝛽t

+
(Yt−1 −

√
�̄�t−1Y0 − (1 −

√
�̄�t−1)P𝜃 (X ))

2

1 − �̄�t−1

−
(Yt −

√
�̄�t Y0 − (1 −

√
�̄�t )P𝜃 (X ))

2

1 − �̄�t

⎞⎟⎟⎠
⎞⎟⎟⎠. (17)

The third term on the right side is independent of the Yt−1 and
we can rewrite the formula as

q(Yt−1 ∣ Yt ,Y0, P𝜃 (X )) (18)

∝ exp

(
−

1
2

(
𝛼t Y

2
t−1 − 2

√
𝛼t (Yt − (1 −

√
𝛼t )P𝜃 (X ))Yt−1

𝛽t

+
Y 2

t−1 − 2(
√
�̄�t−1Y0 + (1 −

√
�̄�t−1)P𝜃 (X ))Yt−1

1 − �̄�t−1

))
.

(19)

Finally, we can write this formula in the form of a normal
distribution density by completing the square like this

q
(
Yt−1 ∣ Yt ,Y0, P𝜃 (X )

)
∝ exp

(
−

(Yt−1 − 𝝁t

(
Yt ,Y0, P𝜃 (X )

)
)2

2𝛽t

)
, (20)

where

𝛽t =
1 − �̄�t−1

1 − �̄�t
𝛽t , (21)
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TABLE 2 Hyperparameters of the FEDformer.

Modes mode_select Version moving_avg L Base cross_activation Dropout Activation

32 Random Fourier(Wavelets) [12, 24] 1 Legendre tanh 0.05 gelu

FIGURE 5 Visualization of frequency attention under different forecasting time scales.

𝝁t (Yt ,Y0, P𝜃 (X ))

=

√
�̄�t−1

1 − �̄�t
𝛽t

⏟⎴⏟⎴⏟
𝛾0

Y0 +
1 − �̄�t−1

1 − �̄�t

√
𝛼t

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝛾1

Yt

+

(
1 +

(
√
�̄�t − 1)(

√
𝛼t +

√
�̄�t−1)

1 − �̄�t

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝛾2

P𝜃 (X ). (22)

In this way, the optimized target will be transformed into
minimizing the distance between distribution expectations‖�̃�t (Yt ,Y0, P𝜃 (X )) − 𝝁𝜙(Yt ,Y0, P𝜃 (X ), t )‖2. Also, similar to
DDPM, we can replace the expectation by the noise and our
final loss function will be

‖𝝐 − 𝝐𝜙 (X ,
√
�̄�t Y0 +

√
1 − �̄�t 𝝐 + (1 −

√
�̄�t )P𝜃 (X ), P𝜃 (X ), t )‖2

. (23)

With the label used above, we summarize our diffusion
transformation framework’s training and inference process in
Algorithms 1 and 2, respectively. And the neural network in
Figure 4 is used to create the corresponding noise during
training.

4 EXPERIMENT

4.1 Dataset

We conduct our experiments on six wind power plants in
one province of China. Because of data privacy, we normal-
ize the data into [0,1]. Each of them contains the wind power
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PENG ET AL. 313

FIGURE 6 Deterministic results on wind power plant 1,2.

FIGURE 7 Deterministic results on wind power plant 3,4.

generation data from 2019/01/01 to 2021/12/31 with a res-
olution of 15 min. The training set ranges from 2019/01/01
to 2021/09/30 and we take the last three months as our test
set.

4.2 Experiment setup

Our method is based on RNN neural networks and can simul-
taneously give advanced deterministic and probabilistic results.
Therefore, we choose several widely used deterministic and
probabilistic forecasting methods based on RNN structures as
our benchmarks and some widely used metrics on both deter-
ministic forecasting and probabilistic forecasting to evaluate
our methods.

4.2.1 Benchmarks

We introduce four advanced methods to compare with our
methods.

∙ LSTM [30] a kind of RNN structure, which is widely used in
sentence modeling.

∙ N-BEATS [37] a deep neural architecture based on a very
deep stack of fully-connected layers. Each layer can use either

a general fully connected layer directly or output the coeffi-
cients of certain specific functions (such as trend functions,
seasonal functions etc.), which can break the sequence into
different explainable terms.

∙ FEDformer [29] FEDformer is a time series forecast-
ing model based on the Transformer structure, which
uses attention mechanisms in the frequency domain to
reduce the impact of noise on the model in the tem-
poral domain. It uses two frequency domain analysis
methods and they are Fourier transform and wavelet
transform.

∙ DeepAR [38] a kind of deep state model based on the RNN
module, which uses the normal distribution to model the
output of the deep neural network. Apart from the Gaus-
sian distribution, we also use the student-t distribution as the
emission head.

∙ Dropout [39] Dropout has been proven to be capable of act-
ing as a Bayesian approximation to represent the uncertainty
in deep learning. In this paper, we use the LSTM network
as the basic network and use the Dropout function provided
by Pytorch to capture the uncertainty and give probabilistic
results.

Among them, we will compare the deterministic reduces with
LSTM and N-BEATS while comparing the probabilistic results
with the DeepAR and Dropout methods.
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314 PENG ET AL.

FIGURE 8 Deterministic results on wind power plant 5,6.

4.2.2 Metric

To evaluate the deterministic result, we use Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE). The MAE is
the mean of the absolute errors between the predicted values
and the true values. And the RMSE is the square root of the
square error between the predicted value and the true value.
Both of them are widely used in the regression problem and
their definitions are shown below

MAE =
1
n

n∑
i=1

|yt − ŷt |, (24)

RMSE =

√√√√1
n

n∑
i=1

(yt − ŷt )2, (25)

where yt , ŷt , and n indicate the real value, predicted value, and
the number of predicted points individually.

To evaluate the probabilistic results, we also introduce two
evaluation metrics. The first one is the Continuous Ranked
Probability Score (CRPS) [40]. With the predicted cumulative
distribution function (CDF) Ft and the real value yt , the CRPS
can be defined as follow.

CRPS(Ft , yt ) = ∫
ℝ

(Ft (z ) − 𝕀{yt ≤ z})2 dz, (26)

where 𝕀{yt ≤ z}is the indicator function which is one if yt ≤ z

and zero otherwise. Since not all the methods can produce the
CDF, we use the samples generated from the different methods
and replace the CDF with empirical CDF.

The other is the Winkler Score (WS), which is a metric for
evaluating the prediction intervals (PI). For a central (1- 𝛼)% PI,
it is defined as follows [41]:

WS𝛼,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿, Lt ≤ yt ≤ Ut

𝛿 +
2(yt −Ut )

2
(
𝛼

t

)
,
, yt > Ut

𝛿 +
2(Lt )

𝛼
, yt < Lt

, (27)

where Lt and Ut represent the lower and upper bound of the
PI, respectively; 𝛿 = Ut − Lt . In this work, we will evaluate our
methods on the 50% and 80% intervals.

4.2.3 Hyperparameters and forecasting settings

Focusing on short-term wind power forecasting, we use histor-
ical consecutive 96, 48, and 24 data points (24h, 12h, 6h) as
model input and forecast the future 96, 48, and 24 data points
(24h, 12h, 6h). This forecasting setting is also comparable with
the benchmarks [42, 43].

Each model is trained by ADAM with an initial learn-
ing rate of 10e-3 and the batch size is 64. Apart from
the N-BEATS, all the methods are based on the LSTM
module. Therefore, we use the same LSTM setting for all
the methods. The hyperparameters of LSTM are listed in
Table 1.

All the experiments are implemented in PyTorch and
conducted on a single NVIDIA GeForce RTX 3080Ti GPU.

For FEDformer, we use the same hyperparameter settings
consistent with the original paper, where d _ f f = 16, d _model =

16, and n_heads = 8. The layers of the encoder and decoder are
2 and 1, respectively. In addition, due to the different resolutions
of the input data, we have added the feature of minute_o f _hour

to the default time feature in FEDformer. The rest of
the hyperparameter settings for FEDformer can be seen in
Table 2.

For the N-BEATS, we also set two hidden layers and they
are trend blocks and seasonal blocks. For our diffusion frame-
work, we use the same setting as [33] but reduce the steps of
adding noise to 100. Experiments show that 100 is enough for
our framework to perform better than competitors while the
computing time reduces significantly.

4.3 Frequency attention under different
forecasting time scales

Figure 5 visualizes the frequency attention weight under dif-
ferent forecasting time scales. Among them, each column
represents a wind power dataset. From top to bottom, they
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PENG ET AL. 315

FIGURE 9 The probability forecasting results on 50% interval.

represent the predicted time scales of 6 h, 12 h, and 24
h, respectively.

From it, we can see that when the predicted time scale is 6
h (24 data points), the network’s attention is mainly focused on
the high-frequency information of the feature after DCT trans-
formation. From the perspective of forecasting time length, it
is understandable that when the forecasting interval is short,
the network is more inclined to want to know the relationship
between data points with shorter intervals. As the forecasting
time interval increases, the weight of the attention layer gradu-
ally evolves from focusing on high-frequency information to an
average distribution, indicating that the network not only wants
to know the relationship between two data points with short
intervals but also wants to know the relationship between data
points with longer intervals.

4.4 Deterministic results

Tables 3 and 4 summarize the deterministic forecasting results
of our model and other models, where I _ represents the
improvement between our model and other models. For RMSE,
our model exhibits superior performance over different datasets

and time scales. From the average perspective, our model is
also superior to other models, with improvements of 13.67%,
13.71%, and 7.17% compared to the suboptimal model on
three-time scales, respectively. For MAE, the superiority of our
model has been maintained and our model has improvements
of 12.67%, 11.97%, and 4.93% on different time scales.

Figures 6, 7, and 8 show the 96-point (day ahead) forecasting
results on six different wind power plants. We use transpar-
ent purple to distinguish between historical data input to the
network and predicted one.

From them, we can see that a simple LSTM network cannot
model wind power well and exhibits low performance in mul-
tiple scenarios. More specifically, the LSTM network is unable
to capture the correct trend of wind power sequences. This is
because the LSTM network can only capture the time-domain
characteristics of wind power sequences. From Figures 6 and 7,
it is evident that the forecasting results provided by LSTM
are highly similar to the input sequence. This result indicates
that LSTM is not able to effectively learn the features of wind
power sequences and tends to provide similar results. What’s
more, this also indicates that relying solely on time-domain
information cannot effectively model and predict wind power
sequences. Apart from it, the powerful sequence modeling
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316 PENG ET AL.

TABLE 3 RMSE comparison results.

RMSE

Data-

set Model Ours LSTM

N-

BEATS

FED

former

FED

former_w

24 16.50 24.29 18.03 18.77 18.01

48 20.77 26.94 26.82 26.25 23.57

1 96 24.99 29.51 26.86 28.23 28.95

24 22.51 29.55 26.14 25.63 24.73

48 29.51 36.90 31.39 36.82 36.91

2 96 36.79 41.93 39.98 40.16 42.21

24 4.47 5.71 5.36 4.74 5.02

48 5.69 7.13 6.90 6.39 5.99

3 96 7.33 7.68 7.69 8.09 8.17

24 5.43 7.20 6.45 6.21 5.53

48 6.94 8.14 8.26 7.93 7.53

4 96 8.89 9.13 9.56 8.87 9.15

24 5.44 6.60 6.31 5.78 6.48

48 6.67 7.80 7.99 7.37 7.15

5 96 8.18 8.86 8.51 8.99 8.86

24 5.79 7.59 7.37 6.74 6.54

48 7.86 8.47 8.38 8.40 8.74

6 96 8.96 9.54 9.90 9.64 9.91

24 10.02 13.49 11.61 11.31 11.05

48 12.90 15.90 14.96 15.53 14.98

mean 96 15.86 17.77 17.08 17.33 17.88

model N-BEATS can relatively capture temporal information
well, achieving better forecasting results than LSTM. Compared
with LSTM which solely considers the time-domain features of
wind power sequences, N-BEATS uses carefully designed trend
and seasonal blocks and adopts a residual structure for multi-
step fitting. The figures show that N-BEATS can basically fit
the trend of wind power series changes correctly, rather than
simply outputting predicted values similar to the input. How-
ever, this approach also has limitations. The well-designed block
by N-BEATS enhances the interpretability of the model, but
at the same time reduces its modeling ability of the model.
From Figures 6, 7, and 8, it can be seen that the initial forecast-
ing results have a significant impact on the overall forecasting.
When the initial forecasting results are good (in the second row
and second column of Figure 6, and in the second row and
fourth column of Figure 8), N-BEATS usually gives good fore-
casting results. However, when the initial offset is large (in the
first row and third column, second row, and fourth column in
Figure 7), N-BEATS will also perform poorly in subsequent
forecasting results due to the influence of modeling ability.
Apart from it, N-BEATS lacking frequency domain informa-
tion sometimes cannot keep up with sudden changes in wind
power(as depicted in Figure 7’s second row and third column).

As for the frequency domain forecasting model FED-
former information, we compared the Fourier transform-based

TABLE 4 MAE comparison results.

MAE

Data-

set Model Ours LSTM N-BEATS

FED

former

FED

former_w

24 11.86 18.11 12.80 13.59 12.86

48 14.90 20.65 18.54 20.02 17.66

1 96 18.60 22.60 19.17 21.24 21.89

24 15.27 21.66 17.91 17.52 16.81

48 21.28 27.53 22.42 26.70 26.89

2 96 26.23 31.99 28.34 28.64 30.56

24 3.37 4.39 3.79 3.34 3.64

48 4.21 5.65 5.18 4.83 4.37

3 96 5.56 6.37 5.89 6.36 6.45

24 3.83 5.78 4.53 4.63 3.88

48 5.27 6.66 5.97 5.85 5.64

4 96 7.16 7.50 7.26 6.70 6.90

24 3.90 4.94 4.34 4.18 4.88

48 4.81 5.91 5.95 5.15 5.00

5 96 5.91 6.84 6.02 6.44 6.35

24 4.18 5.93 5.18 4.88 4.80

48 5.91 6.70 6.00 6.27 6.62

6 96 6.67 7.44 7.10 7.15 7.47

24 6.06 8.69 6.94 6.87 6.69

48 8.05 10.44 9.15 9.83 9.45

mean 96 10.02 11.82 10.54 10.93 11.37

and wavelet transform-based FEDformer, denoted as FED

and FEDw, respectively. Among them, whether using Fourier
transform or wavelet transform, the forecasting results of FED-
former show a straight line shape in multiple places, indicating
that FEDformer cannot fit wind power data well. On the one
hand, Transformer’s modeling ability for time series is often
criticized [44], while on the other hand, FEDformer decom-
poses time series in hidden space first. Unlike N-BEATS’
residual-based decomposition, the decomposition in the hid-
den space relies on the autocorrelation of the sequence itself,
while the autocorrelation of wind power is not significant. These
may be the reasons why FEDformer performs poorly in wind
power sequences.

When it comes to our model, we take into account the
frequency domain information of the wind power, thereby
improving the expression ability of the model. On the one hand,
in the wind power sequence, due to the influence of meteoro-
logical factors, the autocorrelation of the different segments of
the same sequence is often small, that is, the similarity between
different segments in the time domain is relatively small. Our
model extracts and learns the frequency domain information of
the sequence, so it will not provide similar forecasting results in
the time domain like LSTM. On the other hand, since frequency
information is considered, our model is less affected by the ini-
tial predicted output values. From the second row and fourth
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PENG ET AL. 317

TABLE 5 CRPS comparison results.

CRPS

Data-

set Model Ours

deep

AR

deepAR

(student-T)

Dropout

(0.25)

Dropout

(0.1)

I_deep

AR

1 24 8.62 12.45 12.12 16.32 16.60 30.72%

48 11.26 15.12 16.00 19.48 19.11 25.48%

96 14.18 16.69 17.39 21.66 21.82 15.03%

2 24 11.55 16.13 15.91 19.35 20.37 28.40%

48 15.51 20.02 20.33 25.53 25.52 22.51%

96 20.32 23.75 24.78 31.39 31.03 14.43%

3 24 2.43 3.22 3.30 4.05 4.09 24.55%

48 3.15 4.06 4.41 5.18 5.31 22.30%

96 4.13 4.51 4.74 6.03 6.12 8.46%

4 24 2.86 4.04 3.92 5.12 5.15 29.25%

48 3.78 4.86 4.47 6.25 6.19 22.29%

96 5.02 5.10 4.92 7.11 7.45 1.46%

5 24 2.84 3.51 3.51 4.45 4.40 19.15%

48 3.55 4.17 4.05 5.25 5.25 14.98%

96 4.42 4.56 4.62 6.28 6.05 3.06%

6 24 3.09 4.25 4.34 5.37 5.44 27.38%

48 4.27 4.79 4.94 6.14 6.31 10.79%

96 5.03 5.13 5.32 6.89 7.04 1.91%

mean 24 5.23 7.27 7.18 9.11 9.34 28.02%

48 6.92 8.83 9.03 11.30 11.28 21.67%

96 8.85 9.95 10.29 13.22 13.25 11.10%

column of Figure 7, it can be seen that despite the significant
error between the initial predicted values and the true values,
our model can also achieve better results in subsequent forecast-
ings. This indicates that compared to the fixed block N-BEATS,
frequency information reduces the negative impact of incorrect
forecastings on subsequent forecastings, thereby improving the
model’s modeling ability.

4.5 Probabilistic results

We evaluate our probabilistic forecasting results by CRPS, 50%
Winkler Score, and 80% Winkler Score and they represent the
overall situation, general situation, and extreme situation of
probability forecasting. Tables 5, 6, and 7 demonstrate that our
strategy consistently outperforms other approaches. In compar-
ison to the suboptimal strategy, our approach is 28.02%, 21.67%,
and 11.1% better for CRPS. The benefits of our methodol-
ogy are maintained for a 50% Winkler Score, and it is 27.34%,
21.53%, and 11.34% superior. This is consistent with the find-
ings in Figure 9, which demonstrate our technique’s overall
(50%) superiority to the baseline method.

When it comes to the 80%Winkler score considering extreme
situations, our model still exhibits advantages over the deepAR
model based on Gaussian distribution in 96-point (day-ahead)

TABLE 6 Winker Score(50%) comparison results.

Winker Score (50%)

Data-

set Model Ours

deep

AR

deepAR

(student-T)

Dropout

(0.25)

Dropout

(0.1)

I_deep

AR

1 24 9.66 13.84 13.47 16.97 17.20 30.23%

48 12.48 16.76 17.81 20.19 19.71 25.56%

96 15.57 18.48 19.27 22.06 22.09 15.74%

2 24 12.91 17.88 17.67 20.06 21.00 27.78%

48 17.19 22.21 22.54 26.25 26.22 22.59%

96 22.38 26.18 27.39 32.17 31.50 14.50%

3 24 2.73 3.58 3.65 4.18 4.21 23.79%

48 3.52 4.55 4.89 5.34 5.46 22.52%

96 4.59 5.06 5.28 6.14 6.25 9.33%

4 24 3.22 4.48 4.34 5.33 5.34 28.09%

48 4.24 5.40 4.95 6.46 6.38 21.42%

96 5.62 5.66 5.47 7.25 7.56 0.74%

5 24 3.17 3.89 3.88 4.62 4.56 18.31%

48 3.97 4.62 4.48 5.43 5.41 14.13%

96 4.90 5.06 5.13 6.41 6.13 3.23%

6 24 3.46 4.71 4.84 5.57 5.63 26.63%

48 4.78 5.32 5.51 6.32 6.48 10.14%

96 5.61 5.72 5.94 7.00 7.11 2.06%

mean 24 5.86 8.06 7.98 9.46 9.66 27.34%

48 7.70 9.81 10.03 11.67 11.61 21.53%

96 9.78 11.03 11.41 13.51 13.44 11.34%

forecasting, but the advantage has decreased. This may be
because our method gives a thinner interval compared to the
Gaussian distribution (similar to Figure 9), which results in
a greater penalty. Nevertheless, our method still outperforms
other methods in terms of average.

We also compare both the deterministic forecasting results
and probabilistic results with the diffusion transformation
model based on standard Gaussian distribution. As mentioned
above, our model may prefer a thinner interval compared to
other models. To explain this phenomenon, Table 8 shows the
comparison between different prior knowledge. Here P𝜃 (X )
is our point forecasting result while F (X ) and Fw(X ) repre-
sent the FEDformer with Fourier and wavelets transformation,
respectively. In most of situations, using a prior distribution
based on point forecasting leads to a better result. Only in
the sixth dataset, our model performs worse than the stan-
dard Gaussian distribution, this is understandable since the
point forecasting result on this dataset is relatively poor when
compares with other datasets (as shown in Figure 8). The prob-
abilistic forecasting based on FEDformer as a prior is consistent
with the point forecasting result, which falls behind our model
comprehensively. Compared with the prior of 0, the forecast-
ing results of FEDformer are closer to the true results. At
the same time, our method is also closer to the true value
than FEDformer. However, in the sixth dataset, the 0 prior
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318 PENG ET AL.

TABLE 7 Winker Score (80%) comparison results.

Winker score (80%)

Data-

set Model Ours

deep

AR

deepAR

(student-T)

Dropout

(0.25)

Dropout

(0.1)

I_deep

AR

1 24 14.90 21.27 21.20 37.34 38.45 29.96%

48 20.24 25.09 27.10 45.07 44.80 19.31%

96 26.23 28.84 31.13 52.13 53.21 9.04%

2 24 20.29 26.91 27.02 44.53 47.72 24.61%

48 27.19 33.03 35.26 60.06 60.18 17.68%

96 37.45 40.53 46.36 74.84 75.33 7.61%

3 24 4.13 5.21 5.48 9.43 9.66 20.78%

48 5.43 6.40 7.80 12.07 12.55 15.13%

96 7.22 6.75 7.40 14.50 14.72 −6.95%

4 24 4.75 6.33 6.54 11.69 11.88 25.01%

48 6.06 7.46 7.21 14.60 14.54 18.70%

96 8.34 7.72 7.64 17.00 18.08 −8.04%

5 24 4.70 5.54 5.68 10.21 10.15 15.17%

48 5.81 6.70 7.03 12.10 12.36 13.31%

96 7.80 7.52 8.10 14.99 14.68 −3.71%

6 24 5.21 6.91 7.00 12.38 12.65 24.54%

48 7.02 7.67 8.13 14.43 14.96 8.38%

96 8.83 8.31 9.22 16.64 17.20 −6.23%

Mean 24 9.00 12.03 12.15 20.93 21.75 25.21%

48 11.96 14.39 15.42 26.39 26.56 16.89%

96 15.98 16.61 18.31 31.68 32.20 3.82%

achieved the best performance, indicating that there may be a
threshold where point forecasting results can provide positive
assistance to probabilistic forecasting results when the thresh-
old is exceeded. Apart from it, the metric where our model
fails to achieve optimal performance is concentrated on the high
quantile. This shows that our model’s preference for a thinner
interval may be because of prior knowledge. Even though taking
relatively bad point-point forecasting may harm our model, the
diffusion-based transformation doesn’t rely on a specific fore-
casting framework, we can treat this diffusion framework as a
plug-in and add it to any other advanced forecasting models to
produce advanced probabilistic results.

5 CONCLUSION

In this paper, we discuss both deterministic and probabilis-
tic wind power forecasting. For deterministic forecasting, we
introduce discrete cosine transform to capture the frequency
domain features of wind power. We demonstrated that as the
predicted time scale increases, the attention of neural networks
will gradually shift from high-frequency information to the
overall picture. For probabilistic forecasting, we use conditional
diffusion models based on advanced deterministic forecasting
to obtain advanced probabilistic forecasting. Compared to the

TABLE 8 Performance comparison with different prior distribution.

Dataset prior RMSE MAE CRPS

Winker

Score

(50%)

Winker

Score

(80%)

 (P𝜃 (X ), I) 20.86 15.00 11.35 12.57 20.46

 (0, I) 21.73 16.17 12.26 13.61 21.66

 (F (X ), I) 26.27 20.21 15.03 16.86 25.37

1  (Fw(X ), I) 23.43 17.57 13.10 14.64 22.38

 (P𝜃 (X ), I) 29.53 20.88 15.79 17.50 28.31

 (0, I) 30.43 22.31 16.72 18.58 28.84

 (F (X ), I) 35.24 25.96 19.39 21.69 33.06

2  (Fw(X ), I) 34.21 25.09 18.75 20.98 31.94

 (P𝜃 (X ), I) 5.82 4.33 3.24 3.61 5.59

 (0, I) 5.85 4.50 3.32 3.70 5.55

 (F (X ), I) 6.60 5.16 3.77 4.22 6.01

3  (Fw(X ), I) 6.41 4.97 3.63 4.06 5.76

 (P𝜃 (X ), I) 7.09 5.39 3.88 4.36 6.38

 (0, I) 7.11 5.43 3.89 4.37 6.32

 (F (X ), I) 7.60 5.70 4.18 4.68 6.78

4  (Fw(X ), I) 7.17 5.29 3.89 4.36 6.41

 (P𝜃 (X ), I) 6.74 4.92 3.60 4.01 6.10

 (0, I) 7.04 5.14 3.79 4.23 6.43

 (F (X ), I) 7.30 5.33 3.89 4.34 6.39

5  (Fw(X ), I) 7.26 5.31 3.83 4.28 6.34

 (P𝜃 (X ), I) 7.62 5.64 4.13 4.62 7.02

 (0, I) 7.45 5.63 4.09 4.57 6.84

 (F (X ), I) 8.31 6.25 4.57 5.13 7.44

6  (Fw(X ), I) 8.31 6.26 4.59 5.16 7.37

 (P𝜃 (X ), I) 12.94 9.36 7.00 7.78 12.31

 (0, I) 13.27 9.86 7.35 8.18 12.61

 (F (X ), I) 15.22 11.43 8.47 9.49 14.18

Mean  (Fw(X ), I) 14.46 10.75 7.97 8.91 13.37

deepAR model based on Gaussian distribution, our model is
more confident (manifested as a narrower prediction interval),
which may be because our probabilistic prediction is based on
deterministic prediction. According to our experimental results,
more accurate point forecasting results usually yield better prob-
abilistic forecasting results. However, there are exceptions to
this rule. In the sixth wind power plant station, probabilistic
forecasting without prior information performed better, indi-
cating that there may be a threshold for the accuracy of point
forecasting. When the accuracy is lower than that, prior infor-
mation may cause the results of probabilistic forecasting to
deteriorate. How to find this threshold to guide the construc-
tion of forecasting models will be our future work. What is
more, even though sometimes it may lead to bad results because
of the relatively poor performance of the point forecasting,
this diffusion framework can act as a plug-in that can assist
other advanced point forecasting methods to get advanced
probabilistic results.
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