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Abstract

An increasing number of compact planetary systems with multiple planets in a resonant chain have been detected.
The resonant chain must be maintained by convergent migration of the planets due to planet–disk interactions if it
is formed before the dispersal of the protoplanetary gas disk. For type I migration in an adiabatic disk, we show
that an analytic criterion for convergent migration can be developed by requiring that any part of the resonant chain
should be convergently migrating toward the remaining part. The criterion depends primarily on the logarithmic
gradients α and β of the surface density and temperature profiles of the disk, respectively, and it is independent of
the absolute values of the surface density and temperature. The analytic criterion is applied to the Kepler-60,
Kepler-80, Kepler-223, TOI-178, and TRAPPIST-1 systems. Due to the variation of planetary masses within the
resonant chains, we find that convergent migration typically requires rather extreme values of (α, β) that have little
or no overlap with common disk models. Finally, we show that there is an empirical relationship between the
distance of the innermost planet from the central star and the stellar mass for the observed resonant chain systems,
which supports the idea that the resonant chains are formed and maintained by stalling the migration of the
innermost planet near the inner edge of the disk truncated by the magnetic fields of the protostar.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Protoplanetary disks (1300); Exoplanet
systems (484); Planetary system formation (1257)

1. Introduction

The first mean-motion resonance (MMR) in an extrasolar
planetary system was discovered around the star GJ 876, with
planets b and c in 2:1 resonance (Marcy et al. 2001). After two
additional planets were discovered in this system, it also became
the first system with a three-body resonance, with planets b, c, and
e in a 4:2:1 Laplace resonance (Rivera et al. 2010; Batygin et al.
2015; Millholland et al. 2018). Many other systems with three or
more planets in resonant chains have since been discovered,
particularly in transit surveys such as Kepler and TESS. Some of
the famous resonant chain systems are Kepler-60 (Steffen et al.
2013), Kepler-80 (MacDonald et al. 2016; Shallue &
Vanderburg 2018), Kepler-223 (Mills et al. 2016), and TRAP-
PIST-1 (Gillon et al. 2017; Luger et al. 2017).

Convergent migration is required for MMR capture
(Goldreich 1965; Murray & Dermott 1999). It is believed that
planet–disk interaction is the dominant migration mechanism for
assembling MMR and resonant chains of planets. Lee & Peale
(2002) have shown that disk-induced migration is able to put
GJ 876 b and c into the observed MMR with suitable eccentricity
damping. For some of the observed resonant chains, migration
simulations have also successfully assembled multiple planets into
the observed resonant chains (e.g., Delisle 2017; Tamayo et al.
2017; MacDonald & Dawson 2018). However, as pointed out by
Papaloizou et al. (2018), most of these simulations applied inward
migration on the outermost planet only. Such a prescription
ensures convergent migration and almost always results in a
resonant chain system if the migration is sufficiently slow. The

inner planets will be captured into MMR, and the resonant chain
will be assembled from the outermost to the innermost planet.
However, this may not reflect the real situation where all planets
are embedded in the disk and are migrating individually.
Disk-induced planetary migration can be classified primarily

into type I and type II, depending on whether the planetary body
is massive enough to open a gap in the co-orbital region (Kley &
Nelson 2012). Type I migration is valid for the Earth-mass planets
involved in many observed resonant chains. Since type I torque
depends on planetary mass and various disk properties (e.g.,
Paardekooper et al. 2010), we should examine what kind of
protoplanetary disk would allow convergent migration. Batygin
(2015) has derived a criterion for convergent type I migration of
two planets in a classical Mestel disk,
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where m1 and m2 are the masses of the inner and outer planets,
respectively, and a1 and a2 refer to their orbital semimajor
axes.4 This criterion assumes (1) a disk surface density profile
Σ=Σ0a0/a, where Σ0 is the surface density at the reference
semimajor axis a0; (2) a constant disk aspect ratio h=H/a
throughout the disk; and (3) an isothermal equation of state.
These assumptions make the criterion appear independent of
the disk parameters. Equation (1) says that the outer planet has
to be more massive than the inner planet for convergent inward
migration and the subsequent MMR assembly to happen. Such
a criterion on the planetary masses is not satisfied in many
observed resonant chain systems. Take TRAPPIST-1 as an
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example; the planet h has a mass of 0.3 M⊕, which is
significantly less massive than the inner planet g of 1.34 M⊕

(Grimm et al. 2018). Similar examples are seen in other
resonant chain systems. This implies that these resonant chains
are unlikely to be assembled in a classical Mestel disk.

Regardless of how a resonant chain is assembled, if it is formed
in the gas disk phase and coexists with the disk, the resonant chain
must be maintained during migration, which requires convergent
migration within the chain. In this study, we consider type I
migration in an adiabatic disk and investigate what disk properties
are required to maintain a resonant chain by convergent migration.
The adopted disk and migration models are described in Section 2.
In Section 3, we analytically derive the necessary conditions for the
convergent migration of a pair of planets, which are shown to be
accurate by comparison with numerical results. The criterion is
generalized to the migration of multiple planets in a resonant chain
in Section 4. The analytic criterion is tested numerically for the
four-planet resonant chain system Kepler-223 and then applied to
other observed resonant chains. We find that rather extreme disk
parameters, far from the usual disk models, are required for
convergent migration. The effects of uncertainties in planetary
masses are discussed in Section 5. Terquem & Papaloizou (2007),
Cossou et al. (2013), Brasser et al. (2018), and Huang & Ormel
(2022) have shown that an inner disk edge can stall migration and
facilitate the assembly of an MMR pair and resonant chain (see
also Li 2014 and Batygin & Morbidelli 2020 for a similar scenario
for the Laplace resonance of the Galilean satellites of Jupiter). In
Section 6, we find a simple relationship between the mass of the
host star and the orbital semimajor axis of the innermost planet in
the observed resonant chains, which supports this idea. Our
conclusions are summarized in Section 7.

2. Disk and Migration Models

We adopt an adiabatic disk model with surface density
profile a a0 0S = S a( ) and temperature profile T T a a0 0= b( ) .
Since the scale height H= cs/n, where the sound speed
cs∝ T1/2 and the mean motion n∝ a−3/2, the reduced scale
height h H a h a a0 0

1 2= = b- +( )( ) . Thus, the disk has five
parameters (α, β, γ, Σ0, h0). Hereafter, we assume that the
adiabatic index γ= 5/3. One can also think of α and β as the
local power-law indices of the surface density and temperature
profiles: d d aln lna = - S and d T d aln lnb = - .

Paardekooper et al. (2010) have derived a formula for the
unsaturated nonlinear type I migration torque from an adiabatic
disk on the planet:
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and m and m0 refer to the masses of the planet and the star,
respectively. There are three components to the torque in

Equation (2): (1) the first term with the coefficient
−2.5− 1.7β+ 0.1α is the Lindblad torque, (2) the second
term with the coefficient 1.1(3/2− α) is the barotropic term of
the nonlinear horseshoe torque, and (3) the last term is the
entropy-related term of the nonlinear horseshoe torque.
Paardekooper et al. (2011) have studied the effects of

viscous and thermal diffusion on the nonlinear corotation
torque in Equations (2)–(4). Equations (2)–(4) are valid if the
viscous saturation parameter pν and the thermal saturation
parameter pχ are ∼0.5. In the limit pν and pχ= 1, the nonlinear
horseshoe torque is replaced by the linear corotation torque.
In the limit pν and pχ? 1, the corotation torque saturates,
and only the Lindblad torque remains. The viscous saturation
parameter p kx2 3s

3=n , where k= a2n/(2πν), xs =
m m h1.1 1 4

0
1 2 1 2g- -( ) is the dimensionless half-width of

the horseshoe region, and ν is the viscosity. For αν viscosity
with ν= ανcsH (Shakura & Sunyaev 1973), p 0.25»n
m m h0

3 4 1 2 7 4an
- -( ) . For the planets in the resonant chain

systems that we consider below, m/m0= 1.0–4.6× 10−5 and
pν= 0.27– h0.85 0.001 0.051 2 7 4an

- -( ) ( ) . The thermal satur-

ation parameter p p a nx3 2 2s
2 3n c pc= =c n ( ) , where

χ= 16γ(γ− 1)σSBT
4/(3κΣ2n2) is the thermal diffusion coeffi-

cient, σSB is the Stefan–Boltzmann constant, and κ is the
opacity. The value of pχ depends on the actual values of a, n,
Σ, and κ, not just the dimensionless parameters m/m0 and h. If
we assume that Σ0= 1700 g cm−2 and h0= 0.05 at a0= 1 au,
similar to the minimum mass solar nebula (MMSN), and that
κ= 1 cm2 g−1, pχ= 0.21–0.65 for the planets under considera-
tion. Based on these estimates of pν and pχ, the unsaturated
nonlinear type I migration torque should be applicable to the
planets considered in this paper.
The forced migration rate from the tidal torque on the planet

is

a a m Gm a2 , 5f 0= G( ) ( ) ( )

where the subscript f indicates forced migration. The correction
from eccentricity (Goldreich & Schlichting 2014) is neglected to
simplify derivation later, and it has little effect on the discussion in
this paper on the convergent properties of migration.
If the expression in the square brackets in Equation (3) is

positive (negative), there is a positive (negative) torque and
outward (inward) migration. The boundary between inward and
outward migration is simply deduced by setting Γ in
Equation (3) to 0:

0.85 7.9 1.7 7.9 1 1 . 6a g b g g= - + - - +[ ( ) ] [ ( ) ] ( )

This line is shown in Figure 1(a) in the (α, β) space with γ=
5/3. Inward (outward) migration occurs in the region above
(below) the line. Note that the condition for inward/outward
migration is independent of the mass m and location a of the
planet.

3. Conditions for Convergent Migration of Two Planets

For an inner planet of mass m1 and an outer planet of mass
m2, irrespective of whether the forced migration is inward or
outward, the dividing line between the situation where the
forced migration of the inner planet is faster than that of the
outer planet and vice versa is  a a a a1 1 f 2 2 f=∣ ∣ ∣ ∣ . According to
Equations (2)–(5), the torque exerted on a planet of mass m at a
is Γ∝ Γ0∝m2h−2Σa4n2∝m2a−α+β, and the forced migration
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rate a a maf
1 2µ a b- + -( ) . Thus, the condition a a1 1 f =∣ ∣
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where P1 and P2 are the orbital periods. This line is shown in
Figure 1(b) in the (α, β) space for an example of two equal-
mass planets, and it is independent of the period ratio because

m mln 02 1 =( ) . The forced migration of the inner (outer)
planet is faster in the region above (below) the line. Note that
Equation (7) for the Mestel disk with constant h (i.e.,
α= β= 1) agrees with Equation (1).

Two planets undergo convergent migration if their migration
rates satisfy  a a a a1 1 f 2 2 f<∣ ∣ ∣ ∣ for inward migration or
 a a a a1 1 f 2 2 f>∣ ∣ ∣ ∣ for outward migration. Thus, the con-
vergent migration zone is bounded by two lines, the disk
constraint in Equation (6) and the planetary mass constraint in
Equation (7) or (8). This is shown in Figure 1(c) for the
example of two equal-mass planets, with the inward and
outward convergent migration regions labeled. We stress again
that convergent migration is only a necessary condition to
maintain MMR. The capture probability also depends on the
eccentricities and the migration and eccentricity damping rates
(Mustill & Wyatt 2011; Goldreich & Schlichting 2014; Deck &
Batygin 2015; Batygin & Petit 2023; Huang & Ormel 2023;
Kajtazi et al. 2023).
A system with m2 more massive than m1 should favor

convergent inward migration, while a system with a more
massive m1 should favor convergent outward migration. This

Figure 1. (a) Boundary between inward and outward migration according to Equation (6) for an adiabatic disk with power-law indices α for surface density and β for
temperature. (b) Boundary between faster forced migration of inner planet and faster forced migration of outer planet according to Equations (7) and (8) for m1 = m2.
(c) Combined plot, with the convergent outward and inward migration regions corresponding to the regions bounded by the red and blue lines in Figure 3.
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intuition is verified with Equation (8) and demonstrated in
Figure 2. In Figure 2, the dotted and solid lines have the same
meaning as those in Figure 1 but now for P2/P1= 3/2 and
m2/m1= 2 in panel (a) and m2/m1= 1/2 in panel (b). We see a
large convergent inward migration region and no convergent
outward migration region within the range of (α, β) shown in
panel (a), and vice versa in panel (b).

We have tested the validity of the analytic conditions in
Equations (6), (7), and (8) using numerical simulations. We
start with a system with two planets already in 3:2 MMR,
which is obtained from a prior migration simulation. For the
masses, we adopt 1.125 Me for the central star (which is the
stellar mass of Kepler-223; see below) and 1 Me for both
planets. The initial orbital elements are listed in Table 1. The
planets are initially in 3:2 MMR with low eccentricities,
antialigned periapses, and both MMR angles in libration. For
the disk parameters, we assume that Σ0= 1700 g cm−2 and
h0= 0.05 at a0= 1 au, similar to the MMSN. The disk
parameters α and β are surveyed uniformly in a 30× 30 grid
from −3 to +3. The adopted masses, Σ0, and h0 only affect the
absolute migration rate but not the sign of the relative migration
rate and the locations of the convergent and divergent
migration zones in (α, β) space. We use the SyMBA integrator
(Duncan et al. 1998) with imposed migration following
Equations (2)–(5). An eccentricity damping of e e =

a a100- ∣ ∣ is applied on both planets, which avoids the
instability caused by high eccentricity during convergent
migration. For each combination of α and β, the system is
integrated for one migration timescale a a2 2 of the outer
planet. At the end of the simulation, we check whether the
system is still in the 3:2 MMR by examining the libration of the
resonant angles.

The simulation results are shown in Figure 3. The green dots
represent the systems where the 3:2 MMR is broken during the
simulation. The red dots indicate the systems where the planets
move outward and the MMR is maintained. The blue dots
indicate the systems where the planets move inward and the
MMR is maintained. The solid lines are the same lines shown
in Figure 1(c) from the analytic conditions in Equations (6), (7),
and (8). The analytic theory and numerical simulations match

quite well. Even systems just outside the zones bounded by the
two lines break from 3:2 MMR, which means that a small
relative divergent migration is enough to break the MMR
within one migration timescale.
For comparison, the dashed line in Figure 3 represents the

steady-state, constant αν-viscosity disk models, which obey
α+ β= 3/2 (Shakura & Sunyaev 1973; Kretke & Lin 2012).
The dashed line crosses the outward convergent migration zone
near the intersection between inward and outward convergent
migration zones, and only a narrow range of such models with
α≈ 0.5 and β≈ 1.0 have convergent migration that maintains
MMR for a pair of equal-mass planets. Several specific
constant αν-viscosity models are also indicated: a disk with
the same density profile as the MMSN (star; α= 3/2, β= 0)
and the weakly opaque region (pentagon; α= 15/14, β= 3/7),
strongly opaque region (square; α= 9/14, β= 6/7), and
viscously heated region (triangle; α= 3/8, β= 9/8) of the
Garaud & Lin (2007) disk model (Kretke & Lin 2012). None of
these models are within the convergent migration zones for
equal-mass planets. However, all but the viscously heated
region would be within the convergent inward migration zone
for m2/m1= 2 and 3:2 MMR (see panel (a) of Figure 2).

4. Generalization and Application to Resonant Chain
Systems

In this section, we generalize the analytic criterion for
convergent migration of a pair of planets derived in the

Figure 2. Same as Figure 1(c) but for P2/P1 = 3/2 and (a) m2/m1 = 2 and (b) m2/m1 = 1/2. The convergent inward and outward migration zones are marked.

Table 1
Initial Conditions of Two Planets in 3:2 MMR for Disk-driven Migration

Simulations

Planet Mass (M⊕) a (au) e i, Ω ω M

m1 1 0.9994 0.01113 0° 18°. 09 353°. 9
m2 1 1.3097 0.01188 0° 197°. 60 296°. 6

Note. The orbital elements are semimajor axis a, eccentricity e, inclination i,
longitude of the ascending node Ω, argument of periapse ω, and mean anomaly
M. The stellar mass is 1.125 Me.
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previous section to the case of multiple planets in a resonant
chain. The Kepler-223 system is taken as an illustrative
example to verify the analytic criterion with numerical
simulations. We then apply the analytic criterion to the
Kepler-60, Kepler-80, TOI-178, and TRAPPIST-1 systems.
The results show that rather extreme values of (α, β) are
required to maintain the resonant chains in these systems.

4.1. Convergent Migration Criterion for Multiple Planets in
Resonant Chains

To construct the analytic criterion, one should distinguish
between the actual migration rate of a resonant chain and the
forced migration rate from the torque applied by the disk on
each planet. If a resonant chain is maintained by convergent
migration within the chain, the actual migration rate a a must
be the same for all planets and the same as the comigration rate
of the whole chain. For a resonant chain of N planets, the
comigration rate a a N12 ...( ) can be calculated by equating the
work done by the torques on the individual planets to the total
orbital energy change of the chain, with the assumption that the
orbital period ratios are fixed:
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where a ai i f( ) is the forced migration rate of the planet i of
mass mi and orbital period Pi. Given a certain set of disk
parameters (α, β, γ, Σ0, h0), we can calculate the individual
planet’s forced migration rate a ai i f( ) from Equations (3)–(5)
and the comigration rate a a N12 ...( ) from Equation (9) for any
planet pair, triplet, or the whole resonant chain in a disk, under
the assumption that they are locked in resonance.
It is straightforward to generalize the necessary criterion to

maintain a resonant pair to a resonant chain. The idea is that
any part of the resonant chain should be convergently
migrating toward the remaining part. Taking a resonant chain
of four planets as an example, the generalized criterion for
convergent inward migration is
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This means that planet 1 should be migrating at a rate slower
than that of the triplet 2–3–4. Similarly, the migration rate of
the planet pair 1–2 should be slower than that of the planet pair
3–4, and the migration rate of the triplet 1–2–3 should be
slower than that of planet 4. For outward migration, the
inequalities are flipped, i.e.,
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The set of inequalities for inward or outward migration have to
be satisfied simultaneously because no part of the chain should
be divergently moving away from the rest of the chain.
A similar criterion for a planet pair leads to Equations (7)

and (8) for the combination α− β in the exponent. For a
resonant chain, since the actual migration rate of two or more
planets is given by the more complicated Equation (9), it is not
possible to reduce the criterion to a similarly simple form. Each
part of the resonant chain in Equations (10) and (11) results in
an equation (e.g.,  a a a a12 34=∣ ∣ ∣ ∣ ) for α− β, which can be
solved numerically and combined with the disk constraint in
Equation (6) to determine the inward and outward convergent
migration regions in the (α, β) space. The constraints from all
parts of the resonant chain can then be combined to give the
overlapping regions (if any) where the resonant chain can be
maintained by convergent migration.

4.2. Application to Kepler-223

Let us use the 8:6:4:3 resonant chain in Kepler-223 as an
example. We adopt a stellar mass of 1.125 Me, and the
planetary masses as listed in Table 2 from Mills et al. (2016).
Panels (a), (b), and (c) of Figure 4 show the convergent
migration zones in the (α, β) space between planet b and triplet
c–d–e, between pair b–c and pair d–e, and between triplet b–c–
d and planet e, respectively. The inward convergent zone is
shaded in blue, and the outward convergent zone is shaded in
red. In each panel, one can see that the convergent zones have
the same shapes as those for two planets in Figures 1 and 2.
This is because one of the lines defining the convergent zones
—the boundary between inward and outward migration in
Equation (6)—is the same in all cases, while the other line from
a comparison of the migration rate of a part of the resonant
chain with the migration rate of the rest of the resonant chain
(Equations (10) and (11)) is simply shifted vertically (i.e., a
different value of α− β) for each part of the resonant chain. In

Figure 3. Numerical results in (α, β) space for the migration of a pair of 1 M⊕
planets in 3:2 MMR. Blue and red dots represent simulations where the MMR
is maintained as the planets move inward and outward, respectively. Green dots
represent the simulations where the MMR is broken. The blue and red solid
lines are the analytic estimation of the convergent migration regions from
Equations (6), (7), and (8). The black dashed line is α + β = 3/2 for the
steady-state, constant αν-viscosity disk models, with the star for the MMSN-
like model and the other symbols for various regions of the Garaud & Lin
(2007) disk model: pentagon for the weakly opaque region, square for the
strongly opaque region, and triangle for the viscously heated region.
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panel (c), one can see that there is no convergent inward
migration zone for triplet b–c–d and planet e in the region of
(α, β) shown. This is because planet e has a small mass of
4.8 M⊕, which makes it difficult for planet e to catch up with
b–c–d in inward migration, unless extreme values of (α, β) are
adopted. Panel (d) is the combined constraint, which shows the
overlapping region from panels (a), (b), and (c). The analytic
criterion indicates that the resonant chain in Kepler-223 cannot
be maintained by inward convergent migration for any values
of α and β between −3 and +3 and that it can be maintained by
outward convergent migration in a narrow region of mostly

negative values of α and β (i.e., both surface density and
temperature increasing outward).
Numerical simulations with imposed migration have been

carried out to test the analytic criterion in Figure 4. We start
with a system with four planets assembled into the desired
8:6:4:3 resonant chain by a prior migration simulation. The
orbital parameters are listed in Table 2. The three-body
resonance or Laplace angles θL,in=−λ1+ 2λ2− λ3 and
θL,out= λ2− 3λ3+ 2λ4 (which are denoted as f1 and f2 by
Mills et al. 2016) librate about the observed values, i.e.,
θL,in∼ 180° and θL,out∼ 60°. Here λi is the mean longitude of

Figure 4. Analytic results on Kepler-223 from Equations (6), (10), and (11), with panels (a), (b), and (c) showing the regions in (α, β) space with convergent migration
between planet b and triplet c–d–e, between pair b–c and pair d–e, and between triplet b–c–d and planet e, respectively, and panel (d) showing the combined result
from the overlap of panels (a)–(c). Red indicates convergent outward migration, and blue indicates convergent inward migration. Panel (d) shows that the Kepler-223
resonant chain cannot be sustained by inward migration and that the convergent outward migration zone does not include the steady-state, constant αν-viscosity disk
models (dashed line).
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planet i. The disk parameters Σ0 and h0, the values of α and β
surveyed, and the eccentricity damping applied during the
simulations are the same as those used in Section 3. Each
simulation is integrated for one migration timescale of the
outermost planet or 1 Myr, whichever is smaller.

The simulation results are shown in Figure 5. As in Figure 3,
the red and blue dots represent the systems where the resonant
chain is maintained by convergent outward and inward
migration, respectively, and the green dots represent the
systems where the resonant chain is broken. For all the green
dots, the period ratios evolve significantly from the original
period ratios, and there are no ambiguous situations where the
period ratios remain close to the original ones but the resonance
angles are not librating. The region bounded by the two red
solid lines is the convergent outward migration zone found
analytically and shown in Figure 4(d). All of the simulations
within this analytically derived region are indeed able to
maintain the resonant chain by convergent outward migration.
However, there are also some systems outside the analytic
region with a sustained resonant chain. There are some red dots
just below the line defined by the constraints in Equation (11),
and there are five blue dots near the extension of the red line
representing the boundary between inward and outward
migration given by Equation (6).

Figure 6 shows the simulation with α=−2.586 and
β=−1.966 as an example of the simulations that are just
below the analytic region but still able to maintain the resonant
chain by outward convergent migration. The evolution of the
orbital semimajor axes, eccentricities, and resonance angles is
shown in the upper left, lower left, and right panels,
respectively. In addition to the three-body Laplace angles
θL,in and θL,out, we also show the two-body MMR angles (with
θ12,in= 3λ1− 4λ2+ϖ1 and θ12,out= 3λ1− 4λ2+ϖ2, where
ϖi is the longitude of periapse of planet i, for planets 1 and 2,
etc.). As the four planets migrate outward by ∼10%, the
eccentricities are rather stable, with slightly decreasing
amplitudes of variation toward the end of the integration, and
all resonance angles remain in libration with no obvious change
in the libration centers. It is not yet clear why this and other
cases just below the analytic region are able to maintain the
resonant chain during outward migration. One possibility is
that the nonadjacent planets are also in first-order MMR in this
system (both the b–d and c–e pairs are in 2:1 MMR), but
further investigation is needed.

Figure 7 shows the evolution of the semimajor axes,
eccentricities, and resonance angles of the simulation with
α= 0.931 and β= 1.552. This is one of the blue dots near the
red line representing the boundary between inward and outward
migration, i.e., the line of no migration. The eccentricities
decrease over the 1Myr integration, and some of the resonance
angles show an increase in libration amplitude around 0.4 Myr.

But the migration is indeed very slow, so the differential
migration is not significant enough to break the resonant chain.
The numerical results show that the analytic criterion for the

resonant chain in Kepler-223 is not as accurate as in the case of
two planets in MMR. Nevertheless, the region in (α, β) where
the resonant chain is maintained during outward migration is
only slightly larger, and the cases of sustained resonant chains
during inward migration are special cases near the line of no
migration with very slow migration. Therefore, the analytic
criterion is still a good indicator of the types of disk that can
maintain a resonant chain during migration.
If the resonant chain in Kepler-223 migrated any significant

amount after assembly, the migration should be inward because
the observed planets are close to the star (with Pb= 7.38 days).
But our analysis shows that there is no region in (α, β) where
the resonant chain is maintained by inward migration. Even if
we allow for outward migration, the steady-state, constant
αν-viscosity disk models (dashed line in Figure 5) are outside
the region where the resonant chain can be maintained by
outward migration.

4.3. Application to Other Resonant Chain Systems

Now we apply the analytic criterion to several other resonant
chain systems. For convenience, we label the planets in a
resonant chain of N planets in numerical order from 1 for the
innermost planet to N for the outermost planet.
For Kepler-60, the resonant chain consists of three planets in

5:4:3 resonance (Steffen et al. 2013). We adopt planetary
masses of m1= 4.1, m2= 4.8, and m3= 3.8 M⊕ (Goździewski
et al. 2016). Stellar mass is not needed to determine the
locations of the convergent migration regions. Figure 8(a)
shows the analytic result, which is the overlapping region from
the convergent migration zones between pair 1–2 and planet 3
and between planet 1 and pair 2–3. There is no inward
convergent migration zone that can maintain the resonant
chain, as in Kepler-223. The outward convergent migration

Table 2
Initial Conditions of a Planetary System in 8:6:4:3 Resonance for Disk-driven

Migration Simulations

Planet Mass (M⊕) a (au) e i, Ω ω M

b or 1 7.4 1.0274 0.01646 0° 203°. 64 76°. 18
c or 2 5.1 1.2457 0.02493 0° 27°. 78 146°. 16
d or 3 8.0 1.6337 0.00854 0° 166°. 70 73°. 27
e or 4 4.8 1.9813 0.00967 0° 321°. 51 165°. 27

Note. Stellar mass is 1.125 Me.

Figure 5. Same as Figure 3 but for the 8:6:4:3 resonant chain of Kepler-223.
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zone is slightly smaller than that for Kepler-223 and requires
negative values of α and β.

Kepler-80 has six known planets, with all but the innermost
planet f in a resonant chain. The outermost planet g cannot be
included in our analysis, because its mass is not known
(Shallue & Vanderburg 2018). The middle four planets are in
9:6:4:3 resonance. We adopt planetary masses of m1= 6.75,
m2= 4.13, m3= 6.93, and m4= 6.74 M⊕ (MacDonald et al.
2016). Figure 8(b) shows that the outward convergent
migration zone is similar to that of Kepler-223 and that there
is a small region of inward convergent migration around α∼ 2
and β∼ 3 that can maintain the resonant chain.

TOI-178 is also a six-planet system with all but the
innermost planet b in a resonant chain. The resonance is
18:9:6:4:3. We adopt planetary masses of m1= 4.77,
m2= 3.01, m3= 3.86, m4= 7.72, and m5= 3.94 M⊕ (Leleu
et al. 2021). Figure 8(c) shows that both inward and outward
convergent migration zones are smaller than those of Kepler-
80. Since the type I forced migration rate is proportional to
planetary mass, the particularly massive m4 in the middle of the
chain makes it more difficult for the whole chain to maintain
convergent migration.

For the seven-planet system TRAPPIST-1, we adopt
planetary masses of m1= 1.374, m2= 1.308, m3= 0.388,
m4= 0.692, m5= 1.0391, m6= 1.321, and m7= 0.326 M⊕
(Agol et al. 2021). Although the mean motions of the inner two
planets b and c are nearly in the ratio 8:5:3 with that of planet d,
it is not clear that they are part of the chain of first-order
resonances (9:6:4:3:2) of the outer five planets (Gillon et al.
2017; Luger et al. 2017). Figure 8(d) shows the analytic result
if we assume that all seven planets are in the resonant chain.
Due to the innermost planet b (m1) being the most massive
planet in this system, the outward convergent migration zone is
the largest for all the systems considered. There is no inward
convergent migration zone that can maintain the resonant
chain, because the outermost planet h (m7) is significantly less
massive than the rest of the planets (except m3), which makes it
difficult for m7 to catch up with the rest of the planets in inward

migration. If we assume that planets b and c are not in the
resonant chain, we find that no region in (α, β) space can
maintain the resonant chain in either inward or outward
convergent migration, because both the innermost planet d (m3)
and the outermost planet h (m7) of the resonant chain are now
significantly less massive than the rest of the planets.
As shown in Section 4.2, the analytic criterion is a good

indicator of the types of disks that can maintain a resonant
chain during migration. even though the regions of inward and
outward convergent migration in (α, β) may be slighter larger
than the analytic ones. The analytic outward migration zone is
the largest for TRAPPIST-1 if we assume that all seven planets
are in the resonant chain. But even in this case, it just touches
the steady-state, constant αν-viscosity disk models (dashed line
in Figure 8). In all cases, the resonant chain can be maintained
by inward convergent migration in, at most, a small region of
(α, β). As in the case of Kepler-223, the planets in the systems
discussed in this section are close to the stars, and the difficulty
with inward migration is particularly problematic.

5. Effects of Uncertainties in Planetary Masses

All of the resonant chain systems examined above were
discovered by the transit method, and the uncertainties in the
planetary masses can be as much as ∼40%. As the type I
migration rate of a planet scales linearly with its mass, the mass
uncertainties can significantly affect the estimation of con-
vergent migration zones in (α, β). In this section, we examine
how the convergent migration zones are changed if we adjust
the planetary masses within 1σ. To enhance the inward
convergent migration zone, we lower the mass of the innermost
planet by 1σ and raise the mass of the outermost planet by 1σ.
For the other planets in the chain, their masses are adjusted
within 1σ to archive a relatively smooth mass variation.
For Kepler-223, the adjusted masses are m1= 6.3, m2= 6.8,

m3= 6.7, and m4= 6.2 M⊕. The analytic convergent migration
zones with the adjusted masses are shown in Figure 9(a).
Compared to the nominal mass result shown in Figure 4(d), the

Figure 6. Time evolution of semimajor axes (upper left panel), eccentricities (lower left panel), and two-body MMR and three-body Laplace angles (right panel) in a
disk migration simulation of the Kepler-223 system with α = −2.586 and β = −1.966. This (α, β) combination is just below the analytic convergent outward
migration zone, but the resonant chain is maintained to the end of the simulation.
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outward convergent migration zone is almost identical, but
there is now a small inward convergent migration zone. For
Kepler-60, we adjust the masses to m1= 3.4, m2= 3.8, and
m3= 4.9 M⊕. With m3>m2∼m1, the outward convergent
migration zone in Figure 8(a) is replaced by a large inward
migration zone in Figure 9(b). For Kepler-80, the adjusted
masses are m1= 6.24, m2= 4.94, m3= 6.23, and m4=
7.97 M⊕. Comparing the results with nominal masses in
Figure 8(b) and adjusted masses in Figure 9(c), the inward
migration zone is larger, while the outward migration zone is
smaller. For TOI-178, we adjust the masses to m1= 4.09,
m2= 3.01, m3= 3.86, m4= 6.20, and m5= 5.25 M⊕. Compar-
ing Figure 8(c) to Figure 9(d), the outward convergent
migration zone is almost unchanged, while the inward
convergent migration zone is larger. Finally, for TRAPPIST-
1, the uncertainties in the masses reported by Agol et al. (2021)
are sufficiently small (6% or less) that the results are almost the
same for any variation of the masses within ±1σ; the analytic
convergent migration zone is almost the same as in Figure 8(d)
if all seven planets are in the resonant chain, and no region in
(α, β) space can maintain the resonant chain in either inward or
outward convergent migration if planets b and c are not in the
resonant chain.

These examples show that even if we take into account the
observational uncertainties in the planetary masses to optimize
the size of the (α, β) region where the resonant chain can be
sustained by inward convergent migration, there is very little or
no overlap between the inward convergent migration zone
(shaded in blue in Figure 9) and the steady-state, constant
αν-viscosity disk models (dashed line with α+ β= 3/2 in
Figure 9) in most cases. In fact, within the observational
uncertainties, there is no inward convergent migration zone for
TRAPPIST-1 due to the small mass of the outermost planet h.
The only exception is Kepler-60, where, within uncertainties, it
is possible to have a substantial overlap between the inward
convergent migration zone and the steady-state, constant
αν-viscosity disk models. Therefore, a more accurate determi-
nation of planetary masses in the resonant chain systems would
further constrain their origin and migration in a disk.

6. Formation of Resonant Chain near the Inner Disk Edge

We have demonstrated that the observed resonant chains are
difficult to maintain in reasonable disk models if they migrate
any significant amount after assembly. In this section, we show
that a relationship between the orbital semimajor axis of the
innermost planet and the stellar mass of the observed resonant
chains supports the idea that they have a common origin in a
stalling and assembly mechanism near the inner edge of the
protoplanetary disk.
In a simple model of a disk with an inner edge, the surface

density is 0 at the inner edge at atr, rises to a maximum at some
distance from the inner edge, and then decreases away from the
star. This means that the power-law index d d aln lna = - S
would change from highly negative near the inner edge to 0 at
the surface density maximum and then positive far from the
inner edge. For any reasonable variation of the temperature
power-law index d T d aln lnb = - , there is a zero-torque
location at some distance from the inner edge, where α and β
satisfy Equation (6), the type I migration torque is 0, and a
planet would stop migrating. At distances closer to (farther
from) the star, the torque would be positive (negative), and a
planet would migrate outward (inward). As the innermost
planet migrates inward, it would be trapped at the zero-torque
location. The outer planets would continue their inward
migration and would be naturally captured into resonance with
the inner planets, regardless of the variation in planetary
masses. As the resonant chain is assembled, the innermost
planet would move slightly inward from the zero-torque
location, so that its outward migration would balance the
inward migration of the outer planets.
This idea of forming the resonant chain near the inner disk

edge is also supported by the positions of the innermost planets
in the observed resonant chain systems. In Figure 10, we show
the orbital semimajor axis of the innermost planet versus the
stellar mass for two populations of planets. The blue filled
circles are the innermost planets in 11 confirmed and suspected
resonant chain systems. In addition to Kepler-60, Kepler-80,
Kepler-223, TOI-178, and TRAPPIST-1, we also include

Figure 7. Same as Figure 6 but for a simulation with α = 0.931 and β = 1.552. This (α, β) combination is near the line of no migration, and the resonant chain is not
broken by the very slow inward migration after 1 Myr.
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HD 40307 (Díaz et al. 2016), Kepler-79 (Jontof-Hutter et al.
2014; Yoffe et al. 2021), K2-32 (Heller et al. 2019; Lillo-Box
et al. 2020), K2-138 (Christiansen et al. 2018; Lopez et al.
2019), V1298 Tau (David et al. 2019; Suárez Mascareño et al.
2021), and YZ Ceti (Stock et al. 2020). Some of these are
suspected but not confirmed resonant chains, and HD 40307 is
suspected to be in a resonant chain in the past (Papaloizou &
Terquem 2010). GJ 876 and HR 8799 are two resonant chain
systems not included in this sample because of the presence of
giant planets that undergo type II instead of type I migration.
The open circles are the innermost planets in other systems
with three or more planets, with red and green open circles
for the planets discovered by transit and radial velocity,
respectively.

For comparison, if the inner cavity of the protoplanetary disk
is created by the magnetic fields of the protostar, the truncation

radius is given by the balance between the stellar magnetic
stress and the disk Reynolds stress (Starczewski et al. 2007;
Chang et al. 2010):
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where η is a dimensionless factor of order unity, B* is the strength
of the magnetic field at the stellar surface, R* andM* are the stellar
radius and stellar mass, and Mdisk is the disk’s accretion rate. If we
adopt 0.5< η< 1 for a star with an aligned dipole field,
500G<B*< 1500G, the stellar mass–radius relation

 * *R R M M1.06 0.945= ( ) (Demircan & Kahraman 1991),
and   M M M M10 yrdisk

8 1.8 1= - -( ) (Muzerolle et al. 2003;
Natta et al. 2006; Manara et al. 2016), we have *a Mtr

0.963µ , and

Figure 8. Analytic convergent migration zones in (α, β) similar to Figure 4(d) but for (a) Kepler-60, (b) Kepler-80, (c) TOI-178, and (d) TRAPPIST-1.
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the estimated range of atr is shown as the upper and lower green
dashed lines in Figure 10. Since the zero-torque location is
expected to be at some distance from the inner edge, we also show
the estimated range of a4 tr as the black dashed lines.

As seen in Figure 10, the orbital semimajor axis of the
innermost planet of the resonant chain systems (blue filled
circles) shows a scaling relationship with the stellar mass that is
roughly bounded by the two black dashed lines, which supports
the idea that the resonant chains are assembled by halting the
migration of the innermost planet at the zero-torque location
near the inner disk edge. For the nonresonant chain multiplanet
systems (open circles), many fall within or just outside the
region bounded by the two black dashed lines, but some are
significantly above the upper black dashed lines. This would be

consistent with the former corresponding to systems where the
innermost planet is stopped at the zero-torque location but the
other planets in the system do not converge on it sufficiently to
form a resonant chain and the latter corresponding to systems
where the innermost planet stops migrating (due to, e.g., disk
dispersal) before it reaches the zero-torque location.
There are significant uncertainties on how B*, R*, and Mdisk

scale with M*. With different assumptions ( * *B M1 3µ ,

* *R M1 3µ , and 
*M Mdisk µ ), Batygin et al. (2023) have

recently argued that *a Mtr
1 3µ , which corresponds to an

orbital period of ∼3.0 days independent ofM* (red solid line in
Figure 10). There is sufficient scatter in the resonant chain data
shown in Figure 10 that they could be consistent with either

*a Mtr
0.963µ or *M1 3. If we fit a straight line to the data, we find

Figure 9. Analytic convergent migration zones in (α, β) similar to Figures 4(d) and 8 but for planetary masses adjusted within 1σ to enhance the inward convergent
migration zone.
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that *a Mµ m where μ= 0.71± 0.17 (blue solid line in
Figure 10). In the future, as more and more resonant chain
systems are discovered, if they continue to fall on the currently
observed trend of orbital semimajor axis of the innermost
planet versus stellar mass ( *a Mµ m, where μ≈ 0.333–0.963),
the case for a common origin near the inner disk edge would be
strengthened.

7. Conclusions

Convergent migration is a necessary criterion to maintain
planets in a resonant chain, if the resonant chain is formed
before the dispersal of the protoplanetary gas disk and the
planets continue to migrate due to planet–disk interactions.
Therefore, we have investigated what kind of protoplanetary
disk would allow such convergent migration. The planets
are assumed to undergo type I migration in an adiabatic
disk with power-law indices d d aln lna = - S and b =

d T d aln ln- . We have developed an analytic criterion to
determine the convergent migration zone in the (α, β)
parameter space. For a pair of planets in MMR, the convergent
migration zone is bounded by two lines: the disk constraint
(which is the boundary between inward and outward migration)
and the planetary mass constraint (which is the boundary
between faster inner planet migration and faster outer planet
migration). The criterion was generalized to a resonant chain by
requiring that any part of the resonant chain should be
convergently migrating toward the remaining part. We have
verified the analytic criterion with numerical simulations of a
pair of 1 M⊕ planets in 3:2 MMR and the four-planet resonant
chain in the Kepler-223 system. The analytic criterion was then
applied to the Kepler-60, Kepler-80, TOI-178, and TRAPPIST-

1 systems. In all cases, outward convergent migration requires
rather extreme (mostly negative) values of (α, β), and there is
little or no inward convergent migration zone. Even when we
adjust the planetary masses within the uncertainties to
maximize the inward convergent migration zone, there is little
or no overlap between the inward convergent migration zone
and common disk models (such as the steady-state, constant αν

disks) for all but one of the observed systems.
For TRAPPIST-1, the masses of the planets are well

determined, and the biggest uncertainty in the existence and
sizes of the convergent migration zone is whether the inner two
planets b and c are (or were) in the resonant chain. For other
resonant chains (in particular, Kepler-60), the uncertainties in
the existence and sizes of the inward and outward convergent
migration zones in (α, β) space can be improved by reducing
the uncertainties in the planetary masses. In our analysis, we
have assumed unsaturated nonlinear type I migration torque.
The formulae developed by Paardekooper et al. (2011) can be
used if the torques on the planets in a particular resonant chain
system are significantly affected by the effects of viscous and
thermal diffusion. However, the formulae depend on the
viscous saturation parameter pν and the thermal saturation
parameter pχ, and it will not be possible to derive a simple
analytic criterion for convergent migration. In fact, the criterion
could vary as a function of position due to the functional form
of pχ (see Section 2).
The innermost planets in the observed resonant chain

systems are close to the stars, and an alternative scenario is
that the resonant chain is formed and maintained by the inward
migration of the outer planets toward the innermost planet after
the migration of the latter is stalled near the inner disk edge.
We have found support for this idea from a relationship

Figure 10. Orbital semimajor axis of innermost planet vs. stellar mass for detected planetary systems with three or more planets, with red and green open circles for
the planets discovered by transit and radial velocity, respectively, and blue filled circles for 11 confirmed and suspected resonant chain systems (see text for the list).
The green dashed lines are the upper and lower estimates of the magnetic truncated radius atr of the protoplanetary disk (Equation (12)), and the black dashed lines are
the upper and lower estimates of a4 tr . The solid red line is atr derived by Batygin et al. (2023). The solid blue line is the best-fit straight line to the blue filled circles.
Data obtained from NASA Exoplanet Archive.
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between the orbital semimajor axis of the innermost planet and
the stellar mass of the observed resonant chain systems. If
resonant chains discovered in the future continue to fall on this
relationship, the case for a common origin near the inner disk
edge will be strengthened.
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