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Topological superconductors (TSCs) are correlated quantum states with simultaneous off-diagonal long-
range order and nontrivial topological invariants. They produce gapless or zero-energy boundary
excitations, including Majorana zero modes and chiral Majorana edge states with topologically protected
phase coherence essential for fault-tolerant quantum computing. Candidate TSCs are very rare in nature.
Here, we propose a novel route toward emergent quasi-one-dimensional (1D) TSCs in naturally embedded
quantum structures such as atomic line defects in unconventional spin-singlet s-wave and d-wave
superconductors. We show that inversion symmetry breaking and charge transfer due to the missing atoms
lead to the occupation of incipient impurity bands and mixed-parity spin-singlet and -triplet Cooper pairing
of neighboring electrons traversing the line defect. Nontrivial topological invariants arise and occupy a
large part of the parameter space, including the time-reversal symmetry-breaking Zeeman coupling due to
applied magnetic field or defect-induced magnetism, creating TSCs in different topological classes with
robust Majorana zero modes at both ends of the line defect. Beyond providing a novel mechanism for the
recent discovery of zero-energy bound states at both ends of an atomic line defect in monolayer Fe(Te,Se)
superconductors, the findings pave the way for new material realizations of the simplest and most robust 1D
TSCs using embedded quantum structures in unconventional superconductors with large pairing energy
gaps and high transition temperatures.
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I. INTRODUCTION

Superfluid and superconductors are fundamental quan-
tum states exhibiting off-diagonal long-range order [1,2].
Such ordered states can be further classified by topologi-
cally distinct invariants [3,4]. Topological superconductors
(TSCs) have simultaneous off-diagonal long-range order
and nontrivial topological invariants and host topological
boundary and defect excitations that are both fundamental
and useful for quantum device making [5–9]. The simplest
model for a TSC is the Kitaev chain of spinless (single-
spin) fermions with p-wave pairing [7]. The model does

not have time-reversal invariance (TRI) and belongs to the
topological class BDI characterized by a nontrivial topo-
logical Z invariant [3,4,10]. There are two degenerate zero-
energy bound states, i.e., Majorana zero modes (MZMs),
spatially localized at each end of the 1D TSC. For realistic
spin-1

2
electrons, theoretical models have been proposed

that combine Rashba spin-orbit coupling (SOC), s-wave
superconductivity, and magnetic Zeeman coupling together
to effectively generate such an 1D odd-parity TSC [11–13].
Experimental realizations using hybrid systems of Rashba
nanowires proximity coupled to conventional supercon-
ductors have made advances [14–25], but it remains
controversial whether the TSC has been realized with
MZMs localized at both ends of the nanowire.
We report here that quasi-1D TSCs of mixed parity in

multiple topological classes can emerge in naturally
embedded quantum structures, such as an atomic line defect,
in unconventional spin-singlet superconductors with high
transition temperature (Tc) and large pairing energy
gaps. The idea is motivated by the recent experimental
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discovery [26] of zero-energy bound states at both ends of an
atomic line defect in monolayer high-Tc (approximately
60 K) Fe-based superconductor Fe(Te,Se) grown on SrTiO3

substrates [27–30]. We use its atomic structure as an
example, but the physics can be more generally applied
to other unconventional superconductors. The one-unit-
cell Fe(Te,Se) monolayer contains three atomic layers
[Fig. 1(a)]. The as-grown atomic line defect corresponds
to a line ofmissing Te/Se atoms on the top layer above the Fe
plane. The missing atoms break the inversion symmetry
centered on the Fe atom below, giving rise to a large Rashba
SOC αR. To emphasize this property, we refer to the latter as
a Rashba atomic line defect (RALD).
It is important to note that such a quantum structure is

very different from the usual crystallography line defects
which correspond to edge dislocations or screw disloca-
tions described by the Burgers vectors. The atomic line
defects we study here are lines made of pointlike defects
such as atomic vacancies or adatoms. It is sometimes
referred to as the Shockley line defect for its connection to
the original work of Shockley on the surface states due to
band inversion [31]. They appear in metals and narrow-
band semiconductors [32], and, more recently, in carbon
nanotubes [33] and photonic crystals [34], as well as in
theoretical model studies of Shockley-Majorana bound
states in 2D chiral p-wave superconductors [35]. The
electronic states in the embedded quantum structure can
be described by incipient quasi-1D impurity bands due to
the lateral confinement in the bulk superconductor.
Moreover, the occupation of the impurity bands is con-
trolled to a large extent by the local electrostatic environ-
ment. In the monolayer Fe(Te,Se) [26], the missing Te/Se
atoms quench the local p-d charge transfer. Since each
Fe2þ is supposed to transfer two electrons to Te2−=Se2−,
there is an excess of one electron per unit cell along the
RALD. The incipient impurity band can, thus, be occupied
by up to one electron [Fig. 1(b)]. Occupations of more

impurity bands may occur more generally [36]. Because
of these unique properties of the embedded quantum
structure, the coupling of the RALD to the bulk unconven-
tional superconductor can be described microscopically
by the coherent processes of hopping, pairing, and spin-
orbit coupling, leading to the induced quasi-1D mixed-
parity pairing states on the RALD in a systematic and
controllable manner. This property overcomes the difficul-
ties associated with achieving proximity effect coupling to
short coherence length unconventional superconductors
using nanowires [37,38]. Indeed, the results presented
here are all obtained from calculations performed directly
in the 2D s-wave and d-wave superconductors with the
embedded RALD.
We find that the broken inversion symmetry causes

mixed-parity pairing [39–43] in the impurity bands and
the superconducting (SC) states developed in the RALD are
TRI quasi-1D TSCs over a large part of the parameter space
because of the coherently induced odd-parity spin-triplet
pairing. The emerging topological classes and the nature of
the zero-energy boundary states turn out to be rich and
intriguing, depending on whether a mirror symmetry is
present. For unconventional s-wave superconductors, a
topological crystalline superconductor in the AIII class
is realized if the embedded RALD represents a mirror line
in the bulk superconductor. The zero-energy bound states at
both ends are fermion zero modes in this case, similar to
zero-energy Andreev bound states. In contrast, if the mirror
symmetry about the embedded RALD is broken, the TRI
quasi-1D TSC is in the DIII class characterized by a
nontrivial topological Z2 invariant, with a robust Kramers
pair of MZMs at each end of the RALD protected by time-
reversal symmetry [44]. Since the STM topography in
Ref. [26] reveals the disordered Te and Se atoms [dark and
light green atoms, respectively, in Fig. 1(a)], resulting from
the substitutional alloying, that break the mirror symmetry
with respect to the line defect, the SC state detected along
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FIG. 1. (a) Schematics of monolayer Fe(Te,Se) with an atomic line defect of missing Te/Se atoms along the (1,1) direction. Blue and
green balls are Te/Se atoms below and above, respectively, the plane of Fe atoms (silver balls). Random distributed light green balls
represent the Se atoms, while the dark green balls represent the Te atoms. (b) Schematics of Rashba-split impurity bands. The open and
solid red circles mark the Fermi points. (c) Energy spectrum of the TRI TSC in a RALD with open boundaries, showing four MZMs
(blue and red dots) inside the SC gap. (d) Local density of states (LDOS) spectrum at both ends shows a zero-energy conductance peak.
(e) Blue and red pairs of MZMs form a Kramers doublet, localized at both ends of the RALD.
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the atomic line defect in monolayer Fe(Te,Se) may belong
to this class. More experiments are necessary and desirable
to test if the observed zero-energy bound states at both ends
are MZMs.
We also study the RALD embedded in unconventional

d-wave superconductors such as the high-Tc cuprates. In
this case, the dx2−y2 pairing order parameter is odd under the
mirror reflection. We find that the d vector of the spin-
triplet pairing developed on the impurity bands depends on
the direction of the line defect with respect to the nodal line
of the bulk d-wave superconductor. Remarkably, when the
line defect is embedded along the nodal direction, the
induced pairing state is a purely parity-odd and mirror-odd
spin-triplet SC state. We show that the resulting TSC is
described by two time-reversal partners in classD [45] with
a Z2 ⊕ Z2 topological invariant in quasi-1D and Kramers
doublets of MZMs at the ends of the RALD. We also study
the evolution of these quasi-1D TSCs in response to time-
reversal symmetry-breaking Zeeman fields due to either the
possible incipient magnetism along the RALD or the
application of an external magnetic field.
The remainder of this paper is organized as follows. In

Sec. II, we present physical discussions of our findings for
the embedded RALD in 2D unconventional s-wave and
d-wave superconductors in terms of simplified 1D effective
models. The phase diagram and the topological properties
such as the topological invariants and the classification of
the TSC, as well as the nature of the zero-energy boundary
states, are studied. We then present the 2D model describ-
ing the impurity bands along the RALD and its couplings to
the bulk superconductor in Sec. III and discuss the results
obtained directly from the 2D unconventional supercon-
ductors with the embedded quantum structure. The micro-
scopic realizations and the parameter space, as well as the
novelties of the RALD platform, are discussed for both
s-wave and d-wave superconductors. In Sec. IV, the effects
of time-reversal symmetry breaking by a vector Zeeman
field are discussed. The summary and outlook are given
in Sec. V.

II. EFFECTIVE 1D THEORY FOR
EMBEDDED RALD

While the microscopic realizations are derived from
the 2D theory later, the general form of the idealized
effective 1D model can be written down based on sym-
metry considerations. For simplicity, we consider a
single occupied impurity band εLðkÞ for the quasiparticles
fkσ traversing the line defect, where k denotes the 1D
momentum and σ the spin. In the Nambu basis ΨT

k ¼
ðfk↑; fk↓; f†k̄↑; f†k̄↓Þ, the Bogoliubov–de Gennes (BdG)

Hamiltonian is given by H ¼ 1
2

P
k Ψ

†
kH1DðkÞΨk:

H1DðkÞ ¼
�

hðkÞ ΔðkÞ
Δ†ðkÞ −hTð−kÞ

�
; ð1Þ

where

hðkÞ ¼ εLðkÞσ0 þ 2αR sin kσy þ 2αD sin kσx ð2Þ

is the normal state Hamiltonian and σi are the Pauli
matrices acting in the spin sector. Here, αR is the
Rashba SOC generated by the broken inversion symmetry,
and αD the Dresselhaus SOC reflecting the possible broken
mirror symmetry. When αD ¼ 0, the RALD is a mirror line,
unless the mirror symmetry is spontaneously broken by the
off-diagonal Cooper pairing ΔðkÞ in Eq. (1). The mixed-
parity pairing induced by coupling to the bulk super-
conductor is given by

ΔðkÞ ¼ ΔsðkÞiσy þ dðkÞ · σðiσyÞ; ð3Þ

where ΔsðkÞ ¼ Δsð−kÞ denotes the spin-singlet pairing,
while dð−kÞ ¼ −dðkÞ is the d vector describing the spin-
triplet pairing components [46]. The 1D BdG Hamiltonian
in Eq. (1) has a particle-hole symmetry ΘH1DðkÞΘ−1 ¼
−H1Dð−kÞ, where Θ ¼ τxσ0K and τi denotes the Pauli
matrices acting in the particle-hole sector and K the
complex conjugation. For a real triplet-pairing d vector,
the effective 1D model is invariant under the time
reversal T H1DðkÞT −1 ¼ H1Dð−kÞ, where T ¼ iτ0σyK
and T 2 ¼ −1. As a result, H1DðkÞ also has a chiral
symmetry C ¼ T Θ.
Note that the odd-parity d vector emerges as an intrinsic

spin-triplet pairing between the neighboring electrons
occupying the impurity bands produced by the embedded
RALD. It does not arise in Rashba nanowires in proximity
to s-wave superconductors [12,13]. Spin-triplet pairing can
be induced in nanowires proximity coupled to Rashba
superconductors [40,47,48]. In Sec. III, we show that the
microscopic couplings of the RALD quantum structure to
the embedding crystal allow us to determine the directions
of the d vector in 2D unconventional s-wave and d-wave
superconductors.

A. 1D model for RALD with dyðkÞ spin-triplet pairing
For a RALD embedded in an unconventional s-wave SC,

we find that the d vector points along the y direction, i.e.,
dðkÞ ¼ dyðkÞŷ and dðkÞ · σ ¼ dyðkÞσy. This result corre-
sponds to the even combination of odd-parity, equal-spin
pairing with dyðkÞ ¼ −ði=2ÞðΔ↑↑ þ Δ↓↓Þ. The effective
1D model is, therefore,

H1DðkÞ ¼ εLðkÞτzσ0 þ 2αR sin kτzσy þ 2αD sin kτ0σx

þ ΔsðkÞτyσy þ ΔtðkÞτyσ0; ð4Þ

where the triplet pairing is expressed as ΔtðkÞ ¼ −dyðkÞ.
The impurity band εLðkÞ splits into two Rashba bands by αR
and αD with separated pairs of Fermi points at�kþ and�k−
as shown schematically in Fig. 1(b). They are determined by
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the condition εLðk�Þ � 2ðα2R þ α2DÞ1=2 sin k� ¼ 0. It turns
out that the topological properties of the 1Dmodel in Eq. (4)
depend crucially on whether a mirror symmetry is present or
broken. We thus discuss these two cases separately below.

1. RALD as a mirror line: αD = 0

In the absence of the Dresselhaus SOC, i.e., for αD ¼ 0,
the 1D model has a mirror symmetry My ¼ −iτ0σy
and ½H1DðkÞ;My� ¼ 0. The embedded RALD, thus,
corresponds to a mirror line in the bulk superconductor,
and the effective 1D model describes a topological
mirror superconductor [45,49]. To illustrate this correspon-
dence and the nature of the boundary excitations, we
block diagonalize H1DðkÞ in the mirror eigenbasis
where the mirror operator My is diagonal. Specifically,
under the unitary transformation U¼eiðπ=4Þτ0σx , UMyU† ¼
diagði; i;−i;−iÞ. H1DðkÞ is simultaneously block diagonal,

UH1DðkÞU† ¼
�
Hþ

A 0

0 H−
A

�
; ð5Þ

where H�
A are the Hamiltonians in the subspaces with

mirror eigenvalues �i,

H�
A ¼ ½εLðkÞ ∓ 2αR sin k�τz þ ½ΔtðkÞ ∓ ΔsðkÞ�τy: ð6Þ

Since the mirror operator My commutes with the particle-
hole operator Θ, i.e., ½My;Θ� ¼ 0, there is no particle-hole
symmetry within each subspace [45]. Moreover, since there
is still a chiral symmetry τx, fH�

A ; τxg ¼ 0, each block
belongs to the topological class AIII [3,4]. Thus, the
resulting TSC in this case is a topological mirror super-
conductor characterized by two winding numbers Z ⊕ Z
[45,50]. The zero-energy bound states at the ends of the
RALD are fermion zero modes analogous to Andreev
bound states, and the mirror symmetry actually prohibits
the emergence of MZMs.

2. RALD with broken mirror symmetry: αD ≠ 0

When the mirror symmetry about the embedded RALD
is broken, the effective 1D model must acquire a nonzero
Dresselhaus SOC, i.e., αD ≠ 0. An example is the atomic
line defect observed in monolayer Fe(Te,Se) [26]. The
STM topography reveals the disordered Te and Se distri-
bution, illustrated by the dark and light green atoms,
respectively, in Fig. 1(a), that breaks the mirror symmetry
with respect to the line defect. Moreover, the zero-bias
tunneling conductance maps indicate that the atomic line
defects do not correspond to mirror lines.
For αD ≠ 0 and however small, the Hamiltonian H1D

cannot be diagonalized into reducible mirror eigenblocks.
The time reversal T , particle hole Θ, and the chiral
symmetry C together put the RALD in the class DIII of
time-reversal-invariant (TRI) superconductors characterized

by a topological Z2 invariant (N ). A nontrivial N corre-
sponds aTRI 1DTSC [4,41,42,51].While the latter has been
proposed theoretically for nanowires proximity coupled to
iron-based and copper-based superconductors [37,38],
the role of the mirror symmetry has not been discussed,
which is difficult to control together with the proximity
effect superconductivity for such short coherence length
superconductors.
The topological invariant N can be obtained from the

time-reversed pairing function δnk ¼ hn; kjT Δ†
kjn; ki for

each band n [51,52] andN ¼Πs½sgnðδsÞ�, where s¼ðn;kFÞ
runs over the Fermi points between 0 and π. Thus, an odd
number of Fermi points with negative time-reversed pairing
functions corresponds to a nontrivial Z2 number (N ¼ −1)
and a TRI TSC. There are four degenerate MZMs in the
energy spectrum illustrated in Fig. 1(c), pairwise localized
at both ends of the open chain in Fig. 1(e). They give rise to
zero-bias conductance peaks at both ends of the RALD as
depicted in Fig. 1(d). This TRI but mirror-symmetry-
breaking TSC provides one possible explanation for the
SC state detected along the atomic line defect in monolayer
Fe(Te,Se) and the zero-energy modes observed at both
ends as MZMs. The red and blue pairs of MZMs depicted
in Fig. 1(e) form a Kramers doublet protected by time-
reversal symmetry, since the mixing of the MZMs at the
opposite ends is exponentially suppressed by the length of
the 1D chain [53]. They obey non-Abelian braiding
statistics and are advantageous for topological quantum
computing [54–56].
We next obtain the topological phase diagram by

calculating the nontrivial topological Z2 invariant N for
the effective 1D model. For simplicity, we consider
εLðkÞ ¼ −2t cos k − μ and nearest-neighbor pairing gap
functions ΔsðkÞ ¼ 2Δs cos k and ΔtðkÞ ¼ 2Δp sin k. The
on-site pairing is ignored, since it is suppressed in uncon-
ventional superconductors due to the strong local Coulomb
repulsion. Evaluating the topological invariant, we obtain

N ¼ sgn½ðΔs cos kþ þ Δp sin kþÞðΔs cos k− − Δp sin k−Þ�:
ð7Þ

Calculating N results in the topological phase diagram
shown in Fig. 2(a) in the μ=t − Δp=Δs plane, where the
TSC (N ¼ −1) occupies a significant part of the phase
space. The phase boundaries determined by N are further
confirmed by performing the Zak phase calculations
[52,57]. Note that whether a small αD is present or not
does not change the structure of the phase diagram but does
change the symmetry class and the nature of the boundary
excitations in the region marked as TRI TSC, as discussed
above. In the limit Δp=Δs → �∞, the 1D chain is always a
TRI TSC due to the opposite signs in front of Δp in Eq. (7),
which is analytically connected to two Kitaev p-wave
chains coupled by the Rashba SOC. For finite Δp=Δs, the
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phase boundaries between the TRI TSC and a trivial SC
state are given by two gap-closing lines. Along the μ ¼ 0
axis in the phase diagram in Fig. 2(a), the impurity band is
half filled with k� shifted from π=2 by an amount of
approximately αR=t, where the spin-singlet gap function
ΔsðkÞ is near its minimum and smaller than the spin-triplet
ΔpðkÞ, which is near its maximum. This result leads to the
striking result that the entire line corresponds to TSCs
except for the gapless critical point at αR=t. It highlights the
robustness of the TSC resulting from the mixed-parity
pairing in the RALD. At nonzero μ=t and sweepingΔp=Δs,
the TSCs are separated by a region of topologically trivial
SC state.

B. 1D model for RALD with dxðkÞ spin-triplet pairing
Studying an embedded 1D quantum structure in a 2D

d-wave SC, we find that the topological properties depend
on its orientation relative to the nodal direction of the
pairing gap function. A RALD created along the antinodal
direction still represents a mirror line, and the results are
qualitatively similar to the s-wave case discussed above.
However, when the atomic line defect is embedded along
the nodal lines denoted as the x direction, the d-wave
pairing potential is odd under the mirror reflection My.
Let us refer to this configuration as a nodal RALD.
Intriguingly, the microscopic couplings between the nodal
RALD and the bulk d-wave SC produce an odd-parity spin-
triplet pairing with the d vector pointing along the x
direction, i.e., dðkÞ ¼ dxðkÞx̂ and dðkÞ · σ ¼ dxðkÞσx.
This pairing corresponds to the odd combination of
equal-spin pairing with dxðkÞ¼−1

2
ðΔ↑↑−Δ↓↓Þ. Moreover,

the even-parity spin-singlet pairing is forbidden by sym-
metry. Consequently, the effective 1D model in Eq. (1) for
the nodal RALD becomes

Hd
1DðkÞ ¼ εLðkÞτzσ0 þ 2αR sin kτzσy þ ΔtðkÞτxσz; ð8Þ

where the αD term is left out for simplicity. Since the
triplet pairing part is odd under the My symmetry
discussed above—i.e., it anticommutes with the mirror
σy operation—Hd

1DðkÞ is invariant under M−
y ¼ −iτzσy

and can, therefore, be block diagonalized in the eigenbasis
ofM−

y . Specifically, we find that the unitary transformation

Ud ¼
1ffiffiffi
2

p

0
BBB@

0 0 i 1

−i 1 0 0

0 0 −i 1

i 1 0 0

1
CCCA ð9Þ

that diagonalizes M−
y by UdM−

y U
†
d ¼ diagði; i;−i;−iÞ

simultaneously block diagonalizes Hd
1DðkÞ:

UdHd
1DðkÞU†

d ¼
�
Hþ

D 0

0 H−
D

�
: ð10Þ

The HamiltoniansH�
D in the mirrorM−

y subspaces that mix
the spin and particle-hole sectors are given by

H�
D ¼ −εLðkÞτz ∓ 2αR sin kτ0 − ΔtðkÞτx; ð11Þ

where τi continues to operate in the particle-hole sector in
the transformed basis. Note that, since fM−

y ;Θg ¼ 0, H�
D

in each subspace maintains the particle-hole symmetry
[45]. This result can be verified directly, as the particle-hole
operator in the transformed basis Θd ¼ UdΘU

†
d ¼ τxs0K,

where si denotes the Pauli matrices acting in the mirror
subspace, is also block diagonal. In contrast, the time-
reversal operator transforms as T d ¼ UdT U†

d ¼ −iτzsxK,
which is not block diagonal and does not preserve time-
reversal symmetry in each block. As a result, the effective
1D model is in the topological class D ⊕ D characterized
by a topological Z2 (or Z2 ⊕ Z2) invariantN D [45,50]. For
a nontrivial N D, the nodal RALD realizes a TSC with a
mirror doublet of MZMs at each end of the line.
The energy dispersions of Eq. (11) can be obtained as

EðkÞ ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2LðkÞ þ Δ2

t ðkÞ
q

� 2αR sin kÞ: ð12Þ

For jΔpj > jαRj, the spectrum is fully gapped, and the
topological invariant is nontrivial with N D ¼ −1 when
jμj < 2t, giving rise to a TRI topological mirror super-
conductor marked by the blue region in the phase diagram
shown in Fig. 2(b) with a mirror doublet of MZMs at each
end of the nodal RALD. Increasing the magnitude of
the chemical potential μ causes a gap-closing transition
at jμj ¼ 2t and turns the TSC into a trivial strong pairing
superconductor for jμj > 2t. Remarkably, the TSC
becomes gapless in the region jΔpj ≤ jαRj, so long as
jμj ≤ μc ¼ 2ðt2 þ α2R − Δ2

pÞ1=2, which corresponds to two

μ/t

ΤSCΤRI

Δp(a)

0
μ/t

ΤSC

ΤSC

Δc

μc

ΤRI

ΤRI

Δp/Δs

2

2

2μc

(b)

22 0

ΤSCΤRI

α
R

α
R

Gapless

FIG. 2. Topological phase diagram of the effective 1D model.
(a) RALD embedded in s-wave superconductors with mixed-
parity s-wave and dy-vector p-wave pairing. (b) Nodal RALD
embedded in d-wave superconductors with purely dx-vector
p-wave pairing. The TRI TSC becomes gapless in the region
−αR < Δp < αR and bounded by the curved lines from the trivial
SC phase.
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curved boundary lines to a gapped topological trivial SC
phase as illustrated in Fig. 2(b). The intriguing properties of
the gapless phase will be studied in the future.

III. QUASI-1D TSC FROM EMBEDDED RALD IN
2D UNCONVENTIONAL SUPERCONDUCTORS

We next go beyond the effective 1D model and show that
this mechanism applies directly to a 2D unconventional
s-wave or d-wave superconductor embedded with a RALD
quantum structure. The monolayer FeTe1−xSex, where the
electronic structure as a function of x has been studied by
angle-resolved photoemission spectroscopy [29,30], serves
as an experimentally available example of unconventional
s-wave SCs embedded with such a quantum structure [26].
Near x ∼ 0.5, there are two fully occupied dxz=yz bands and
one unoccupied, predominantly pz band just above the
Fermi level near the zone center Γ point. The electrostatic
potential due to the missing negatively charged Te/Se ions
pushes the pz band to cross the Fermi level to accommodate
the excess electrons localized around the RALD. Since the
two nearly overlapping electron pockets near the zone
corner add an even number of degenerate Fermi points
when projected onto the RALD, the condition for the
nontrivial topological invariant N is not affected by the
electron bands. We thus consider a single impurity band
around the Γ point.

A. 2D model of RALD embedded in superconductors

We use the spinors ci ¼ ðci↑; ci↓ÞT for the electronic
states in the bulk and fi ¼ ðfi↑; fi↓ÞT for those on the
RALD. The 2D model Hamiltonian can be written as
H2D ¼ Hc þHf þHcf, with

Hc ¼
X
ij

− ðtijþμ0δijÞc†i cjþΔijðc†i iσyc†j þH:c:Þ; ð13Þ

where i and j run over the 2D lattice of the bulk super-
conductor except at the line defect. We include the first- and
second-nearest-neighbor hopping tij and spin-singlet pair-
ing Δij with amplitudes t1;2 and Δ1;2, respectively, as
depicted in Fig. 3(a). s-wave and d-wave SCs are distin-
guished by the sign of Δij under a C4 rotation around a
lattice site. The Hamiltonian for the embedded quantum
structure Hf is written down on the (Fe) lattice sites along
the line defect:

Hf ¼
X
⟪ij⟫

f†i ½−t02 − iα2ðσ × d̂ijÞz − iαDσ · d̂ij þ μdδij�fj

þ Δ0
2ðf†i iσyf†j þ H:c:Þ ð14Þ

where μd, t02, and Δ0
2 are the local potential, the nearest-

neighbor hopping, and spin-singlet pairing, respectively,
marked in Fig. 3(a). Note that t02 ≪ t2 and Δ0

2 ≪ Δ2 due to

the missing Te/Se atoms that are otherwise strong facili-
tators of such second-nearest-neighbor processes [58]. In
Eq. (14), α2 and αD are Rashba and Dresselhaus SOCs
determined by the unit vector d̂ij ¼ rj − ri=jrj − rij con-
necting sites i and j. For a mirror line, αD ¼ 0. A small
mirror-symmetry-breaking αD is included to account for an
embedded RALD without mirror symmetry. This inclusion
does not produce quantitatively significant changes to the
spectrum but plays an important role in the classification of
the TSC and the nature of the zero-energy modes at the
ends of the line defect as discussed in the previous section.
The embedded RALD couples to the bulk superconduc-

tor according to

Hcf ¼
X
hi;ji

f†i ½−t1 − iα1ðσ × d̂ijÞz�cj þ Δ1

X
hi;ji

f†i iσyc
†
j

− t2
X
⟪i;j⟫

f†i cj þ Δ2

X
⟪i;j⟫

f†i iσyc
†
j þ H:c:; ð15Þ

where, in addition to the couplings by the nearest- and
second-nearest-neighbor hopping and pairing terms that
appeared in Hc [Eq. (13)], the nearest-neighbor Rashba
SOC α1 is also included as illustrated in Fig. 3(b) to capture
the effects of inversion symmetry breaking.

B. TSC from RALD embedded in s-wave
superconductors

We first study the case of s-wave SCs, where Δ1;2 are
uniform among the nearest- and second-nearest neighbors,
respectively. It is straightforward to show that integrating
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out the bulk states (c and c†) produces essentially the
effective 1D model in Eq. (4). The mechanism for dynami-
cally generating the mixed-parity pairing state can be
understood from the coherent second-order processes
shown in Figs. 3(c)–3(e). For example, the combination
of Δ1;2fiðiσyÞcj and t1;2c

†
j0fi0 in Eq. (15) induces pairing

along the RALD described by tαΔβGc
j;j0fiðiσyÞfi0, where

Gc
j;j0 ¼ hcjc†j0 i ∼ 1=εd is the equal-time correlator of the

bulk states with εd ¼ μd−μ0 the energy separation between
the impurity band and the Fermi level. Processes of
this type, as depicted in Figs. 3(c) and 3(d), give rise to
the induced spin-singlet pairing with on-site s-wave Δ0 ∼
t1Δ1=εd and t2Δ2=εd, and nearest-neighbor extend s-wave
Δs ∼ t1Δ1=εd, as well as further-neighbor even-parity
pairing terms along the chain. Intriguingly, due to the
inversion symmetry breaking, the SOC combined with
s-wave pairing between the RALD and the bulk SC
produces the odd-parity, spin-triplet pairing in real
space as shown in Fig. 3(e). For example, −iα1c

†
j↓fi↑

and Δ1fi0↑cj0↓ in Eq. (15) generate −iα1Δ1G
c↓
j;j0fi0↑fi↑.

Processes of this type induce spin-triplet pairing
Δpðeiðπ=4Þfi0↑fi↑ þ e−iðπ=4Þfi0↓fi↓Þ with Δp ∼ α1Δ1=εd
for the nearest-neighbor p-wave and further-neighbor
odd-parity pairing terms involving higher-order lattice
harmonics. The coherent generation of the odd-parity
component in the off-diagonal long-range order is key to
produce a robust nontrivial topological invariant to support
the TSC.

1. Even-parity-dominated quasi-1D TSC

We now present results directly obtained from diagonal-
izing the 2D Hamiltonian H2D in Eqs. (13)–(15).
Throughout this section, t2 is set to unity as the energy

unit and a small αD ¼ 0.01 is used unless otherwise noted.
The length of the RALD along the (1,1) direction is
denoted by LD, which is embedded in a 2D square lattice
of dimensions Lð1;1Þ in the (1,1) and Lð1;−1Þ in the ð1;−1Þ
directions under periodic boundary conditions. The
momentum along the RALD is labeled by kð1; 1Þ with k ¼
nπ=LD and n ∈ ½−ðLD=2Þ; ðLD=2Þ�. Consider first the case
α1 ¼ 0, where even-parity pairing dominates along the
RALD. The normal state energy dispersions [Fig. 4(a)]
show the incipient impurity bands (red lines) localized on
the line defect. The two split bands due to the Rashba SOC
α2 in Eq. (14) along the line defect cross the Fermi level at
k� marked in Fig. 4(b). The condition for a nontrivial Z2

invariant N ¼ −1 in Eq. (7) requires a node in the pairing
gap function of the impurity bands to be located in between
the two Fermi points. We thus calculate the induced spin-
singlet pairing order parameter Pk ¼ iσyPeðkÞ along the
embedded line defect. The results show that PeðkÞ is a
combination of even-parity harmonics and processes a node
between the k� Fermi points [Fig. 4(b)], thus realizing a
quasi-1D TSC along the RALD in class DIII due to the
absence of mirror symmetry. The energy spectrum obtained
for the entire 2D sample contains two Kramers doublets of
MZMs inside the SC gap as shown in Fig. 4(c), which are
pairwise localized at each end of the RALD and contribute
to the zero-energy peaks in the LDOS.

2. Odd-parity-dominated quasi-1D TSC

A crucial part of the topological phase diagram in
Fig. 2(a) is the p-wave-dominated region. An incipient
TRI TSC with dominant odd-parity pairing can indeed
emerge from the RALD embedded in bulk s-wave super-
conductors. To this end, we set α1 ¼ 0.5 and t1 ¼ Δ2 ¼ 0,
such that the induced even-parity pairing is suppressed
in the perturbative diagrams in Figs. 3(c) and 3(d) discussed
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above. A nearly spin-degenerate impurity band crossing
the Fermi level, as shown in Fig. 4(d), is obtained
when the bare Rashba SOC α2 is set to zero. In the SC
state, the induced equal-spin-triplet pairing order parameter
Pk ¼ 1=

ffiffiffi
2

p ðiσ0 þ σzÞPoðkÞ, which corresponds to a d
vector in the direction 1=

ffiffiffi
2

p ð−1; 1; 0Þ that is perpendicular
to the (1,1) direction of the line defect. In the effective 1D
model where the RALD is along the x direction, the d
vector of the incipient spin-triplet pairing therefore points
in the y direction, as described by Eq. (4). Pk along the
embedded line defect can be obtained directly from the 2D
calculations. Figure 4(e) shows that PoðkÞ is a combination
of odd-parity lattice harmonics dominated by the near-
neighbor p-wave pairing. Indeed, this odd-parity TSC is a
realization of two coupled Kitaev p-wave chains that
respect the time-reversal symmetry. As discussed in
Sec. II, in the presence of broken mirror symmetry, the
quasi-1D TSC is in class DIII. The energy spectrum of the
entire 2D sample contains two Kramers pairs of MZMs
inside the SC gap. In real space, they are pairwise localized
at each end of the RALD and manifest in the zero-energy
peaks in the LDOS as shown in Fig. 4(f).

3. General quasi-1D TSC of mixed parity

In general cases relevant to real materials such as
Fe(Te,Se), the SC state developed in the RALDwith nonzero
α1, t1;2, andΔ1;2 is in the regime ofmixed parity.We find that
the TRI quasi-1D TSC emerges over a wide region in the
phase space. Figure 5(a) displays the normal state band
dispersions obtained in the 2D lattice calculation for a general
set of parameters with a partially filled bulk band, showing
multiple impurity bands crossing the Fermi level. We
calculate the dynamically generated mixed-parity pairing

order parameter Pk¼iσyPeðkÞþð1= ffiffiffi
2

p Þðiσ0þσzÞPoðkÞ
along the line defect. The results plotted in Fig. 5(b) show
that the even- (Pe) and odd- (Po) parity components are
of comparable magnitudes, composed of mixtures of
s-wave and p-wave and their higher-order harmonics.
Since the line defect is not a mirror line, the TRI
quasi-1D superconductor is in class DIII characterized
by the Z2 invariant N in Eq. (7). Remarkably, close to the
momenta of the Rashba-split Fermi points, the odd-parity
pairing is at its maximum and dominates over the even-
parity pairing amplitude, resulting in a nontrivial N ¼ −1
from Eq. (7) and a TRI quasi-1DTSC along the RALD. The
topological nature of the superconductor is also confirmed
by the Zak phase calculation [57]. The energy spectrum
of the 2D superconductor shows four MZMs inside the
SC gap. The calculated LDOS spectra along the entire line
defect shown in Fig. 5(c) displays two zero-energy peaks
localized near both ends where the twoKramers doublets of
MZMs reside and a rather clean SC spectrumwithout in-gap
states in themiddle region of the RALD. These results are in
good agreement with the evolution of the STM tunneling
conductance spectra along the atomic line defect in mono-
layer Fe(Te,Se) [26].
One important advantage for materializing the quasi-1D

TSC with an intrinsic quantum structure embedded in
unconventional superconductors is that the incipient TSC
and the MZMs can be protected by a large SC gap and
operate at higher temperatures. For example, the perturba-
tion analysis discussed above indicates that the nearest-
neighbor s-wave and p-wave pairing gaps follow Δs ∼
t1Δ1=εd and Δp ∼ α1Δ1=εd. Since both pairing gaps scale
with the bulk SC gap Δ1, the topological gap along the line
defect should be proportional to the SC gap of the
unconventional superconductor. However, because the
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induced pairing functions along the line defect are com-
plicated and involve further neighbors in both the even- and
odd-parity channels [Fig. 5(b)], it is much more reliable to
calculate the topological gap ΔTSC of the impurity bands
directly from the 2D model with the embedded line defect.
In Fig. 5(d), the extracted ΔTSC along the RALD from the
lowest excitation energy of the 2D system is plotted as a
function of the bulk SC gap Δ1 while keeping the other
parameters unchanged as in Figs. 5(a)–5(c). It shows
a good linear relationship ΔTSC ∼ 0.65Δ1 and demonstrates
that the incipient topological gap can be a significant
fraction of the bulk SC gap in the unconventional
superconductor, provided that the Rashba SOC is strong.
For Fe(Te,Se), recent density-functional theory calculations
provide an estimate of the Rashba SOC α1 ∼ 60 meV
(approximately 0.16 eV · Å in the standard unit) [59].
First-principle calculations also predict that the bulk
bandwidth for the pz band is around 1 eV [60], which is
further reduced by the correlation effects [61]. This
prediction provides an estimate of the hopping parameter
t2 ∼ 125 meV and the ratio α1=t2 ∼ 0.5. Thus, the Rashba
SOC is in the range of the parameters used in Fig. 5 and
strong enough to produce a sizable incipient topological
gap along the RALD as a significant fraction of the large
bulk SC gaps (11 and 18 meV) observed in monolayer Fe
(Te,Se) [26].
To explore the robustness of the quasi-1D TSC

with Majorana zero-energy end states, we also study
nonstraight RALDs composed of continuous zigzag seg-
ments embedded in the unconventional s-wave supercon-
ductor as shown in Figs. 6(a) and 6(c). Here, we set the
Dresselhaus SOC αD ¼ 0, since the zigzag shape of the line
defect already breaks the mirror symmetry. For both types
of nonstraight RALDs, our 2D calculations find a Kramers
doublet of MZMs localized at each end that gives rise to the
zero-bias peaks in the LDOS shown in Figs. 6(b) and 6(d).
The localization lengths of the zero modes are very short
and on the order of a lattice constant, wherein the local
environment near the ends of the nonstraight line defects
are essentially the same, leading to the nearly identical
LDOS in Figs. 6(b) and 6(d). This result demonstrates that
the zero-energy modes are robust against the changes in the
shape of the line defect as long as the quasi-1D TSC
developed along the line defect remains stable.

C. TSC from RALD embedded in d-wave
superconductors

Because of the electron-electron correlations, there is
another important class of unconventional superconduc-
tors, the d-wave superconductors, discovered in the high-
Tc cuprates and certain heavy-fermion superconductors.
In this section, we study embedded 1D quantum
structures such as the RALD in unconventional d-wave
superconductors on the 2D square lattice. This system
continues to be described by the HamiltonianH2D given in

Eqs. (13)–(15), with a sign-changing nearest-neighbor
pairing field Δij under the C4 rotation. For simplicity, the
second-nearest-neighbor pairing, Rashba SOC, and hop-
ping amplitudes are set to zero, i.e., Δ2 ¼ Δ0

2 ¼ α2 ¼
t2 ¼ t02 ¼ 0. Because the dx2−y2-wave pairing order param-
eter changes signs under the C4 lattice rotation, the nature
of the incipient TSC depends intriguingly on the direction
of the line defect with respect to the nodal line of the bulk
d-wave superconductor. We thus discuss these cases
separately.

1. RALD embedded along antinodal directions

Consider the line defect embedded along the x direction,
which is the antinodal direction of the nearest-neighbor
d-wave pairing with Δx ¼−Δy ¼Δ1, as shown in Fig. 7(a).
As in the s-wave case, the RALD is characterized by a local
electrostatic potential εd and an inversion symmetry-break-
ing-induced Rashba SOC α1 originating, for example, from
a line of missing off-plane atoms such as the apical oxygens
or the La atoms in the cuprates. In the numerical calcu-
lations, the nearest-neighbor hopping coupling between the
line defect and the bulk superconductor (t1d) is allowed to
be smaller than the corresponding t1 in the bulk to model
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the localized electronic structure of the embedded quantum
structure. The normal state band dispersions obtained in the
2D model have a pair of incipient Rashba-split impurity
bands cross the Fermi level, as shown in Fig. 7(b).
The microscopic mechanism for generating the quasi-1D

SC state by the coherent couplings of the line defect to the
bulk superconductor is similar to the s-wave case discussed
above and gives rise to the important odd-parity, spin-triplet
pairing component. For the RALD aligned in the antinodal
direction, it can be seen from Fig. 7(a) that the pairing
potential maintains the mirror symmetryMy about the line
defect. As a result, the induced pairing state is of mixed
parity described by ΔsðkÞiσy þ dðkÞ · σðiσyÞ with the spin-
triplet pairing d vector pointing in the y direction, i.e.,
dðkÞ · σ ¼ dyðkÞσy, leading to the same effective 1D model
given in Eq. (4) as in the s-wave case. The energy spectrum
in Fig. 7(c) obtained for the 2D superconductor shows that
a TRI quasi-1D TSC emerges with four zero-energy states
pairwise localized at the ends of the embedded RALD.
Similar to the s-wave case, in the presence of mirror
symmetry, this TSC would be a topological mirror super-
conductor in class AIII ⊕ AIII with fermion zero modes at
both ends. When the mirror symmetry is broken (such as by
a nonzero αD), the TSC is in class DIII with a Kramers
doublet of MZMs localized at each end of the RALD,
where the tunneling spectrum exhibits the zero-energy
conductance peak as shown in Fig. 7(d).

2. RALD embedded along nodal directions

The more intriguing case is when the quantum structure
is embedded along the nodal direction of the bulk d-wave
superconductor. Such a RALD aligned with the (1,1)
direction is depicted in Figs. 8(a) and 8(b) and produces
the Rashba-split impurity bands shown in Fig. 8(c). The
important point to notice is that the d-wave pairing field is
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odd under the mirror operation My marked in Fig. 8(a). In
contrast to the antinodal and the s-wave cases, the induced
pairing along the line defect cannot sustain an s-wave
component which is even under My. Intuitively, this
constraint can be seen from the second-order processes
shown in Fig. 8(a), where the contributions from the two
paths involved in producing a nearest-neighbor pairing
along the RALD are out of phase and cancel out in the spin-
singlet channel. However, odd-parity, spin-triplet pairing
that is odd under the mirror My can still be induced along
the line defect by the combined processes of nearest-
neighbor hopping and Rashba SOC as illustrated in
Fig. 8(b). Therefore, the nodal RALD in the d-wave setup
gives a unique platform for generating purely spin-triplet
quasi-1D SCs and can be further tested by experiments.
Carrying out the 2D calculations, we find that the

only incipient pairing induced coherently on the impurity
bands is the equal-spin-triplet pairing order parameter
Pk ¼ 1=

ffiffiffi
2

p ðiσ0 − σzÞPoðkÞ. The minus sign indicates that
the d vector of the spin-triplet pairing is different from that
in the RALD embedded in s-wave or along the antinodal
direction in d-wave superconductors. The d vector is thus
given by ð1= ffiffiffi

2
p Þð1; 1Þ, pointing along the direction of the

RALD. If we rotate the coordinates so that the RALD
aligns with the x direction, the triplet pairing d vector is
then in the x direction, i.e., dðkÞ · σ ¼ dxðkÞσx, giving rise
to the odd combination of the equal-spin pairing described
by the effective 1D model in Eq. (8). Figure 8(d) displays
the vanishing even-parity Pe and the robust odd-parity Po
components of the pairing order parameter obtained from
diagonalizing the 2D model with the embedded quantum
structure. From the study of the effective 1D model in
Eq. (8), a quasi-1D topological crystalline superconductor
is clearly realized in class D ⊕ D characterized by the
nontrivial Z2 ⊕ Z2 invariant, with a mirror doublet of
MZMs pairwise localized at each end of the embedded
nodal RALD, where the tunneling spectrum exhibits the
zero-energy conductance peak shown in Fig. 8(e).

IV. ZEEMAN EFFECT AND TIME-REVERSAL
SYMMETRY-BREAKING TSC

The discussions thus far focus on the situation with time-
reversal symmetry. In this section, we study the response of
the TSC developed in the RALD along the x direction to
general time-reversal symmetry-breaking Zeeman fields:

HZ ¼ hxσxτz þ hyσyτ0 þ hzσzτz: ð16Þ

The reason is twofold. First, it is possible that the line of
missing atoms causes incipient local magnetic order in
the neighboring atoms. For example, in the monolayer
Fe(Te,Se), the line of missing Te/Se atoms may cause the
Fe atoms underneath to become magnetic. The current
experiments have not seen evidence for this possibility to

happen, but more experiments are necessary [26]. Second,
the evolution of the SC state with an applied vector external
magnetic field h ¼ ðhx; hy; hzÞ can be used experimentally
to probe the nature of the TSC.

A. RALD embedded in s-wave superconductors

1. Mirror symmetric RALD

We first study the case where the system has perfect
mirror symmetry, so that the Dresselhaus SOC vanishes,
i.e., αD ¼ 0. Any h ≠ 0 in Eq. (16) breaks the time reversal
T in the effective 1D model in Eq. (4). For a field in the
ðx; zÞ plane, i.e., hxz ¼ ðhx; 0; hzÞ, the mirror symmetry
My is also broken, so that H1D cannot be block diagon-
alized in the mirror subspace and is, thus, no longer in
class AIII. However, the combined operation T̃ ¼
MyT ¼ K remains a hidden time-reversal symmetry,
i.e., T̃ H1DðkÞT̃ −1 ¼ H1Dð−kÞ with T̃ 2 ¼ þ1, and leads
to a hidden chiral symmetry C̃ ¼ T̃ Θ ¼ σ0τx. As a result,
for an exchange field or applied magnetic field in the ðx; zÞ
plane, the TSC turns into the BDI class characterized by an
integer topological invariant Z [10,62]. The zero-energy
modes remain stable and become two pairs of MZMs
localized at the ends of the mirror-line RALD. One arrives
at the same conclusion for the 2D embedded RALD
governed byH2D when hxz ≠ 0, with four MZMs protected
by the hidden chiral symmetry as shown by direct 2D
calculations shown in Fig. 9(a). For large enough hxz, one
of the Rashba-split bands [Fig. 4(a)] is pushed to strong
pairing outside the Fermi level. The quasi-1D TSC thus
exhibits a single MZM at each end of the RALD as shown
in Fig. 9(a). This result is analogous to the TSCs proposed
for Rashba quantum wires [11] and magnetic Fe chains
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FIG. 9. (a) Energy spectrum of the 2D s-wave superconductor
with an embedded mirror RALD as a function of the Zeeman
field hz. The SC gap closes and reopens at hcz ≃ 0.28 with the
concomitant reduction in the number of MZMs from four to two
(red and blue dots), signaling the transition of the TSC in class
BDI with the reduction of the topological invariant from Z ¼ 2 to
Z ¼ 1. (b) The same as in (a) and with the same parameters, but
the Zeeman field hy is perpendicular to the mirror RALD. The
zero modes split immediately as hy is turned on, as the TSC
becomes a topologically trivial superconductor.
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[48,63,64] proximity coupled to s-wave superconductors in
the presence of Zeeman fields, as well as the TSCs realized
in multichannel Shiba chains [65,66]. The quantization of
the tunneling conductance at the ends changes from 4e2=h
to 2e2=h. The evolution of the TSC can be studied by
applying a magnetic field in the plane spanned by the
mirror RALD direction and the normal of the 2D SC plane.
Interestingly, rotating the magnetic field such that there is a
nonzero field component out of this plane, i.e., hy ≠ 0,
removes the hidden T̃ and, thus, breaks the chiral sym-
metry C̃, leaving the system in class A, which is topologi-
cally trivial in 1D [4]. Thus, a magnetic field or an
exchange field component hy ≠ 0 destroys the TSC
together with the zero modes at the ends of the RALD,
as shown by the results obtained directed in the 2D
superconductor plotted in Fig. 9(b).

2. Mirror-symmetry-breaking RALD

When mirror symmetry is broken, e.g., by a nonzero
Dresselhaus SOC αD ≠ 0 in Eq. (4), the time-reversal-
symmetric TSC is in the DIII class with a Kramers pair of
MZMs at each end of the RALD. In this case, the Zeeman
field h in any direction breaks the time-reversal symmetry
completely, and no hidden time-reversal symmetry can
arise due to the broken of mirror symmetry. As a result, the
system makes a transition to the topological trivial phase,
and the unprotected zero-energy Majorana end states are
destroyed. As discussed in earlier sections, the mirror
symmetry is broken in real materials such as the Fe(Te,
Se) due to substitutional alloying of Te and Se atoms as
well as the presence of other line defects. If such disorder
effects imply that the RALD cannot represent a mirror line,
then applying a magnetic field in any direction would
destroy the zero-energy bound states observed experimen-
tally at the ends of the RALD. It is thus crucial to carry out
these experiments to help determine the nature of the quasi-
1D TSC detected in the monolayer Fe(Te,Se) [26]. We also
study the case where the Zeeman field is applied only along
the atomic line defect and obtain essentially the same
results.

B. Nodal RALD embedded in d-wave superconductors

Next, we study the Zeeman field response of the TSC
developed in the nodal RALD embedded in unconventional
d-wave superconductors. In this case, the emergent SC
state is described by the mirror-odd, purely spin-triplet
pairing with the d vector pointing along the line defect
given in Eq. (8). We show that the BdG Hamiltonian can be
block diagonalized in the eigenbasis of an effective mirror
symmetry M−

y ¼ −iσyτz, where each block describes a
TSC in class D with a Z2 topological invariant.
For a Zeeman field in the y direction, the effective

mirror symmetry remains, since ½hyσyτ0;M−
y � ¼ 0. The

BdG Hamiltonian continues to be block diagonal in the

eigenbasis of M−
y , with particle-hole symmetry in each

block. Therefore, despite the breaking of time-reversal
symmetry by the Zeeman field hy, the system still consists
of two subblocks (unrelated by time reversal) and belongs
to class D ⊕ D. The mirror doublet of MZMs at each end
of the nodal RALD remains stable. On the other hand,
a Zeeman field hxz in the xz plane breaks the effectiveM−

y

mirror symmetry so that the BdG Hamiltonian is no longer
block diagonal. The quasi-1D superconductor without
time-reversal symmetry is, thus, in class D characterized
by a Z2 invariant. We find that the MZMs split immediately
upon switching on the Zeeman field hxz ≠ 0, as the quasi-
1D superconductor enters the topologically trivial phase.

V. SUMMARY AND OUTLOOK

We presented a new route for materializing quasi-1D
topological superconductors using naturally embedded
quantum structures, such as the Rashba atomic line defects,
in spin-singlet unconventional superconductors. The ad-
vantage of this platform, besides the high transition temper-
ature and large pairing energy gap, is that the topological
superconductivity develops from the coherent quantum
processes via the microscopic couplings between the
incipient impurity bands and the bulk superconductor.
This advantage avoids relying on proximity-effect-induced
superconductivity that is difficult to achieve and hard to
control in unconventional superconductors and, at the same
time, brings out the crystalline symmetry for the emergent
TSCs to be reckoned with. As a result, several quasi-1D
TSCs in distinct topological classes with different zero-
energy boundary states can be realized, all involving the
odd-parity, spin-triplet pairing order parameter with the d
vector microscopically determined by direct calculations
in the bulk superconductor with the embedded quantum
structure.
For a mirror-line RALD embedded in s-wave super-

conductors, a quasi-1D mirror TSC in class AIII arises
with zero-energy fermion end states. When the mirror
symmetry is broken, the TRI quasi-1D TSC is in classDIII
characterized by a nontrivial Z2 invariant, with a Kramers
doublet of MZMs localized at each end. The two cases
can be distinguished by their different responses to the
Zeeman field due to an external magnetic field or an
incipient magnetic order. While a nonzero Zeeman field in
any direction destroys the mirror-broken, time-reversal-
symmetry-protected TSC in class DIII together with the
zero-energy bound states, a Zeeman coupling in the plane
spanned by the line defect and the normal direction (xz
plane) puts the mirror-line TSC in class BIII with MZMs
end states characterized by a nontrivial topological Z
invariant. Yet another interesting quasi-1D topological
crystalline superconductor in class D emerges when a
RALD is embedded in a d-wave superconductor along the
nodal direction of the d-wave gap function. Two pairs of
mirror doublet of MZMs emerge at both ends of the line
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defect, which remain stable under a Zeeman field aligned in
the y direction, but are destroyed together with the TSC
when the Zeeman field has a nonzero component in the
xz plane.
This new mechanism for the emergent quasi-1D TSC

provides a possible explanation for the zero-energy bound
states discovered at the ends of the atomic line defects in
monolayer Fe(Te,Se) high-Tc superconductors. However,
the nature of the zero-energy end states, i.e., MZMs versus
fermion zero-energy bound states, depends on whether the
atomic line defect breaks the mirror symmetry, as discussed
above. Although we argued that the substitutional Te/Se
alloying breaks the mirror symmetry, whether these zero-
energy end states are indeed MZMs requires further
experimental investigation. Their responses to an applied
magnetic field discussed here offer a concrete and ame-
nable experimental test.
There are a few key ingredients that enable this mecha-

nism for the emergent TSCs in embedded quantum
structures. At the very basic level, it requires the occupation
of an incipient impurity band in the presence of a large
Rashba SOC associated with the local inversion symmetry
breaking. This requirement is sufficient for producing a
quasi-1D SC state of mixed parity by the microscopic
couplings of the impurity band states to the bulk spin-
singlet unconventional superconductor, without detailed
requirements on the shape and length of the 1D quantum
structure. The occupation of the impurity band is deter-
mined by the local electrostatic environment and plays an
important role. The most robust quasi-1D TSC emerges
when the impurity band is around half filling, where the
induced spin-triplet pairing dominates over the singlet
pairing near the Fermi level and supports a nontrivial
topological invariant along the quantum structure. The
atomic line defect of Te/Se vacancies in monolayer Fe
(Te,Se) films turns out to contain these essential ingredients
with an excess of close to one electron per unit cell
occupying an incipient impurity band under a strong
Rashba SOC. We note that Teo and Kane have studied
the defect states such as crystalline dislocations in super-
conductors belonging to different topological classes [67].
They considered the topological defects (points, lines, and
surfaces) as boundaries of the superconductors and clas-
sified the emergent gapless defect excitations. What we
have shown here is that embedding a lower-dimensional
system in a higher-dimensional topological trivial super-
conductor can generate a topological superconductor in the
embedded quantum structure. Once a topological super-
conductor of a specific class emerges in the embedded
lower-dimensional superconductor, the nature of the defect
and boundary excitations can be classified according to
Ref. [67]. It may be possible to build a connection between
our findings and the classification of topological defects in
Ref. [67] by considering a theory of embedding, which will
be interesting for future studies.

In addition to the naturally developed atomic line defects
during growth, the embedded quantum structures can be
created and/or manipulated postgrowth by atomic defect
engineering using modern techniques such as atomic force
microscope [68], STM [69], and electron beam lithography
[70,71]. Patterning the atomic line defects can, in principle,
produce more desirable structures, such as T junctions, for
studying the physics of MZMs. These findings open up
new possibilities toward materializing quasi-1D topological
superconductors with Majorana end states at high operating
temperatures, which are essential for fault-tolerant quantum
computing.
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APPENDIX: CALCULATION OF THE
TOPOLOGICAL INVARIANTS

In this Appendix, we provide more detailed calculations
of the topological invariants in the effective 1D models,
including the Z2 invariant in the time-reversal-invariant
class DIII and the time-reversal symmetry-breaking class
D [3,51,52,72], as well as the topological Z invariant in the
chiral symmetric classes AIII and BDI. The general form
of the mixed-parity pairing order parameter is given by

ΔðkÞ ¼ ΔsðkÞiσy þ dðkÞ · σðiσyÞ: ðA1Þ
For nearest-neighbor pairing, we have ΔsðkÞ ¼ 2Δs cos k
and jdðkÞj ¼ ΔtðkÞ ¼ 2Δp sin k.

1. Time-reversal-symmetric case

In the effective 1D model in Eq. (4), the triplet-pairing d
vector points along the y direction, i.e., dðkÞ ¼ dyðkÞŷ
and dðkÞ · σ ¼ dyðkÞσy. The pairing order parameter is thus
given by

Δk ¼ iσyΔsðkÞ þ iσ0ΔtðkÞ: ðA2Þ
In the presence of time-reversal symmetry, Ref. [51]
introduces a simple equation for calculating the topological
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Z2 invariantN from the time-reversed pairing functions for
each band n at momentum k:

δnk ¼ hn; kjT Δ†
kjn; ki; ðA3Þ

where jn; ki denotes the eigenstate and T ¼ iσyK is the
time-reversal operator. In the weak pairing limit, the
topological invariant N in 1D is given by the product

N ¼ Πs½sgnðδsÞ�; ðA4Þ

where s runs over all Fermi points of all bands between
0 and π. For the effective 1D model in Eq. (4) of the main
text, we thus obtain

N ¼ sgnf½ΔsðkþÞ þ ΔtðkþÞ� × ½Δsðk−Þ − Δtðk−Þ�g;

where k� are the momenta of the two Fermi points between
k ¼ 0 and k ¼ π of the Rashba-split bands. This result
simplifies to Eq. (7) in the main text for nearest-neighbor
mixed-parity pairing. A nontrivial invariant (N ¼ −1)
corresponds to a 1D time-reversal-invariant TSC in
class DIII.

2. Time-reversal symmetry-breaking case

When the time-reversal symmetry is broken, the TSC in
class D is described by a different nontrivial Z2 topological
invariant in 1D, which can be calculated in terms of the
Pfaffians of the BdG Hamiltonian in the Majorana basis at
k ¼ 0 and k ¼ π [64,72]. We thus need to rewrite the BdG
Hamiltonian in terms of the Majorana fermion operators

γi;aσ ¼ fi;σ þ f†i;σ; ðA5Þ

γi;bσ ¼ −iðfi;σ − f†i;σÞ; ðA6Þ

where σ ¼ ↑;↓ denotes each spin sector. For simplicity,
consider the case where the time-reversal symmetry is
broken by the Zeeman field hz in Eq. (16) in the main text.
The total Hamiltonian H ¼ H1D þ hzτzσz written in terms
of Majorana operators in Fourier space is given by

H ¼ i
2

X
k

γ†kÂkγk; ðA7Þ

where γk ¼ ðγk;a↑; γk;a↓; γk;b↑; γk;b↓ÞT and

Âk ¼

2
6664

0 0 εLðkÞ þ iΔtðkÞ þ hz −2iαR sin kþ ΔsðkÞ
0 0 2iαR sin k − ΔsðkÞ εLðkÞ þ iΔtðkÞ − hz

−εLðkÞ þ iΔtðkÞ − hz 2iαR sin kþ ΔsðkÞ 0 0

−2iαR sin k − ΔsðkÞ −εLðkÞ þ iΔtðkÞ þ hz 0 0

3
7775: ðA8Þ

The 1D topological Z2 invariant in class D is obtained
as [64,72]

N D ¼ sgn½PfðÂk¼0ÞPfðÂk¼πÞ�: ðA9Þ

Calculating the Pfaffian PfðÂkÞ at k ¼ 0 and k ¼ π, one
obtains

N D ¼ sgnf½h2z − ðμþ 2tÞ2 − 4Δ2
s �

× ½h2z − ðμ − 2tÞ2 − 4Δ2
s �g; ðA10Þ

where a nearest-neighbor ΔsðkÞ ¼ 2Δs cos k is used. A
nontrivial N D ¼ −1 corresponds to a TSC in class D.
Note that the odd-parity pairing ΔtðkÞ does not enter the Z2

invariant. Equation (A10) shows that a time-reversal sym-
metry-breaking TSC in class D requires a large enough
Zeeman field satisfying the condition h2z∈½ðjμj−2tÞ2þ4Δ2

s ;
ðjμjþ2tÞ2þ4Δ2

s �. As a result, the TSC in classD is difficult
to arise if the incipient impurity band is nearly particle-hole
symmetric (μ ∼ 0) but more easy to emerge when μ is close
to the band top or band bottom. Such a 1D TSC supports a
single MZM at each end of the RALD. The above equation

can be used to calculate the topological invariant N D for
Eq. (11) in the main text. In this case, Eq. (11) in the
Majorana basis becomes

Â�
k ¼

"
iΔtðkÞ�2iαR sink −εLðkÞ

εLðkÞ −iΔtðkÞ�2iαR sink

#
ðA11Þ

so that PfðÂ�
k Þ ¼ −εLðkÞ, which gives the topological

invariant for Eq. (11) as

N D ¼ sgn½ð2tþ μÞð2t − μÞ�: ðA12Þ

3. Chiral symmetric case

The Hamiltonian HðkÞ with the chiral symmetry can be
block off-diagonalized by the unitary transformation U that
diagonalizes the chiral operator, so that we have

UHðkÞU† ¼
�

0 AðkÞ
A†ðkÞ 0

�
: ðA13Þ
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Since Det½UHðkÞU†� ¼ jDet½AðkÞ�j2, Det½AðkÞ� does not
vanish so long as the system is fully gapped. In this case,
we can define a unit module complex function zðkÞ ¼
Det½AðkÞ�=jDet½AðkÞ�j, whose winding number defines the
topological invariant Z [10]:

Z ¼ −i
2π

Z
k¼2π

k¼0

dzðkÞ
zðkÞ : ðA14Þ

This formula works for both class AIII and class BDI
discussed in the main text. For instance, the Hamiltonians
H�

A in Eq. (5) in the main text describe two 1D models in
class AIII in the mirror eigenspace can be brought to off-
diagonal forms by the 2 × 2 unitary transformation U1 ¼
e−ðiπ=4Þτy as

U1H�
AU

†
1 ¼ ½εLðkÞ ∓ 2αR sin k�τx þ ½ΔtðkÞ ∓ ΔsðkÞ�τy:

The off-diagonal blocks in Eq. (A13) are, thus, complex
scalars:

A�ðkÞ ¼ εLðkÞ ∓ 2αR sin k − i½ΔtðkÞ ∓ ΔsðkÞ�: ðA15Þ

Equation (A14) then leads two nontrivial winding numbers
Z� ¼ 1 in the two mirror eigenspaces, guaranteeing the
presence of a pair of zero-energy bound states at each end
of the mirror-line RALD.
As discussed in the main text, when the mirror-line

RALD described by Eq. (4) with a vanishing αD is placed in
a Zeeman field in the xz plane, the corresponding 1D model

H1DðkÞ ¼ εLðkÞτzσ0 þ 2αR sin kτzσy þ ΔsðkÞτyσy
þ ΔtðkÞτyσ0 þ hxτzσx þ hzτzσz ðA16Þ

describes a superconductor in the topological class BDI.
This Hamiltonian can be block off-diagonalized by the
4 × 4 unitary transformation U2 ¼ e−ðiπ=4Þτyσ0 :

U2H1DðkÞU†
2 ¼ εLðkÞτxσ0 þ 2αR sin kτxσy þ ΔsðkÞτyσy

þ ΔtðkÞτyσ0 þ hxτxσx þ hzτxσz:

The upper off-diagonal block in Eq. (A13) becomes

AðkÞ ¼ ½εLðkÞ − iΔtðkÞ�σ0 þ ½2αR sin k − iΔsðkÞ�σy
þ hxσx þ hzσz; ðA17Þ

and its determinant is given by

Det½AðkÞ� ¼ ½εLðkÞ − iΔtðkÞ�2 þ ½ΔsðkÞ þ 2iαR sin k�2
− h2x − h2z : ðA18Þ

The topological invariant Z can be obtained by calculating
the winding number using Eq. (A14), which evolves from

Z ¼ 2 to Z ¼ 1 with an increasing Zeeman field and
eventually becomes trivial with Z ¼ 0 for a large enough
Zeeman field.
Following the discussion in the main text, there exists a

hidden chiral symmetry C̃ associated with the anomalous
time-reversal operator T̃ obeying T̃ 2 ¼ þ1 in the 1D
model, despite the broken TRI by hz ≠ 0. Thus, for hz
not large enough to satisfy Eq. (A10), the system has a
trivial invariant for class D, but the RALD remains a TSC
in class BDI characterized by an integer Z topological
invariant [10,62] with a pair of MZMs at each end.
Increasing hz eventually leads to topological transitions
in class BDI from Z ¼ 2 to Z ¼ 1 with a single MZM at
each end of the RALD.
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