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Abstract Intensification of short‐duration rainfall extremes contributes to increased urban flood risk. Yet, it
remains unclear how upper‐tail rainfall statistics could change with regional warming. Here, we characterize the
non‐stationarity of rainfall extremes over durations of 1–24 hr for the rapidly developing coastal megalopolis of
the Greater Bay Area, China. Using high‐resolution, multi‐source, merged and gridded data we observe greater
increases in rainfall intensities over the north‐central part of the region compared with the southern coastal
region. Our results show, for the first time, that urbanization nonlinearly increases rainfall intensities at different
durations and return periods. Over short durations (≤3‐hr) and short return periods (2‐yr), urban areas have the
greatest scaling rates (≥19.9%/°C). However, over longer durations (≥9‐hr) rural areas have greater scaling
rates, with a lower degree of dependency on both durations and return periods.

Plain Language Summary Short‐duration (sub‐daily) rainfall extremes are major drivers of flash
floods and hence significant disruptions to society. Previous modeling and statistical studies show that
urbanization intensifies short‐duration rainfall extremes. However, there has been less attention to regional
variations in rates of rainfall intensification under a warming climate, particularly for extreme events with return
periods that are comparable to or longer than the years of record. In this study, we investigate changes in rainfall
extremes over the Greater Bay Area, China using long records of high‐resolution data merged from gauge
networks, satellite observations, and reanalysis products. This enables us to evaluate changes in low‐frequency
rainfall extremes (2‐ to 100‐yr return periods) over different land surfaces, under a warming climate. We find
that increases in rainfall extremes significantly depend on the duration and return period of events, with the
largest scaling occurring for short‐duration “nuisance” rainfall intensities over urban areas.

1. Introduction
Heavy precipitation has increased in intensity and frequency for most land areas since the 1950s—trends that have
been attributed to human‐induced global warming (IPCC, 2021). Although such changes at daily or longer du-
rations are detected globally (IPCC, 2021; Papalexiou & Montanari, 2019; Westra et al., 2013), sub‐daily rainfall
extremes, which can cause severe socioeconomic impacts through flash flooding (Ayat et al., 2022; Fischer &
Knutti, 2016; Fowler et al., 2021), generally exhibit much greater variability across continents, regions, and sites
(Agilan & Umamahesh, 2015; Barbero et al., 2017; Chen et al., 2021; Fowler et al., 2021; Hosseinzadehtalaei
et al., 2020). In urban areas, where more than half of the global population is concentrated (Grimm et al., 2008),
rainfall patterns are modified by the (a) heat island, (b) higher surface roughness, (c) higher aerosol concentrations
and (d) land use, which collectively enhance extreme and total rainfall, both locally and downwind (Han
et al., 2014; Liu & Niyogi, 2019; Shepherd, 2013). Hence, continuous and rapid urbanization are exposing larger
populations to flood risk, especially in the economic growth hubs of the Asia‐Pacific region.

Extreme value theory (EVT) is typically used to evaluate the statistical properties of rainfall extremes, so that
events beyond the range of available data can be estimated (Khaliq et al., 2006). Associated methodologies such
as intensity‐duration‐frequency (IDF) curves are routinely applied to infrastructure design and water management
(Hosseinzadehtalaei et al., 2020). However, these conventional techniques rest on the assumption of stationarity
which is problematic in the context of climate change, as the probability distribution of the extreme variable
studied is time‐invariant (Khaliq et al., 2006; Milly et al., 2008). Hence, as seen worldwide (Fauer & Rust, 2022;
Fu et al., 2021; Slater et al., 2021), it makes sense to consider the non‐stationarity of rainfall extremes using EVT.
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Unfortunately, rain gauge networks—which are often used for extreme value analysis—have uneven and sparse
coverage and may under‐ or mis‐sample localized convective events which largely contribute to short‐duration
extremes (Kidd et al., 2017; Lengfeld et al., 2020). On the other hand, satellite‐derived and/or model‐based
precipitation products offer finer spatiotemporal resolutions and better spatial coverage (Sun et al., 2018).
Nevertheless, they are inadequate for regional extreme value analysis due to significant uncertainties in their
accuracy (Alexander et al., 2019; Ali et al., 2021; Zhang et al., 2022). In this regard, blending multiple sources for
long‐term rainfall statistics characterization is recommended (e.g., McLeod et al., 2017; McLeod & Shep-
herd, 2022), while those on the non‐stationarity of rainfall extremes at an hourly scale are scanty.

Increasing intensities of sub‐daily rainfall in urbanized areas has been detected by nonstationary EVT using a few
stations (Agilan & Umamahesh, 2015; Ganguli & Coulibaly, 2017; Yilmaz et al., 2014) (Figure S1, Table S1 in
Supporting Information S1). However, duration‐ and land‐use dependent variations in sub‐daily rainfall extremes
—such as between rural and urban areas—remain unclear. Statistical relationships between non‐stationarity and
underlying climate drivers, implied by time and physical covariates formulated in frequency models, further
complicate planning by city authorities who are contending with urban growth and rising temperatures (Chen
et al., 2013; Fauer & Rust, 2022; Westra & Sisson, 2011). Many studies have applied Clausius–Clapeyron (C–C)
scaling to describe how the moisture‐holding capacity of the atmosphere and thus rainfall intensity responds to
global/regional warming (Bao et al., 2017; Lenderink & van Meijgaard, 2008; Visser et al., 2021; Westra
et al., 2014). Most relate extreme quantiles to incremental temperature bins, usually at daily timescales (Fowler
et al., 2021). However, scaling of “upper tail”, short‐duration rainfall intensities (at return periods well beyond the
length of typical observational records) is hitherto unexplored.

Here, we analyze non‐stationarity in hourly to daily rainfall extremes (at return periods ≥2 yr) linked to surface
temperatures over the Greater Bay Area (GBA). The GBA is an agglomeration of 11 metropolitan areas in south
China covering Guangdong, Hong Kong and Macau. This region has experienced a surge in urban development
and population growth since the 1990s, becoming one of the most important economic hubs in Asia (Qiang
et al., 2020; Sun et al., 2021). Moreover, the GBA is amongst the most vulnerable urban areas globally, given its
high exposure to floods, dense population, and developing economy (Schelske et al., 2013). Having differentiated
areas with high and low degrees of urbanization, we investigate non‐stationarity in rainfall extremes over the
region at hourly to daily scales, alongside potential climate drivers. Robust scaling relationships are then derived
for duration‐, return‐period, and land cover dependent rainfall extremes.

2. Materials and Methods
2.1. Meteorological Data and Multisource Merging

This study applied nonstationary frequency analysis to high spatial‐resolution hourly rainfall data. The gridded
rainfall data used included the Multi‐Source Weighted‐Ensemble Precipitation (MSWEP V2.8) product (Beck
et al., 2019), Integrated Multi‐satellite Retrievals for the Global Precipitation Measurement mission (IMERG)
Final Run Version 07 (Huffman et al., 2023), and the ERA5‐Land reanalysis data of the European Center for
Medium‐Range Weather Forecast (ECMWF) (Hersbach et al., 2020). In addition, rain gauge data from 50
weather stations managed by the National Meteorological Information Center of the China Meteorological
Administration and The Hong Kong Observatory were also analyzed. Other meteorological data, covering the
period 1960–2020, included global (land air + sea water) mean surface temperature, Multivariate ENSO Index
(MEI), mean surface air temperature (T2m), mean dew point temperature (DT2m), and mean equivalent potential
temperature (EPT). The T2m and DT2m data were obtained from the ERA5‐Land dataset, whereas EPT was
calculated following the methods in Song et al. (2022).

2.2. Multisource Merging and Correction of the Gridded Rainfall Data

Quality assessment of several gridded rainfall products for the GBA showed poor agreement with hourly gauge
observations (Figure S2 in Supporting Information S1). Although preliminary calibration was performed for the
multi‐source merged products such as MSWEP, only a limited number of gauges with daily data were incor-
porated (Beck et al., 2019; Hersbach et al., 2020). Thus, we further employed a Random Forest‐based Merging
Procedure (RF‐MEP) (Baez‐Villanueva et al., 2020) to the original datasets described in Section 2.1 to improve
their spatiotemporal accuracy at hourly, 0.1° resolutions. The RF‐MEP dataset significantly improved the original
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data in terms of the Nash–Sutcliffe efficiency (NSE) coefficient whilst also preserving spatial details beyond that
of the gauge network (Text S1, Figure S2 in Supporting Information S1).

2.3. Nonstationary Frequency Analysis of Rainfall Extremes

Annual maximum rainfall intensities were extracted for each grid/station under various durations for frequency
analysis. “Rainfall extremes” refer to rainfall intensities with ≥ 2‐yr return periods. This criterion is roughly
equivalent to the 98.75th and 99.7th percentiles in terms of event‐based and direct sampling of hourly time series,
respectively. The Generalized Extreme Value (GEV) distribution was applied with flexible location and scale
parameters. Climate variables were then used as physical covariates to represent any non‐stationarity (Coles
et al., 2003; Nerantzaki & Papalexiou, 2022). Details of the model structure, model selection, and parameter
estimation are given in Text S2 in Supporting Information S1. Mann–Kendall (M–K) trend analysis with Sen’s
slope estimator (Gocic & Trajkovic, 2013; Khaliq et al., 2009) was performed for each location/grid for different
return periods.

2.4. Classification of Urban and Rural Areas

The non‐stationarity of rainfall extremes in rural and land areas were compared by differentiating the grids based
on the land cover conditions. The 0.1° grids with a built‐up land fraction of ≥5% in 1980 or went through ≥5%
increase of the built‐up land fraction during 1980–2018 were classified as urban group, yielding about 56% rural
grids and 44% urban grids (more details are given in Test S3 in Supporting Information S1). In addition, potential
climate drivers of the detected non‐stationarity, such as mesoscale convective systems, tropical cyclones, and
monsoonal activities, were also evaluated in association with land covers (Text S4 in Supporting Information S1).

2.5. Surface Temperature Scaling of Nonstationary Return Periods

To evaluate how nonstationary (NS) rainfall extremes respond to regional warming, we calculated scaling of
rainfall intensities at different return periods (RP) with respect to annual mean surface temperature, or the NS‐RP
scaling for simplicity. Such scaling attempts to relate rainfall intensities corresponding to a certain exceedance
probability under a changing climate to more readily accessible and certain climate variables (e.g., annual mean
surface air temperature, AMSAT). Similar to the scaling in the time domain (Bao et al., 2017; Lenderink & van
Meijgaard, 2008; Visser et al., 2021), the NS‐RP scaling assumes that changes in the AMSAT ∆T are associated
with α% changes in rainfall extreme intensities, such that:

P2,T,RL = (1 + 0.01α)∆TP1,T,RL (3)

where P1,T,RL and P2,T,RL are the average rain intensity for a given RL of specified event duration (T) in periods 1
and 2, respectively, whilst ∆T is the difference in the AMSAT of the corresponding two periods. Re‐arrangement
of the above equation yields:

α = [
ln(P2,T,RL/P1,T,RL)

∆T
− 1] × 100 (4)

We applied bootstrapping to estimate α at each grid by randomly sampling two equal‐length subperiods with
replacement, with repetition of 500 times. Then, the median α% from all the repetitions was recorded as the
representative scaling rate of the grid.

3. Results
3.1. Non‐Stationarity With Event Duration‐Dependency

Overall, increasing trends are detected in both the annual maximum (AMAX) and nonstationary (NS) frequency
of 10‐yr hourly rainfall intensities at gauge stations in the GBA (Figures 1a and 1b). For the hourly duration, more
than 60% of stations show positive trends, primarily in the central part of the region. For the daily duration, less
than 50% of stations have positive NS trends (Figures 1c and 1d). Only a few stations (12% for hourly and 10% for
daily durations) have statistically significant trends (α ≤ 0.05) for AMAX, suggesting that the AMAX is less able
to detect non‐stationarity than NS for which 12% and 36% of stations have significant trends in terms of hourly
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AMAX and NS, respectively. Guangzhou (the north‐central part of the GBA) has most rapid changes in rainfall
extremes at both hourly and daily scales. Here, trends for hourly and daily intensities are around +15%/10 yr for
AMAX, and around +7%/10 yr for NS. In contrast, Zhuhai, Shenzhen, and Hong Kong, which are closest to the
coast, have negative trends for both AMAX and NS.

The non‐stationarity detected by the merged gridded dataset (Figures 1e–1g) is spatially consistent with the
gauge‐based results. For the 10‐yr return period, the maximum trend (+12.2%/10 yr) (95% CI [11.7, 12.7]) for
hourly rainfall is in central Guangzhou; comparable positive trends also occur in northwestern Huizhou
(Figures 1f1 and 1f4). Negative trends in daily extremes around the southern coastlines (Zhuhai, Shenzhen, and
Hong Kong) reach − 20%/10 yr. In addition, the southwest and east show a low degree of non‐stationarity. If

Figure 1. Nonstationary short‐duration rainfall extremes detected by gauges and multisource‐merged gridded data. Trends in annual maximum (AMAX) rainfall
intensity for (a) 1‐hr and (c) 24‐hr durations were normalized by the local mean annual maximum intensities, and the trends in nonstationary (NS) 10‐yr return level for
(b) 1‐hr and (d) 24‐hr durations were normalized by stationary model results. Positive and negative trends are denoted by red and green colors of symbols, with triangles
and circles marking the significance level (α ≤ 0.05 for significant); symbol sizes represent trend magnitudes. (e1)–(g4), spatially uneven nonstationary rainfall
extremes given by the trend normalized by the stationary model results at 2‐ (e), 10‐ (f), and 100‐yr (g) return periods for 1‐, 6‐, 12‐ and 24 hr durations (numbered 1–4).
Dots mark grids with significant trends (α ≤ 0.05).
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stationary models are still applied, the errors (discrepancies from current‐stage nonstationary results, calculated
based on the covariates in 2020) spatially agree with the nonstationary patterns (Figure S3 in Supporting In-
formation S1). Moreover, clusters with most rapidly increasing intensities tend to be located to the northeast of
core urban regions (Figure S4 in Supporting Information S1), which may reflect the downwind effects of urban
areas under prevailing southwesterlies and sea breezes (Han et al., 2014; Shepherd, 2013; Shepherd et al., 2010;
Sun et al., 2021; Yang et al., 2021).

We also observe distinct spatial‐ and duration‐dependent patterns in the non‐stationarity (Figures 1e–1g). The
largest area of significant non‐stationarity occurred for the 1‐hr duration at the 2‐yr return period (Figure 2e1);
over 1–24 hr durations, clusters of non‐stationarity tend to shrink and retreat northwards; the proportion of the

Figure 2. Non‐stationarity in 10‐yr rainfall extremes for urban and rural areas, and sensitivity to climate drivers. (a), median surface temperature time series and fitted
linear trends for rural and urban areas for P1 (1960–1990) and P2 (1990–2020). (b) mean trends in extreme rainfall for rural and urban grid points and increasing event
durations. (c)–(e), the median rainfall intensity and linear trends for rural and urban areas in Period 1 and Period 2 for 1‐hr, 6‐hr, and 24‐hr durations, respectively. (g)–
(h), Associations between 10‐yr return period rainfall extremes and climate conditions at 1 hr, 6 and 24 hr durations. ∆P10 is the percent change in mean 10‐yr return
period intensity of the tested group; ∆Trc is the annual trend in the intensity by group. Donut Charts in the top‐right show the mean percentage contribution of each
climate group, with inner and outer circles showing rural and urban areas, respectively.
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study area with stationary rainfall extremes also expands. North‐central and eastern Guangzhou plus northwestern
Huizhou have increasing intensities for all return periods and durations, whereas negative‐trend clusters extend
inland from the southern coastlines especially for longer durations (12‐ to 24‐hr). Accordingly, as the event
duration increases, fewer grids are detected with nonstationary behavior (Figure S5 in Supporting Information S1)
despite being penalized by the Akaike Information Criterion (AIC) due to an increased number of model pa-
rameters (Text S2 in Supporting Information S1). All cities except Zhaoqing and Jiangmen (in west GBA) are
better represented by nonstationary than stationary models (Figure S6 in Supporting Information S1). According
to the AIC, nonstationary models are favored at 98% of grids, across all durations (Figure S5 in Supporting
Information S1).

3.2. Non‐Stationarity With Land‐Surface Dependency

The GBA has experienced rapid growth, with the urban land cover fraction increasing from 5% in 1980 to 15% in
2018 (Figure S4 in Supporting Information S1). Higher mean annual air temperatures (Ty) are observed in 1990–
2020 (P2) compared with 1960–1990 (P1) (Figure 2a). Grids classified as urban or rural have similar trends in Ty

(respectively +0.080°C/10 yr and +0.084°C/10 yr in P1, and +0.243°C/10 yr and +0.237°C/10 yr in P2).
However, major differences in rainfall extremes emerge between the urban and rural groups at different event
durations (Figure 2b). The urban group has stronger trends than the rural group for short durations (1–2 hr),
whereas this pattern is reversed for longer durations (6–24 hr). The 3‐hr duration appear to be the threshold for
distinguishing rural‐urban influences. Furthermore, trends in P2 are generally greater than those in P1, coincident
with trends in mean surface air temperature.

Regional non‐stationarity in the median of 10‐yr intensities for all grids in the corresponding groups (Figures 2c–
2e) agree with the mean statistics in Figure 2b. Interestingly, during P2, the 1 hr 10‐yr rainfall intensity increased
much faster in urban (+1.88 mm/hr/10 yr, 95% CI [1.79, 1.96]) than rural areas (+0.94 mm/hr/10 yr, 95% CI
[0.90, 0.98]) (Figure 2c). However, the difference between urban and rural trends is less at 6 hr duration
(Figure 2d), then the urban rate is overtaken by rural areas at 24 hr duration (+0.045 mm/hr/10 yr, 95% CI [0.001,
0.009], vs. +0.210 mm/hr/10 yr, 95% CI [0.195, 0.226], Figure 2e). These findings highlight the importance of
differentiating between event durations when making distinctions in urban‐rural rainfall extremes and associated
changes in long‐term flood risk at regional scales.

3.3. Potential Drivers of Non‐Stationarity in Rainfall Extremes

Non‐stationary rainfall extremes are likely associated with changing atmospheric conditions at local, regional and
global scales (Slater et al., 2021). Heavy rainfall events mainly occur over southern China during the East Asia
summer monsoon (MS) and tropical cyclone (TC) landfalls (Lai et al., 2020; Tang et al., 2021). In the Pearl River
Basin where the GBA is located, mesoscale convective systems (MCS) contribute a significant portion of rainfall
extremes during monsoons, particularly for the Pre‐Meiyu and Meiyu period (mainly in May and June) when
southwesterlies prevail (Chen et al., 2019; Cheng et al., 2022). We relate rainfall extremes (≥99th percentiles) in
each grid to one of five types of events, namely (a) TC; MCS during (b) summer and (c) fall‐to‐early winter MS
periods; and other weather during the (d) summer and (e) fall‐winter periods. Then, we perform the nonstationary
frequency analysis with respect to each of the climate activities while excluding the associated AMAX (Text S4 in
Supporting Information S1).

In terms of 10‐yr rainfall intensities, we find that summer MCSs and TCs exhibit the highest sensitivity
(∆P10∼ 10%) at 1 and 24 hr durations, respectively (Figures 2f–2h). And they are comparably important for the 6‐
hr duration, consistent with the typical lifetime of the associated weather systems (Li, Fowler, et al., 2020; Li,
Moseley, et al., 2020; Liu & Wang, 2020). Summer MS also contribute non‐negligibly over the three event
durations (1%–5%). As for the occurrence frequencies in association with rainfall extremes, TCs account for a
larger fraction over longer durations (rising from 18% to 34%, for 1–24 hr durations), but the annual trend (%)
gradually decreases. Although the slowdown of TCs landfalling speeds and increasing stalling frequencies are
expected to bring higher total precipitation to the Pearl River Delta (Hall & Kossin, 2019; Lai et al., 2020; Zhang
et al., 2023), we observe a reduction in the duration of TC‐induced rainfall extremes over the GBA (Figure S7 in
Supporting Information S1). This is consistent with a decreased contribution of TCs (negative ∆Trc) to the
occurrence of rainfall extremes (≥99th percentiles), in line with fewer TCs under global warming (Chand
et al., 2022) particularly in low latitudes (Yamaguchi et al., 2020).
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A marked rise in contribution of summer MS to rainfall extremes is observed
especially for urban areas. This suggests that smaller‐scale convective sys-
tems (as well as monsoon patterns) are increasingly associate with the non‐
stationarity. In fact, meso‐β‐ to meso‐γ‐ scale storms (2–200 km) constitute
a considerable portion of extreme rainfall events in the GBA (Sun
et al., 2021), but are likely to be represented by the MS group due to resolution
constraints of gridded infrared brightness temperature data (4–30 km) (Cheng
et al., 2022; Huang et al., 2018). Furthermore, the change of contribution of
MCSs to rainfall extremes is relatively modest, and the frequency of fall‐to‐
early winter activities remains stable. Besides the 10‐yr return period pre-
sented above, similar patterns are found for 2‐ (Figure S8 in Supporting In-
formation S1) and 100‐yr (Figure S9 in Supporting Information S1) return
periods although the uncertainty represented by confidence intervals expands
with return period.

3.4. Temperature Scaling of Non‐Stationary Rainfall Extremes

Nonstationary rainfall intensities for various return periods are paired with the
AMSAT to obtain the NS‐RP scaling (Section 2.5). Overall, the total (ru-
ral + urban) scaling rates vary around the C–C (∼7%/°C) and super C–C rate
(14%/°C), peaking for 1 hr (17.7%/°C), 6 hr (8.9%/°C) and 24 hr (7.3%/°C)
durations for 2‐, 10‐ and 100‐yr RPs respectively, with marked rural‐urban
contrasts (Figure 3). Scaling for urban areas peaks at 1 hr duration (22.9%/°
C), remains high to 3‐hr duration (19.9%/°C), then declines for longer du-
rations and return periods. Conversely, rural areas have peak scaling at, or
longer than, 9‐hr duration with less variation across all durations. Short‐
duration scaling rates tend to decline with increasing RPs, but not for
longer durations (≥9 hr). The above patterns agree well with the scaling rates
derived from regional median rainfall intensities (Figure S10 in Supporting
Information S1). Moreover, 80% and 26% of the urban and rural areas
respectively in the GBA are at elevations <60 m (Figure S6 in Supporting
Information S1), such that elevation‐related temperature differences between
urban and rural areas may confound the effects of land cover. We thus re‐
calculate scaling rates excluding grids with elevation >100 m (leaving 62%

of the GBA). The results show marginal differences in terms of scaling rates and rural‐urban contrasts (Figure S11
in Supporting Information S1), underlining the dominant effect of land cover on sub‐regional variations in NS‐RP
scaling.

It may not be plausible to claim the behavior of NS‐RP scaling rates based on the C–C relation, as the AMSAT
rather than event‐associated temperature is adopted in the scaling, and the extremity is far beyond commonly
inspected “heavy rainfall” (e.g., 90th to 99.9th percentile in each temperature bin). However, similar to the C–C
relation, purely thermodynamic considerations yield a constant scaling rate (∼7%/°C) and cannot explain the
remarkably large variations across durations and sensitivities to land cover, which signify strong controls from
dynamic conditions (Berg et al., 2013; Lenderink et al., 2017). Although a higher temperature is generally
favorable for convective precipitation (Fowler et al., 2021), negative gradients for the temperature‐precipitation
scaling are widely observed above certain temperature thresholds (Berg et al., 2013; Oh et al., 2021; Visser
et al., 2021), owing to the lack of moisture availability as relative humidity decreases even for humid climates
(Chan et al., 2016; Lenderink & Van Meijgaard, 2010; Sun & Wang, 2022). Higher surface temperatures
(Figure 2a) render urban areas to be more susceptible to such humidity limitation at long durations compared to
rural areas, and thus smaller scaling rates under the same amount of regional warming (Figure 3). In fact, a
negative contribution of urbanization to daily‐scale precipitation extremes ‒ attributed to urban dry island effects
‒ has been observed in many China coastal urban agglomerations including the GBA (Lin et al., 2020).
Conversely, urban heat island effects are known to enhance short‐lived rainfall extremes (Chang et al., 2023;
Huang et al., 2022; Li, Fowler, et al., 2020; Li, Moseley, et al., 2020). In addition, downwind effects (Section 3.1)
of urbanization, the distance of which depends on the organization degree of convection, further complicate

Figure 3. NS‐RP scaling rates for (a) 2‐, (b) 10‐ and (c) 100‐yr return periods.
Light and dark dashed lines denote C–C scaling (7%/°C) and super C–C rates
(14%/°C, or C–C × 2), respectively.
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scaling patterns (Naylor & Mulholland, 2023). An improved understanding of the underlying dynamics requires
differentiation of rainfall generating mechanisms and atmospheric dynamics at event scales.

4. Discussion and Conclusion
Our study demonstrates time‐ and space‐scaling of non‐stationarity in rainfall extremes over the rapidly devel-
oping GBA. We detect more severe rainfall extremes over the north‐central region of the megalopolis compared
with southern coastlines. We also reveal the contribution by urban areas to non‐stationarity in short‐duration
(<6 hr) rainfall extremes in contrast to more uniform uplift across all event durations over rural areas. These
findings are further supported variations in temperature‐scaling observed for different return periods. Remarkably
high scaling rates are detected for short duration events in urban areas, but these wane with increasing durations.
This highlights the exacerbation of the rainfall extremes by urbanization at short time scales, on top of their
overall intensification under a warming climate.

Opinions vary as to whether rainfall extremes have nonstationary frequencies, and whether to adopt nonstationary
models to adjust local climate allowances for infrastructure design (Agilan & Umamahesh, 2016; Ganguli &
Coulibaly, 2017; Sarhadi & Soulis, 2017; Vu & Mishra, 2019; Westra et al., 2014; Yilmaz et al., 2014). However,
the heterogeneous duration‐ and land‐cover dependent non‐stationarity (e.g., Figures 2b and 3), which also ex-
hibits spatial scale‐dependent variabilities, suggests that more nuanced approaches to flood risk assessment and
management are needed (Yan et al., 2023). At regional scales (∼100 km), variations in non‐stationarity are
detected in the annual trends of return periods for urban and rural subgroups (Figure 2b) and integrated in the NS‐
RP scaling (Figure 3). At the grid scale (∼10 km), significant spatial disparities exist (Figures 1e–1g), implying
the need for distinct strategies to update IDF curves. For example, a clockwise rotation of IDF curves is expected
in Shenzhen and Hong Kong, as opposed to Dongguan, while those for Guangdong may see an overall uplift.
Additionally, point‐scale non‐stationarity (Figures 1b and 1d) may further deviate from the grid‐scale (Figures 1e
and 1g). Hence, we recommend description of upper‐tail statistics distinguishing spatiotemporal scales and land
cover type of interest.

This study is among the first to apply a multi‐source merged and high spatiotemporal‐resolution rainfall dataset to
nonstationary frequency analysis. This avoids the drawbacks of sparse, localized, and uneven rain gauge networks
(Kidd et al., 2017; Lengfeld et al., 2020), relatively poor accuracy of satellite and reanalysis products (Alexander
et al., 2019; Ali et al., 2021), and high computational costs and input uncertainties associated with numerical
weather model experiments (Alexander et al., 2019; Sun et al., 2021). However, finer‐scale extreme events due to
deep convection systems (∼1 km) (Lengfeld et al., 2020; Shepherd et al., 2002), highly localized (or slow‐
moving) short‐duration storms around urban agglomerations (Sun et al., 2021), may still be omitted by our
blended dataset. Radar data are needed to capture sub‐hourly rainfall extremes at 1 km resolution (Ayat
et al., 2022; Lengfeld et al., 2020), but were not applied here due to their short records (<20 yr). This challenge is
not unique to the Greater Bay Area and is a global challenge (Lengfeld et al., 2020). Future efforts to investigate
highly localized changes in rainfall extremes would be assisted by denser rain gauge networks, more radar
reflectivity measurements and numerical simulations.

In summary, we provide systematic evidence of the intensification of rainfall extremes over the areas with higher
degree of urbanization in a coastal megalopolis. This amplification is nonlinearly biased toward short (∼2‐yr)
return periods and short durations (<6 hr), especially in urban areas. The tendency for more frequent “nuisance”
events may have less dramatic consequences but nonetheless pose recurrent challenges for urban transport and
drainage infrastructure (Fowler et al., 2021). This will require adaptations to increasing risk of flash floods and
protection measures for vulnerable people (Yin et al., 2023). Such detail is often missed at continental‐ and event‐
scales due to coarse resolution data and short rainfall records. However, a more sophisticated approach to rainfall
extremes is needed to bridge the gap between atmospheric science and flood hydrology (Westra et al., 2014). Our
results show that the assumption that sub‐daily rainfall extremes scale with global warming at the same rate over
urban and rural surfaces is no longer tenable. This has major implications for climate change allowances used by
engineers when designing infrastructure in rapidly growing tropical cities. Further research is needed to test
whether the same land cover dependencies are observed in other climate regimes.
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Data Availability Statement
The hourly precipitation data of rain gauges can be obtained from China Meteorological Administration (2023)
for Guangdong stations and Hong Kong Observatory (2023) for Hong Kong stations. The MSWEP V.2.8 gridded
precipitation data are available at Beck et al. (2019). The IMERG V07 data are available at Huffman et al. (2023).
The Era5‐Land reanalysis data including hourly gridded precipitation, surface (2m above ground) temperature
and dew point temperature were obtained from Copernicus Climate Change Service (2022). The global annual
land–ocean temperature time series were obtained from NOAA Merged Land Ocean Global Surface Temperature
Analysis (Huang et al., 2023). The Multivariate ENSO Index time series (Version 2) were obtained from The
NOAA Physical Sciences Laboratory (PSL) (2023). The FABDEM terrain data was sourced from Hawker and
Neal (2021). Land cover data covering the Greater Bay Area were obtained from Xu et al. (2018). The MCS
datasets can be accessed from Huang et al. (2018) and Cheng et al. (2022). The International Best Track Archive
for Climate Stewardship (IBTrACS) can be obtained at Knapp et al. (2010, 2018). The merged and corrected
gridded hourly precipitation dataset over the GBA, as well as scripts for data processing and analysis, can be
accessed in the Zenodo repository (Yan & Guan, 2024).
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