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Abstract: Recombinant human bone morphogenetic protein 2 (rhBMP-2) is an FDA-approved growth
factor for bone regeneration and repair in medical practice. The therapeutic effects of rhBMP-2 may be
enhanced through specific binding to extracellular matrix (ECM)-like scaffolds. Here, we report the
selection of a novel rhBMP-2-specific DNA aptamer, functionalization of the aptamer in an ECM-like
scaffold, and its application in a cellular context. A DNA aptamer BA1 was evolved and shown
to have high affinity and specificity to rhBMP-2. A molecular docking model demonstrated that
BA1 was probably bound to rhBMP-2 at its heparin-binding domain, as verified with experimental
competitive binding assays. The BA1 aptamer was used to functionalize a type I collagen scaffold,
and fraction ratios were optimized to mimic the natural ECM. Studies in the myoblast cell model
C2C12 showed that the aptamer-enhanced scaffold could specifically augment the osteo-inductive
function of rhBMP-2 in vitro. This aptamer-functionalized scaffold may have value in enhancing
rhBMP-2-mediated bone regeneration.

Keywords: BMP-2; DNA aptamer; collagen scaffold; regenerative medicine; bone regeneration

1. Introduction

Bone damage and bone defects lead to poor life quality due to a variety of reasons,
including pain, continuous infections, swelling at injured sites, and excessive bleeding [1,2].
Unattended severe bone impairments can progress to a disability, diabetes mellitus, and
even mortality [3]. In clinical practice, bone grafting is the prevalent strategy used to treat
bone fractures. However, grafting is frequently hampered by limited graft resources and
donor-site morbidity [4]. Tissue engineering strategies are being developed as promising
alternatives to bone grafting, often integrating growth factors such as bone morphogenetic
protein 2 (BMP-2) [5,6].

Recombinant human BMP-2 (rhBMP-2) is recognized as one of the most effective osteo-
inductive factors that have drawn increasing attention to tissue engineering applications.
RhBMP-2 delivered on an absorbable collagen sponge is a US FDA-approved bone graft
substitute widely used for bone repair in patients under challenging conditions, such
as spinal arthrodesis and open tibial fractures [7,8]. However, natural collagen sponge
captures rhBMP-2 only through unstable physical absorption and consumes high doses of
rhBMP-2 for clinical therapy, making this treatment costly and often comes with various
complications, including ectopic ossification, exaggerated inflammation, and soft tissue
hematomas [9,10]. The development of a scaffold with high BMP-2 capture capability and
enhanced osteo-inductive activity becomes attractive in research. Some newly reported
BMP-2 scaffolds have been assembled with artificial extracellular matrix (ECM) biomaterials
including peptide amphiphile nanofibers and 3D electrospun fibers [11–14], in which
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BMP-2 was captured with BMP-2-binding motifs such as heparin and affinity peptides
to prolong the drug’s retention, and biomaterials were designed to mimic native ECM
with an osteo-inductive function. For practical applications, undesirable toxicities from
synthetic materials and non-specific molecular interactions remain an issue of concern [15].
Novel scaffolds assembled with safe materials that enable specific capture of BMP-2 are
still needed from a clinical perspective.

BMP-2-binding molecules are one key component of BMP-2 scaffolds. The develop-
ment and application of specific BMP-2-binding molecules have significant therapeutic
potential. An earlier BMP-2-specific peptide (NH2-TSPHVPYGGGS-COOH) was reported
in 2004 using phage display [16]. Nucleic acid aptamers have antibody-like properties
regarding specific molecular recognition of biomolecular surfaces, and may have particu-
lar advantages in terms of control of their function, biosafety, ease of assembly, and low
selection/manufacturing costs [17].

In the evolution of regenerative biomaterials, aptamers have demonstrated great poten-
tial to empower artificial ECM. Hydrogels are important sources for synthesizing artificial
ECM due to their mimetic biological and mechanical properties [18]. They are extensively
applied in developing regenerative medicine. In the incorporation of aptamers, hydrogel
scaffolds exhibit favorable functions to enable specific protein delivery, recruitment of stem
cells, promotion of signaling, and molecular biosensing [19,20]. Aptamer-functionalized
hydrogels as specific scaffolds have been reported for several growth factors such as VEGF
and PDGF [21], but not yet for rhBMP-2. Collagen is a natural hydrogel material that has
high biosafety and biocompatibility for in vivo applications. It is able to self-assemble with
DNA as fibrous biomaterials to resemble native ECM for drug delivery, wound dressing,
cell remodeling, and tissue regeneration [22,23]. Aptamer–collagen fibers were reported re-
cently and demonstrated effects to stimulate the remodeling of angiogenic-like endothelial
cells [23]. As inspired, herein, we attempted to integrate DNA aptamer nanotechnology,
with DNA-collagen self-assembly to develop an ECM-mimetic scaffold specifically to
rhBMP-2 (Scheme 1).
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In this study, BA1 was identified as the first DNA aptamer specific to BMP-2 with bead-
based SELEX. ELONA (enzyme-linked oligonucleotide assay) and EMSA (electrophoretic
mobility shift assay) were conducted to identify and characterize the aptamers. The
interaction model of the BMP-2-aptamer complex was predicted with HDOCK. Defined
DNA aptamers were then applied to assemble ECM-like fibrous scaffolds with native type
I collagen. A further investigation of the scaffold efficiency in promoting BMP-2-induced
osteogenesis was carried out based on a myoblast cell line, C2C12. The BA1 aptamer–
collagen complex has significant potential for downstream therapeutic applications.

2. Results and Discussions
2.1. Selected DNA Aptamers Demonstrate Strong Affinity and Specificity to rhBMP-2

Purified His-tagged rhBMP-2 was expressed in E. coli (Figure S1A). Given the activity
in the alkaline phosphatase (ALP) assay (Figure S1B), rhBMP-2 was validated to fold into
a native conformation after refolding [24], and was therefore used as the target for the
aptamer selection. Expressed rhBMP-2s were immobilized on nickel beads with saturation
(Figure S2). DNA aptamers against rhBMP-2s were selected using the bead-based SELEX
from a library with approximately 1014 complexity, in which the ssDNA sequence included
one 35 nt random region flanked with two 18 nt fixed primer-binding regions. After
22 rounds of selection, an enrichment of the ssDNA pool to rhBMP-2 was observed in
ELONA and EMSA assays (Figures S3A–C and S4A,B). Non-specific aptamers to BMP-2
analogues and histidine tags were excluded by counter selections against rhBMP-3 and
His-peptide (Figures S3D and S4C). In the EMSA assay, the unbound DNA band descended
as expected with the increase in BMP-2, suggesting the binding affinity of the DNA pool.
However, the bound DNA-rhBMP-2 complexes were not detected. The possible reasons
might be as follows: (1) rhBMP-2 precipitated in the native PAGE gel with a pH 8.3 that
is near to the isoelectric point (pI) of rhBMP-2 at 8.2 or (2) rhBMP-2 might migrate to the
opposite direction due to positive charge. Nevertheless, the enrichment of the ssDNA pool
was consistently indicated by the ELONA and EMSA assays. Several enriched pools were
then sent for high-throughput sequencing to identify aptamer candidates.

Representative full sequences showing high copy numbers, high enrichment ratios,
and low anticipated free energies from the adenine-rich (BA1–BA5) and non-adenine-rich
categories (BNA1-BNA3) were synthesized and characterized (Figure S5A and Table 1).
One adenine-rich aptamer, BA1, with the highest copy number from the largest cluster
demonstrated a much stronger affinity and specificity to the target, rhBMP-2 (Figure S5).
The estimated KD value was approximately 7 nM (Table 1 and Figure 1B). Weak non-
specific binding to control targets including BMP-3 and BSA was observed (Figure 1C), and
negligible affinity to histidine-tagged molecules encompassing His-peptide and His-pfLDH
was detected (Figure 1D), indicating that the aptamer binds to rhBMP-2 and probably
not to the histidine tag. The dominant adenine-rich sequence, BA2, and non-adenine-
rich sequence, BNA2, also showed affinity to rhBMP-2, but with lower affinities than
BA1 (Figure S5). Therefore, BA1 was taken forward as the most promising aptamer for
further investigation.

Table 1. Sequences of selected aptamer candidates.

Name Sequence (5′ → 3′) KD (ELONA) (nM)

BNA1 CGTACGGTCGACGCTAGCCGCGGTCCTAGAGCGGACGCCGGGGGGGTGCCCGACACGTGGAGCTCGGATCC NA
BNA2 CGTACGGTCGACGCTAGCATCAGCTCTCTGGGCTGAGTGGGTGGTGTGGCACGCACGTGGAGCTCGGATCC 22.30 ± 1.97
BNA3 CGTACGGTCGACGCTAGCTTTCTAAAATTTTCAAAAAAGATCTCGAAAAGCAACACGTGGAGCTCGGATCC NA
BA1 CGTACGGTCGACGCTAGCAAAACAAAAAAAAATAAAAAAAAAAAGACTAAAGACACGTGGAGCTCGGATCC 6.95 ± 0.53
BA2 CGTACGGTCGACGCTAGCAAAAAAAAATCTAAAAACAAGAAAAGAAAAACAAACACGTGGAGCTCGGATCC 20.33 ± 4.73
BA3 CGTACGGTCGACGCTAGCAAAAAAGAAAAATAAAAAACAAGAGAAACTAAAAACACGTGGAGCTCGGATCC NA
BA4 CGTACGGTCGACGCTAGCATAATAAGACAAGAAAAAAAGAACAAAAAAAAGAACACGTGGAGCTCGGATCC NA

BA5 CGTACGGTCGACGCTAGCAAAAACAAAAAGGAAAA-
ACCAAAAAAACATAAAAACACGTGGAGCTCGGATCC NA

Note: BNA3 was from R10, and others were from R22; NA means not applicable, and KD (ELONA) measurements
were only performed for the promising candidates; BA5 was also used as the scramble control in this study.
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Figure 1. Investigation of the binding affinity and specificity of BA1 to rhBMP-2. (A) Affinity
evaluation of BA1 using EMSA. EMSA: rhBMP-2: (0, 0.05, 0.3, 2, 5) µM. BA1: 25 nM. (B) Affinity
evaluation of BA1 using ELONA (n = 3, three independent replicates). ELONA: rhBMP-2: 100 ng/well;
BA1: 0–500 nM. KD detected via ELONA was estimated under the non-linear fit model, one-site
binding (hyperbola), in GraphPad Prism 8. (C,D) Specificity analysis of BA1 using EMSA and
ELONA. Protein: 100 ng/well; BA1: 0–1000 nM.

Unlike general DNA aptamers, BA1 unusually has a high density of adenine residues.
Adenine-rich aptamers were reported in prior studies to target gold surfaces and immo-
bilized nickel ions (Ni2+) [25,26]. Since nickel magnetic beads were used as the target
support in this study, we examined the affinity of BA1 to nickel beads to confirm its binding
specificity. BA1 bound to BMP-2-immobilized and bare nickel beads were collected and am-
plified with PCR. Figure S6 demonstrates that BA1 had slight binding to bare nickel beads
and targeted more to BMP-2, as indicated by the excess DNA captured by BMP-2-attached
beads. Given the adenine-rich property of BA1, it is possible that BA1 was enriched to
both Ni2+ and BMP-2 but was more specific to BMP-2. A similar case was reported in a
multiplexed SELEX conducted by Alex M Yoshikawa, where a cross-reactive aptamer-SK-1
was identified to simultaneously target several metabolites [27]. Although all nickel beads
were saturated by BMP-2 before the selection (Figure S2), the dissociation between Ni2+

and histidine tags on BMP-2 caused by the increased salt strength may provide space for
ssDNA to target Ni2+. Since BA1 was dramatically more specific to BMP-2, it was still used
for the following research. Adenine-rich ssDNA has been found to fold distinct secondary
structures, like hairpins, duplexes, and bulges, which are likely to develop highly stable
tertiary conformations since central adenine bases may stack to decrease the energy barrier
and provide a charge transfer channel for the DNA strand [28,29]. To better understand the
conformation of BA1 and its possible interactions with rhBMP-2, a structural simulation
was carried out next.

2.2. Aptamers May Interact with rhBMP-2 at Heparin-Binding Domains

In the molecular docking analysis, the 3D structure of BA1 was first predicted via
RNAComposer [30] based on its secondary structure generated using Mfold [31], which was
transformed to a ssDNA 3D structure using Discovery Studio [32] and further refined with
HyperChem [33] to stabilize the conformation. Meanwhile, the 3D structure of rhBMP-2 was
extracted from the RCSB PDB data bank (ID: 1ES7). Molecular docking was then performed
with HDOCK [34] to simulate the interaction model of the BA1-rhBMP-2 complex. BA1 was
predicted to adopt hairpin-like structures where the adenine-rich loop is twisted as a knot in
the center and terminal nucleotides hybridized to duplexed tails (Figure 2A). The docking
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model showing the lowest free energy was selected for the BA1-rhBMP-2 complex, in which
the interaction interface of BA1 included a partial adenine-rich loop and a few terminal
nucleotides, and that of rhBMP-2 was mainly composed of the heparin-binding domain and
part of ancillary epitopes close to finger helix grooves [35,36] (Figure 2B). Charge–charge
interactions and classical hydrogen bonds might be the dominant mechanisms by which
BA1 binds to rhBMP-2 (Figure 2A).
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Figure 2. Molecular docking analysis of the interaction model between BA1 and rhBMP-2. (A) The
putative interaction model of the BA1-rhBMP-2 complex. BA1 molecule is marked in grey, and the
BMP-2 structure is labelled in green. Interface residues in BA1 are marked in blue, and in BMP-2
are highlighted in yellow (heparin-binding site) and pink (non-heparin-binding region). Enlarged
two interaction interfaces in the complex are shown on the right. Interaction bonds are denoted by
intermolecular dotted lines with annotations. (B) Identification of interface residues between BA1
and rhBMP-2 with Discovery Studio.

Aside from BA1, a scrambled sequence was also used as a negative control for the
simulation analysis. The molecular docking was conducted in the same way as described
above. The scrambled sequence mainly targeted the finger region of rhBMP-2 with its
duplex structure (Figure S7), and the heparin-binding domain of rhBMP-2 was not in-
volved in the interaction. The Gibbs free energy change of the scrambled-rhBMP-2 binding
model (−255.5 kcal/mol) was significantly lower than that of the BA1-rhBMP-2 complex
(−312.3 kcal/mol). Given that Gibbs free energy change (∆G) is equal to RTInKd, the Kd
of BA1 to rhBMP-2 should be much lower than that of scrambled sequence, implying that
BA1 was more specific to rhBMP-2 than the scrambled oligonucleotide, which is consistent
with our experimental observations.

Meanwhile, competition binding assays were performed to validate the putative
interaction model for BA1 and rhBMP-2. Since the heparin-binding domain on rhBMP-2
was defined as the possible binding interface for BA1 (Figure 2), heparin was used as
the binding competitor to BA1 in an experiment to validate the model. Three patterns
of binding were investigated: BA1_Heparin indicates pre-treatment of BA1 followed by
heparin as BMP-2-binding competitors, Heparin_BA1 indicates pre-treatment of heparin
followed by BA1, and Heparin+BA1 indicates simultaneous treatment of BA1 and heparin.
ELONA and EMSA were used to evaluate the competitive binding behavior between BA1
and heparin to rhBMP-2. Heparin turned out to be more competitive than BA1 when
binding to rhBMP-2 (Figure 3). The sites pre-occupied by BA1 on rhBMP-2 could be
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slowly replaced with heparin but pre-bound heparin fully inhibited the binding of BA1
to rhBMP-2. This would suggest that BA1 and heparin likely share the same heparin-
binding site on rhBMP-2. Consistent results were observed when using the heparin-like
molecule polyphosphate [37] as a binding competitor (Figure 3). Collectively, our data were
consistent with BA1 binding at the heparin-binding domain. The underlying mechanism
for this interaction mode could be due to the strong electrostatic interactions favored by the
positive charge at heparin-binding epitopes and the negative charge at phosphate linkage
bonds in DNA nucleotides. This would also be consistent with data showing markedly
reduced affinity of BA1 to rhBMP-2 in a high-salt binding buffer (Figure S8).
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Figure 3. BA1 competes with heparin in binding to the heparin-binding site of rhBMP-2. (A) Three
competitive binding models between BA1 and heparin for binding to BMP-2. BA1 was added 30
min earlier, followed by the addition of heparin for another 30 min of incubation; Heparin_BA1,
a reversion of BA1_Heparin. BA1+Heparin, BA1 and heparin were added at the same time. (B,C)
Evaluation of the competitive binding between BA1 and heparin to BMP-2 via EMSA. The EMSA
gel data in panel B were quantified with Image J in panel C. BA1: 100 nM; heparin: 5000 nM.
BMP-2: 2 µM. (D) Evaluation of the competitive binding between BA1 and heparin to BMP-2
via ELONA. BA1: 100 nM; heparin: 0–10,000 nM. BMP-2: 100 ng/well. (E) Evaluation of the
competitive binding between BA1 and heparin-like molecule, polyP, to BMP-2 via ELONA. polyP
contains 65 polyphosphates. BA1_polyP and polyp_BA1 models were the same as BA1_Heparin and
Heparin_BA1. BA1: 100 nM; polyP: 0–10,000 nM; BMP-2: 100 ng/well.

2.3. Assembly of Aptamer-Modified Collagen Fibers as rhBMP-2′s Scaffolds

Aptamer–collagen fibers were assembled using a formulation of 500 nM ssDNA and
10% type I collagen (0.3 mg/mL) (Figure 4). Both the BA1 aptamer and a scrambled
sequence of the same length were co-localized with collagen in scaffolds adopting indis-
criminate morphologies (Figure 5). The self-assembly of ssDNA-collagen fibers was likely
to be induced by the hydrogen associations between specific donors with strong dipole
moment in collagen and negatively-charged phosphate acceptors in DNA sequences [38].
The morphology of the fiber was mainly determined by the length, instead of the nucleotide
or the strandedness, of the DNA strand [39], which could explain the observation of similar
patterns in both BA1 and scrambled DNA fibers. However, fibers derived from different
formulations varied in architecture, size, and density (Figure S9). Moreover, 5% collagen
was not enough to induce the formation of fibers. In addition, a lower volume fraction of
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collagen resulted in thinner and shorter fibers, while a higher proportion led to more com-
pacted fibrous bundles. More collagens may allow more DNA molecules to be displayed,
leading to the aggregation of larger bundles. The aggregation cannot continue when the
volume fraction of collagen reaches 50%. Highly dense complexes might shield the binding
domain at the surface.
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Figure 4. Design and characterization of the BA1-functionalized collagen fibrous scaffold for rhBMP-2.
(A) Conceptual representation of the BA1-collagen fibrous scaffold. BA1 was interlinked with type
I collagen to self-assemble as microfibers. (B) Microscopic morphology of BA1-collagen filaments.
These DNA-collagen fibers were constructed with 500 nM DNA and 0.3 mg/mL collagen 10%.
Photographs of these fibers were taken by the inverted microscope after overnight assembly at room
temperature. Scramble is a random ssDNA sequence with the same length as BA1. Scale bar (bottom
right line): 40 µm.

To examine whether aptamers maintain binding affinities to rhBMP-2 in fibrous
scaffolds, we performed an ELISA-like assay where rhBMP-2 solutions were added into
streptavidin-coated plate wells immobilized with biotinylated aptamer–collagen fibers to
allow for molecular interactions. The aptamer BA1 retained its specific binding to BMP-2
when it was assembled with type I collagen with an estimated KD at 3.5 nM (Figure 6A).
However, the binding capacity of BA1 in fibers decreased relatively to free BA1 since the
plate wells coated by BA1-collagen fibers were observed to be saturated with less BMP-2
than with free BA1. The possible reason could be that some binding sites of BA1 in fibers
may be encapsulated or blocked by collagen molecules to impede the binding to BMP-2.
In addition, it is observed that the affinity of BA1 in fibers kept decreasing along with
the increase in collagen’s volume fraction (Figure S10), which might be attributed to the
reduced functional aptamers in fibers showcasing aggregates and lowered density. Fibers
with smaller diameters have been reported to have larger surface-area-to-volume ratios
to enable higher loading capacities than thicker fibers [40]. Fibers assembled with 10%
collagen were thinner and more dispersed than those fabricated with high volume fractions
of collagen (30% and 50%), thereby contributing to the larger surface area and sample load-
ing capability. Among all testing fibers, the one formulated with 500 nM ssDNA and 10%
collagen (0.3 mg/mL) demonstrated the strongest binding to rhBMP-2. This formulation
was therefore used in later experiments.



Molecules 2024, 29, 1243 8 of 20
Molecules 2024, 29, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 5. Elemental mapping of BA1-collagen fibers. Fibers were assembled with 500 nM DNA with 

10% collagen (0.3 mg/mL) via overnight incubation at room temperature. Collagens were stained 

with Alexa-fluor 488 type I collagen antibody, and DNA was modified with a Cy5 probe. Fibers 

were imaged with an inverted fluorescence microscope. Green: collagen labelled with Alexa fluor 

488; red: DNA labelled with Cy5; brown: collagen-DNA complex; scale bar (bottom right line): 200 

μm. 

To examine whether aptamers maintain binding affinities to rhBMP-2 in fibrous scaf-

folds, we performed an ELISA-like assay where rhBMP-2 solutions were added into strep-

tavidin-coated plate wells immobilized with biotinylated aptamer–collagen fibers to allow 

for molecular interactions. The aptamer BA1 retained its specific binding to BMP-2 when 

it was assembled with type I collagen with an estimated KD at 3.5 nM (Figure 6A). How-

ever, the binding capacity of BA1 in fibers decreased relatively to free BA1 since the plate 

wells coated by BA1-collagen fibers were observed to be saturated with less BMP-2 than 

Figure 5. Elemental mapping of BA1-collagen fibers. Fibers were assembled with 500 nM DNA with
10% collagen (0.3 mg/mL) via overnight incubation at room temperature. Collagens were stained
with Alexa-fluor 488 type I collagen antibody, and DNA was modified with a Cy5 probe. Fibers were
imaged with an inverted fluorescence microscope. Green: collagen labelled with Alexa fluor 488; red:
DNA labelled with Cy5; brown: collagen-DNA complex; scale bar (bottom right line): 200 µm.
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Figure 6. Characterization of BA1 on fibrous scaffolds. (A) Evaluation of the binding affinity and
specificity of BA1 on different fibrous scaffolds (n = 3, three independent replicates). Fibers were
assembled with 500 nM BA1 and 10% collagen at 0.3 mg/mL. BMP-2 was incubated with surface-
immobilized fibers and determined with an ELISA-like assay. Absorbance signals were normalized
and measured at 450 nm. (B–E) Investigation of the stability of DNA assembled in fibrous scaffolds.
Scramble and BA1 in or not in fibers were incubated with the cell culture medium for 24 h at 37 ◦C.
Samples at different time points were analyzed with 10% native PAGE gel. Image J was used to
quantify the gel intensity in panels (B,C); data were shown in panels (D,E).

The stability of aptamers in fibers was also investigated to enable a reliable functional
assessment of BMP-2 in vitro. Since the following functional experiments all lasted less
than 24 h or changed fresh medium every 24 h, the stability of free or collagen interlinked
BA1 and scramble sequences incubated with cell culture medium at 37 ◦C within 24 h
were analyzed. BA1 and scramble DNA maintained stability for at least 24 h in the cell
culture medium, and they demonstrated similar stability in collagen fibers (Figure 6B–E).
The assembly of the DNA-collagen complex was reported to stabilize dsDNA against
nucleases by stabilizing its hydration shell in water [38]. However, the improvement of
ssDNA stability was not observed in our study. The lack of sufficient hydrogen bonds
in ssDNA between base pairs to interact with surrounding water molecules may lead to
unimproved stability.

2.4. Aptamer-Enabled Scaffolds Tended to Enhance rhBMP-2-Mediated Osteogenesis

With well-characterized aptamer–collagen fibrous scaffolds, we then evaluated their
effects in promoting the osteo-inductive activity of rhBMP-2 on the myoblast cell line,
C2C12. C2C12 has been used as a cell model to investigate the mechanism by which BMP-2
promotes osteoblastic differentiation [41].

A comparison was made first to assess the abilities of free BMP-2 and fiber-loaded
BMP-2 to induce the expression of alkaline phosphatase (ALP), a representative marker
for the osteoblastic differentiation of C2C12 [42]. Based on a dose–response pilot assay,
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200 ng/mL of E. coli-expressed BMP-2 was found to be an ALP-inducible threshold and
was therefore used as the treatment condition. ALP expression levels were increased with
BMP-2 loaded on aptamer–collagen fibers, and a significant improvement was observed
when compared with the use of scramble-assembled fibers (Figure 7). As expected, the bare
fiber did not potentiate the ALP expression in cells in the absence of BMP-2. Furthermore,
only the full assembly could promote ALP expression. Either aptamer or collagen alone
was less effective to enhance BMP-2 than the integrated fibers.
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Figure 7. Effects of BA1-enabled fibers on promoting the production of BMP-2-induced ALP in vitro
(n = 3, three independent replicates). Parts (A,B) are the ALP activities measured in C2C12 cells with
or without treatments of BMP-2-loaded BA1-collagen fibers, respectively. Fibers were assembled
with 500 nM DNA and 0.3 mg/mL collagen at 10% volume fractions. ALP expression of C2C12 cells
induced by BMP-2 (200 ng/mL)-loaded fibers was measured after three days of treatments. BMP-2+:
BMP-2 was added; BMP-2−: no BMP-2 was added. In the BMP-2+ group, * p < 0.05, BA1-10%
collagen (BMP-2+) vs. Blank (BMP-2+), p = 0.0421. BA1-10% collagen (BMP-2+) vs. Scramble-10%
collagen (BMP-2+), p = 0.0492. In the BMP-2- group, NS means no significant difference, BA1-10%
collagen (BMP-2+) vs. Blank (BMP-2+), p = 0.7349. BA1-10% collagen (BMP-2+) vs. Scramble-10%
collagen (BMP-2+), p = 0.1752. Unpaired Student’s t-test was used for statistical analysis.

We next investigated the impact of aptamer–collagen fibers on BMP-2-stimulated
mineralization [43]. The formation of minerals is driven by ALP in bone, the level of which
reflects the osteo-inductive capacity of BMP-2-loaded scaffolds. We first examined the
mineralization on DNA-collagen fibers since they were observed to retain calcium deposits
as collagen fibrils in native ECM [22]. Herein, the formation of calcium was induced
using a mineralization solution (25 mM NaCl, 8 mM Na2HPO4, and 15 mM CaCl2). After
overnight incubation, DNA-collagen fibers, especially the aptamer-interlinked fibers, cap-
tured a remarkable amount of calcium deposits (Figure S11), suggesting that the aptamer-
functionalized fiber holds promise to be developed as osteo-inductive coating materials as
suggested by Bryan D James [22]. The interaction between DNA fibers and the calcium
solution occurs between the phosphate backbone of DNA and surface calcium atoms [22].
The observation in our study might be caused by the fact that the conformation of BA1
enabled it to expose more phosphate backbone area than the scramble sequence to calcium
phosphate to facilitate the mineralization process. Meanwhile, the mineralization assay was
also carried out on C2C12 cells where calcium deposits were induced by BMP-2. BMP-2
loaded on the aptamer-functionalized fibers demonstrated enhanced efficiency to trigger
mineralization in comparison to free BMP-2 (Figure S12). However, the improvement
was not dramatic when compared to that on the scramble-assembled fibers. One possible
explanation might be due to the short induction period. Aptamer–collagen fibers with
enhanced stability should be developed to enable a long-term study (e.g., 21 days) of
cellular mineralization.
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In addition, cell adhesion and wound healing assays were carried out to explore the
possibility of using aptamer-functionalized fibers for bone healing applications. Bone
regeneration is initialized by cell adhesion [44]. ECM could promote the attachment of
osteoblast-like cells, followed by cell migration, proliferation, and differentiation to induce
new bone formation [45]. As ECM-like materials, aptamer–collagen fibers were able to
induce cell adhesion as expected (Figure 8). C2C12 cells treated with BMP-2 in the presence
of collagen or BA1-incorporated collagen fibers were well attached and adopted dendritic
and elongated structures. In contrast, BMP-2 untreated or on DNA-coated plate wells were
less adhesive according to the limited stretched morphologies. Relative to free BMP-2,
BMP-2 loaded on fibers exhibited enhanced cell adhesion in light of the increased cell
area and cell number. This indicates the potency of aptamer–collagen fibers to enhance
BMP-2-induced cell adhesion. In the comparison with scrambled DNA-formulated fibers,
the total area of cells on aptamer-assembled fibers did not show a significant increment.
Cells grown with aptamer-functionalized fibers grew too fast and reached high confluence
within 10 h. Most of these cells were squeezed and could not fully stretch, which may lead
to the underestimated cell area. However, given the significantly increased cell number,
we could still conclude that aptamers exhibited specific advantages in scaffolding fibers to
enhance cell adhesion induced by rhBMP-2.Molecules 2024, 29, x FOR PEER REVIEW 12 of 21 
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DNA-assembled fibers, the augmented wound healing from aptamer-functionalized fi-

bers was observed at 12 h but not at early stages (4 h). In total, 4 h of culture may be too 
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signaling pathways for cell renewal. Similar phenomena were observed in Amira Seltana’s 
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Figure 8. Effects of BA1-collagen fibers on enhancing cell adhesion mediated by BMP-2 in vitro (n = 3,
three independent replicates). (A) Cell morphology of C2C12 cells on different scaffolds. F-actin
in the cytoskeleton was stained with Phalloidin-iFluor 488 Reagent and cell nucleus was stained
with Hoechst. BMP-2: 200 ng/mL. Cells were monitored with microscope with 20× magnification.
BMP-2-: no BMP-2; BMP-2+: BMP-2 was added. (B,C) Cell area and number of C2C12 cells adhered
on different scaffolds. * p < 0.05, ** p < 0.01, *** p < 0.001. BA1-10% collagen (BMP-2+) vs. BA1-10%
collagen (BMP-2-), cell area: p = 0.0401, cell number: p = 0.0432; BA1-10% collagen (BMP-2+) vs. Blank
(BMP-2+), cell area: p = 0.0004, cell number: p = 0.0064; BA1-10% collagen (BMP-2+) vs. Scramble-10%
collagen (BMP-2+), cell number: p = 0.0302. Unpaired Student’s t-test was used for statistical analysis.
Scale bar (bottom right line): 200 µm.
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We further investigated wound healing to measure tissue regeneration at the wound
margin layer [46]. It is observed that BMP-2 accelerated the wound healing of C2C12 cells
in comparison to the untreated group (Figure 9), which was consistent with the finding
that BMP-2 induces cell migration [47]. When displayed with aptamer–collagen fibers,
cellular wounds healed in a faster manner at 4 h and 12 h, suggesting that this fibrous
scaffold promotes BMP-2-induced wound healing. In the comparison with scrambled
DNA-assembled fibers, the augmented wound healing from aptamer-functionalized fibers
was observed at 12 h but not at early stages (4 h). In total, 4 h of culture may be too short
for live cells to accumulate BMP-2 at a functionally significant level to initiate the signaling
pathways for cell renewal. Similar phenomena were observed in Amira Seltana’s study [48].
Given the statistically significant improvement at 12 h, we proposed that BA1 aptamers
at collagen fibers benefited BMP-2 more over scramble sequences to stimulate wound
healing progression.
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Figure 9. Impact of BA1-collagen fibers on elevating the wound healing efficiency of BMP-2 in vitro
(n = 3, three independent replicates). (A,B) Monitoring of the wound closure of C2C12 cells with or
without treatments of BMP-2 loaded on the BA1-collagen fibrous scaffolds. Fibers were assembled
with 500 nM DNA and 10% collagen (0.3 mg/mL). The wound was created with a physical scratch.
After the treatment with BMP-2 at 200 ng/mL, wound widths in cells were measured at 0 h, 4 h, 12 h,
and 24 h. Cells were observed by the inverted microscope with 10× magnification. BMP-2-: BMP-2
was not added; BMP-2+: BMP-2 was added. (C) Quantitative analysis of the wound healing process
of C2C12 cells induced by BMP-2 loaded on different systems. Wound width in panels (A,B) was
measured with Image J. Wound healing percentage was calculated with the formula: wound healing
percentage (%) = (wound width at 0–r − wound width at present)/wound width at 0 h × 100%. 4 h:
* p < 0.05. BA1-10% collagen (BMP-2+) vs. BA1-10% collagen (BMP-2 −), p = 0.0171; BA1-10% collagen
(BMP-2+) vs. Blank (BMP-2+), p = 0.0110; 12 h: ## p < 0.01, ### p < 0.001. BA1-10% collagen (BMP-2+)
vs. BA1-10% collagen (BMP-2 −), p = 0.0020; BA1-10% collagen (BMP-2+) vs. Blank (BMP-2+),
p = 0.0015; BA1-10% collagen (BMP-2+) vs. Scramble-10% collagen (BMP-2+), p = 0.0842 × 10−4.
Unpaired Student’s t-test was used for statistical analysis. Scale bar (bottom right line): 80 µm.

A clear implication from the above data is that aptamer BA1-functionalized collagen
fibers promote the osteo-inductive activity of BMP-2 in an in vitro context. Aptamer–
collagen fibers are not new in material science. A recent study by Bryan D James used
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VEGFR2-specific DNA aptamers to assemble collagen fibers that elicited impressive effects
to induce angiogenic-like cell remodeling for regenerative medicine applications [23].
Similarly, the fibrous scaffold in this study was assembled with BMP-2-specific DNA
aptamers and type I collagen. By displaying growth factors (BMP-2) at the surface, the
fibers may mimic the function of the extracellular matrix (ECM) given their analogous
architecture and composition. ECM plays a crucial role in stimulating the formation of new
bone by providing essential cytokines, mechanical support, and osteoblast interactions [49].
The observations in our research are consistent with the role of ECM regarding enhanced
osteoblastic differentiation, cell adhesion, and wound healing. Our observations are also in
line with Sungsoo S Lee’s study where ECM-like nanofibrous scaffolds self-assembled with
BMP-2-binding peptide amphiphiles, thereby enhancing BMP-2 signaling and bone fusion
in a rat posterolateral lumbar intertransverse spinal model [13]. In comparison with most
synthetic scaffolds for BMP-2, the prominent advantages of our scaffolds include (1) ease
of assembly and modification, (2) specific capture of BMP-2, and (3) low toxicity from
raw materials. For proceeding to in vivo studies, the aptamer–collagen fibers should be
encapsulated in 3D matrix biomaterials such as agarose to enable controllable drug release.
Moreover, the fibrous scaffold requires further refinement to improve nuclease resistance
and osteo-inductive potency. DNA aptamers and collagen are highly biodegradable in vivo,
and the combination of two materials was observed to stabilize fibers in the cellular
milieu [38]. To achieve long-lasting efficacy in vivo, fibers could be further stabilized by
modifying aptamers with 2′-F, 2′-OMe or phosphorothioate bonds [50] and constructing
composite hydrogels with more resilient biomaterials such as agarose [51]. In addition, to
improve the potency for bone regeneration, some strategies that could be adopted include
(1) an optimization of fiber formulation to generate unified fibers with efficient functional
morphologies, (2) the incorporation of additional growth factors like VEGF into fibers to
enable synergistic regenerative effects [52], and (3) the integration of cell-binding moieties
to recruit bone marrow-derived mesenchymal stem cells (BMSCs) or osteoblast lineage
(MC3T3-E1 cells, etc.) to achieve cell-free in situ bone regeneration [53,54].

3. Materials and Methods
3.1. Materials

C2C12 myoblast cell line was gifted by Prof. Zhongjun Zhou from the School of
Biomedical Sciences at the University of Hong Kong. Dulbecco’s Modified Eagle Medium
(DMEM), 0.25% Trypsin (EDTA), and fetal bovine serum (FBS) were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). Oligonucleotides were ordered from In-
tegrated DNA Technologies (Coralville, IA, USA) and Hippobio (Huzhou, China). Pri-
mary rhBMP-2 antibody and anti-mouse secondary antibody were obtained from Abcam
(Cambridge, UK). Ni-NTA agarose magnetic beads and QIAquick PCR Purification Kit
were both from Qiagen (Hilden, Germany). Pwo DNA polymerase was obtained from
Roche (Basel, Switzerland). The dNTP set and MyOne C1 streptavidin magnetic beads
were obtained from Thermo Fisher Scientific (Waltham, MA, USA).

3.2. Expression, Renaturation, and Purification of His-Tagged rhBMP-2 Targets

cDNA encoding the mature region of rhBMP-2 (Gene ID: 650) was synthesized by
GenScript (Piscataway, NJ, USA), and ligated into pET-15b (GenScript, USA) between NdeI
and BamHI sites to construct rhBMP-2 expression plasmid, followed by the transformation
into BL21 (DE3) pLysS-competent cells for isopropyl β-D-1-thiogalactopyranoside (IPTG)-
induced protein expression. Bacteria were cultured in LB broth medium with 100 µg/mL
of ampicillin at 37 ◦C for 1–2 h until OD600 reached 0.5–0.8. Then, 0.5 mM IPTG was added
and followed by 4 h of incubation at 37 ◦C with shaking at 220 rpm to express proteins.
Cell pellets were harvested by centrifugation at 4000× g for 45 min at 4 ◦C. The resultant
cell pellets were washed twice with 30 mL cold PBS buffer. rhBMP-2-containing inclusion
bodies (IBs) were extracted by the buffer containing 6 M Gdn-HCl, 0.1 M Tris (pH 8.5),
1 mM EDTA, and 0.1 M DTT with overnight incubation at RT. The suspension was collected
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as soluble Ibs and exchanged to the buffer with 5 M Gdn-HCl and 50 mM MES (pH 5.0).
rhBMP-2 in the soluble Ibs was refolded using a rapid dilution in the buffer containing
0.5 M L-arginine, 0.1 mM GSSG, 1 mM GSH, 20 mM Tris-HCl (pH 8.5), and 5% glycerol at a
ratio of 1:25 (v/v). Refolded proteins were dialyzed to the binding buffer with 4 M urea,
20 mM Tris-HCl (pH 8.0), and 150 mM, and applied to the HiTrap Heparin column (Cytiva,
Marlborough, MA, USA) for protein purification. A gradual elution program was carried
out on the ÄKTA Pure system (Cytiva, USA) in the buffer containing 4 M urea, 20 mM
Tris-HCl (pH 8.0), and NaCl (150 mM–1.5 M). All fractions of interest were collected and
analyzed with 12% SDS-PAGE gel. rhBMP-2 dimers were pooled together and exchanged
to the buffer containing 50 mM MES, pH 5.0. The final products were concentrated at
1 mg/mL and stored at −80 ◦C until further use.

3.3. Aptamer SELEX

The single-strand DNA (ssDNA) contained a 35 nt random region flanked with two
18‘nt sequences for PCR primer annealing and amplification (5′-CGTACGGTCGACGCTA
GC-[N35]-CACGTGGAGCTCGGATCC–3′). Initially, 1 nmole of ssDNA library was diluted
in 100 µL binding buffer (20 mM HEPES, 2 mM MgCl2, 2 mM CaCl2, 2 mM KCl, 150 mM
NaCl, pH 7.4, 0.05% Tween-20) and then heated at 95 ◦C and cooled down on the ice for
5 min, followed by a slow recovery to room temperature for 10 min. His-tagged rhBMP-2
expressed from E. coli was immobilized to nickel magnetic beads with 1 h incubation at
RT in the protein binding buffer with 20 mM imidazole, 20 mM HEPES, 2 mM MgCl2,
2 mM CaCl2, 2 mM KCl, 150 mM NaCl, pH 7.4, and 0.05% Tween-20. The rhBMP-2-beads
were incubated with the library at 37 ◦C for 30 min with slow rotation. Unbound ssDNA
sequences were removed by being washes 3–6 times with the washing buffer (20 mM
HEPES, 2 mM MgCl2, 2 mM CaCl2, 2 mM KCl, 0.15 mM/0.5 M/1 M NaCl, pH 7.4, 0.05%
Tween-20), and the remaining species were resuspended in 20 µL PCR-grade water to
carry out PCR amplification in the PCR mixture (primers, dNTP and PWO polymerase).
Afterwards, PCR products were purified with the QIAquick PCR purification kit (Qiagen,
Germany) and conjugated to MyOne streptavidin T1 beads (ThermoFisher, Waltham, MA,
USA) according to the manufacturer’s instructions, and ssDNAs of interest were eluted
with 0.1 M NaOH for 5 min to obtain the ssDNA library for the next round of selection.
The concentration of each ssDNA pool was measured with Nanodrop 1100 (ThermoFisher,
USA) at 260 nm. After 22 rounds of selection, the enriched ssDNA pools were sent for
high-throughput sequencing (HTS).

Over the 22 rounds of selection, the selection stringency was gradually increased as
follows: (1) the inputs of protein targets and incubation time were reduced; (2) the amount
of ssDNA library decreased from 1 nmol to 50 pmole; (3) the volume of binding buffer
increased from 0.2 mL to 1 mL from Round 2; (4) counter selections against beads were
included in Rounds 2, 9, 16, 18–20, and counter selections against negative targets (rhBMP-3
and His-peptide) were added in Rounds 7, 12, 16–19; (5) 0.5 mg/mL tRNA was added
starting from Round 14; and (6) incubation time was reduced from 30 min to 15 min after
Round 10 and to 10 min after Round 19.

3.4. High-Throughput Sequencing (HTS)

After the selection, several enriched ssDNA pools with the initial library (Round 0,
Round 1, Round 5, Round 10, Round 15, and Round 22) were sent for HTS sequenc-
ing. They were amplified with unmodified internal primers flanked by unique bar-
codes. The yielded PCR products were purified with 4% agarose gel and extracted with
a QIAquick gel extraction kit (Qiagen, Germany). ssDNA pools were mixed in equal
amounts and further amplified using external primers attached with Illumina-specific
sequencing adaptors. After gel purification, 30 ng of PCR sample was sent to Novogene
(Beijing, China) for HTS analysis. Sequencing data were analyzed with FASTAptamer
(https://burkelab.missouri.edu/fastaptamer.html (accessed on 16 December 2020) based
on the manufacturer’s instructions.

https://burkelab.missouri.edu/fastaptamer.html
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3.5. EMSA

EMSA was conducted by following the protocol in our previous research [55]. In brief,
the protein was serially diluted in the binding buffer (20 mM HEPES, 2 mM MgCl2, 2 mM
CaCl2, 2 mM KCl, 150 mM NaCl, pH 7.4). Aptamer sequences were mixed with the protein
solution to a final concentration of 25 nM, followed by incubation at 37 ◦C for 1 h. The
resultant complexes were loaded on 12% native PAGE polyacrylamide gels for 30 min
electrophoresis at 4 ◦C. Gels were then visualized with SYBR gold nucleic acid staining
(ThermoFisher, USA) on the ChemiDoc Imaging System (BioRad, Hercules, CA, USA).

3.6. ELONA

In total, 100 µL of 100 ng of rhBMP-2 was immobilized on the pre-blocked HisSorb
plate (Qiagen, Germany) in the PBST buffer (0.05% Tween-20). Unbound rhBMP-2 were
removed by being washed three times with 200 µL PBST buffer. Biotinylated DNA aptamers
were heated at 95 ◦C for 5 min and cooled down on the ice for 10 min. Then, 100 µL of
annealed aptamer sequences were incubated with immobilized rhBMP-2 for 1 h at 37 ◦C.
After removing unbound aptamers, 100 µL of HRP-conjugated streptavidin (1:100,000
dilution) solution was added and incubated for 30 min at RT. Following three washes with
200 µL of PBST, 100 µL of TMB solution (ThermoFisher, USA) was added and incubated
for 5–15 min at RT. The reaction was stopped by 0.16 M H2SO4, and the absorbance was
measured at 450 nm by the Varioskan LUX Multimode Microplate Reader (ThermoFisher,
USA). In the binding competition assay, the HisSorb plate was immobilized with the same
amount of rhBMP-2. Moreover, a 100 nM aptamer was added before, with, and after
the heparin/polyphosphate serial solution (0–10,000 nM) to allow 1 h of incubation with
immobilized rhBMP-2. The bound aptamer was determined with the same method as
described above.

3.7. Molecular Docking

The three-dimensional structure of rhBMP-2 dimer was retrieved from the PDB file,
ID: IES7. The 2D structure of the DNA aptamer was predicted via Mfold and converted to
3D conformation using RNA composer (https://rnacomposer.cs.put.poznan.pl/ (accessed
on 16 June 2021). Discovery Studio (Dassault Systemes BIOVIA, San Diego, CA, USA) was
then used to recover the DNA aptamer sequence by replacing all uracil with thymidine
and ribose with deoxyribose. Afterwards, the 3D structure of the aptamer was refined with
HyperChem (Hypercube Inc., Gainesville, FL, USA) using structural energy minimization
to obtain a stable structure for molecular docking. The PDB files of rhBMP-2 and the refined
aptamer were inputted to the HDOCK server (http://hdock.phys.hust.edu.cn/ (accessed
on 18 August 2021)), which sampled all possible molecular interaction modes using a
knowledge-based search algorithm and evaluated them with an energy function called
ITScorePP. The top 10 binding models from HDOCK were analyzed with Discovery Studio
to visualize the interaction interface.

3.8. Assembly of Aptamer–Collagen Fibrous Scaffolds

Aptamer–collagen fibers were assembled similarly as reported by Bryan D James [23].
In brief, amine-capped aptamer and scramble ssDNA sequences were diluted in sterile
water to the working concentration of 1 µM. Type I collagen solution in 0.02 M acetic acid
was diluted to 0.3 mg/mL using sterile water. ssDNA solution was mixed with type I
collagen with different volume fractions (0%, 5%, 10%, 20%, 30%, and 50%), followed
by overnight incubation at room temperature to allow for the spontaneous assembly of
ssDNA-collagen fibers.

3.9. Surface Immobilization of Aptamer–Collagen Fibers

Fibers were immobilized on well plates using the sulfo-SANPAH heterobifunctional
crosslinker. In total, 20 µM of sterile crosslinker aqueous solution was added to well plates
and exposed to ultraviolet light at 365 nm for 10 min to activate the nitrophenyl azide group

https://rnacomposer.cs.put.poznan.pl/
http://hdock.phys.hust.edu.cn/


Molecules 2024, 29, 1243 16 of 20

for binding to the polystyrene surface. Afterwards, the plate wells were rinsed with sterile
water three times and incubated with scaffold solutions overnight at room temperature,
followed by three rounds of washing with sterile water to remove unbound fibers. The
plate was stored at 4 ◦C until further use. Fibers were photographed with Olympus CKX53
Inverted Microscope (Olympus, Tokyo, Japan).

3.10. Elemental Mapping of Aptamer–Collagen Scaffolds

ssDNA sequences in this assay were modified with Cy5 fluorophore, and type I
collagen was visualized with Alexa Fluor@ 488-conjugated antibody. Upon fiber assembly,
fibers were incubated with type I collagen antibody overnight at 4 ◦C, and excess antibodies
were removed by being washed three times using PBS containing 1% BSA. Fibers were
then visualized with Olympus IX71 inverted fluorescence microscope (Olympus, Japan).

3.11. Enzyme-Linked Immunosorbent Assay (ELISA)

Biotinylated aptamers and their self-assembled collagen fibers were immobilized on
streptavidin-coated 96-well plates (ThermoFisher, USA). In total, 100 µL of 0–100 ng rhBMP-
2 solutions in the ELISA working buffer was added and incubated with fibers at 37 ◦C for
1 h. Afterwards, the plate wells were washed with PBST buffer three times. Then, 100 µL
rhBMP-2 primary antibody (1:2000) and HRP-conjugated secondary antibody (1:10,000)
were added successively to allow 1 h of incubation at room temperature. After three
rounds of washing, 100 µL TMB solution (ThermoFisher, USA) was added for 5–10 min
of incubation. The reaction was stopped with 100 µL of 0.16 M H2SO4. The absorbance at
450 nm was measured with POLARstar Omega Plate Reader (BMG LABTECH, Ortenberg,
Germany).

3.12. Alkaline Phosphatase (ALP) Assay

Aptamer–collagen fibers were immobilized on 96-well cell culture plates using sulfo-
SAHPAH crosslinkers. RhBMP-2 was coated on fibers by 1 h incubation at 37 ◦C with 5%
CO2. C2C12 cells were then seeded on treated plate wells at a density of 104 cells/well. Cell
medium was replaced with 200 µg/mL rhBMP-2 on a daily basis for three days. Afterwards,
cells were washed with PBS buffer three times and lysed with 55 µL lysis buffer (1 mM
MgCl2, 1 mM ZnCl2, 1% (v/v) Igepal CA-630, 0.1 M glycine, pH 9.6) for 1 h at room temper-
ature. After brief centrifugation, 50 µL pNpp substrate (2 mg/mL) was added for 60 min
incubation at 37 ◦C. The absorbance at 405 nm from ALP-pNpp product was determined
with POLARstar Omega Plate Reader (BMG LABTECH, Ortenberg, Germany). Protein
concentrations of cell lysates were measured with a BCA protein assay kit (ThermoFisher,
USA) following the manufacturer’s instructions. The ALP level was normalized as ALP
absorbance/total protein amount (mg).

3.13. Cell Adhesion Assay

C2C12 cells were seeded on 24-well plates immobilized with rhBMP-2-loaded fibrous
scaffolds at a density of 2 × 104 cells/well. After 10 h of culture in the BMP-2-supplemented
DMEM medium, cells were fixed and permeabilized with 4% formaldehyde and 0.1% Tri-
ton X-100, followed by the nucleus staining with Hoechst (ThermoFisher, USA) for 5 min
and cytoskeleton staining with phalloidin-iFluor 488 (Abcam, UK) for 1 h at room tempera-
ture. After three rounds of washing with PBS buffer, cells were observed under Olympus
IX71 inverted fluorescence microscope (Olympus, Japan). Cell area and cell density were
determined with Image J (National Institutes of Health and University of Wisconsin, USA)
and further quantified using Origin (OriginLab, Corporation, Northampton, MA, USA).

3.14. Wound Healing Assay

C2C12 cells were seeded on 24-well plates immobilized with rhBMP-2-loaded fibrous
scaffolds at a density of 2 × 104 cells/well. Cell wounds were created with a physical
scratch in the horizontal center. Cells were washed twice with PBS buffer and cultured with
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a BMP-2-containing DMEM medium with 2% FBS. The wound closure was monitored at
different time points, including 0-h, 4-h, 12-h, and 24-h. Images were taken with Olympus
CKX53 inverted microscope (Olympus, Japan) and analyzed using Image J (National
Institutes of Health and University of Wisconsin, USA).

3.15. Calcium Nodule Detection

C2C12 cells were seeded on 96-well plates immobilized with rhBMP-2-loaded fibrous
scaffolds at a density of 104 cells/well. Cell medium with 200 µg/mL of rhBMP-2 was
changed daily up to another 14 days. Afterwards, cells were washed with PBS buffer three
times and fixed and permeabilized with ice-cold 70% ethanol for 1 h. Cells were then
washed with excess sterile water and stained with Alizarin Red staining (AR-S) solution
(Sigma-Aldrich, St. Louis, MO, USA) for 1 h at room temperature with gentle agitation.
Then, AR-S was removed, and cells were washed with sterile water and photographed
under Olympus CKX53 inverted microscope (Olympus, Japan). The stained calcium
nodules were extracted with 10% (w/v) cetylpyridinium chloride (CPC) in 10 mM sodium
phosphate, pH 7.0, for 1 h at room temperature. The absorbance of dissolved calcium
nodules was measured at 560 nm on a POLARstar Omega Plate Reader (BMG LABTECH,
Ortenberg, Germany).

3.16. Statistics and Data Analysis

Statistical analyses were carried out on Origin 2021b (OriginLab Corporation, Northamp-
ton, MA, USA) and GraphPad Prism 8.3.0 (GraphPad Software, San Diego, CA, USA).
Comparisons between the two treatment groups were made using unpaired t-tests. The
alpha level is lower than 0.05 denotes the statistical significance. EC50 and KD values in
this study were computed under the non-linear fit models using the function of DoseResp
(EC50 = 10LOGx0, LOGx0 = center of y axis) for Growth/Sigmoidal in Origin 2021 and
Hyperbola (y = Bmax·x

kD+x , x is the ligand concentration, y is the specific binding, and Bmax is
maximum binding; KD = x with half binding at equilibrium) for one site-specific binding in
GraphPad Prism 8, respectively.

4. Conclusions

This study demonstrated the evolution of a novel DNA aptamer, BA1, which exhibited
high affinity and specificity to the growth factor applied for bone regeneration, rhBMP-
2. Through rigorous counter selections, BA1 markedly discriminated rhBMP-2 and its
analog rhBMP-3 to achieve selective drug capture as functional motifs on scaffolds. In
addition, molecular docking analysis was performed to better understand the molecular
interactions of the BA1-BMP-2 complex. The putative interaction model revealed that BA1
may adopt hairpin-like conformations and bind to rhBMP-2 mainly at the heparin-binding
domain, which was consistent with the experimental binding competition assays with
heparin and polyphosphate. BA1 was then applied to assemble fibrous scaffolds with type
I collagen, which could promote the osteogenesis ability of rhBMP-2, as observed in the
assays measuring ALP, mineralization, cell adhesion, and wound healing.

This research, however, is subject to several limitations. First, the BA1 aptamer was
selected against rhBMP-2 with histidine tags. Histidine is positively charged and may
contribute to the binding affinity of the negatively charged DNA aptamer. Although we
excluded this possibility by conducting specificity assays with other histidine-tagged targets
(His-peptide, His-pfLDH), more direct evidence is needed to confirm the binding capability
of BA1 when using BA1 to target unmodified rhBMP-2. Second, the DNA-interlinked
collagen fibers were not well-characterized and normalized. This may introduce some bias
when identifying the difference between collagen fibers formed by aptamers and scramble
sequences. Transmission electron microscopy (TEM) imaging and X-ray diffraction can
be used to further determine and normalize the morphologies and sizes of DNA-collagen
fibers to enable us to conduct more accurate comparable studies. Nevertheless, our study
provides a paradigm of developing aptamer-functionalized collagen fibers for enhancing
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BMP-2-induced osteogenesis. This could be beneficial for developing BMP-2-mediated
regenerative medicine for bone regeneration applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29061243/s1, Figure S1: Expression and characterization
of rhBMP-2 in E. coli; Figure S2: Saturation of nickel beads with rhBMP-2; Figure S3: Aptamer
selection cycle progress; Figure S4: Enrichment progress of the ssDNA library against rhBMP-2;
Figure S5: Affinity evaluation of rhBMP-2-binding aptamer candidates; Figure S6: Evaluation of the
binding of BA1 to nickel beads; Figure S7: Representation of interaction models of ssDNA-BMP-2
complexes; Figure S8: Evaluation of the binding affinity of BA1 under low- and high-salt conditions;
Figure S9: Morphology of DNA-collagen fibers; Figure S10: Study of the BMP-2-binding affinity of
BA1 on different fibrous scaffolds; Figure S11. Characterization of calcium formed in DNA-collagen
fibers; Figure S12: Determination of the formation of calcium in C2C12 cells induced with BMP-2
loaded on different scaffolds.
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