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ARTICLE

Dissecting the high-resolution genetic architecture
of complex phenotypes by accurately estimating
gene-based conditional heritability

Lin Miao,1,8 Lin Jiang,1,8 Bin Tang,2,3 Pak Chung Sham,4,5 and Miaoxin Li2,3,5,6,7,*
Summary
Despite extensive research on global heritability estimation for complex traits, fewmethods accurately dissect local heritability. A precise

local heritability estimate is crucial for high-resolution mapping in genetics. Here, we report the effective heritability estimator (EHE)

that can use p values from genome-wide association studies (GWASs) for local heritability estimation by directly converting marginal

heritability estimates of SNPs to a non-redundant heritability estimate of a gene or a small genomic region. EHE provides higher accuracy

and precision for local heritability estimation among seven compared methods. Importantly, EHE can be applied to estimate the

conditional heritability of nearby genes, where redundant heritability among the genes can also be removed further. The conditional

estimation can be guided by tissue-specific expression profiles (or other functional scores) to prioritize and quantify more functionally

important genes of complex phenotypes. Applying EHE to 42 complex phenotypes from the UK Biobank, we revealed the existence of

two types of distinct genetic architectures for various complex phenotypes and found that highly pleiotropic genes are not enriched for

more heritability compared to other candidate susceptibility genes. EHE provides an accurate and robust way to dissect the genetic

architecture of complex phenotypes.
Introduction

Heritability gauges the proportion of genetic contribution

to a phenotype.1 Accurate quantification of heritability is

fundamentally important in genetics and guides the strate-

gies for genetic mapping, disease risk prediction, and

breeding. Two types of heritability measurements are

defined according to effect models: narrow-sense heritabil-

ity for additive effects only and broad-sense heritability for

additive effects, dominance effects, and epistatic effects.2

Traditionally, heritability was estimated using related indi-

viduals, such as twins and family members.3 However,

such methods and strategies cannot accurately reveal the

genetic contribution of specific genomic regions to under-

stand the precise genetic architecture of phenotypes.

The advent of high-throughput genotyping technology

provides unprecedented opportunities for estimating

heritability using large samples of unrelated individuals4

originally generated for genome-wide association studies

(GWASs). The underlying idea is that heritability can be

measured as the proportion of phenotype variance ex-

plained by many single-nucleotide polymorphisms

(SNPs). Given genome-wide genotype and phenotype

data of a large sample size, Yang et al. proposed using a

linear mixed model to estimate heritability by all SNPs in

a chromosome or a whole genome.4,5 Then, the linear
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mixed model was extended, adding two random effects

(genetic and environmental effects) to reduce potential

estimation inflation.6 A Bayesian mixed model was also

proposed to speed up the heritability estimation in large

cohort genomes.7 However, the application of the

methods is limited by the problem that individual-level

data are not often accessible in a large-scale GWAS. So

the SNP-based heritability estimation was extended to

use GWAS summary statistics, which flexibly expanded

its application to ultra-large GWASs. The linkage disequi-

librium (LD) score regression (LDSC) is an early and widely

used method that leverages LD information between SNPs

to estimate whole-genome heritability under the polygenic

model.8 To fully use the LD information, high-definition

likelihood (HDL)9 and LD eigenvalue regression (LDER)10

were applied to improve the estimation accuracy of SNP

heritability recently.

In recent years, there has been growing interest in

estimating local heritability in genomic regions using ge-

netic association summary statistics to better understand

subtle genetic contributions to complex phenotypes. The

LDSC method has been extended to a stratified version,

enabling partitioning of heritability in specific regions.11

However, such methods may not be suitable for small re-

gions, such as individual genes or exons, as they require

many SNPs to estimate a meaningful standard error (SE).
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To address this issue, Shi et al. proposed the Heritability

Estimator from Summary Statistics (HESS), which is based

on a quadratic form of SNP marginal effect estimates

defined by the LD matrix.12 However, this method has

been found to have a large bias when the sample size is

less than 10,000, as reported by Song et al.10 Another chal-

lenge with estimating local heritability is the redundancy

that occurs in physically close regions due to LD. Although

methods have been developed for conditional gene-based

association analyses,13 no method is currently available

to accurately remove redundant heritability from nearby

genes for all we know. Therefore, the development of accu-

rate methods is still needed to explore heritability in func-

tional regions better.

This paper presents a heritability estimator for calcu-

lating conditional heritability at the regional level with

GWAS summary statistics. Themethod removes the redun-

dancy in marginal heritability of individual SNPs within

an LD block by a linear combination of marginal heritabil-

ity estimates with coefficients determined by the matrix of

squared LD coefficients and is referred to as the effective

heritability estimator (EHE) in this paper. By using ances-

trally matched reference genotypes, such as those from

the 1000 Genomes Project, EHE requires only GWAS

p values and corresponding sample sizes to estimate herita-

bility, making it highly scalable for large-scale GWASs. We

evaluated its accuracy and precision through extensive

simulations and compared it to six state-of-the-art or pop-

ular methods (GCTA,5 HESS,12 LDAK-GBAT,14 LDAK-

SumHer,15 LDSC,8 and LDER10). Furthermore, we applied

EHE to explore the genetic contribution of protein-coding

genes to 42 complex phenotypes.
Material and methods

The proposed method for local heritability estimation
Consider a linear regression model that incorporates random

effects of m SNPs on a phenotype:

Y ¼ Xbþ ε; ε � N
�
0; s2

ε

�
(Equation 1)

where Y is a standardized random variable denoting the pheno-

type,X ¼ ðX1;.;XmÞ is a component-wise standardized random

vector denoting the genotypes, b is a vector of the random effects,

and ε is the residual. Suppose EðbÞ ¼ 0 and VarðbÞ ¼ diagðs21;.;

s2mÞ. The heritability of the phenotype accounting for the m

SNPs can be expressed as (refer to supplemental methods for the

derivation)

h2
g : ¼ VarðXbÞ

VarðYÞ ¼
Xm
j¼1

s2
j (Equation 2)

Then, consider a sample of size n. Let zj be the Z score of the mar-

ginal effect of the jth SNP and let v ¼ �
z21;.; z2m

�T
. We propose the

effective heritability estimator (EHE) for h2
g as

bH :¼ n�11T
Uþðv � 1Þ (Equation 3)

whereU ¼ ðr2jkÞ is the matrix of squared LD coefficients andUþ is

the Moore-Penrose inverse of U. We proved that bH is an unbiased

estimator for h2
g before a realization of b (supplemental methods).
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After m SNPs have been specified, their effects are realized and

considered as unobservable fixed values. We define the marginal

heritability for the jth SNP as gj : ¼ VarðX jbjÞ =VarðYÞ ¼ b2j , where

bj is themarginal regressioncoefficient, anddefine theeffectiveher-

itabilityasH : ¼ 1TUþðg1;.; gmÞT,which is a linearcombinationof

marginal heritability with 1TUþ as coefficients designed to elimi-

nate the redundancy caused by LD. This is why it is called ‘‘effec-

tive.’’ Then,EHEcanbeexpressedas bH ¼ 1TUþðbg1;.; bgmÞT,where

bg j ¼ ðz2j �1Þ =n is an estimator for gj. We proved that a sufficient

condition for Eð bH Þ ¼ h2
g after a realization of b is that all causal

SNPs are uncorrelated (supplemental methods).

The variance of EHE after a realization of b is given by

Varð bH Þ ¼ Var
�
n�11T

Uþ½v � 1�� ¼ n�21T
UþVarðvÞUþ1

¼ n�21T
UþDCDUþ1

(Equation 4)

where C ¼ CorrðvÞ and D ¼ diag
�
SD

�
z21
�
;.; SD

�
z2m

� �
. We esti-

mate SDðz2j Þ by cSDðz2j Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z2j � 2

q
. For the estimation of C, ac-

cording to our previous study,16 when either SNP has an effect in

a large sample, there is Corrðz2j ; z2kÞz
��rjk�� and it is Corrðz2j ; z2kÞzr2jk

when neither SNP has an effect in the LD block.13 Here, we em-

ployed our previous approach,13,16 "effective chi-squared statistics"

(ECS), to test whether variants in an LD block are associated with a

phenotype.When the associationp value (by ECS) of anLDblock is

smaller than 0.05, we set the correction as
��rjk�� and set as r2jk other-

wise (refer to supplemental methods for details).

Estimate heritability for dichotomous phenotypes
For a dichotomous phenotype of prevalence K in the population

and a proportion P of affected individuals in theGWAS sample, un-

der the liability threshold model, according to Lee et al.,17 we can

convert the EHE calculated by Equation 3 to the liability scale by

bHl ¼ t bH ; t ¼ ðK½1 � K�Þ2
ð4½F�1ðKÞ�Þ2Pð1 � PÞ (Equation 5)

where bHl denotes EHE of liability scale and 4ð$Þ and Fð$Þ denote
the probability density function and the cumulative distribution

function of the standard normal distribution, respectively. Then,

the variance of bHl is given by

Varð bHlÞ ¼ t2Varð bH Þ (Equation 6)

Estimate conditional heritability
Whenmultiple genomic regions are physically close, the heritabil-

ity estimated by EHE at some genes may be because they had SNPs

in LD with nearby causal genes. Therefore, we propose a condi-

tional analysis among the proximal genes by EHE. First, the

genome-wide gene-based association is carried out by ECS with

summary statistics.13,16 Suppose there are m significant genes.

The significant genes in a large LD block are sorted by the associ-

ation p values. According to the additive property of chi-squared

statistics, the conditional heritability of multiple genes is esti-

mated iteratively from the most to the least significant gene,

8><
>:

bH 1

bH 2j1 ¼ bH 1;2 � bH 1

.

bHmj1;2;.;m�1 ¼ bH 1;2;.;m�1;m � bH 1;2;.;m�1

(Equation 7)
nal of Human Genetics 110, 1534–1548, September 7, 2023 1535



where bH1 is the estimated heritability of themost significant gene,bH 1;2 is the estimated heritability of the most and the second most

significant genes when merged in a single region, bH 2j1 is the her-

itability of the second most significant gene conditioning on the

most significant region, and so on. The variance of the conditional

EHE can be calculated by the formula

Var
� bH 2j1

� ¼ Varð bH 1;2ÞþVarð bH 1Þ � 2Covð bH 1;2; bH 1Þ
(Equation 8)

where for each term, variance can be calculated by Equation 4. The

same iteration procedure is carried out to approximate the SEs of

the conditional heritability estimates for multiple genes in an

LD block. The order of genes entering the iteration procedure

can also be determined according to a third-party functional anno-

tation of genes, e.g., the specific expression of genes in a pheno-

type-relevant tissue (DESE) or cell-type (PCGA).18,19 Generally,

the genes entering the iteration procedure earlier have more

chance to keep their original heritability.
Software implementation of EHE
We have implemented EHE using Java on the KGGSEE software

platform for estimating the local and conditional heritability of

genes or regions. KGGSEE maps input SNPs onto genes defined

in RefGene20 and GENCODE21 databases or customized genomic

regions. The program takes genotypes of an ancestrally matched

reference sample in variant call format (VCF)22 to account for

LD between SNPs. KGGSEE employs an algorithm to partition

the input variants into multiple LD blocks. Starting from the

SNPs with minimal position coordinates on a chromosome, the

program explores the LD block boundaries by checking the LD

of k (equals 100 by default) adjacent SNPs on the forward side.

The boundary SNP must have no absolute LD value (jrj) with its

preceding SNP larger than a cutoff c (equals 0.05 by default) to

ensure that any couple of SNPs in different LD blocks must have

jrj% c. This algorithmprevents the generation of a huge LDmatrix

of an entire chromosome. EHE is carried out in each LD block sepa-

rately first, and the overall heritability is equal to the sum of the

heritability estimates in all LD blocks. KGGSEE also implements

ECS13 to calculate association p values of genomic regions. For

conditional heritability estimation, gene expression of multiple

tissues or cell types can be input into KGGSEE, which implements

the ECS and the cell type selective expression supervised itera-

tions18,19 for the conditional analyses.
Alternative heritability estimation methods for

comparison
In this study, we compared the performance of EHE with six widely

used or latest methods, namely GCTA,5 HESS,12 LDAK-GBAT,14

LDAK-SumHer,15 LDSC,8 and LDER.10 Among the seven methods,

HESS is the only one that assumes a fixed-effects model, which can

also be considered as a random effects model with no constraints

on the variances of effect sizes. The random effects model assumed

byHESSwas named the generalized random effects (GREs)model,23

and EHE also assumes theGREmodel but is a different estimator.We

used HESS v.0.5.3-beta in this study. Among the seven methods,

GCTA is the onlymethod that estimates heritability using genotype

andphenotypedata.GCTAperformsREMLestimationwiththewell-

knownGCTAmodel,4,5 inwhich the variances of effect sizes of stan-

dardized genotypes are equal.When the effect sizes are generated by

the GCTA model, we expect GCTA to be the most accurate. LDSC,

LDER, and SumHer are all based on LD score regression, where
1536 The American Journal of Human Genetics 110, 1534–1548, Sep
LDSC and LDER assume the same genetic architecture as GCTA,

andSumHer introducesanalphaparameter, thusallowingmoregen-

eral genetic architectures.15,24 In this study, we used a ¼ �0:25 for

all SumHer analyses. Since LDER makes full use of the LD informa-

tion, it is expected to bemore accurate than LDSC.GBAT is designed

for gene-based association tests, which also calculates gene-based

heritability. Similar to GCTA, GBATalso performs REML estimation;

but unlike GCTA, GBAT uses summary statistics; and like SumHer,

GBAT estimates with a user-specified alpha parameter. In this study,

we run all GBAT analyses with a ¼ � 0:25. Among the seven

methods,LDSC,LDER,andSumHeraredesigned to estimate theher-

itability of a whole genome using summary statistics and estimate a

SE using a jackknife estimator which is not suitable for a small

amountof SNPs, sowedidn’t compare their SEestimates. In contrast,

EHE,HESS, andGBATaredesigned toestimate localheritabilityusing

summary statistics and are more comparable. Hou et al.23 summa-

rized the genetic architectures assumed by GCTA, LDSC, and

SumHer by listing the additional assumptions in addition to the

GREmodel.
Computer simulation models and experiments
The LD patterns for the simulations

We performed extensive computer simulations to investigate the

accuracy and precision of the EHE for gene-based heritability esti-

mation. A total of 488 genes with different SNP sizes ranging from

6 to 2,094 were drawn from chromosome 1 of the human genome

to perform the simulations. To make the sampling even, we first

counted the number of SNPs with minor allele frequency larger

than 0.01 in the EUR panel of the 1000 Genomes Project for

each protein-coding gene (including 10 kb flanking regions on

both sides) on chromosome 1 (1,944 genes in total). Then, we

divided the genes into four groups by the three quantiles of the

numbers of SNPs. Finally, for each group, we sorted the genes by

coordinates, took the first gene out of every four, and got 122,

124, 121, and 121 genes in each of the four SNP-number ranges.

We further took the first gene out of every eight in each of the

four groups and got 61 genes to perform GCTA analyses.

Simulations for quantitative phenotypes

For each gene, we simulated a sample of 4.5 3 106 haplotypes by

HapSim25 with a reference being a phased VCF file of the EUR

panel of the 1000 Genomes Project.26 Each haplotype was coded

by a vector of zeros and ones. Then, we generated a population

of 2.25 3 106 diploid individuals by paring haplotypes and sum-

ming, and then standardizing for each SNP. We denote the stan-

dardized genotype matrix as X. We realized b by sampling from

N
�
0;Sb

�
;Sb ¼ diag

�
s21;.; s2m

�
, where different Sb were used to

simulate different genetic architectures. According to Speed

et al.,24 we considered two alpha values (�1.0 and �0.25) in addi-

tion to three proportions of QTLs (0.01, 0.1, and 1) to mimic six

different genetic architectures. For each genetic architecture of

each gene, we realized b by (1) randomly choosing QTLs with

the specified proportion; (2) for each selected SNP, setting s2j ¼
h2
gwj =

P
jwj;wj ¼ ½fjð1 � fjÞ�1þa, where fj is the frequency of either

allele of the jth SNP and h2
g is the target heritability, and for unse-

lected SNPs, setting their variances to zero; and (3) sampling b

from N
�
0;Sb

�
and rescaling b to make the population variance

of Xb equals h2
g .

Then, we realized the phenotype, took samples, and calculated

Z scores and LD coefficient matrices.

We (4) realized the phenotype by y ¼ Xbþ ε; ε � Nð0; ð1 �h2
g ÞIÞ

and considered the realized ðy;XÞ as the population; (5) took 100
tember 7, 2023



samples of size n¼ 20,000 without replacement from ðy;XÞ and de-

noted the ith sample as ðy i;XiÞ, and denoted the LDmatrix calculated

byXi asRi; (6) for each sample, e.g., the ith one, calculated theZ score

vector as zi ¼ n� 1
2XT

i y i; (7) took 100 (and another 100) samples of

sizes _n ¼ 2;000 (and €n ¼ 500) without replacement fromX; calcu-

lated the LDmatrix for each sample and denoted as _Ri ( €Ri) for the i
th

sample.

For each gene, by the end of step (7), we have 100 samples, with

the ith one denoted as ðyi;Xi;zi;Ri; _Ri; €RiÞ. We estimated heritability

using the 100 samples of a gene by each of EHE, GCTA,5 HESS,12

LDAK-GBAT,14 LDAK-SumHer,15 LDSC8, and LDER.10 (8) With

each of all the 100 samples, e.g., the ith one, we ran each of EHE,

HESS, GBAT, SumHer, LDSC, and LDER with each of ðzi;RiÞ, ðzi;
_RiÞ, and ðzi; €RiÞ; and ranGCTAwith ðyi;XiÞ of only the first 50 sam-

ples (refer to supplemental methods for the command line of each

method). (9) For each of EHE, HESS, GBAT, SumHer, LDSC, and

LDER, considering the 100 estimates as a sample; we calculated

the sample mean (Meanðbh2Þ) and the sample standard deviation

(SDðbh2Þ), and we calculated the mean relative bias (MRB) of herita-

bility estimates asMRBðbh2Þ ¼ Meanðbh2Þ =h2
g � 1. For each of EHE,

HESS, and GBAT, we calculated the mean of the 100 SE estimates

(MeanðSEðbh2ÞÞ) and calculated an MRB of the 100 SE estimates as

MRBðSEðbh2ÞÞ ¼ MeanðSEðbh2ÞÞ =SDðbh2Þ � 1.

For the analyses of comparing with GCTA, we calculated

Meanðbh2Þ, SDðbh2Þ, MRBðbh2Þ, and MRBðSEðbh2ÞÞ by only the first

50 samples of ðyi; Xi; zi; Ri; _Ri; €RiÞ. For EHE, HESS, GBAT,

SumHer, LDSC, and LDER, we repeated steps (1)–(9) for all six ge-

netic architectures. For the analyses comparing with GCTA, we

only performed analyses of three genetic architectures (a ¼ �
1:0 with proportions of QTLs being 0.01, 0.1, and 1) of 61 genes

and 50 replicates for each gene. HESS computes eigenvalues and

squared projections of the effect size vector onto the eigenvectors

of the LDmatrix in its first step and estimates local SNP heritability

and the SE in its second step, which needs results of all 22 auto-

somes from the first step. We removed the loop of the 22 auto-

somes from the HESS code to go through the second step with

the result of only one gene from the first step.

Simulations for dichotomous phenotypes

We simulated phenotypes using the liability threshold model.17,27

For each gene, we simulated a population of 107 (or 108) diploid

individuals for a prevalence of K ¼ 10% (or K ¼ 1%) and denoted

the standardized genotypes as X as described for quantitive

phenotypes. We only simulated three genetic architectures with

a ¼ �0:25 and proportions of QTLs being 0.01, 0.1, and 1. For

each genetic architecture, we realized b and y as described for

quantitive phenotypes and converted y, the liability, into dichoto-

mous phenotypic valueswith the thresholdF�1ðKÞ. Then, for each
SNP,webuilt amarginal logistic regressionmodelwithout intercept

and performed an association test using the Logit class of Statsmo-

dels v.0.13.5. Similar to the simulations of quantitative pheno-

types, for the ith sample, we got zi from the association tests and

calculated _Ri and €Ri. But for dichotomous phenotypes, we only

ran with ðzi; _RiÞ and ðzi; €RiÞ for each of EHE, LDSC, LDER,

HESS, SumHer, and GBAT. Finally, we calculated Meanðbh2Þ,
SDðbh2Þ, MRBðbh2Þ, and MRBðSEðbh2ÞÞ as described for quantitative

phenotypes.
Validation with real datasets
GWAS summary statistics and heritability of protein-coding genes

We downloaded GWAS summary statistics of UK Biobank pheno-

types from the Neale Lab. We selected 42 complex phenotypes
The American Jour
with sample sizes greater than 100,000 and heritability calculated

by LDER above 0.1 (Table S1). For a dichotomous phenotype, we

calculated liability-scale heritability using the proportion of

affected individuals in the GWAS sample as the prevalence, as

no ascertainment was performed during sampling.28 LDER was

also used to calculate the heritability of all protein-coding genes,

including transcribed regions (from the first exon to the last

exon with introns included) and 10 kb flanking regions. We also

ensured that the squared genetic correlation coefficient calculated

by LDSC between each pair of phenotypes was less than 0.25

(Table S3). We used the 1000 Genomes Project European panel

to calculate LD scores for LDER and LDSC.

Then, we compared the local heritability estimates of protein-

coding genes among EHE, HESS, and GBAT for each of the 42 com-

plex phenotypes. SNPs within the transcribed region and its 10 kb

flanking regions are included for each gene. For all three methods,

we used the European panel of the 1000 Genomes Project as the

LD reference. For the second step of HESS, we decompose the total

SNP heritability of protein-coding genes calculated by LDER into

each gene. For GBAT, we removed genes warned in the running

log and genes with a zero SE from the results. For dichotomous

phenotypes, we calculated liability-scale heritability for EHE,

GBAT, and LDER by Equation 5, and then we decomposed the li-

ability-scale heritability of protein-coding genes calculated by

LDER into each gene in the second step of HESS. We plotted

Figure 4 by rMVP.26

Polygenicity and pleiotropy

Conditional EHE is a powerful tool for removing the heritability of

a gene tagged by other genes due to LD. Leveraging EHE, we

compared the conditional heritability among multiple groups of

significant genes. First, we performed the unconditional ECS

(uECS) test for each protein-coding gene for each of the 42 pheno-

types and further performed the conditional ECS (cECS) test13 for

genes with a uECS-significant p value (p < 2.5 3 10�6). To deter-

mine the order of genes within an LD group to enter a series of

cECS tests, we calculated their tissue selectivity scores18 by inte-

grating the GTEx v.8 tissue expression profile with genes’ uECS p

values. Second, for genes conditionally significantly associated

with a phenotype (cECS p < 2.5 3 10�6; also called candidate

susceptibility genes in the paper), we calculated their conditional

heritability. For genes in an LD block, the order of entering the

process of calculating conditional heritability was determined by

their cECS tests. For instance, Figure S7 shows the heritability of

protein-coding genes on chromosome 2 being uECS-significant

for asthma. In group one, there are eight uECS-significant genes.

Gene IL1R1 (1-1), which had the highest tissue selectivity score,

entered first into the series of cECS tests and the conditional her-

itability calculations, followed by gene IL1RL1 (1-2), which had

the second highest score. In this group, only the two genes are

cECS significant, and thus, only their conditional heritability

was further calculated. We calculated the heritability of candidate

susceptibility genes by summing the conditional heritability over

cECS-significant genes of a phenotype. We also estimated the her-

itability of the most significant half and the most significant

quarter of the cECS-significant genes of a phenotype. Third, we

separately collected genes conditionally significantly associated

withR3,R5, andR7 phenotypes. For each phenotype, we calcu-

lated the heritability of genes affecting R3, R5, and R7 genes by

summing their conditional heritability. Lastly, to investigate

polygenicity, we calculated the enrichment of heritability of pro-

tein-coding genes in all of, in the most significant half of, and in

the most significant quarter of the cECS-significant genes,
nal of Human Genetics 110, 1534–1548, September 7, 2023 1537



respectively. To investigate pleiotropy, we calculated the enrich-

ment of heritability of cECS-significant genes in genes affecting

R3, R5, and R7 phenotypes, respectively. Enrichment is defined

as the ratio of the proportion of heritability to the proportion of

genes.11
Results

Overview of EHE

EHE is a method proposed for accurately estimating local

heritability in a genomic region or gene, i.e., the ratio of

the genetic variance in a genomic region or gene to the

phenotypic variance. Its rationale is that the heritability

in a genomic region is the accumulation of non-redundant

heritability from its SNPs. Technically, EHE converts the

marginal heritability estimates at SNPs into a non-redun-

dant heritability estimate of a set of SNPs by a linear com-

bination of the marginal heritability estimates. The mar-

ginal heritability estimate of an individual SNP is

calculated from its GWAS p value, equal to the correspond-

ing chi-squared statistics of the p value with one degree of

freedom minus one, and then divided by its sample size.

This linear combination removes the redundancy in mar-

ginal heritability estimates due to LD and facilitates the

calculation of the SE of an estimate. In a simulation study,

EHE demonstrated higher accuracy for local heritability

estimation than alternative methods originally designed

for local or global heritability estimation (see Figure 1).

Additionally, EHE can estimate conditional heritability

with a correct SE by removing heritability tagged by nearby

genes. The conditional analysis allows for quantifying ge-

netic contribution among close genomic regions when in-

tegrated with functional annotations of genes. Theoretical

analyses show that EHE can produce unbiased local herita-

bility estimates (refer to material and methodsand supple-

mental methods for details).

We have created advanced algorithms, such as LD block-

ing and selective expression-supervised conditional itera-

tions, to implement EHE in a user-friendly software named

KGGSEE. This software can estimate local heritability and

conditional heritability for genes or regions. EHE uses

only p values as input and has high accuracy, making it

an important tool for dissecting the genetic architecture

of complex phenotypes using widely available large-scale

GWAS summary data. In this paper, we demonstrate

the use of EHE to investigate the local heritability of pro-

tein-coding genes and pleiotropic genes of 42 complex

phenotypes.

Gene-based heritability estimation by EHE and the

alternative methods in simulated datasets

We conducted simulations at 488 genes (a quarter of pro-

tein-coding genes in chromosome 1) with varying SNP

sizes to investigate the accuracy of EHE in estimating local

heritability. Additionally, we compared EHE’s estimation

accuracy and precision with six alternative methods

(GCTA,5 HESS,12 LDAK-GBAT,14 LDAK-SumHer,15 LDSC,8
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and LDER10). Figure 1 presents the comparison results for

24 representative scenarios under six genetic architectures,

assuming a true heritability of 0.1% in a gene for a quanti-

tative phenotype. EHE exhibits three key characteristics for

local heritability estimation using GWAS summary statis-

tics of a gene. Firstly, EHE demonstrates the highest accu-

racy among the six methods when there are not many

QTLs (quantitative trait loci) within a gene. For instance,

when the proportion of QTLs in a gene is 0.01 (but at least

one QTL), EHE consistently exhibits the smallest bias

among all the methods, irrespective of the SNP sizes

(ranging from 6 to 2,094) of the genes (Figures 1A, 1D,

1G, and 1J, etc.). In this condition, EHE is even more accu-

rate than GCTA that needs individual-level genotypes and

phenotypes as input (Figure 2). As the proportion of QTLs

increases to 1, the estimation bias of EHE slightly increases

but remains comparable to GBAT and LDER and is smaller

than HESS, SumHer, and LDSC in most scenarios (Fig-

ures 1C, 1F, 1I, and 1L, etc.). Notably, EHE utilizes less in-

formation than all the other methods for estimation by

disregarding the signs of LD coefficients and effect sizes.

Secondly, EHE is proved robust against LD noises when

LD coefficients are calculated from an independent refer-

ence sample. In most scenarios, EHE accurately and pre-

cisely estimates the true heritability when the LD matrix

is calculated from an independent reference sample of

500 individuals, similar to a continental ancestry panel

of the 1000 Genomes Project.29 The accuracy of EHE was

held for genes with a lower marker density, e.g., the

HapMap3 SNP panel (Figure S1). Conversely, HESS,

GBAT, and LDER exhibit increased estimation bias

when using an independent sample of 500 individuals

compared to using the original GWAS sample as the LD

reference panel especially when the SNP size is large

(Figures 1S, 1T, and 1U, etc.). Finally, EHE shows insensi-

tivity to genetic architectures where the effect sizes are

either negatively or not correlated with allele frequencies.

This characteristic also holds for other alternative

methods, as the power parameters �0.25 (for frequency-

dependent effect) and �1.0 (for frequency-independent

effect) result in similar MRBs of heritability estimates and

their SEs (Figures 1 and 3). When the true heritability

at a gene increased to 1%, EHE maintained its consistent

relative advantages, as depicted in Figure S2. Similar

to our observations for quantitative phenotypes, EHE

demonstrated accurate, precise, and robust estimation

of the true heritability for the majority of genes associ-

ated with dichotomous phenotypes, showcasing its

superior performance compared to alternative methods

(Figure S3).

Additionally, the simulation studies conducted in this

study demonstrated that the estimator of SE of EHE is

empirically unbiased and accurate, which is crucial for as-

sessing the confidence level of a local heritability estimate.

Figure 3 visually represents the consistency between EHE’s

SE estimates and the sample standard deviation calculated

from 100 estimates (SD100), regardless of gene SNP sizes
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Figure 1. Mean relative bias of estimated heritability (MRB
�bh2

�
) by six methods for genes with varying SNP sizes for a quantitative

phenotype
The scale of the y axes is MRB

�bh2
�
. The true heritability is 0.1% and the GWAS sample size is 20,000. The three panel columns represent

the proportions of QTLs Pr(QTL)¼ 0.01, 0.1, or 1. However, each gene contains at least one QTL. The rows indicate quantile intervals of
SNP sizes in a gene: first, second, third, and fourth. The odd-numbered rows correspond to a power parameter of a ¼ �1.0 for the effect
size model, while the even-numbered rows correspond to a ¼ �0.25. For the boxplot of each method, each data point represents
MRB

�bh2
�
calculated by 100 repetitions for a gene; the whiskers extend to 1.5 times of the interquartile range; the white rectangle of

each boxplot shows the mean.
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Figure 2. Comparison of gene-based heritability estimates among seven methods at 61 genes with 21 to 2,094 SNPs
The true heritability is 0.1%, the GWAS sample size is 20,000, and the power parameter a for the effect sizemodel is�1.0. The three panel
columns represent the proportions of QTLs, Pr(QTL) ¼ 0.01, 0.1, and 1. However, each gene contains at least one QTL.
(A–C) Each data point represents the mean of 50 heritability estimates for a gene.
(D–F) Each data point represents the MRB of 50 heritability estimates for a gene.
(G–I) Each data point represents the standard deviation of 50 heritability estimates for a gene.
(J–L) Each data point represents the MRB of 50 SE estimates for a gene. The whiskers extend to 1.5 times of the interquartile range; the
white rectangle of each boxplot shows the mean.
and genetic architectures. Notably, when the number of

SNPs was less than 222, the SD100 of the majority of genes

fell within the range between 0.05% and 0.075% for the

true heritability of 0.1% (Figure S4). Interestingly, calcu-

lating LD coefficients using 500 independent individuals

resulted in slightly smaller SD100. When comparing EHE

to other methods, the SD100 of EHE was comparable to

those of LDER and smaller than those of GBAT and

SumHer (Figure S4). It is worth noting that the two

methods (HESS and LDSC) that underestimated heritabili-

ty exhibited the smallest SD100 among the compared

methods. However, HESS showed the highest deviation be-

tween SD100 and SE estimates. GBAT displayed slightly

larger deviations between SE estimates and corresponding

SD100 in most scenarios (Figure 3). Note that the other

three methods dedicated to global heritability (SumHer,
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LDSC, and LDER) utilized jackknife estimators for SE,

which renders them unsuitable for estimating an SE of

local heritability due to insufficient SNP numbers in

most genes for the jackknife resampling.

Interestingly, LDER, originally designed for estimating

global heritability, achieved the second most accurate esti-

mation for local heritability in most scenarios. SumHer

generally exhibited larger variance compared to LDER,

while LDSC consistently produced estimates smaller than

the true values for most genes. Among the two alternative

tools specifically developed for local heritability estima-

tion, HESS also yielded estimates smaller than the true

values for most genes. GBAT appeared to be sensitive to

LD noises, as it tended to produce estimates larger than

the true values for genes with more than 230 SNPs (e.g.,

Figures 1S and 1V).
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Figure 3. Mean relative bias of estimated standard errors of heritability estimates
�
MRB

�
SE

�bh2
���

by threemethods for genes with
varying SNP sizes

The scale of the y axes is MRB
�
SE

�bh2
��

. The true heritability is 0.1% and the GWAS sample size is 20,000. The panel columns represent

different genetic architectures, including the proportion of QTLs (Pr(QTL)¼ 0.01, 0.1, or 1) in a gene and the power parameter (a¼�1.0
or �0.25) for the effect size model. The rows indicate quantile intervals of SNP sizes in a gene: first, second, third, and fourth. For the

boxplot of each method, each data point represents MRB
�
SE

�bh2
��

calculated by 100 repetitions for a gene; the whiskers extend to

1.5 times of the interquartile range; the white rectangle of each boxplot shows the mean.
EHE also accurately estimated conditional heritability

We conducted an additional simulation experiment to

examine the potential of EHE for removing redundant heri-

tability due to linkage disequilibrium (LD).When two genes

are inLD (e.g., genesA andB),wedefine the conditional her-

itability of gene B conditioning on gene A as h2
BjA ¼ h2

A;B �
h2
A, where h2

A;B denotes the overall heritability of both genes

and h2
A denotes themarginal heritability of gene A (and vice

versa). We propose the conditional EHE as bHBjA ¼ bHA;B �bHA, where bHA;B and bHA are EHEsofh2
A;B andh

2
A, respectively.

We randomly selected an LD block of 100 SNPs, with only

the first SNP being the causal SNP. The EHE calculated by

the last 50 SNPs (from the 51st to the 100th) is non-zero

due to LD (Figures S5A and S5C). Actually, there was no
The American Jour
true heritability in the last 50 SNPs, as there was no causal

SNP in this region.We applied EHE to estimate the heritabil-

ity of the last 50 SNPs (no causal SNP) conditioning on the

first 50 SNPs (with one SNP). As depicted in Figures S5B

and S5D, the conditional EHE successfully removed the

redundant heritability due to LD. The median of the esti-

mated conditional heritability in the last 50 SNPs was close

to zero, regardless of the GWAS sample size (10,000 or

50,000), true heritability (0.1% or 0.5%), and phenotype

class (dichotomous or quantitative phenotype). The SEs of

the conditionalheritabilitywere also similar to the empirical

ones among100 simulated datasets (Figure S6).Our findings

suggest that EHE can remove redundant heritability in

nearby regions or genes.
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The estimated heritability of genes for 42 phenotypes

We further validated EHE for the heritability of protein-

coding genes for each of the 42 phenotypes (Table S1) us-

ing real GWAS summary statistics provided by the Neale

Lab. Figure 4A provides an overview of gene-level heritabil-

ity estimates for the 42 phenotypes using EHE and two

other methods (HESS and GBAT) dedicated for local herita-

bility estimation (see Table S4 for the numeric results).

Based on EHE’s estimates ( bH ), 16 phenotypes exhibited

genes with bH > 1%, indicating the presence of genes

with large effect sizes. Genes with large effect sizes (or her-

itability) usually have higher implications in precision

medicine for phenotype prediction, treatment, and

drug development. Notably, the quantitative phenotype

with the largest number of genes (n ¼ 24) showing bH >

1% is sex hormone-binding globulin (SHBG). The gene

with the highest heritability is MPDU1 ( bH ¼ 2:85% 5

0:079%). Hypothyroidism shows the largest number of

genes ( n ¼ 8) with bH > 1% among all the seven dichoto-

mous phenotypes, with HLA-DQA1 exhibiting the highest

heritability ( bH ¼ 1:51%50:13%). However, it is impor-

tant to note that there are also multiple genes with large

heritability located within a proximity of less than 10 kb

to these two genes (see Table S4 for details). The high esti-

mated heritability of most of these genes is likely attributed

to their LD with the true functional genes, emphasizing

the need for conditional analysis to remove redundant

gene heritability. Conversely, we also observed 17 pheno-

types that did not exhibit genes with bH > 0:5%, suggest-

ing that these phenotypes are highly polygenic and more

challenging for precision medicine. Standing height and

college degree attainment are typical quantitative and

dichotomous polygenic phenotypes. For height, the gene

with the highest heritability is UQCC1 ( bH ¼ 0:47%5

0:032%). However, it is in LD with the well-established

gene growth differentiation factor 5 (GDF5, bH ¼
0:42%50:028%), which is located at the same chromo-

somal locus, 20q11.22. Moreover, many other height-asso-

ciated genes are distributed across different chromosomes

with estimated heritability exceeding 0.1% (Figure 4B).

Regarding college degree attainment, the region with the

largest number of genes exhibiting heritability around

0.1% is 3p21.31, with the gene RBM6 displaying the high-

est estimated heritability ( bH ¼ 0:13%50:021%). Again,

this locus also has multiple significant genes (p < 2.5 3

10�6) with similar heritability for the college degree.

We also observed differences between the three local

heritability estimation methods in the real data analyses.

HESS yielded more genes with very large heritability

(>2%) than EHE. For instance, HESS estimated the largest

gene-level heritability for SHBG as 4.90% 5 0.077%,

whereas EHE yielded a value of 2.85%5 0.079%. Similarly,

for the phenotype platelet distribution width (PDW), HESS

estimated the heritability of genes TUBB1 and ATP5F1E on

chromosome 20 as 2.75% 5 0.055% and 2.68% 5

0.055%, respectively, whereas EHE yielded values below

1% for both genes. On the other hand, HESS generally
1542 The American Journal of Human Genetics 110, 1534–1548, Sep
produced smaller estimated heritability for dichotomous

phenotypes compared to EHE. For example, HESS did not

identify genes with estimated heritability >1% for hypo-

thyroidism, whereas EHE identified eight such genes. How-

ever, the overall relative number of genes with large herita-

bility for every 42 phenotypes was consistent between

HESS and EHE (Figure 4A). GBAT, on the other hand,

generated numerous unrealistic estimates above 0.1,

accompanied by warning messages. However, excluding

genes with warning messages resulted in the omission of

several genes with large estimated heritability identified

by both EHE and HESS (Figure 4A). Notably, GBAT still pro-

duced large heritability estimates (>0.3%) for numerous

genes associated with standing height (Figure 4C). It is

worth noting that EHE demonstrated robustness in local

heritability estimation compared to HESS and GBAT, as

it does not require the consistency of reference allele defi-

nition for the LD and Z scores. This finding is consistent

with our simulation study observations, further high-

lighting EHE’s favorable performance for local heritability

estimation.

Driver tissues of complex phenotypes inferred for the

conditional heritability analyses

We proposed to use the selective expression of genes in po-

tential driver tissues to guide the entry order of genes for

the conditional heritability analysis by EHE. We assume

that genes with higher selective expression in potential

driver tissues are more likely to be the true susceptibility

genes and are given higher priority to enter the iterative

conditional heritability analysis procedure. However, as

driver tissues are often unclear, we utilized DESE18 to infer

the driver tissues of the 42 UKBB phenotypes (Table S2) us-

ing expression profiles of autosomal protein-coding genes

in GTEx.30 Our results show that, for most phenotypes, the

most significant driver tissues identified by DESE are

consistent with established biological knowledge. For

example, the pancreas was identified as the most signifi-

cant driver tissue for diabetes, while the CNS was the

most significant for a college degree, smoking status, chro-

notype, age of menarche, and neuroticism. Furthermore,

the liver was identified as the most significant driver tissue

for blood cholesterol concentration (CHOL). Based on

these results, we assert that DESE is a reasonable approach

for inferring driver tissues, and we assume that the method

used by DESE to prioritize susceptibility genes among

multiple genes in LD reflects the genetics in our empirical

analyses. Therefore, we used the selective expression of

genes in potential driver tissues identified by DESE to guide

the conditional heritability analysis of genes within one

LD block in the following analyses.

Heritability of pleiotropic genes for complex

phenotypes and polygenicity of complex phenotypes

The heritability of pleiotropic genes for a complex pheno-

type and polygenicity of a complex phenotype are impor-

tant characteristics of the genetic architecture of the
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Figure 4. Comparison of estimated gene-based heritability using three local heritability estimators with real GWAS summary statis-
tics
(A) Estimated gene-based heritability for 42 phenotypes using three methods.
(B) Manhattan plot illustrating the estimated gene-based heritability for standing height using three methods.
(C) Manhattan plot illustrating the estimated gene-based heritability for college degree awarding using three methods. Each dot repre-
sents a gene. The color bar indicates the density of gene counts per Mega base pairs in chromosomes, as shown in the outermost circle.
Refer to Table S4 for the numeric results.
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Figure 5. Heritability enrichment (Prðbh2Þ=PrðgenesÞ) of candidate susceptibility genes and pleiotropic genes
(A) Heritability of protein-coding genes and heritability of cECS-significant protein-coding genes. The error bars show SEs.
(B) The enrichments of heritability of protein-coding genes in all, the most significant half, and the most significant quarter of the cECS-
significant protein-coding genes.
(C) The enrichments of heritability of cECS-significant protein-coding genes in the genes affecting different numbers of phenotypes.
phenotype.31 We found that LD can cause many genes to

be indirectly associated with a phenotype, meaning they

appear to be associated only because they correlate with

a true susceptibility gene. The conditional analysis re-

moves these indirectly associated genes and retains the

directly associated ones, which are more likely to be the

true susceptibility genes. Therefore, conditional analysis

can help to identify the true genetic drivers of a pheno-

type. EHE is able to remove redundancy from the heritabil-

ity of a gene due to the presence of LD with other genes. By

taking advantage of EHE, we explored the polygenicity of

the 42 phenotypes by comparing the heritability enrich-

ments among conditionally significant genes and explored

the heritability of genes affecting different numbers of

phenotypes. We defined the heritability enrichment of a

group of genes as the ratio of the proportion of heritability

to the proportion of genes.11

First, we calculated the heritability of all cECS-significant

protein-coding genes (also refered to as candidate suscepti-

bility genes; Figure 5A). The proportion of heritability ex-

plained by candidate susceptibility genes highly depends

on the number of cECS-significant genes of a phenotype

(Pearson’s r ¼ 0.71, p ¼ 1.8 3 10�7). For example, for

height, there are 442 cECS-significant protein-coding

genes, and the heritability of the 442 genes is 27% 5
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0.23%, which accounts for 53.2% of the heritability of all

protein-coding genes; for diabetes, there are 41 cECS-sig-

nificant protein-coding genes, and the heritability of the

41 genes is 4.7% 5 0.096% which accounts for 22.4% of

the heritability of all protein-coding genes.

Then, we compared the heritability enrichments of pro-

tein-coding genes in all significant, the most significant

half, and the most significant quarter of the cECS-signifi-

cant genes among the 42 phenotypes (Figure 5B). The her-

itability enrichments among the three groups of genes are

highly correlated (Pearson’s r¼ 0.98, p¼ 3.13 10�30 for all

vs. the most significant half; Pearson’s r ¼ 0.92, p ¼ 3.1 3

10�18 for all vs. the most significant quarter). The highest

five heritability enrichments in all cECS-significant genes

are observed for balding (enrich 78.6 times), hypothyroid-

ism (enrich 83.9 times), age of menopause (enrich 96.3

times), vitamin D (VD) (enrich 105 times), and diabetes

(enrich 111 times). The lowest five heritability enrich-

ments in all cECS-significant genes are observed for hip

circumference (enrich 18.3 times), white blood cell count

(WBC) (enrich 21.1 times), height (enrich 21.7 times),

college or university degree (enrich 23.7 times), and

right-hand grip strength (enrich 25.5 times). A higher her-

itability enrichment in cECS-significant genes means that

a small fraction of genes have a greater effect on a
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phenotype, which indicates that the phenotype is less

polygenic. In contrast, a lower heritability enrichment in-

dicates that the phenotype is more polygenic.

Finally, we asked whether the heritability of a complex

phenotype is more enriched in pleiotropic genes. We

collected cECS-significant protein-coding genes for each of

the 42 phenotypes. There are 1,164 genes affecting three

or more phenotypes, 433 genes affecting five or more phe-

notypes, and199genes affecting sevenormorephenotypes.

The heritability enrichments of cECS-significant genes in

pleiotropic genes affectingdifferent numbers of phenotypes

are highly correlated (Pearson’s r¼ 0.80, p¼ 3.03 10�10 for

genes affecting R3 vs. R5 phenotypes; Pearson’s r ¼ 0.87,

p ¼ 9.63 10�14 for genes affectingR5 vs.R7 phenotypes;

Figure 5C). The average heritability enrichments of cECS-

significant genes in genes affectingR7 phenotypes (enrich

1.17 5 0.29 times) is slightly larger than that in genes

affectingR5 phenotypes (enrich 1.145 0.23 times), which

in turn is alsoonly slightly larger than that ingenes affecting

R3 phenotypes (enrich 1.115 0.14 times). However, none

of the differences is statistically significant (p > 0.05 for all

pairs of Mann-Whitney U-tests).
Discussion

The present study introduces two important concepts for

heritability estimation. First, we established a clear relation-

ship between the marginal heritability32,33 at individual

SNPs and the overall heritability8,10,11 of a genomic

region. While there are multiple methods for estimating

these two types of heritability, theyhavenot been explicitly

linked. Our finding that the overall heritability can be

approximated by a linear combination of themarginal her-

itability is significant. The linear combination cleans redun-

dant components in the marginal heritability due to LD,

enabling the overall heritability to be interpreted as the

non-redundant component of the summation of the mar-

ginal heritability values of all SNPs (named effective herita-

bility). Furthermore, our explicit linear combination-based

estimator of heritability is more accurate than widely used

LD score regression-based methods,8,10 leading to a

straightforward and reliable calculation of SEs. Second, we

proposed to estimate conditional heritability for regions

or genes. This is important for local heritability estimation,

as many regions are in LD, and some estimated heritability

may only be "hitching a ride" on true heritability in nearby

regions. Conditional heritability can remove indirect heri-

tability. We also derived the theoretical SE of conditional

heritability estimates and proposed a framework using the

selective expression of tissues or cell types to supervise the

conditional procedure, similar to our previous methods

for estimating driver tissues or cell types of complex

phenotypes.18,19

In addition to the two concepts introduced in this study,

EHE is technically distinct from existing methods for local

heritability estimation, such as HESS.12 EHE is a linear
The American Jour
combination of marginal heritability estimates of SNPs,

while HESS is a quadratic form of marginal effect estimates

of SNPs. However, a potential issue with using effect sizes is

that the sign of an effect size depends on the genotype en-

coding in the GWAS sample, and inconsistencies between

the encoding in GWASs and the encoding used for the LD

reference panel can lead to inaccurate estimation. Since

heritability is independent of genotype encoding, EHE

does not need to consider the sign of LD coefficients. The

marginal heritability used by EHE can be easily obtained

from the GWAS p values of individual SNPs. Although

both EHE and HESS calculate the Moore-Penrose inverse

once, the simpler algebraic operation makes EHE more

robust against random noises in the LDmatrix and test sta-

tistics than HESS (Figure 1).

The EHE method proposed in this study is specifically

designed to estimate the heritability of local genomic

regions, rather than the entire genome or chromosomes.

This is because the number of SNPs used for local heritabil-

ity estimation is much smaller than that used for whole-

genome heritability estimation, which makes the widely

used LD score regression-based model8,23 unsuitable. In

contrast, EHE relies on the accurate estimation of marginal

heritability for a limited number of SNPs and can reliably

calculate local heritability and SE using a simple algebraic

operation. Furthermore, we demonstrated that EHE can

also be used to estimate conditional heritability to priori-

tize adjacent genomic regions, which is crucial for genetic

fine-mapping analyses. However, the EHE method may

not be appropriate for estimating the heritability of the

entire genome because the aggregation of the heritability

of genomic regions may lead to incorrect estimates due

to accumulated estimation errors. Hence, we suggest that

EHE may be better suited for gene-based or regional herita-

bility estimation, especially for conditional heritability.

By applying EHE to various complex phenotypes, we

uncovered intriguing patterns in the genetic spectrum of

human phenotypes. Our analysis revealed two distinct ge-

netic architectures among the 42 phenotypes examined.

While some phenotypes, like hypertension and height,

displayed high polygenicity without genes exceeding

certain heritability thresholds (e.g., 0.16% or 0.5%),

others, such as sex hormone-binding globulin and hypo-

thyroidism, exhibited substantial heritability (>1%) attrib-

uted to specific genes. These findings suggest that for

certain complex phenotypes, it may be easier to identify

candidate genes for precise diagnosis, treatment, and

potential druggable targets, while for others, a limited

number of genes may be insufficient to fully understand

the phenotype, requiring a different approach to preci-

sion medicine. Additionally, the presence of LD adds

complexity to the observed genetic architectures. In most

genomic regions, many genes exhibit significant heritabil-

ity estimates for a given phenotype. However, it is crucial

to consider that many of these genes likely reside in LD

with the true causal genes. So, it is imperative to identify

and exclude genes with redundant heritability estimates,
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ensuring a more accurate delineation of the genes truly

contributing to the phenotype. Fortunately, EHE’s condi-

tional heritability estimation offers an efficient solution

to this challenge. Furthermore, our analysis demonstrated

that highly pleiotropic genes, typically assumed to have

higher heritability due to their connectivity and criticality

in biological networks,34,35 do not necessarily exhibit

greater heritability than other genes associated with the

same phenotypes. This unexpected finding suggests a so-

phisticated mechanism for developing complex diseases,

where diverse pleiotropic genes contribute to phenotypes

through intricate interactions and regulatory mechanisms.

Overall, the application of EHE offers valuable insights

into the genetic architecture of human phenotypes,

including the distinction between genetic architectures,

the impact of LD, and the complex relationship between

gene pleiotropy and heritability, thus enhancing our un-

derstanding of complex diseases and informing precision

medicine strategies.

It is important to note that addressing population strat-

ification in a local region is more challenging than in the

whole genome. EHE does not have parameters specifically

designed to address population stratification as in LD-

score-based regression models.8,23 The presence of popula-

tion stratification can lead to inflated chi-squared statistics

and overestimated local heritability. However, in practice,

when the phenotype is not too polygenic,36,37 the mar-

ginal heritability of SNPs can be obtained by generating

chi-squared statistics corrected by genomic control. Addi-

tionally, the gene-based heritability estimated by EHE

can be adjusted by the inflation factor estimated by the

global heritability estimator (e.g., LDER10 and LDSC8).

Therefore, an optional parameter on KGGSEE is provided

to correct the input chi-squared statistics by an inflation

factor before calculating the marginal heritability. It

should be acknowledged that adjusting for population

stratification is also routinely performed during GWASs

by including principle components as covariates38,39 to

produce more reliable p values and chi-squared statistics

in each GWAS cohort. Therefore, the limitation of EHE

not having a specific parameter for addressing population

stratification would not discourage its application to

GWAS data.
Data and code availability

All algorithms in the paper have been implemented in a Java pack-

age, KGGSEE. KGGSEE is publicly available at http://pmglab.top/

kggsee. Materials capable of repeating the simulation analyses in

this study are available at https://github.com/PMGLab/EHEsim.

Scripts capable of repeating the empirical analysis of Figure 4 are

available at https://github.com/PMGLab/EHEemp.
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