
Seeking in Ride-on-demand Service: A Reinforcement Learning Model with
Dynamic Price Prediction

Suiming Guoa, Chao Chenb

aJinan University, 510632, Guangzhou, Guangdong, China
bChongqing University, 400044, Chongqing, China

Abstract

Recent years witness the development and increasing popularity of ride-on-demand (RoD) services such as
Uber and Didi. Compared with traditional taxi service, RoD service is “more data-driven” and adopts
dynamic pricing mechanism, of various forms, to manipulate the supply and demand in real time. The
dynamic price could be viewed as an accurate and quantitative indicator of the supply and demand, and
could provide clues to drivers, passengers, and the service providers, possibly reshaping the ways in which
some problems are solved. In this paper, we focus on the seeking route recommendation problem that aims
at recommending highly profitable or efficient seeking routes to drivers of vacant cars, and incorporate the
effects of dynamic prices. We first justify our motivation by showing the importance of route recommendation
and answering why it is necessary to consider dynamic prices that rapidly fluctuate throughout a day, based
on the analysis of real service data. We then design a dynamic price prediction model to generate the
dynamic prices at any given time and location based on features extracted from multi-source urban data.
After that, a reinforcement learning model is adopted to perform seeking route recommendation based on
real service data. We conduct extensive experiments in different spatio-temporal combinations and make
comparisons with different baselines. Results not only validate that our dynamic price prediction model
is highly accurate, but also prove that taking the real-time predicted dynamic prices into consideration
significantly increases both driver revenue and utilization rate than merely using the average dynamic prices
or completely ignoring dynamic prices.

Keywords: Ride-on-demand, dynamic price, driver revenue, reinforcement learning,

1. Introduction

During the last decade, ride-on-demand (RoD) service such as Uber and Didi first emerged as a new and
disruptive mode of transport compared with traditional taxi service, and has gained increasing popularity
in the market since then. RoD service is either convenient or beneficial for passengers and drivers. For
passengers, it is more convenient to request for service through smart phones, and the price is more affordable;
for drivers, in many cities it is not required to apply for licenses or medallions before driving, and working
schedules are more flexible.

RoD service has two unique features, namely, the use of dynamic pricing, and being data-driven.
Dynamic pricing. Dynamic pricing, also known as “surge pricing” when it was introduced in Uber,

aims to manipulate the supply and demand in real time, i.e., the service provider sets a higher price when
demand – potential passenger requests – exceeds supply – vacant cars on the road, and vice versa. Possible
forms of dynamic pricing include auction-based mechanisms, additive bonus to the trip fare, and multiplying
the trip fare by a real-time factor (called “dynamic price multiplier”), etc. Most service providers choose
the multiplicative form in practice, and so does our study.

Email addresses: guosuiming@email.jnu.edu.cn (Suiming Guo), cschaochen@cqu.edu.cn (Chao Chen)

Preprint submitted to Transportation Research Part C November 28, 2023

Dynamic pricing could be viewed as a closed-loop feedback mechanism to manipulate the supply and
demand: the price is determined based on the real-time supply and demand condition, and it, in turn,
controls the supply and demand in a way leading to a higher service efficiency. Besides, dynamic prices could
also be regarded as an accurate indicator of supply and demand, based on which drivers, passengers, and
the service provider are now able to inspect changes on the road or design heuristics as well as algorithms to
deal with such changes, e.g., improving the efficiency of seeking, scheduling or dispatching, providing certain
recommendation service, etc.

Data-driven. The use of on-board GPS devices triggers a large amount of studies and applications in
taxi service since the beginning of the last decade. Examples of studies based on GPS trajectories include
inferring order origins and destinations, detecting possible detours, optimizing for driver revenue based on
driving habits, etc.

RoD service goes one step further and tremendously expands the volume and variety of data. It is mainly
based on smart phones and mobile apps, which is a data source providing much more abundant information.
For example, accurate order information is now readily available, including origin, destination, the time
getting on/off the car, the time and location the request is issued, text descriptions (typed by the user on
the mobile app) of origin and destination, etc. User behavior log is also possible, as it could be recorded by
the mobile app. Typical user behaviors include the type of mobile device, the number of times one checks
for trip fare, the regions one zooms in and out to view available drivers, etc. All these new sources of data
offer richer information than the traditional GPS trajectories, empowering researchers, service providers or
any other third parties to design algorithms, conduct experiments and perform evaluations to make RoD
service more efficient than before.

With these two new features, it is now possible to reshape the ways in which some traditional problems
are solved. In this paper we focus on the seeking route recommendation problem, a widely studied problem in
mobility service, especially taxi. Basically, seeking route recommendation aims at recommending profitable
or efficient seeking routes to drivers of vacant cars. Drivers themselves may adopt some naive strategies
based on experience or word-of-mouth. Such strategies may be inaccurate, and may even suggest a large
number of drivers blindly flocking to the same hot spots such as the central business district, exacerbating the
already imbalanced supply and demand condition. Algorithms developed in previous taxi-related studies
solve this problem by finding local or global hot spots, modelling driver behavior using Markov decision
process, simulating driver behavior using physics-based approaches, etc.

Things are different in RoD service. Firstly, the data-driven feature enables us to acquire more datasets,
such as multi-source urban data, to solve the problem. Secondly, dynamic prices could be an accurate and
readily available indicator of supply and demand, which previous studies go into great lengths to find out.
Furthermore, to make full use of dynamic prices that fluctuate in real-time, it should be evaluated on a fine
spatio-temporal granularity, e.g., using recent or average dynamic price multipliers may not be enough.

In this paper, we solve the seeking route recommendation problem by combining reinforcement learning
with dynamic price prediction. We first give intuitive answers to two questions, i.e., why recommending
seeking routes and why considering dynamic prices, based on the analysis of real service data. After that,
a seeking route recommendation framework consisting of two parts is built. The first part is a dynamic
price prediction model based on multi-source urban data, trying to obtain a dynamic price multiplier given
the spatio-temporal condition and other relevant features when a driver picks up a passenger. Evaluation
results show that our dynamic price prediction model achieves an accuracy ranging from about 83% to 90%
in different settings, laying a solid foundation for the reinforcement learning model. In the second part, we
use Markov decision process to model the seeking behavior, and adopt a reinforcement learning model to
tackle the seeking route recommendation problem, in which the predicted dynamic prices from the first part
are incorporated into reward design. We evaluate driver earnings and utilization rates under our model, and
it proves that taking the real-time predicted dynamic prices into consideration significantly increases both
metrics than merely using average dynamic prices or completely ignoring dynamic prices.

Our contributions are listed in the following:

• We summarize the two unique features of RoD service, i.e., dynamic pricing and data-driven, and
solve a common problem, albeit widely studied in previous taxi service, by making full use of these

2

two features. Specifically, for the seeking route recommendation problem, we first build a dynamic price
prediction model and then show that considering dynamic prices, especially the real time predicted
dynamic prices, is beneficial for increasing driver earnings. By comparison, most previous works do
not consider dynamic pricing and simply treat RoD service as a new version of taxi. Even the few
works that indeed consider dynamic pricing only calculate the average or historical prices and ignore
its real time nature.

• We adopt a reinforcement learning model to solve the seeking route recommendation problem, and
incorporate dynamic prices into the model. The reinforcement learning model helps to consider the
long term effects of seeking routes and thus redistributes drivers more effectively.

• We conduct extensive experiments and comprehensively evaluate both our dynamic price prediction
and reinforcement learning model. Firstly, we use real service datasets from a typical RoD service in
China, making our results and discussions more convincing and tenable. Secondly, for each model, we
compare its performances with a number of state-of-the-arts and provide a detailed discussion.

The remainder of this paper is organized as follows. Section 2 reviews the related work. In section 3
we present our datasets and provide a detailed and intuitive analysis. Section 4 and section 5 discuss
the dynamic price prediction and the reinforcement learning model, respectively. Section 6 presents a
comprehensive evaluation on both models. Section 7 gives a brief summary and some discussions based on
evaluation results. Finally, section 8 concludes the paper.

2. Related Work

We provide discussions on related work about three topics: RoD service, dynamic price and its prediction
in RoD service, and seeking in taxi or RoD service.

RoD service. RoD service is also known as on-demand ride-hailing, and in some cases, people may call
it as ride-sharing. In fact, “RoD” and “ride-sharing” have different emphases. Ride-sharing emphasizes the
share of rides with the same or similar origins or destinations, either between passengers or between the
driver and passengers. Such sharing was common during the early deployment of Uber, as it was an effective
means to attract more drivers and increase market share. RoD, on the other hand, emphasizes “on-demand”
– the service is available as soon as one asks for it at any time or location. Under this setting, RoD service
is viewed as a disruptive new version of taxi, by supporting mobile app, adopting dynamic prices, and being
data-driven. Our study focuses on RoD service, so we omit the discussions on ride-sharing.

Compared with taxi, RoD service is relatively new, and thus receives limited attention. Most studies
simply treat RoD as a service similar to taxi, and want to find out the differences between them. For
example, [1] focuses on the passenger waiting time and make a comparison, of both waiting time and price,
between Uber and taxi; [2, 3] choose the market share as the study target; [4, 5] discuss the impacts and
market effects of Uber’s entrance – e.g., how driver behavior is changed since Uber takes place.

Dynamic price and its prediction in RoD service. Dynamic pricing plays an important role in
many services, as an effort to either improve service efficiency or manipulate supply and demand in different
forms. For examples, dynamic pricing is used in Internet retail [6], hotel pricing [7], flight ticket pricing
[8, 9], inventory management [10], etc.

As one of the two unique features of RoD service, dynamic pricing and its effects are studied in a number
of works. For example, [11, 12, 13] discuss the effects of dynamic pricing in balancing and redistributing
supply and demand, increasing driver revenue, and reducing passenger waiting time. [14], as a typical
early study of RoD or on-demand ride-hailing service, evaluates Uber’s surge pricing as a black-box by
placing simulated mobile app users across important locations. [15, 16] explore demand pattern, the effects
of dynamic pricing on passengers, passenger behavior, and etc. [17] combines pricing with dispatching,
which is a more traditional problem, and proposes a distributed pricing framework. Some studies take an
economics perspective: examples that consider the effects of dynamic pricing on supply and demand include
[11, 18, 19].

3

The problem of dynamic price prediction is also tackled using various methods. For example, [20] defines
the predictability of price multipliers and uses Markov-chain or neural network models to predict average
dynamic price multiplier of a region based on the predictability. [21, 22] turn to the prediction at a finer
granularity and predict the dynamic price multiplier given time and location using linear regression or
neural network based on multi-source urban data. [23] summarizes the above works, adopts an ensemble
learning model, and chooses different models based on price multiplier predictability. [24], on the other hand,
emphasizes the interpretability of price prediction results and presents a simple but quantifiable approach
to dynamic price prediction. It gives a detailed evaluation as to what features have more obvious impacts
on price multipliers.

Seeking in taxi or RoD service. Seeking analysis is also a highly visible topic in traditional taxi
service, and in RoD service it also receives some, yet limited, attention. Generally speaking, we could divide
such analysis into seeking strategies analysis and seeking route recommendation, the latter of which is the
target of study in this paper.

Seeking strategies analysis could be considered as a macro-level problem, and tries to uncover the rela-
tionship between driver seeking strategies (e.g., choosing hot spots, driving faster, etc.) and revenue. For
example, [25, 26] consider two different strategies, i.e., hunting or waiting for passengers, and compare their
performances under different circumstances, based on taxi GPS trajectories. In RoD service, [27] collects
multi-source urban data and designs a framework to mine the relationship between driver revenue and the
carefully-crafted features that are relevant to seeking strategies. In such relationship, dynamic prices become
an important component.

Seeking route recommendation could then be considered as a micro-level problem, and aims to recommend
the right road segment or city cell a driver should keep seeking for so that driver revenue is increased. In
these studies, Markov decision process is frequently used to model the interaction between drivers and the
service itself – e.g., [28, 29, 30, 31]. Another example using Markov decision process is [32], and it mainly
pays attention to electric taxis and make charging decisions based on both battery constraint and GPS
trajectories. Besides Markov decision process, [33] generates recommendation results by minimizing the
distance between taxis and potential passenger requests; [34, 35] apply reinforcement learning; [36] solves
the problem by allowing a single driver to be matched to multiple passengers; [37] builds theoretical models
and optimization problems. In RoD service, [38] uses Q-learning to recommend profitable seeking routes.

Different from the above works, our study combines the power of dynamic price prediction and seeking
route recommendation. Firstly, we implement a more robust and accurate dynamic price prediction model
and achieve a satisfactory prediction accuracy. More importantly, we explain why it is necessary to consider
the predicted dynamic price multipliers in seeking route recommendation, and make a thorough evaluation
about the effects of price prediction, of reinforcement learning, and of both, on driver revenue.

3. Data and Analysis

In this section, we first present the multi-source urban datasets used in our paper, and then provide a
detailed data analysis to give intuitive answers that motivate our study.

3.1. Multi-source Urban Datasets

We categorize the multi-source urban datasets into RoD datasets, taxi dataset, and public datasets.

3.1.1. RoD Datasets

In a typical RoD service, both order request and creation are done on a mobile app, basically in the
following procedure. The user first types the intended origins and destinations or chooses from the recom-
mended locations, and then the mobile app sends back all the information and retrieves an estimated trip
fare as well as the current dynamic price multiplier. The estimated trip fare is the product of dynamic price
multiplier and a base fare that is determined by trip distance and duration. In our dataset, the dynamic
price multiplier ranges from 1.0 to 1.6. The user then makes a decision, either accepting the estimated trip
fare and creating an order, or giving up and possibly requesting again later.

4

Unlike previous studies on seeking route recommendation in taxi service that mainly rely on taxi GPS
trajectories, in RoD service the “data-driven” feature makes it possible to obtain more datasets. In our
study, we also acquire order data and dynamic price data besides GPS trajectories. These datasets are
explained in details in the following.

GPS trajectories. This dataset is similar to the taxi GPS trajectories dataset that has been widely
used before. It contains the periodic GPS records, in longitude and latitude, of every single car in operation.
Each record includes the longitude and latitude, time stamp, speed, direction, the unique car ID, etc. This
dataset spans from Aug. to Nov. 2016, and contains the records of about 3,500 to 3,800 cars daily in Beijing,
China. Specifically, the ranges of longitude and latitude are [116.21, 116.56] and [39.81, 40.08].

Order and dynamic price data. The information of orders and dynamic prices are recorded in the
same dataset. For the order data, in RoD service, the use of mobile app enables accurate recording of order
information, as order origins and destinations are now clearly specified by users and recorded by the service
provider. For the dynamic price data, the price multiplier is recorded when the service provider returns
the estimated trip fare and current price multiplier. Sometimes getting the trip fare estimates does not
mean order creation, and to accurately associate an order with a price multiplier, only the price multiplier
returned in the trip fare estimate that is closest to order creation is retained. Our dataset also covers the
time span from Aug. to Nov. 2016, and the total number of orders is 2, 742, 120. Each entry includes origin,
destination, the time getting on and off, the unique ID of passenger/driver/car/order, the estimated trip
fare, price multiplier, etc.

In all the above datasets, all unique IDs of drivers, passengers and cars are anonymized so that one
cannot relate an ID to a specific person or car.

3.1.2. Taxi Dataset

Besides RoD datasets, we also use taxi GPS trajectories as an auxiliary dataset. The reasons are
straightforward. Firstly, as mentioned in [24], RoD and taxi service are similar and complementary to each
other, and hence driver behavior should be similar. For example, a hot region in taxi service may also
be good enough for RoD drivers. In other words, taxi GPS trajectories could serve as a useful guideline
for RoD drivers. Secondly, taxi service data also describes car movements on the roads and is helpful in
characterizing the traffic in different spatio-temporal combinations. For example, if the average speed of
taxis is low, then it may be an indication of traffic congestion in a region. Our taxi GPS trajectories covers
the same time span, and contains records of about 30,000 taxis in Beijing.

3.1.3. Public Datasets

As part of our multi-source urban datasets, we also acquire public datasets to provide more information
in dynamic price prediction. There are a lot of possible choices, and in our study we choose the POI data
and public transport distribution data, as described in the following.

POI data. POI information is widely used in studies on location-based service, and it characterizes the
type of a location such as airport, restaurant, etc. Here we rely on POI data to describe the origins and
destinations of orders. We crawl the POI data from AMap service, one of the most popular online map
service providers in China. In our data, each POI falls in one of the 14 categories: car service, restaurant,
shopping, sports & entertainment, hospital, hotel, scenic spot, business & residential building, government,
education & culture, transportation facility, finance & insurance, business and lifestyle.

Public transport distribution data. Public transport services – e.g., bus, metro, tram, public rental
bike – also play an important role in transportation, and the effects of considering public transport data are
similar to that of considering taxi data. That is, the status of public transport services could give a hint
on RoD driver behavior and describe traffic condition. In our study, we choose the distribution of bus and
metro service as our public transport distribution data. Specifically, we acquire the locations of all bus (and
metro) stations and all the buses or metros that stop by these stations, from AMap service, similar to our
POI data. It should be noted that though the most accurate description of bus or metro distribution should
be dynamic and recorded in real-time by, say, examining the smart-card usage data or the GPS trajectories
of buses and metros, we consider it enough to simply count the stations and lines because such data are
easily accessible and public transport services usually have fixed timetables.

5

3.2. Data Analysis

In data analysis, we give intuitive answers to two questions, i.e., why recommending seeking routes and
why considering dynamic prices, for two purposes. Firstly, the data analysis helps to form a comprehensive
picture and gain some understanding about RoD service. Secondly, it also provides inspiration for our study.

3.2.1. Why Recommending Seeking Routes?

Before presenting data analysis results, we first give the definition of driver revenue. The fare of a RoD
trip, i.e., the driver revenue during this trip, is defined as,

r = dpo · (fbase + fd ∗ dtrip). (1)

In (1), dpo, fbase and fd are the dynamic price multiplier at the trip origin, the flag-fall price, and the
unit price per kilometre, respectively. dtrip is the trip distance from the origin to destination. This is an
approximation, ignoring the extra fare of slow driving and minimum distance, and we consider it acceptable
because these two terms are usually much smaller. In our dataset, we have fbase = 15 and fd = 2.8, both in
RMB Yuan. We also show the distribution of revenue efficiency during some specific time period, and it is
simply the total revenue obtained during the period divided by the length of the period.

In our analysis, we first show the distribution of revenue efficiency among all drivers during four repre-
sentative time periods, i.e., [8:00, 9:00), [12:00, 13:00), [18:00, 19:00), and [23:00, 0:00), in Fig. 1. Intuitively,
these four time periods correspond to morning rush hour, non-rush hour around noon, evening rush hour,
and late night hour. Similarly, in Fig. 2 we also show the distribution of searching time, i.e., the time a
driver seeks for passengers between two consecutive trips, during these time periods. In addition, Tab. 1
summarizes some simple statistics – i.e., the 1st quartile, 3rd quartile, and average – of both revenue efficiency
and searching time from Fig. 1 and Fig. 2.

(a) the pdf of revenue efficiency during period 8-9. (b) the pdf of revenue efficiency during period 12-13. (c) the pdf of revenue efficiency during period 18-19.(d) the pdf of revenue efficiency during period 23-0.

Figure 1: The probability distribution functions of revenue efficiency during four representative time periods.

(b) the pdf of searching time period 12-13. (c) the pdf of searching time period 18-19. (d) the pdf of searching time period 23-0.(a) the pdf of searching time during period 8-9.

Figure 2: The probability distribution functions of searching time during four representative time periods.

We have the following observations regarding Fig. 1, Fig. 2, and Tab. 1:

• Both revenue efficiency and searching time vary significantly across different time periods.

– For example, in the morning rush hour, the average revenue efficiency and average searching time
are the highest and the lowest, respectively, among all four time periods. The late night hour is
just the opposite.

6

Table 1: The statistics of revenue efficiency and searching time during four representative time periods.

Time period
Revenue efficiency (Yuan/min) Searching time (min)

1st quartile 3rd quartile average 1st quartile 3rd quartile average

[8:00, 9:00) 0.71 1.06 0.88 8 20 15.49

[12:00, 13:00) 0.62 0.96 0.80 15 29 22.63

[18:00, 19:00) 0.63 0.97 0.81 12 26 19.73

[23:00, 0:00) 0.54 0.98 0.78 20 36 28.14

– Comparing between the late night hour and the evening rush hour (or the non-rush hour around
noon), it should also be noted that the difference of searching time is much more obvious than that
of revenue efficiency. This makes the seeking route recommendation problem more complicated.

• Both revenue efficiency and searching time vary significantly across drivers. For revenue efficiency,
during [8:00, 9:00), the 3rd quartile is 49.30% higher (1.06 v.s. 0.71) than the 1st quartile, and during
[23:00, 0:00), the percentage is much higher and achieves 81.48% (0.98 v.s. 0.54). For searching time,
the comparison is similar.

• Therefore, it is necessary to recommend seeking routes to drivers. Firstly, a good seeking strategy or
seeking route could help those lower-earning drivers become more efficient and earn more. Secondly,
such recommendation should consider carefully as to what features influence the recommendation
results. For example, our observations above shows that the temporal features are important enough.

3.2.2. Why Considering Dynamic Prices?

Previous studies on seeking route recommendation in taxi service usually go to great lengths in finding
“hot spots” or finding locations with more high-earning orders. In RoD service, the dynamic price multiplier
is an accurate indicator of the supply and demand condition – which is just the goal of using dynamic pricing
– and it should be an integrated description of the information that previous studies want to find out.

To justify that it is necessary to consider dynamic prices in seeking route recommendation, in the following
we show and explain the distribution of dynamic price multipliers on both temporal and spatial dimension.
Fig. 3 show the temporal distribution of dynamic price multipliers on both weekdays and weekends. In
Fig. 3, we calculate the average dynamic price multiplier among all orders every half an hour, in the whole
city of Beijing.

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

time

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

av
er

ag
e

pr
ic

e
m

ul
tip

lie
r

Weekday
Weekend

Figure 3: The temporal distribution of dynamic price multipliers.

It is clear from Fig. 3 that,

7

• The average dynamic price multiplier is greater than 1.0 in most of the time. In some time periods,
e.g., the evening rush hours on weekdays, the average dynamic price multiplier reaches as high as 1.35.
In other words, dynamic prices have a significant impact on driver revenue.

• The dynamic price multiplier has different patterns during different hours-of-day or days-of-week, and
hence temporal features are important. For example, on weekdays, there are four obvious peaks: the
small hours, the morning and evening rush hours, and the late night hours. On weekends, the patterns
are different: there are not morning rush hours, and price multipliers remain at a low level until evening
rush hours.

• The dynamic price multiplier fluctuates rapidly throughout a day. This is the result of its real-time
nature, as it is designed to reflect the real time changes of supply and demand. As a result, when
considering dynamic prices in our study, a fine temporal granularity is needed, and simply calculating
the average or historical price multipliers is not enough.

On the spatial dimension, we focus on the evening rush hours [18:00, 19:00) on weekdays, divide the
area of study (i.e., within longitude [116.21, 116.56] and latitude [39.81,40.08]) into 900 (= 30 × 30) cells,
and plot the spatial distribution of the number of orders (i.e., demand), dynamic price multipliers, and the
number of vacant cars (i.e., supply) in Fig. 4, Fig. 5 and Fig. 6. It is shown that:

• The distributions of the number of orders as well as vacant cars are spatially imbalanced, and it is
thus necessary to recommend seeking routes. These distributions agree with common intuitions: the
number of orders and vacant cars are much higher in the city center, and are drastically reduced in
city suburbs. One thing to notice is that the airport of Beijing is located at the upper right corner in
these figures, and the vacant cars towards the upper right corner in Fig. 6 corresponds to those going
to and from the airport.

• The distribution of dynamic price multipliers is also spatially imbalanced, but with more complicated
patterns. Intuitively, the price multiplier is higher in the city center. Counter-intuitively, the price
multiplier in the city suburbs surrounding the city center is even higher, indicating severe supply and
demand imbalance.

• Comparing the above two observations, the reason of having higher price multipliers but fewer orders
and cars in city suburbs is that drivers tend to flock to city center to seek for passengers, leaving a very
limited number of drivers in suburbs. Though the orders are indeed fewer in suburbs, the number of
drivers is still not enough to meet the demand. To the contrary, for those drivers going to city center,
though there are indeed more orders, there are even more drivers, making price multipliers lower.

• Therefore, if dynamic price multipliers are observed and considered in seeking route recommendation,
it is possible to guide more drivers to make better and more informed decisions, e.g., staying in city
suburbs to seek for passengers. This not only increases driver revenue, but eases the imbalance between
supply and demand and improves service efficiency as well.

To summarize, the reasons why dynamic prices should be considered in seeking route recommendation
are two-fold:

• Dynamic price multiplier changes rapidly on the temporal dimension and has a significant impact on
driver revenue, so it should be carefully considered in a fine granularity.

• The spatial distribution of dynamic price multipliers reveals some counter-intuitive insights, show-
ing that considering dynamic prices is helpful in guiding drivers to make better and more informed
decisions.

8

Figure 4: The spatial distribution of the
number of orders.

Figure 5: The spatial distribution of dy-
namic price multipliers.

Figure 6: The spatial distribution of the
number of vacant cars.

4. Dynamic Price Prediction

The rationale behind doing dynamic price prediction is simple. Firstly, dynamic price multiplier should
be considered in seeking route recommendation so as to guide drivers to make better decisions. Secondly,
dynamic price multiplier should be evaluated at a fine spatio-temporal granularity, so simply using average
or historical price multipliers may not be enough.

The goal of our dynamic price prediction problem is simplified as predicting the dynamic price multiplier
given the spatio-temporal information (e.g., time, date, longitude, latitude, etc.). In RoD service, the
price multiplier is usually discrete. For example, in our dataset the price multiplier falls in the range
DPrange = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6]. Therefore, predicting the price multiplier could be viewed as a
classification problem. The input to the classifier is a feature vector extracted from our multi-source urban
data that gives further details based on the spatio-temporal information. The output is one of the 7 possible
price multipliers. We have the following definition of our dynamic price prediction problem:

Definition 4.1 (Dynamic Price Prediction Problem). Given the spatio-temporal information (e.g., time,
date, longitude, latitude, etc.),

Extract an input feature vector, denoted by ~X, from our RoD order and dynamic price data, taxi data,
POI data and public transport distribution data.

Predict p̂(y = d̄| ~X),∀d̄ ∈ DPrange: the probability of a candidate price multiplier d̄ being the actual

price multiplier y based on the input feature vector ~X. The price multiplier with the largest probability is
the output of the classification problem.

4.1. Feature Extraction

In feature extraction, we first obtain the spatio-temporal information (e.g., time, date, longitude and
latitude) from every order in our RoD order data, and then generate the following features corresponding
to each order. Features are divided into four different contexts, namely temporal context, spatial context,
historical dynamic prices context, and taxi service context. The price multiplier obtained from our RoD
dynamic price data that corresponds to each order is used as the ground truth in model training.

4.1.1. Temporal Context

Temporal context features are the most basic, and are simply the time and date obtained from each
order in RoD order and dynamic price data.

Time feature ET . The hour and minute value (i.e., h and min) are mapped to the radian of a unit
circle. On the circle, the 1,440 minutes of a day are represented by a radian value between [0, 2π). The time
feature ET is defined as:

ET = [cosθ, sinθ], θ =
h ∗ 60 +min

1440
∗ 2π. (2)

Date features DM , DW and DH. DM , DW and DH refer to the day of month, the day of week,
and a boolean value describing if the day is a weekday, respectively.

9

4.1.2. Spatial Context

Features describing the spatial context are extracted mainly from the POI data and public transport
distribution data. Based on the longitude and latitude, we describe a location by the POIs and the availability
of public transport around it.

POI features POIn, POIf , and POIu. They are all 14-dimension vectors, and reflect the number,
frequency and uniqueness of POIs around a location. The 14 dimensions correspond to the 14 POI categories
explained in section 3.1.3. We count the POIs within a 500-meter radius of the location. For the i-th category
of POI, the number of POIs of this category around the location is denoted by POIn,i, and the total number
of POIs of this category in the city is Mi, then the frequency and uniqueness of the i-th category of POI –
i.e., POIf,i and POIu,i – are defined as:

POIf,i =
POIn,i

Σ14
k=1POIn,k

, (3)

POIu,i =
POIn,i
Mi

. (4)

Among these three vectors, POIn simply counts the number of POIs of different categories around the
location; POIf focuses on the proportion of each category of POI to all POIs around the location; and
POIu characterizes the proportion of the number of a particular category of POIs to the total number of
this category in the whole city, which is a reflection of POI uniqueness.

Public transport distribution feature BM . BM is a 4-dimension vector, describing the number of
bus stations, the number of bus lines, the number of metro stations and the number of metro lines within
a 500-meter radius of the location. It is intuitive that the public transport distribution nearby has impacts
on dynamic prices. Firstly, it reflects the popularity of a location. Secondly, the presence of bus and metro
stations also makes it possible for RoD drivers to provide connecting services – picking up a passenger who
just alighted from a bus or train, or delivering a passenger to a bus or metro station – and hence changes
passenger demand around a location.

4.1.3. Historical Dynamic Prices Context

Dynamic price multiplier is a perfect and real-time reflection, as claimed by major RoD service providers,
of the supply and demand. As the current supply and demand may be related to the past supply and demand,
we hypothesize that the past price multipliers should be helpful in predicting current price multipliers. In
other words, historical dynamic prices context is used as a reference for predicting current price multipliers.

Based on the current time on which we want to evaluate the price multiplier, we extract the average
price multiplier among all orders taking place within a 500-meter radius of the location, during the last
three half-hour-length timeslots. Specifically,

HDP = [APM−1, APM−2, APM−3]. (5)

In (5), HDP is the historical dynamic prices feature vector, and APM−i(i = 1, 2, 3) are the average price
multiplier during the last three timeslots, respectively. For example, if we want to predict the price multiplier
at 17:09, then APM−1, APM−2 and APM−3 are the average price multiplier during [16 : 30, 17 : 00],
[16 : 00, 16 : 30], and [15 : 30, 16 : 00], respectively.

4.1.4. Taxi Service Context

As we have explained, taxi GPS trajectories not only serve as a useful guideline for RoD drivers, but
characterize the traffic in different spatio-temporal combinations as well. Each feature is calculated on a
half-hour-length timeslot basis, and includes the taxis within a 500-meter radius of the location. We extract
the following features from taxi GPS trajectories:

• taxi up count UC: the number of taxis that start new orders around the location during the current
half-hour-length timeslot.

10

Table 2: A summary of features used in dynamic price prediction.

Context Feature Dim.

Temporal Context

ET : the time feature that maps the hour and minute to the radian of a unit circle 2
DM : one-hot encoded vector of the the day-of-month value 30
DW : one-hot encoded vector of the the day-of-week value 7
DH: a boolean value that equals 1 when the day in question is a weekday 1

Spatial Context

POIn: the number of POIs, of 14 different categories, around the location 14
POIf : the POI frequency vector, as defined in (3), around the location 14
POIu: the POI uniqueness vector, as defined in (4), around the location 14
BM : the number of bus/metro lines and stations around the location 4

Historical APM−1: the average price multiplier around the location during the last timeslot 1
Dynamic Prices APM−2: the average price multiplier around the location during the second last timeslot 1
Context APM−3: the average price multiplier around the location during the third last timeslot 1

UC: taxi up count around the location during the current time slot 1
DC: taxi down count around the location during the current time slot 1

Taxi Service V C: taxi visit count around the location during the current time slot 1
Context FC: taxi full count around the location during the current time slot 1

FR: taxi full ratio around the location during the current time slot 1

• taxi down count DC: the number of taxis that terminate existing orders around the location during
the current half-hour-length timeslot.

• taxi visit count V C: the number of taxis that present around the location during the current half-
hour-length timeslot.

• taxi full count FC: the number of taxis with passengers on board that present around the location
during the current half-hour-length timeslot.

• taxi full ratio FR: the ratio of taxi full count FC to taxi visit count V C.

Then the taxi service feature vector is written as,

TS = [UC,DC, V C, FC, FR]. (6)

4.1.5. The Input Feature Vector

Before creating the input feature vector, it is necessary to normalize the above-mentioned features to
guarantee convergence and a shorter training time. Among these features,

• Date features DM and DW are categorical features, and they are represented by one-hot encoding.
These features do not need normalization, as components of the one-hot encoded vectors are either 0
or 1.

• Date feature DH is a boolean, and takes the value of either 0 or 1. Hence it is not necessary to
normalize DH.

• For all other features, we calculate the Z-score (i.e., the number of standard deviations from the mean)
of each feature, or of each component of multi-dimension features, to perform normalization.

For each order, we gather all the above-mentioned features, as summarized in Tab. 2, to generate the
input feature vector ~X, which are then fed into the dynamic price prediction model:

~X = [ET,DM,DW,DH,POIn, POIf , POIu, BM,APM−1, APM−2, APM−3, UC,DC, V C, FC, FR]. (7)

11

4.2. Model Selection

There are a lot of available algorithms for a predictive task, including the popular deep learning models
or more traditional and simpler machine learning models. Though deep learning models have achieved
a tremendous progress on voice, text, or image datasets, they may not be good enough for our dynamic
price prediction task. As an example, we compare between deep models and tree-based models. Firstly,
recent discussions in [39, 40] point out that tree-based models perform better than deep learning models on
tabular data. Secondly, deep models are generally more complex and harder to fine tune, sometimes leading
to over-fitting problems. The more complex structure of deep models also gives rise to a longer training
time. Lastly, deep learning models are usually difficult to interpret or explain, and sometimes sophisticated
techniques are needed. By comparison, tree-based models, especially those containing only a small number
of trees, are naturally easier to interpret.

We thus choose tree-based models to conduct dynamic price prediction. Specifically, we adopt XGBoost
and LightGBM models to predict the dynamic price multipliers, and perform a hit and trial to see which
one leads to a higher prediction accuracy. In addition, we also implement a Random Forest model and an
ANN (artificial neural network) model to serve as baselines, so that we could compare model performances
and justify our model selection considerations. Below we briefly explain XGBoost, LightGBM, and Random
Forest.

XGBoost. XGBoost [41] is a widely-used gradient boosting decision tree variant that trains multiple
base learners to improve model accuracy. It is highly parallelized and carefully optimized for a shorter
training time. It is also currently one of the best, in terms of accuracy and training time, boosting-based
tree-models.

LightGBM. LightGBM [42] is another widely-used gradient boosting decision tree variant. But, com-
pared with XGBoost, LightGBM focuses on efficiency and significantly reduces training time and memory
consumption by adopting techniques such as EFB (Exclusive Feature Bundling), histogram-based algorithm,
leaf-wise tree growth, GOSS (Gradient-based One-Side Sampling), etc. On the other hand, LightGBM is
not as robust as XGBoost is, and may be overfitting in some cases.

Random Forest. Random Forest is a bagging-based decision tree variant. Though it appears earlier
than XGBoost and LightGBM, it is still widely-used in many real world scenarios. The bagging nature
makes it especially suitable for parallel computation and scale well on large-scale high-dimensional datasets.
Random Forest samples with replacement from the input data, and also uses feature bagging, or random
subspace method, to ensure convergence and low correlation among multiple decision trees.

In section 6 we would compare the performances of XGBoost, LightGBM, Random Forest and ANN, in
which the latter two are mainly used as baselines, and provide a detailed discussion on why certain models
work better than others. Additionally, we also list the main parameters used in these models, and provide
their values that are determined by grid searching.

5. The Reinforcement Learning Model

Now that we have built the dynamic price prediction model, the next task is to perform seeking route
recommendation by a reinforcement learning model. Route recommendation could be conducted on different
spatial granularities. For example, it could be done on the cell level, i.e., partitioning the area of study into
rectangular cells and recommending the next cell a driver should go for seeking after the current cell, or on
the road segment level, i.e., recommending the next road segment when a seeking driver comes to a road
intersection. Route recommendation on the cell level may have a coarser spatial granularity, but has the
advantage of being simple and efficiency, and still giving enough insights.

We choose to study the seeking route recommendation problem on the cell level. Similar to what we
have done in data analysis in section 3.2.2, we partition the area of study, i.e., the city of Beijing within
longitude [116.21, 116.56] and latitude [39.81, 40.08], into 900 (= 30 × 30) rectangular cells of equal size.
The time range is restricted to a whole day. In other words, we keep a timer τ and set it as τ = 0 in the
very beginning, and perform seeking route recommendation until τ ≥ 1440 (in minutes). The goal of the
reinforcement learning model is to solve the following problem:

12

Table 3: Notations used in our reinforcement learning model.

Variable Explanation

s, S a state such that s = [l, p, t, e], and the set of all states

l the index of a cell

p the index of current timeslot

P the length of each timeslot (in minutes)

N the total number of timeslots in a whole day

t the number of minutes into the current timeslot

τ the timer that represents the current time (in minutes)

e, E the reverse of the incoming direction, and the set of all directions

a,A the action a driver takes, and the set of all possible actions

tseek(j, p) the amount of time to seek for passengers in cell j during timeslot p

dseek(j, p) the driving distance to seek for passengers in cell j during timeslot p

tdrive(j, k, p) the amount of time to drive from cell j to k during timeslot p

ddrive(j, k, p) the driving distance from cell j to k during timeslot p

Ppickup(j, p) the probability of picking up a passenger in cell j during timeslot p

Pdest(j, k, p) the probability of a passenger picked up in cell j having a destination
in cell k during timeslot p

dp(j, p) the predicted dynamic price multiplier at cell j during timeslot p

fc the fuel consumption per kilometre

fbase the flag-fall price

fd the unit price per kilometre

α the learning rate in SARSA-λ, 0 < α < 1

γ the discount factor of future rewards, 0 < γ ≤ 1

ε the probability of random exploration, 0 < ε < 1

λ the parameter that controls the fade away speed of past states, 0 < λ < 1

Definition 5.1 (Seeking Route Recommendation). Given the cell division of Beijing, GPS trajectories,
RoD order data, and a subset of RoD cars Z.

Find the optimal seeking route for each car in Z to increase earnings. That is, for a single vacant car,
when it arrives at a cell, determine which neighboring cell it should go to, or just keep seeking in the current
cell. Recommendation is terminated when τ ≥ 1440.

Basically, we solve the seeking route recommendation problem in two steps. In the first step, we use
Markov decision process (MDP) to model the environment. In MDP, the transitions between cells follow
the Markov property, i.e., the transition probabilities from the current cell to next cells depend only on the
current cell and are not related to previous cells. By modelling the environment based on MDP, we are able
to determine the reward – i.e., driver earnings – corresponding to cell transitions. The reward is calculated
based on the predicted dynamic price multipliers and the possibility of taking up passenger orders. In the
second step, based on the environment, we use reinforcement learning to simulate drivers’ behavior and
determine the optimal seeking routes. The notations used in both two steps are summarized in Tab. 3.

5.1. Modelling the Environment

We use MDP to model the environment. In MDP, there is an agent with a starting state. In every state,
the agent chooses one action from many candidates and jumps to another state, getting a reward from the
environment that is determined by the combination of state and action. The Markov property states that
the state transitions and the corresponding rewards are only dependent on the current state instead of any
previous states.

Before we present our MDP model, we first reiterate the spatial and temporal division. Temporally, we
divide the 1440 minutes of a whole day into N shorter timeslots, each of which is P = 1440/N minutes long,
and we update the parameters of the MDP model in every timeslot. In our study, we let N = 48, and hence
each timeslot is half an hour. Spatially, as mentioned previously, we partition the city of Beijing within the

13

longitude range [116.21, 116.56] and latitude range [39.81, 40.08] into 900 (= 30 × 30) rectangular cells of
equal size, and each cell is approximately 1 km2.

In the following, we describe the states, actions, state transitions, and rewards in the MDP model:
States. We denote a state as s = [l, p, t, e] ∈ S. l is the index of a cell and ranges from 1 to 900. p is

the index of current timeslot, and ranges from 1 to N . t is the number of minutes in the current timeslot.
So, p and t together describe the current time.

e is defined as the reverse of the incoming direction. The incoming direction, as its name suggests, is the
direction the driver arrives at the current cell during seeking. The goals of using the reverse of incoming
direction are two-fold. Firstly, the whole seeking path is recorded. Secondly, to avoid going into a loop, we
require that if a seeking driver does not pick up passengers in the last cell, he or she should not go back to
the last cell after the current cell. So, the reverse of the incoming direction is ruled out as a possible choice
of action. Specifically, we let e ∈ E = {↘, ↓,↙,←,↖, ↑,↗,→,	, ∅}. Among these directions, ∅ means “the
driver has just dropped off a passenger and there is not a definition of incoming direction”, and 	 means
“the driver has been in this cell in the last state”. For simplicity, we also denote these directions as 1 to 10.
Fig. 7(a) illustrate these directions. In Fig. 7(a), we assume that the driver is now at the center cell, and
the dashed grey arrows represent incoming directions, whereas the blue solid arrows represent the reverse
of incoming directions.

5 6 7

8

123

4

1 2 3

4

567

8

(a) (b)

Figure 7: States and actions in the MDP model. Sub-figure (a) shows all possible e, i.e., the reverse of the incoming direction,
in a state S. Assuming the driver is in the center cell, and the dashed grey arrows represent the possible incoming directions,
so the blue arrows represent the reverse of the incoming directions. Sub-figure (b) shows all possible a, i.e., the actions when
the driver is in the center cell.

As an example to explain the definition of a state, a given state s = [250, 17, 20, ∅] means that a driver
has just dropped off passengers and starts seeking at 8:20am in cell 250.

Actions. At a given state, a driver takes an action and is transitioned to the next state (e.g., jumping
to a neighboring cell or keep seeking in the current cell). An action a could be regarded as an outgoing
direction. Similarly, we let a ∈ A = {↖, ↑,↗,→,↘, ↓,↙,←,	}, and also denote these directions as 1 to 9,
as shown in Fig. 7(b).

Under the above definitions of e and a, it is clear that we have the following relationship between them.
First of all, to avoid going into a loop, at a given state snow = [lnow, pnow, tnow, enow], the actions aunallowed

that satisfy the following requirements are not allowed:

aunallowed =

{
enow + 4, if 1 ≤ enow ≤ 4

enow − 4, if 5 ≤ enow ≤ 8
. (8)

Secondly, if a driver takes an action a and jumps to the next state with the reverse of incoming direction e,
then we have e = a.

State Transitions. Assuming the driver is at state s0 = [i, p, t, e], there are two different kinds of state
transition after the driver takes an action a and jumps to cell j:

14

• The driver successfully picks up passengers in cell j. This happens with a probability Ppickup(j, p).
Then passengers are delivered to their destination, denoted by cell k, with a probability Pdest(j, k, p).
The time and distance of seeking in cell j are denoted by tseek(j, p) and dseek(j, p), respectively;
and the time and distance of delivering passengers from cell j to k are denoted by tdrive(j, k, p) and
ddrive(j, k, p), respectively. The total amount of time from cell i to cell k is Ttotal,1 = tdrive(i, j, p) +
tseek(j, p) + tdrive(j, k, p). After the driver delivers passengers in cell k, the state is transitioned to:

s1 = [k, p+ (t+ Ttotal,1)/P, (t+ Ttotal,1)%P, ∅]. (9)

• The driver does not pick up passengers in cell j. This happens with a probability 1 − Ppickup(j, p).
The time and distance of driving from cell i to cell j are tdrive(i, j, p) and ddrive(i, j, p); and the time
and distance of seeking in cell j are tseek(j, p) and dseek(j, p), respectively. The total amount of time
from cell i to seeking in cell j is Ttotal,2 = tdrive(i, j, p) + tseek(j, p). After the driver finishes seeking
in cell j, the state is transitioned to:

s2 = [j, p+ (t+ Ttotal,2)/P, (t+ Ttotal,2)%P, a] (10)

It should be noted that in (10) the reverse of incoming direction in state s2 equals a, and we have
already explained about this just before we describe state transitions.

Rewards. When a driver is transitioned between two states, a reward is obtained from the environment.
We include the impact of dynamic prices into the rewards.

In the first kind of state transition, the rewards consist of two parts: a positive trip fare earned by the
driver, and a negative fuel consumption. The fuel consumption could be written as:

Rfuel,1 = −fc · [ddrive(i, j, p) + dseek(j, p) + ddrive(j, k, p)]. (11)

In (11), fc is the fuel consumption per kilometre, and ddrive(i, j, p) + dseek(j, p) + ddrive(j, k, p) is the total
distance from state S0 to S1. The trip fare could be written as:

Rtrip,1 = dp(j, p) · (fbase + fd · ddrive(j, k, p)). (12)

In (12), fbase is the flag-fall price, and fd is the unit price per kilometre. dp(j, p) is the predicted dynamic
price multiplier at cell j, based on our dynamic price prediction model in section 4. Specifically, dp(j, p) is
measured at the location in cell j that has the largest number of orders in our data or the center of cell j if
such location does not exist.

In the second kind of state transition, as the driver does not pick up passengers in cell j, the reward is
only the negative fuel consumption in the following form:

Rfuel,2 = −fc · [ddrive(i, j, p) + dseek(j, p)]. (13)

The state transitions and rewards are illustrated in Fig. 8.

5.2. Solving with SARSA-λ

Based on environment, there are generally two different ways to design seeking routes that maximize
driver revenue. The first way is dynamic programming, and solves for an optimal policy. But as we use
real-time dynamic price prediction, and update the parameters of the MDP model every P minutes, it would
become overwhelmingly complicated in dynamic programming. Another way is reinforcement learning, and
tries to obtain the optimal state-action pairs that lead to higher rewards in the long run. Comparatively,
reinforcement learning is faster but still produces near optimal results on convergence.

SARSA-λ is a typical reinforcement learning algorithm that solves for the optimal state-action pairs.
SARSA stands for “State, Action, Reward, State, Action” and it works in a similar way to the famous
Q-learning algorithm – the driver learns a Q-table that stores a Q-value for each state-action pair describing
the utility of taking an action given a state, by trying different actions and observing the rewards returned

15

0S

1S

2S

in cell j

with probability (,) (, ,)pickup destj p P j kP p

with probability (,)1 pickup jP p−

,1 ,1Reward fuel tripRR +=

,2Reward fuelR=

[, , ,]i p t e

,1

,1

]

[,

() / ,

()% ,

total

total

k

p t T P

t T P

+ +

+



,2

,2

]

[,

() / ,

()% ,

total

total

j

p t T P

t T

a

P

+ +

+
taking action a

Figure 8: State transitions and rewards.

Algorithm 1 SARSA-λ algorithm

Input:
1. the environment modelled by MDP, λ, ε, γ, and α.
2. the dynamic price prediction model in section 4.
Output: the Q-table Q(s, a) for any state-action pair.

1: Q(s, a) = 0 for any s and a; //Initialize Q-table.
2: E(s, a) = 0 for any s and a; //Initialize the eligibility trace E-table.
3: p = pstart; //Initialize the timeslot that the driver starts working.
4: while Q-table not converged do
5: τ = 0;
6: E(s, a) = 0 for any s and a;
7: Generate a random number 1 ≤ linit ≤ 900 that represent the starting cell;
8: s = (l = linit, p = pstart, t = 0, e = 0); //Initialize state.
9: Choose action a at state s using ε−greedy policy from Q-table;

10: while τ < 1440 do
11: Take action a and get the predicted dynamic price multiplier dp(j, p);
12: Get the new state s′ and the reward Rs→s′ ;
13: Get the new timer τ ′;
14: Choose action a′ at state s′ using ε−greedy policy from Q-table;
15: δ ← Rs→s′ + γ ·Q(s′, a′)−Q(s, a);
16: E(s, a)← E(s, a) + 1; //Record the eligibility trace.
17: for all a ∈ A and s ∈ S do
18: Q(s, a)← Q(s, a) + α · δ · E(s, a);
19: E(s, a)← γ · λ · E(s, a);

20: s← s′, a← a′, τ ← τ ′;

21: return Q-table

from the environment. Unlike Q-learning, SARSA is an on-policy approach. Based on SARSA, SARSA-λ
updates the Q-values based on all past states and actions instead of only the current states and actions. To
accomplish this, SARSA-λ introduces the eligibility trace by using an E-table and records the whole trace
with which a driver has been seeking for.

Algorithm 1 shows the SARSA-λ algorithm for a single driver. The input to the algorithm is the
environment modelled by MDP in section 5.1, and the dynamic price multiplier predicted by the our model
in section 4; and the output of the algorithm is a Q-table for the driver, so that the driver could choose the

16

action with the highest Q-value at any given state. The inner loop represents the trial-and-error process
of the driver through a whole day, and the outer loop is performing this process for many times until the
Q-table converges. In the following, we explain some important lines:

• Initialization (line 1 to 3): we first set the Q-table and E-table with all zeros. In addition, we also
initialize the timeslot that the driver starts working as pstart. For example, pstart = 0 means we
simulate the seeking process from 0:00, whereas pstart = 17 means the starting time is 8:00 am.

• Initialization for the outer loop (line 5 to 8): in every iteration of the outer loop, we initialize the
timer τ = 0, the E-table with all zeros, and randomly choose a cell where the driver starts seeking.

• Exploration v.s. exploitation (line 9 and 14): at any given state, the driver could either choose
exploration (i.e., randomly choosing an action) or exploitation (i.e., choosing the action with the
highest Q-value). This is called ε-greedy, and ε is the probability of exploration. This helps avoiding
being stuck at sub-optimal solutions.

• Incorporating dynamic prices (line 11 to 12): the price multiplier dp(j, p) is the result of the
dynamic price prediction model. The price multiplier is then used in reward calculation.

• Updating the E-table (line 16 to 19): in the Q-learning or the original SARSA algorithm, the
update of Q-value depends only on the most immediate action. In SARSA-λ, such update takes into
account a series of past actions. When λ = 0, SARSA-λ reduces to SARSA; and when λ = 1, SARSA-
λ remembers all the past actions. Specifically, when the driver takes an action a at a state s, the
corresponding E(s, a) is added by 1, and such E(s, a) gradually fades away as time goes by.

• Updating the Q-table (line 15 to 19): the update of Q-value is on-policy. The driver takes an action
a and is transitioned from state s to s′, obtaining a reward Rs→s′ . Then the driver again uses the
ε-greedy policy to choose an action a′ at state s′, and we calculate the TD error δ – the difference
between the immediate reward plus the discounted Q-value of (s, a) and the current Q-value estimate.
Both δ and E(s, a) are used to generate the new Q-value estimate (as in line 18).

6. Evaluation

We first evaluate our dynamic price prediction model, and then the reinforcement learning model.

6.1. Dynamic Price Prediction

6.1.1. Evaluation Metrics

We use the common metrics – accuracy, precision, recall and F1-score – to evaluate our dynamic price
prediction model. These metrics are calculated based on TP (true positive), TN (true negative), FP (false
positive) and FN (false negative) samples, as defined below:

Accuracy =
TP + TN

TP + FP + TN + FN
, Preicison =

TP

TP + FP
,

Recall =
TP

TP + FN
, F1 =

2

1/Precision+ 1/Recall
.

(14)

As the dynamic price prediction is a multi-class classification problem, we actually use the macro precision,
macro recall and macro F1-score in our evaluation, which are the macro average of the above metrics among
all N classes:

M-Precision =
ΣN

i=1Precisioni

N
, M-Recall =

ΣN
i=1Recalli

N
, M-F1 =

ΣN
i=1F1i
N

(15)

17

Table 4: Major hyper-parameters in tree-based models.

Model Hyper-parameter Candidates and Explanation
the Selected Value

Random Forest

n estimators [50, 100,200, 500] the number of trees in the random forest
max depth [5, 10, 20,40] the maximum depth of a tree
min samples leaf [1,2, 5, 10] the minimum number of samples required

to be at a leaf node

LightGBM

n estimators [100, 500, 1000,2000, 4000] the number of trees (or boosting iterations)
learning rate [0.01, 0.05,0.1, 0.5] the learning (or shrinking) rate
max depth [2, 5,8, 12, 20] the maximum depth of a tree
αLightGBM [0.01,0.1, 0.2, 0.5] the parameter controlling L1-regularization
λLightGBM [0.01, 0.1,0.2, 0.5] the parameter controlling L2-regularization

XGBoost

n estimators [100, 500, 100,2000, 4000] the number of trees
learning rate [0.01, 0.05,0.1, 0.5] the learning rate
max depth [2, 5, 8,12, 20] the maximum depth of a tree
colsample bytree [0.25, 0.5,0.75, 1] the fraction of features to be used for a tree
subsample [0.25, 0.5,0.75, 1] the fraction of instances to be used for a tree
γXGBoost [0.01, 0.05,0.1, 0.3] the minimum split loss parameter controlling

over-fitting

6.1.2. Evaluation Setup

As mentioned previously, the total number of orders in our RoD order and dynamic price data is 2,742,120,
and we generate an input feature vector for every single order. In our evaluation, we perform two different
classification tasks:

• 7-classes prediction: this task has already been explained. As the price multiplier ranges from 1.0 to
1.6, it is natural to have 7 classes in prediction.

• 3-classes prediction: we also divide the price multipliers into three categories, namely the low price
multipliers (i.e., 1.0, 1.1 and 1.2), middle price multipliers (i.e., 1.3 and 1.4), and high price multipliers
(i.e., 1.5 and 1.6). The goal of 3-classes prediction is to predict which category the price multiplier
falls into.

We use XGBoost and LightGBM to predict dynamic price multipliers, and also implement a Random
Forest and an ANN model to serve as baselines. We explain the parameters and setup of these four models
below:

• ANN: there are two hidden layers that contain 256 and 128 neutrons. The drop-out regularization
is added to each hidden layer to control over-fitting. The activation function, output function, loss
function are ReLU, softmax and cross-entropy, respectively. Adam optimizer is used. The order data
are divided into training set, validation set and test set in a 7:1:2 ratio. The learning rate is set as 0.1
out of four candidates 0.01, 0.05, 0.1 and 0.5. The batch size is set as 64 out of three candidates 32,
64 and 128. These hyper-parameters are selected by grid search.

• Tree-based models: for tree-based models (i.e., XGBoost, LightGBM and Random Forest), we also
randomly choose 20% orders as test set, and adopt a 5-fold cross-validation on the remaining 80%
orders. Hyper-parameters are also selected by grid search, and some important ones are summarized
in Tab. 4. For each hyper-parameter in Tab. 4, the value in bold is selected among candidates.

6.1.3. Evaluation Results

To evaluate the performance of our dynamic price prediction models, we first show the accuracy, macro
precision, macro recall and macro F1-score of XGBoost, LightGBM, Random Forest and ANN in both the
7-classes and 3-classes prediction tasks in Tab. 5. We have the following observations:

18

• XGBoost has the best performance, according to any of the four metrics and in both the 7-classes
and 3-classes prediction. Specifically, in the 7-classes prediction, the XGBoost model has an accuracy
of 83.82%, and a macro F1-score of 0.8000. The figures for the 3-classes prediction are 90.67% and
0.8532, respectively.

• Tree-based models indeed perform better than the ANN model. This observation holds for both the
7-classes and 3-classes prediction, and even the LightGBM model, which has the weakest performance
among tree-based models, is 21.53% better in accuracy than the ANN model in 7-classes prediction.

• The performance improvement in 3-classes prediction compared with 7-classes prediction is much
higher in the ANN model than in tree-based models. This is an interesting fact and is more obvious
in macro recall and F1-score. We hypothesize that it is the result of poor performance of ANN model
on unbalanced datasets. Because dividing price multipliers into 3 classes means different classes are
more balanced, the ANN model has a much better performance.

• Comparing between XGBoost, LightGBM indeed has a significantly shorter training time. In our
simulation with Intel i7-12700K and GeForce RTX 3070, it takes about 2,500 seconds to converge in
XGBoost, whereas the training time is only about 570 seconds in LightGBM.

Table 5: The performances of dynamic price prediction models in both 7-classes and 3-classes tasks.

Model
Accuracy M-Precision M-Recall M-F1

7-classes 3-classes 7-classes 3-classes 7-classes 3-classes 7-classes 3-classes

XGBoost 0.8382 0.9067 0.8041 0.8608 0.8014 0.8464 0.8000 0.8532

LightGBM 0.7671 0.8672 0.7452 0.8121 0.6662 0.7598 0.6979 0.7812

Random 0.7941 0.8767 0.7440 0.8177 0.7579 0.7901 0.7451 0.8029
Forest

ANN 0.6312 0.7843 0.5064 0.6805 0.3895 0.5590 0.3982 0.5858

The above results justify that XGBoost is the most suitable model to perform dynamic price prediction.
It should be noted that we value prediction accuracy more than model training time, because the dynamic
price prediction model could be off-line and it is acceptable to update and retrain the model every half hour,
every hour or even every day.

To further evaluate the performance of the XGBoost model, Tab. 6 and Tab. 7 show the confusion matrix
of the 7-classes and 3-classes prediction by XGBoost, respectively. It is clear that:

• The XGBoost has a precision higher than 0.8 for five price multipliers (i.e., 1.0, 1.1, 1.3, 1.5, and 1.6),
and has a recall higher than 0.9 for four price multipliers (i.e., 1.0, 1.1, 1.3, and 1.5). This indicates
that the XGBoost model has a satisfactory performance for most of the price multipliers.

• Results from Tab. 7 shows that the performance is the best for low price multipliers, followed by high
and middle price multipliers. The corresponding F1-score are 0.9484, 0.8494 and 0.7618, respectively.
A possible reason is that high and low price multipliers are more regular and predictable, and middle
price multipliers are more random. It should also be noted that even with the differences of prediction
accuracy among different price multipliers, our XGBoost model still has a satisfactory performance on
all these price multipliers.

• Results from Tab. 6 also suggests that our model has a relatively poor performance for price multiplier
1.2 and 1.4, according to recall, precision and F1-score. There are two possible reasons. Firstly, 1.2
and 1.4 are price multiplies standing in the middle, and may be difficult to predict due to a high
randomness, as we have already discussed. Secondly, it is observed from Tab. 6 that both price
multipliers are always mistakenly predicted as 1.0. This may be the result of an immature pricing
algorithm, as our dataset dates back to 2016 when the dynamic pricing mechanism was still at an
early developing stage. So in some cases the price multipliers are set to a wrong value, which may be

19

contradictory to our price prediction model. To improve prediction performance, we need to either
collect new data, or find out the circumstances in which the price multipliers 1.2 and 1.4 are more
common and then design separate models for such circumstances.

Table 6: The confusion matrix of 7-classes prediction by XGBoost.

Ground
truth

Prediction
1.0 1.1 1.2 1.3 1.4 1.5 1.6 Recall F1-score

1.0 244026 3631 6522 1622 5792 634 2757 0.9209 0.9011

1.1 2914 64252 494 306 311 27 134 0.9388 0.9074

1.2 14798 2928 33702 1731 4834 231 623 0.5727 0.6437

1.3 1129 366 490 34397 1020 108 91 0.9148 0.8713

1.4 10302 1608 3979 2796 30972 1375 3479 0.5682 0.6054

1.5 242 44 47 133 491 20075 400 0.9367 0.8872

1.6 3211 353 630 368 4393 1375 32281 0.7576 0.7837

Precision 0.8822 0.8780 0.7348 0.8318 0.6478 0.8426 0.8118

Table 7: The confusion matrix of 3-classes (low/mid/high price multipliers) prediction by XGBoost.

Ground
truth

Prediction
low mid high Recall F1-score

low 375335 12767 4168 0.9568 0.9484

mid 19107 67493 5511 0.7327 0.7618

high 4792 4829 54422 0.8498 0.8494

Precision 0.9401 0.7932 0.8490

To summarize, the XGBoost model has the best performance among the four models we implement.
In the 7-classes and 3-classes prediction, the XGBoost model achieves an accuracy of 83.82% and 90.67%,
respectively. Therefore, we adopt the XGBoost model to perform dynamic price prediction, and use the
predicted value in our reinforcement learning model that is evaluated in section 6.2.

6.2. Reinforcement Learning Model

In this subsection, we evaluate our reinforcing learning model that use SARSA-λ to perform seeking
route recommendation. Our main goals are two-fold:

• We evaluate the effectiveness of introducing dynamic price prediction. Is it necessary to do that?
What are the results if average dynamic prices are used instead or no dynamic prices are considered?

• We evaluate the effectiveness of using SARSA-λ. We compare the performance of SARSA-λ with other
common reinforcement learning models.

6.2.1. Evaluation Metrics

We define two metrics, namely the revenue efficiency RE and the profit efficiency PE, to evaluate the
effectiveness of seeking route recommendation. For a driver, we use Rtotal to denote the total revenue the
driver makes during a specified time period; and use Ttotal to denote the total working time during this
period (including the time of seeking for and delivering passengers). We also use Tdeliver to represent the
total amount of time used for delivering passengers. Then we have:

RE =
Rtotal

Ttotal
(16)

20

PE =
Rtotal

Tdeliver
(17)

In other words, revenue efficiency RE measures the driver’s revenue-making capability comprehensively,
whereas profit efficiency PE focuses more on the drivers’ ability to find more profitable (i.e., better) orders.

6.2.2. Evaluation Setup

We simulate our SARSA-λ approach based on our RoD order dataset, RoD GPS trajectories and the
dynamic price prediction model, to evaluate the effectiveness of seeking route recommendation through
SARSA-λ. Across the time range of our datasets, i.e., from August to November 2016, we choose a random
Friday and Saturday, as a representative weekday and weekend, to simulate our approach. The chosen days
should not be a public holiday (such as the National Day holiday in China). It should also be noted that
though we only present results on the chosen Friday and Saturday here, results from other weekdays and
weekends show similar effects.

To achieve our main goals, we first learn the parameters of the MDP model, and then randomly choose
500 drivers who work on this Friday or Saturday. The chosen drivers should satisfy the following criteria:

• They work for at least four hours on the chosen day, and their GPS trajectories contain few errors.

• They accept more than one order on the chosen day, and these orders should be effective. For example,
orders with very small trip duration or distance may be the result of inaccurate or malfunctioning GPS
devices.

• They also work for most of other days.

These criteria ensure that the chosen drivers have regular working patterns, and their trajectories are not
outliers. We then adopt a pre-specified model, simulate the trajectories of the chosen drivers, and record
the orders, revenue, and trajectories of each driver. The pre-specified model could be the SARSA-λ model,
or other variants that serve as baselines, and they would be discussed in section 6.2.3 and 6.2.4 accordingly.

Parameters of the MDP model (i.e., the environment) are set by the following procedures:

• Ppickup(j, p): the pickup probability in cell j during timeslot p is approximated by the ratio of the
number of orders, denoted by Norder(j, p), to the number of vacant cars passing the cell, denoted by
Npassby(j, p). We only count once if the same vacant car appears continually in a cell during a timeslot.

Ppickup(j, p) =
Norder(j, p)

Npassby(j, p)
. (18)

• Pdest(j, k, p): the destination probability is approximated by the historical orders. We useNorder(j, k, p)
to record the total number of orders starting from cell j during timeslot p and ending in cell k, and
define Pdest(j, k, p) as:

Pdest(j, k, p) =
Norder(j, k, p)

Norder(j, p)
. (19)

• tseek(j, p) and dseek(j, p): the seeking distance dseek(j, p) in cell j during timeslot p could be either
set as a fixed value – about half of the cell size – or set as a varying value in different timeslots. We
try both ways and results show that the difference is small. Hence we set dseek(j, p) to be 500 meter.
tseek(j, p) is then set accordingly, based on the average driving speed in cell j during timeslot p.

• tdrive(j, k, p) and ddrive(j, k, p): the driving time and distance starting from cell j during timeslot p to
cell k are approximated by the average driving time and distance in our historical orders. If, for some
(j, k, p) combination the number of historical orders is zero, then we resort to the AMap API to check
for the estimated driving time and distance instead.

• fbase, fd and fc: fbase and fd are set to 15 and 2.8 (both in RMB Yuan) according to the service
provider’s policy. fc is set to 0.5, similar to previous studies (e.g., [27]).

21

Hyper-parameters of the SARSA-λ model are also selected based on grid search, similar to what we do
in section 6.1.2. We briefly give the choice of some major hyper-parameters below:

• α: the learning rate α is set to 0.1 among candidates [0.03, 0.05, 0.1, 0.2, 0.3].

• γ: the discount factor of future rewards γ is set to 0.5 among candidates [0.1, 0.3, 0.5, 0.7].

• ε: the probability of random exploration ε is set to 0.1 among candidates [0.05, 0.1, 0.3, 0.5, 0.7].

• λ: the parameter controlling the impacts of past states ε is set to 0.5 among candidates [0, 0.1, 0.3, 0.5, 0.7, 1].

6.2.3. The Effectiveness of Dynamic Price Prediction

To evaluate the effectiveness of dynamic price and dynamic price prediction, our simulation compares
the SARSA-λ model with the ground-truth and two baselines:

• Real: the ground-truth from our data;

• SL-DPP: our SARSA-λ model explained in section 5.2. SL-DPP stands for “SARSA Lambda-
Dynamic Price Prediction”.

• SL-ADP: SL-ADP is similar to SL-DPP. But instead of using dynamic price prediction in calculating
rewards, SL-ADP uses the average historical dynamic price multiplier in a cell. SL-ADP stands for
“SARSA Lambda-Average Dynamic Prices”.

• SL-1.0: SL-1.0 is similar to SL-DPP, but it ignores dynamic prices at all. This is equivalent to setting
all dp(j, p) – the price multiplier in cell j during timeslot p – to 1.0.

We first present the distribution of revenue efficiency RE, profit efficiency PE, and searching time (the
amount of time used to seek for passengers) of SL-DPP, SL-ADP and SL-1.0 on four selected time periods
on weekday. The selected time periods are [8:00, 9:00), [12:00, 13:00), [18:00, 19:00) and [23:00, 0:00), and
cover representative hours such as morning and evening rush hours, night hours, and non-rush hours around
noon. The distribution of revenue efficiency, profit efficiency and searching time are shown in boxplots in
Fig. 9, Fig. 10, and Fig. 11, respectively. Tab. 8 further gives the average and median values of these metrics
on the selected periods on weekday.

Table 8: The average and median of revenue efficiency, profit efficiency and searching time on weekday.

Period Scheme
revenue efficiency profit efficiency searching time
average median average median average median

8:00

Real 0.88 0.90 1.11 1.11 15.49 13.00
SL-1.0 1.00 1.01 1.15 1.15 10.05 8.00
SL-ADP 1.31 1.32 1.49 1.49 9.04 7.50
SL-DPP 1.45 1.45 1.82 1.82 14.93 13.00

12:00

Real 0.80 0.80 1.18 1.15 22.63 22.00
SL-1.0 1.01 1.01 1.24 1.22 13.70 12.00
SL-ADP 1.16 1.14 1.42 1.38 13.40 12.00
SL-DPP 1.22 1.22 1.58 1.56 15.91 15.00

18:00

Real 0.81 0.80 1.12 1.11 19.73 18.00
SL-1.0 1.01 0.99 1.22 1.18 12.09 10.00
SL-ADP 1.33 1.32 1.59 1.56 11.65 10.00
SL-DPP 1.49 1.49 1.80 1.76 11.95 10.00

23:00

Real 0.78 0.73 1.31 1.29 28.14 28.00
SL-1.0 1.01 1.01 1.38 1.37 18.88 18.00
SL-ADP 1.25 1.25 1.70 1.67 18.85 17.00
SL-DPP 1.30 1.29 1.82 1.82 20.32 18.00

Fig. 9 to 11, together with Tab. 8, indicate that:

22

8:00 12:00 18:00 23:00
time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

re
ve

nu
e

ef
fic

ie
nc

y

Real SL-1.0 SL-ADP SL-DPP

Figure 9: The distribution of revenue efficiency on selected
periods on weekday.

8:00 12:00 18:00 23:00
time

0.5

1.0

1.5

2.0

2.5

pr
of

it
ef

fic
ie

nc
y

Real SL-1.0 SL-ADP SL-DPP

Figure 10: The distribution of profit efficiency on selected pe-
riods on weekday.

8:00 12:00 18:00 23:00
time

10

20

30

40

50

se
ar

ch
in

g
tim

e

Real SL-1.0 SL-ADP SL-DPP

Figure 11: The distribution of searching time on selected pe-
riods on weekday.

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

0.8

1.0

1.2

1.4

1.6

1.8

av
er

ag
e

re
ve

nu
e

ef
fic

ie
nc

y
Real
SL-1.0

SL-ADP
SL-DPP

Figure 12: The average revenue efficiency throughout the w-
hole day (weekday).

• Using the SARSA-λ reinforcement learning model is effective. In all four selected periods,
even the SL-1.0 scheme improves the seeking efficiency than ground-truth. For example, during [8:00,
9:00), comparing between SL-1.0 and ground-truth, the average revenue efficiency and profit efficiency
among all drivers are increased by 13.6% and 3.6%, and the average searching time is reduced by about
35%. This indicates that reinforcement learning is able to help drivers to find better orders and get
orders quickly.

• It is necessary to consider dynamic prices in seeking route recommendation. In all four
selected periods, the revenue efficiency and profit efficiency are higher with SL-ADP and SL-DPP than
with ground-truth or SL-1.0. For example, during [18:00, 19:00), the revenue efficiency in ground-truth
and with SL-1.0, SL-ADP and SL-DPP are 0.81, 1.01, 1.33 and 1.49, respectively. In other words, the
two schemes SL-ADP and SL-DPP that consider dynamic prices increase revenue efficiency by 31.6%
and 47.5% compared to SL-1.0, respectively.

• Using predicted dynamic prices further increases seeking efficiency than simply using
average statistics. In all four selected periods, SL-DPP achieves higher revenue and profit efficiency
than SL-ADP. Taking the revenue efficiency as an example, SL-DPP gives a revenue efficiency 10.7%,
5.2%, 12.0% and 4.0% higher than SL-ADP does, during [8:00, 9:00), [12:00, 13:00), [18:00, 19:00) and
[23:00, 0:00), respectively. We also learn from these figures that the increase of revenue efficiency in
morning and evening rush hours is higher than in other two periods. Dynamic price predictions prove
to be effective in capturing the rapidly fluctuating dynamic prices, which is beyond the capability of
using average statistics.

23

• Reinforcement learning reduces searching time, but considering dynamic prices goes
to the opposite direction. This is an interesting observation. It is clear from Fig. 11 that SL-
DPP usually leads to a higher searching time than other schemes, whereas SL-1.0 always has a lower
searching time compared with ground-truth. We consider the reason is that it takes more time for
drivers to find higher price multipliers. Despite a longer searching time, drivers indeed find more
profitable orders by considering dynamic prices, especially the predicted dynamic prices.

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

0.8

1.0

1.2

1.4

1.6

1.8

av
er

ag
e

re
ve

nu
e

ef
fic

ie
nc

y

Real
SL-1.0

SL-ADP
SL-DPP

Figure 13: The average revenue efficiency throughout the w-
hole day (weekend).

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

av
er

ag
e

pr
of

it
ef

fic
ie

nc
y Real

SL-1.0
SL-ADP
SL-DPP

Figure 14: The average profit efficiency throughout the whole
day (weekday).

We then evaluate model performances on different hours and on weekend. Fig. 12 and Fig. 13 plot the
average revenue efficiency throughout the day on weekday and weekend, respectively. Fig. 14 plots the
average profit efficiency throughout the day on weekday. We have the following observations:

• Our above insights about the effects of using reinforcement learning, considering dynamic prices or
dynamic price predictions hold throughout the day, either on weekday or weekend. In other words,
SL-DPP gives the highest revenue, followed by SL-ADP, SL-1.0 and then the ground-truth.

• The amount of increase in revenue efficiency varies in different hours-of-day on weekday and weekend.
For example:

– SL-DPP v.s. SL-ADP on weekday: the increase is the highest during [13:00, 16:00), which is
a time period with relatively stable and lower price multipliers. This shows that considering
dynamic price predictions is especially important when the price multipliers across the city is
lower and stable, because dynamic price prediction is an extra source of information other than
the average statistics.

– SL-DPP v.s. SL-1.0 on weekday: the increase is the highest during the morning and evening rush
hours. This indicates that using dynamic prices – even the average statistics – helps drivers to
capture the supply and demand fluctuation in busy and high demand periods and thus increase
driver revenue.

– SL-DPP v.s. SL-ADP or SL-1.0 on weekend: the increase is the highest during [11:00, 14:00).
Note that passenger demand pattern on weekend is different from that on weekday, and the
number of orders peak around noon or early afternoon [38]. And according to Fig. 3, the price
multiplier is relatively low and stable during this period. This observation shows again that
dynamic price multiplier is helpful as an extra source of information.

• Comparing between Fig. 14 and Fig. 12 further verifies our previous observations on profit and revenue
efficiency. For example:

– Throughout the day, reinforcement learning helps drivers earn more by reducing the searching
time, but the quality of orders largely remains the same. This is clear by inspecting the profit

24

efficiency and revenue efficiency of SL-1.0 and ground-truth. From Fig. 12 it is shown that driver
indeed earn more in SL-1.0 than in ground-truth. But Fig. 14 shows that the profit efficiencies
of these two schemes are very close, indicating that drivers obtain similar orders.

– Further considering the dynamic prices, regardless of the averages or predictions, improves both
driver revenue and order quality. In both Fig. 12 and Fig. 14, either SL-DPP or SL-ADP sig-
nificantly increases the profit and revenue efficiency throughout the day than the ground-truth.
It also proves that when considering dynamic prices, the improvement of order quality is high
enough to compensate for the loss introduced by a longer searching time.

6.2.4. The Effectiveness of Using SARSA-λ

Similar to section 6.2.3, to evaluate the effectiveness of using SARSA-λ, our simulation compares the
SL-DPP model with the following two baselines:

• Q-DPP: Q-DPP is similar to SL-DPP, as it uses dynamic price prediction. The difference is that Q-
DPP uses Q-learning to recommend seeking routes instead of SARSA-λ. Q-learning is also a common
reinforcement learning model based on Q-table, but it is off-policy. We also set ε = 0.1, as in our
SARSA-λ model.

• DRL-DPP: DRL-DPP is also similar to SL-DPP and Q-DPP, but it adopts a deep reinforcement
learning model to recommend seeking routes, instead of SARSA-λ or Q-learning. Specifically, deep
Q-networks replace the Q-table: the input to the Q-network is the current state information, and the
output is the Q-value. The deep reinforcement learning model estimates the Q-values by training a
deep learning model, and it also adopts mechanisms such as experience replay and target Q-network
to improve its performance.

We present the distribution of revenue efficiency and profit efficiency of SL-DPP, Q-DPP and DRL-DPP
on the four selected periods on weeday, in Fig. 15 and Fig. 16, respectively. We also show the average
revenue efficiency and profit efficiency throughout the whole day, in Fig. 17 and Fig. 18. It is clear from
these figures that:

• Compared to the ground-truth, SL-DPP, Q-DPP and DRL-DPP all significantly increase
driver earnings; and SL-DPP indeed has the best performance throughout the day. For
example, during [18:00, 19:00), the average revenue efficiency of SL-DPP, Q-DPP and DRL-DPP is
1.49, 1.39 and 1.30, respectively; and the average profit efficiency of SL-DPP, Q-DPP and DRL-DPP
is 1.80, 1.69 and 1.59, respectively. Our hypothesis is that SL-DPP performs the best because it
adopts the E-table to record historical traces and this helps learning good policies. For the reason why
DRL-DPP does not has a satisfactory performance, we give a more detailed discussion in section 7.

• The difference between SL-DPP and Q-DPP (or DRL-DPP) differs obviously during
different hours-of-day. For example, during the time periods with more severe supply-demand
imbalance (e.g., evening rush hours), SL-DPP has a higher increase of revenue efficiency. We are
inspired by this and the last observation that SL-DPP is more capable to capture the high quality
orders resulting from supply-demand imbalance and thus higher price multipliers.

Furthermore, to evaluate the effectiveness of using SARSA-λ on weekend, Fig. 19 shows the average
revenue efficiency of SL-DPP, Q-DPP and DRL-DPP on weekend, as a comparison to Fig. 17. Fig. 20
compares the revenue efficiency of SL-DPP on weekday and weekend. Because of the limited space, we list
some key observations below:

• The above observations about the performance of SL-DPP, Q-DPP and DRL-DPP also hold through-
out the day on weekend.

• Regarding the SL-DPP model, the revenue efficiencies on weekday and weekend show different patterns.
For example, during morning or evening rush hours, the revenue efficiency is higher on weekday; during
[11:00, 15:00), i.e., noon and early afternoon, the revenue efficiency is higher on weekend.

25

8:00 12:00 18:00 23:00
time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

re
ve

nu
e

ef
fic

ie
nc

y

DRL-DPP Q-DPP SL-DPP

Figure 15: The distribution of revenue efficiency of SL-DPP,
Q-DPP and DRL-DPP on selected periods on weekday.

8:00 12:00 18:00 23:00
time

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

pr
of

it
ef

fic
ie

nc
y

DRL-DPP Q-DPP SL-DPP

Figure 16: The distribution of profit efficiency of SL-DPP, Q-
DPP and DRL-DPP on selected periods on weekday.

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

0.8

1.0

1.2

1.4

1.6

1.8

av
er

ag
e

re
ve

nu
e

ef
fic

ie
nc

y

Real
DRL-DPP

Q-DPP
SL-DPP

Figure 17: The average revenue efficiency of SL-DPP, Q-DPP
and DRL-DPP throughout the whole day (weekday).

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

av
er

ag
e

pr
of

it
ef

fic
ie

nc
y Real

DRL-DPP
Q-DPP
SL-DPP

Figure 18: The average profit efficiency of SL-DPP, Q-DPP
and DRL-DPP throughout the whole day (weekday).

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

0.8

1.0

1.2

1.4

1.6

1.8

av
er

ag
e

re
ve

nu
e

ef
fic

ie
nc

y

Real
DRL-DPP

Q-DPP
SL-DPP

Figure 19: The average revenue efficiency of SL-DPP, Q-DPP
and DRL-DPP throughout the whole day (weekend).

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

re
ve

nu
e

ef
fic

ie
nc

y Weekday Weekend

Figure 20: The distribution of revenue efficiency of SL-DPP
throughout the whole day (weekday v.s. weekend).

7. Summary and Discussions

We give a brief summary based on our evaluation results, and provide relevant discussions. Our study
focuses on using both reinforcement learning and dynamic price prediction to provide seeking route rec-
ommendations to drivers, and we thus summarize the effects of considering dynamic price prediction, and
using reinforcement learning, respectively. Furthermore, the comparison of different reinforcement learning
models in section 6.2.4 gives some intriguing results, and it is necessary to include a further discussion.
Finally, we discuss how dynamic prices help avoiding recommending nearby drivers to same locations, which

26

is a common problem with single agent reinforcement learning models.
The effects of considering dynamic price prediction. In fact, regarding dynamic prices, we

compare three different circumstances: considering no dynamic prices, using only the average dynamic
price multipliers, and using the predicted dynamic price multipliers. Among these three circumstances, our
evaluation results show that the revenue efficiency increases progressively.

Besides, we also summarize the following findings from evaluation results:

• Considering dynamic prices, no matter the average statistics or the predicted price multipliers, leads
to a significant improvement of order quality and thus increases driver revenue.

• Considering dynamic prices, especially the predictions, increases the searching time, i.e., drivers need
more time to search for better orders. But the improvement of order quality could offset the longer
searching time, and thus driver revenue is further increased, compared to only using the average
dynamic prices.

• For busy periods with high demand, dynamic price multipliers, even the average ones, help drivers to
capture the supply and demand fluctuation and thus obtain higher revenues.

• For periods with generally lower price multipliers and more stable demand, the predicted dynamic
price multipliers are especially important. The predicted price multipliers serve as an extra source
information and help drivers to find out locations where there are better orders.

The effects of using reinforcement learning. In our study, the effects of using reinforcement learning
mainly come from two aspects. Firstly, an agent in SARSA-λ measures the utilities of taking different actions
by considering long-term rewards, i.e., looking ahead. Secondly, SARSA-λ remembers the whole trace with
the variable λ, i.e., looking backwards. By trail-and-error, the agent finally learns the optimal state-action
pairs that maximize the expectation of the sum of rewards. Our evaluation results verify and show the
following key findings:

• Even without considering dynamic prices in any form, reinforcement learning alone could already help
drivers to find better orders and get orders quickly. For example, our results show that during [8:00,
9:00), the average revenue efficiency is increased by 13.6%, and the average searching time is reduced
by about 35%, when only SARSA-λ is used and no dynamic prices are considered.

• The effects of reinforcement learning are, to some extent, in an opposite direction against the effects of
dynamic prices; but combining them together yields better results. Specifically, considering dynamic
prices means better orders and longer searching time, whereas using reinforcement learning means
better orders and shorter searching time. Among these effects, shorter searching time is more obvious
in using reinforcement learning, and better orders is more obvious in considering dynamic prices. When
both reinforcement learning and dynamic pricing are adopted, these effects offset each other to some
extent and driver revenue is further increased.

• We also consider multiple reinforcement learning models, and even though their performances differ,
any one of them could bring a significant improvement of revenue efficiency compared to ground-truth.

The comparison between different reinforcement learning models. Our evaluation results show
that among the three chosen reinforcement learning models, SARSA-λ (SL-DPP) has the best performance,
followed by Q-learning (Q-DPP), and then deep Q-network (DRL-DPP), and this observation holds through-
out the day, either on weekday or weekend. This observation is intriguing in that deep Q-network has the
worst performance, and in the following we make a comparison between them.

Firstly, deep Q-network is more suitable with high-dimensional or continuous state space, and since
our problem does not involve a high-dimensional state space, the advantage of deep Q-network is already
diminished. Basically, for high-dimensional or continuous state space, storing the Q-table costs a large
amount of storage, making Q-learning or SARSA-λ unrealistic. For deep Q-network, only the parameters of
the involved networks are stored, leading to storage space savings. In our study, we could train our SARSA-λ

27

model for each timeslot so that the state space size is reduced, and it takes less than 2GB memory. Therefore,
the problem in our study does not require using deep Q-network to solve.

Secondly, to adopt to high-dimensional or continuous state space problems, deep Q-network uses neural
networks to output Q-values. This, in fact, trades the accuracy of Q-values for running time and storage
space.

Thirdly, the training of deep Q-network is more complicated, as explained below:

• Fine-tuning requires more efforts. We find that varying some hyper-parameters may lead to drastic
performance degradation, and sometimes the training may not even converge. In our evaluations, we
already give the best results, but it still could not outperform SARSA-λ and Q-learning. This also
shows the difficulty of fine-tuning.

• The training time is also longer. We normally train for 5,000 to 10,000 epochs before convergence.
The training time for SARSA-λ and Q-learning is about 10 to 15 minutes, whereas the training time
for deep Q-network ranges between 50 minutes to one hour.

• The training of deep Q-network requires sophisticated hardware such as high-end GPUs. By compar-
ison, only an ordinary CPU is needed in training SARSA-λ and Q-learning.

Lastly, SARSA-λ and Q-learning are more light-weight, whereas deep Q-network is more heavy-weight.
Specifically, in SARSA-λ and Q-learning, Q-values are stored as tables, and recommending seeking routes
means reading from these tables, costing little memory and computation resources. To the opposite, in
deep Q-network, either training the neural networks or calculating neural network outputs requires a lot of
computation resources. Therefore, in future deployment, it would be possible to deploy the SARSA-λ or
Q-learning models to drivers’ cell phones or on-car mobile devices, but it would be highly improbable for
deep Q-network.

The above discussions mainly focus on the advantages of SARSA-λ or Q-learning over deep Q-network,
but it should be noted that deep Q-network has some important advantages, which may be less obvious on
low or mid-dimensional problems such as ours. For example:

• Deep Q-network could handle continuous or high-dimensional state space, as mentioned previously.

• By using the experience replay mechanism, deep Q-network store and reuse samples, and could thus
effectively handle the data sparsity problem.

• By using neural networks to approximate Q-values, deep Q-network is capable to learn complex s-
trategies and value functions and could thus better adapt to complex environment and tasks.

• Deep Q-network supports end-to-end learning. By using deep neural networks, it is able to learn from
original inputs such as images or trajectories instead of manually-designed features.

To sum up, normally we may consider that deep Q-network is better than SARSA-λ or Q-learning. In
fact, it would be more accurate to claim that deep Q-network could handle more complex situations and
achieve a satisfactory performance in such situations. Yet when it comes to low or mid-dimensional state
space problems such as ours, deep Q-network may lose its advantages in performance due to reasons such as
inaccurate outputs approximated by neural networks, highly demanding fine-tuning, longer training time,
and etc.

The role of dynamic prices in avoiding similar or same recommendations. A common problem
arising in similar single-agent studies is that similar or same recommendations would be possibly made
to drivers nearby (e.g., in the same cell) or drivers with similar properties. Such recommendations are
undesirable, as drivers may then concentrate in a very small area, leading to a more-than-enough supply
and unpredictably-fluctuating dynamic price multipliers. Even multi-agent reinforcement learning models
are not good enough in solving this problem, as one needs a lot of parameters in order to formulate accurate
models, such as drivers’ emotional state, drivers’ adoption rate of the recommended routes, changes to the
environment (e.g., all those probabilities) after driver adoption, etc. These parameters are, unfortunately,

28

not easy to obtain without laborious and arduous field tests and collaboration from real service providers.
We thus consider multi-agent models are not reliable and realistic enough until, in foreseeable future, when
such field tests become possible. There are also some heuristics to tackle problem, such as generating a list
of possible recommendations (that are equally or almost equally optimal) and randomly picking one after
another for drivers nearby.

The adoption of dynamic prices in RoD service offers a new perspective in solving this problem. For
example, if the pricing algorithm is perfectly designed and could respond to the changes of supply and
demand in real time, then the price multiplier within a small “hot” area would go down when drivers begin
to gather there. This lowers the rewards of going to this “hot” area, and keeps other drivers away. With the
adoption of dynamic prices, even single-agent models such as ours could avoid recommending a particular
cell to a lot of drivers. In our study, on one hand, we assume that the dynamic pricing mechanism of the
service provider from which we obtain our datasets satisfies the above requirement, but how to design such
a mechanism is another story and is out of the scope of this paper. On the other hand, our inclusion of a
dynamic price prediction model could be regarded as a way to imitate the service provider’s dynamic pricing
mechanism: such model provides a description of the environment at a finer spatial and temporal granularity,
compared with the traditional descriptions by the pickup probabilities or destination probabilities.

8. Conclusion

We focus on the seeking route recommendation problem, i.e., recommending the next cell to a seeking
driver so that driver revenue is higher, in RoD service. Though this problem has been studied from various
perspectives in taxi service, RoD has two new features – dynamic pricing and data-driven – that enable us
to improve driver revenue to the next level.

By analyzing real service data, we point out that it is necessary to both recommend seeking routes to
drivers and take into account dynamic price multipliers in generating recommendations. We first design
a dynamic price prediction model to generate the predicted price multiplier given the time and location
described by features from multi-source urban data. We then adopt a reinforcement learning model, and
calculate the rewards of transitioning between cells based on the predicted price multipliers.

Evaluation results first validate the effectiveness of both models. The dynamic price prediction model
achieves a satisfactory accuracy of 83.82% and 90.67%, in the 7-classes prediction (i.e., predicting the
exact multiplier) and 3-classes prediction (i.e., predicting whether the multiplier is high, mid, or low),
respectively. The reinforcement learning model also significantly increases drivers’ average revenue as well
as profit efficiency and reduces average searching time. We also validate the positive effects of considering
dynamic price predictions: using predicted price multipliers is better than using average price multipliers,
which is better than considering no dynamic prices at all, in terms of both revenue and profit efficiency.

Besides effectiveness validation, our results also reveal some interesting facts. For example, using re-
inforcement learning primarily reduces searching time, whereas considering dynamic prices as well as pre-
dictions mainly enables drivers to improve order quality, though meanwhile the searching time becomes
longer. This shows the different roles reinforcement learning and dynamic prices play in increasing driver
revenue. We also find out that dynamic price prediction has positive effects because it serves as a new and
reliable source of information and captures the supply and demand fluctuation. Furthermore, by comparing
between multiple reinforcement learning models, simple models such as SARSA-λ and Q-learning prove to
have better performance than complex models such as deep reinforcement learning.

For future work, we primarily consider the implementation on real service. There are many details and
perspectives to take into consideration. For example, we would like to study the effects of multi-agent
models. In using such models, as we mention previously, there are a lot of information to collect – e.g., the
adoption ratio, the changes of passenger pattern after drivers take new recommended routes, the interaction
between drivers, etc. – and we are working actively to push the collaboration with service providers to make
it happen. It is also necessary to study the interactive effects when multi-agent models are coupled with
dynamic prices. Another interesting topic would be implementing our models as a mobile app or an on-car
device that automatically guides a driver throughout the working shift.

29

References

[1] A. Picchi, Uber vs. Taxi: Which Is Cheaper?, 2016. URL: http://bit.ly/2DMgrMc.
[2] Y. M. Nie, How can the taxi industry survive the tide of ridesourcing? evidence from shenzhen, china, Transportation

Research Part C: Emerging Technologies 79 (2017) 242–256.
[3] L. Rayle, D. Dai, N. Chan, R. Cervero, S. Shaheen, Just a better taxi? a survey-based comparison of taxis, transit, and

ridesourcing services in San Francisco, Transport Policy 45 (2016) 168–178.
[4] J. D. Hall, C. Palsson, J. Price, Is Uber a substitute or complement for public transit?, 2017. URL:

https://bit.ly/2K6Vs7L.
[5] T. Berger, C. Chen, C. B. Frey, Drivers of disruption? estimating the uber effect, European Economic Review 110 (2018)

197–210.
[6] Y. Cao, T. S. Gruca, B. R. Klemz, Internet pricing, price satisfaction, and customer satisfaction, International Journal of

Electronic Commerce 8 (2003) 31–50.
[7] M. L. Kasavana, A. J. Singh, Online auctions, Journal of Hospitality & Leisure Marketing 9 (2001) 127–140.
[8] M. D. Wittman, P. P. Belobaba, Dynamic pricing mechanisms for the airline industry: a definitional framework, Journal

of Revenue and Pricing Management 18 (2019) 100–106.
[9] J. M. Betancourt, A. Hortasu, A. Oery, K. R. Williams, Dynamic Price Competition: Theory and Evidence from Airline

Markets, Working Paper 30347, National Bureau of Economic Research, 2022. URL: http://www.nber.org/papers/w30347.
doi:10.3386/w30347.

[10] O. Besbes, A. Zeevi, Dynamic pricing without knowing the demand function: Risk bounds and near-optimal algorithms,
Operations Research 57 (2009) 1407–1420.

[11] J. Hall, C. Kendrick, C. Nosko, The effects of Uber’s surge pricing: a case study, 2015. URL: http://bit.ly/2kayk9O.
[12] J. Gan, B. An, H. Wang, X. Sun, Z. Shi, Optimal pricing for improving efficiency of taxi systems., in: Proceedings of the

22th International Joint Conferences on Artificial Intelligence, IJCAI ’13, AAAI, 2013, pp. 2811–2818.
[13] L. Rayle, S. Shaheen, N. Chan, D. Dai, R. Cervero, App-based, on-demand ride services: Comparing taxi and ridesourcing

trips and user characteristics in San Francisco, 2014. URL: http://bit.ly/2kVkahg.
[14] L. Chen, A. Mislove, C. Wilson, Peeking beneath the hood of Uber, in: Proceedings of the 2015 ACM Conference on

Internet Measurement Conference, IMC ’15, ACM, New York, NY, USA, 2015, pp. 495–508.
[15] S. Guo, C. Chen, Y. Liu, K. Xu, D. M. Chiu, Modelling passengers’ reaction to dynamic prices in ride-on-demand services:

A search for the best fare, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (2018) 136:1–136:23.
[16] S. Guo, Y. Liu, K. Xu, D. M. Chiu, Understanding ride-on-demand service: Demand and dynamic pricing, in: Pervasive

Computing and Communication Workshops (PerCom Workshops), 2017 IEEE International Conference on, IEEE, 2017,
pp. 509–514.

[17] H. Chen, Y. Jiao, Z. Qin, X. Tang, H. Li, B. An, H. Zhu, J. Ye, InBEDE: Integrating contextual bandit with TD learning
for joint pricing and dispatch of ride-hailing platforms, in: Proceedings of the 2019 IEEE International Conference on
Data Mining, ICDM ’19, 2019, pp. 61–70.

[18] M. K. Chen, Dynamic pricing in a labor market: Surge pricing and flexible work on the uber platform, in: Proceedings
of the 2016 ACM Conference on Economics and Computation, EC ’16, ACM, New York, NY, USA, 2016, pp. 455–455.

[19] P. Cohen, R. Hahn, J. Hall, S. Levitt, R. Metcalfe, Using big data to estimate consumer surplus: The case of uber, 2016.
URL: http://bit.ly/2pqXiWo.

[20] S. Guo, C. Chen, Y. Liu, K. Xu, D. M. Chiu, It can be cheaper: Using price prediction to obtain better prices from
dynamic pricing in ride-on-demand services, in: Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, MobiQuitous ’17, ACM, 2017, pp. 146–155.

[21] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, D. M. Chiu, Fine-grained dynamic price prediction in ride-on-demand services:
Models and evaluations, Mobile Networks and Applications 25 (2020) 505–520.

[22] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, D. M. Chiu, Dynamic price prediction in ride-on-demand service with
multi-source urban data, in: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, MobiQuitous ’18, ACM, 2018, pp. 412–421.

[23] S. Guo, C. Chen, Y. Liu, K. Xu, B. Guo, D. M. Chiu, How to pay less: a location-specific approach to predict dynamic
prices in ride-on-demand services, IET Intelligent Transport Systems 12 (2018) 610–618.

[24] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, D. Zhang, D. M. Chiu, A simple but quantifiable approach to dynamic price
prediction in ride-on-demand services leveraging multi-source urban data, Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2 (2018) 112:1–112:24.

[25] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, Q. Yang, Hunting or waiting? discovering passenger-finding strategies
from a large-scale real-world taxi dataset, in: Pervasive Computing and Communication Workshops (PerCom Workshops),
2011 IEEE International Conference on, IEEE, 2011, pp. 63–68.

[26] D. Zhang, L. Sun, B. Li, C. Chen, G. Pan, S. Li, Z. Wu, Understanding taxi service strategies from taxi gps traces, IEEE
Transactions on Intelligent Transportation Systems 16 (2015) 123–135.

[27] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, Z. Yu, D. Zhang, D. M. Chiu, ROD-Revenue: Seeking strategies analysis and
revenue prediction in ride-on-demand service using multi-source urban data, IEEE Transactions on Mobile Computing 19
(2020) 2202–2220.

[28] H. Rong, X. Zhou, C. Yang, Z. Shafiq, A. Liu, The rich and the poor: A markov decision process approach to optimizing
taxi driver revenue efficiency, in: Proceedings of the 25th ACM International Conference on Information and Knowledge
Management, CIKM ’16, ACM, 2016, pp. 2329–2334.

30

[29] X. Yu, S. Gao, X. Hu, H. Park, A markov decision process approach to vacant taxi routing with e-hailing, Transportation
Research Part B: Methodological 121 (2019) 114–134.

[30] X. Zhou, H. Rong, C. Yang, Q. Zhang, A. V. Khezerlou, H. Zheng, Z. Shafiq, A. X. Liu, Optimizing taxi driver profit
efficiency: A spatial network-based markov decision process approach, IEEE Transactions on Big Data 6 (2020) 145–158.

[31] Z. Shou, X. Di, J. Ye, H. Zhu, R. Hampshire, Where to find next passengers on e-hailing platforms? - a markov decision
process approach, arXiv preprint arXiv:1905.09906 (2020).

[32] C.-M. Tseng, S. C.-K. Chau, X. Liu, Improving viability of electric taxis by taxi service strategy optimization: A big data
study of new york city, IEEE Transactions on Intelligent Transportation Systems 20 (2019) 817–829.

[33] N. Garg, S. Ranu, Route recommendations for idle taxi drivers: Find me the shortest route to a customer!, in: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp. 1425–1434.

[34] Y. Gao, D. Jiang, Y. Xu, Optimize taxi driving strategies based on reinforcement learning, International Journal of
Geographical Information Science 32 (2018) 1677–1696.

[35] M. Han, P. Senellart, S. Bressan, H. Wu, Routing an autonomous taxi with reinforcement learning, in: Proceedings of the
25th ACM International Conference on Information and Knowledge Management, CIKM ’16, ACM, 2016, pp. 2421–2424.

[36] C. Yan, H. Zhu, N. Korolko, D. Woodard, Dynamic pricing and matching in ride-hailing platforms, Naval Research
Logistics (NRL) 67 (2020) 705–724.

[37] H. A. Chaudhari, J. W. Byers, E. Terzi, Putting data in the driver’s seat: Optimizing earnings for on-demand ride-hailing,
in: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, ACM, 2018, pp. 90–98.

[38] S. Guo, Q. Shen, Z. Liu, C. Chen, C. Chen, J. Wang, Z. Li, K. Xu, Seeking based on dynamic prices: Higher earnings
and better strategies in ride-on-demand services, IEEE Transactions on Intelligent Transportation Systems 24 (2023)
5527–5542.

[39] L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still outperform deep learning on typical tabular
data?, in: Proceedings of the 36th Conference on Neural Information Processing Systems, NeurIPS ’22, 2022, pp. 507–520.

[40] R. Shwartz-Ziv, A. Armon, Tabular data: Deep learning is not all you need, Information Fusion 81 (2022) 84–90.
[41] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, 2016, pp. 785–794.
[42] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM: A highly efficient gradient boosting

decision tree, in: Proceedings of the 31st Conference on Neural Information Processing Systems, NIPS ’17, 2017, pp. 1–9.

31

