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Abstract
Based on the nonequilibrium Green’s function (NEGF), we develop a quantum nonlinear theory to
study time-dependent ac transport properties in the low frequency and nonlinear bias voltage
regimes. By expanding NEGF in terms of time to the linear order in Wigner representation, we can
explicitly include the time-dependent self-consistent Coulomb interaction induced by external ac
bias. Hence this theory automatically satisfies two basic requirements, i.e. current conservation and
gauge invariance. Within this theory, the nonlinear ac current can be evaluated at arbitrarily large
bias voltages under the low frequency limit. In addition, we obtain the expression of time-
dependent current under the wide band limit and derive the relation between the nonlinear
electrochemical capacitance and the bias voltage, which are very useful in predicting the dynamical
properties of nanoelectronic devices. This quantum theory can be directly combined with density
functional theory to investigate time-dependent ac transport from first-principles calculation.

1. Introduction

Nonlinear Hall effect [1–4] is the emerging frontier of condensed matter research [5–18]. Prominent
nonlinear Hall phenomena include the second order Hall effect discovered in WTe2 [19–21] as well as TaIrTe4
[22], and the third order Hall effect verified in Td-MoTe2 [23], etc. These higher-order responses are
relatively weak and their measurement requires the phase lock-in amplifier technique, where low frequency
ac bias voltage is applied as the driving signal while the second [20–22] and third harmonic [23] responses
labeling nonlinear signals are probed. However, theoretical interpretation of nonlinear Hall effects is mostly
based on the semiclassical Boltzmann approach. In terms of the second [13] and third order [14]
conductances expressed in nonequilibrium Green’s function (NEGF), quantum transport properties of
nonlinear Hall effects have been discussed, but only in the dc case. Therefore, a nonlinear ac transport theory
at low frequency is on demand and definitely helps to comprehend nonlinear Hall effects.

On the other hand, time-dependent quantum transport in molecular and nanoscale devices have
attracted intensive research attention both experimentally [24–34] and theoretically [35–66]. Time-
dependent response in quantum transport is of great importance, since it can provide critical information on
dynamical properties that are absent in the dc case. The dynamical property is essential in accurate design of
nanoelectronic devices. Under time-dependent external fields, quantum transport investigation focuses on
two different regimes, i.e. the transient regime when the external bias is immediately turn on or off and the
long time ac steady-state regime. For the transient dynamics that characterizes the relaxation time of an
electronic system when turned on or off, various approaches have been developed, including scattering
matrix theory [37, 48, 50], NEGF [38, 47, 67], and time-dependent Schrödinger equation [46]. In the ac
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steady-state regime, Büttiker derived a current conservation theory which explicitly includes the
displacement current in terms of scattering matrix [37]. However, this theory is only applicable under
near-equilibrium condition. Later, the situation has been extended to the far-from-equilibrium condition by
using NEGF [68].

According to [37], the long-range Coulomb interaction must be included in time-dependent and
nonlinear dc quantum transport theories, which is necessary for satisfying two basic requirements,
i.e. current conservation and gauge invariance [37, 69]. The Coulomb interaction can be treated at least in
the Hartree level in density functional theory (DFT). Therefore, it is convenient to adopt the first-principles
approach, i.e. DFT carried out within the Keldysh NEGF (NEGF-DFT) formalism, to study the transport
properties of nanoelectronic devices. In practice, quantitative predictions of their transport properties were
compared with experimental results [70–73]. Although the NEGF-DFT formalism has been widely applied in
predicting dc quantum transport properties, its applications to ac situations received far less attention. This
is due to the lack of a quantum ac transport theory in the nonlinear bias voltage regime. Such an ac transport
theory can be directly coupled with DFT to predict quantum nonlinear ac transport properties from atomic
first principles, which is absent so far. Therefore, a nonlinear ac NEGF theory is urgently needed.

In this work, we develop a quantum nonlinear formalism to study ac transport properties at low
frequency, where Coulomb interaction is explicitly treated within the NEGF formalism. Based on the
adiabatic approximation, we expand the Floquet NEGF with respect to frozen Green’s function in Wigner
representation at low frequency. Physically, frozen Green’s function describes that the potential experienced
by electrons during their transport is instantaneously adjusted to the applied ac bias. Following this route,
the nonlinear time-dependent current is obtained. Furthermore, a concise formula is given under the wide
band limit (WBL), which can recover the dynamic conductance at small ac bias [68]. In particular, we
demonstrate that the present theory can be used to study the nonlinear electrochemical capacitance in
response to external bias, i.e. the C–V curve.

The paper is organized as follows. In section 2, we introduce the theoretical model for ac transport.
Section 3 presents the derivation of time-dependent NEGF in terms of frozen Green’s function. In section 4,
we provide the time-dependent ac current formula and discuss two limiting cases, i.e. WBL and small ac bias
limit. Nonlinear electrochemical capacitance is also discussed. Finally, a brief summary is given in section 5.

2. Model

In this section, we introduce the model system for ac transport. The system under investigation is a quantum
device in contact with two leads extending to electron reservoirs where time-dependent ac bias is applied, as
shown in figure 1. The Hamiltonian of this model system can be expressed in three parts

H=Hα +HC +HT. (1)

Here Hα is the Hamiltonian of lead α

Hα =
∑
kα

ϵkα (t)C
†
kαCkα, (2)

where C†
kα/Ckα creates/annihilates an electron in lead α. ϵkα(t) = ϵ

(0)
kα + qvα(t), where ϵ

(0)
kα is the energy level

of lead α and vα(t) = vαcos(ωt+φα) is the time-dependent external ac bias. ω is the frequency of this ac
bias and φα denotes the corresponding phase. The second term HC is the Hamiltonian of the isolated central
region,

HC =
∑
n

(ϵn + qUn)d
†
ndn, (3)

where d†n/dn is the creation/annihilation operator of the electron in the central scattering region. Internal
Coulomb potentialUn under the Hartree approximation is included in the central region, which is defined as

Un =
∑
m

Vnm⟨d†mdm⟩, (4)

where Vnm is the matrix element of the Coulomb potential. In real space representation,
V(x,x ′) = q/|x− x ′|. The exchange and correlation interactions can be treated in a similar way. The last term
HT describes the coupling between the central region and leads

2
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Figure 1. Schematic plot of a two-terminal nanoelectronic device consisting of a central scattering region (red line box) and two
leads. The left and right leads extend to electron reservoirs at infinity, where time-dependent bias voltages vα cos(ωt+φα) are
applied and electric currents are probed.

HT =
∑
kαn

[
tkαnC

†
kαdn + t∗kαnd

†
nCkα

]
, (5)

with tkαn the coupling constant.
Based on NEGF, the time-dependent charge current flowing in lead α can be written as

(h̄=−q= 1)[43],

Iα (t) =

ˆ
dt1Tr

[
Gr (t, t1)Σ

<
α (t1, t)+G< (t, t1)Σ

a
α (t1, t)−Σ<

α (t, t1)G
a (t1, t)−Σr

α (t, t1)G
< (t1, t)

]
. (6)

Here Gr,a,< (Σr,a,<) is the time-dependent Green’s function (self energy) with double time indices in
principle. In order to obtain the time-dependent current Iα(t), one has to know Gr,a,< and Σr,a,<. In the
following section, we will discuss how to calculate them in Wigner representation by expanding them to the
first order in frequency, and then evaluate Iα(t).

3. Green’s function and self energy inWigner representation

We start from the time-dependent retarded and lesser Green’s functions of the central scattering region on
real-time axis [67], [

i
∂

∂t
−HC (t)

]
Gr (t, t ′) = δ (t− t ′)+

ˆ
Σr (t, t1)G

r (t1, t
′)dt1, (7)

and [
i
∂

∂t
−HC (t)

]
G< (t, t ′) =

ˆ
dt1
[
Σr (t, t1)G

< (t1, t
′)+Σ< (t, t1)G

a (t1, t
′)
]
. (8)

In general, the Hamiltonian HC(t) in equations (7) and (8) can be separated into two parts, i.e.
HC(t) =HC0 +U(t), where HC0 is the time-independent part and U(t) is the time-dependent internal
Coulomb potential in response to the external ac bias. To develop a formalism that can be combined with
DFT, the Coulomb potential U(t) should be solved explicitly through the Poisson equation

∇2U(x, t) =−4πρ(x, t) =−4π i
[
G< (t, t)

]
xx
, (9)

where ρ(x, t) is the charge density and x represents the real space position in the central region. Note that
equations (7)–(9) are coupled, which means that they should be solved self-consistently.

The Green’s functions in equations (7) and (8) depend on two time indices (t, t ′), since the time
translational invariance is broken due to the presence of the time-dependent ac bias voltage applied in the
lead. In the following, we first express the two-time function A(t1, t2) in Wigner coordinates, where a slow
classical timescale t= (t1 + t2)/2 and a fast quantum timescale τ = t1− t2 are introduced [67]. Thus,
A(t1, t2) is transformed into A(t, τ) and an integral expression such as

A(t1, t2) =

ˆ
dt3A1 (t1, t3)A2 (t3, t2) , (10)

gives [67]

A(t,E) = A1 (t,E) F̂ (t,E)A2 (t,E) , (11)

3
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where A(t,E) =
´
dτeiEτA(t, τ) and

F̂ (t,E) = exp

(
− i

2

[←−
∂

∂t

−→
∂

∂E
−
←−
∂

∂E

−→
∂

∂t

])
, (12)

is the gradient operator and arrow indicates the direction of differentiation. When the external ac bias is slow
enough compared to characteristic timescales of the electron in the system, the gradient operator in
equation (12) can be expanded order by order in time or energy. Here, we keep only the first order of the
Taylor expansion

F̂ (t,E)≈ 1− i

2

(←−
∂

∂t

−→
∂

∂E
−
←−
∂

∂E

−→
∂

∂t

)
. (13)

For simplicity, abbreviations for derivatives ∂
∂E = ∂E and

∂
∂t = ∂t are adopted in the following derivation.

Thus Wigner transformation of a two-time function gives [67]

A(t,E) = A1 (t,E)A2 (t,E)+
i

2
{A1,A2} , (14)

where Poisson bracket is defined as

{A1 (t,E) ,A2 (t,E)}= ∂EA1∂tA2− ∂tA1∂EA2. (15)

Therefore, by taking Wigner transformation and using equation (14), the corresponding Floquet Green’s
functions of equations (7) and (8) up to the first order become (detailed derivation is presented in appendix
A)

i

2
∂tG

r (t,E)+
i

2
∂tHC (t)∂EG

r (t,E)+ [E−HC (t)−Σr (t,E)]Gr (t,E)− i

2
{Σr,Gr}= I, (16)

and

i

2
∂tG

< (t,E)+
i

2
∂tHC (t)∂EG

< (t,E)+ [E−HC (t)−Σr (t,E)]G< (t,E)−Σ< (t,E)Ga (t,E)

− i

2

[{
Σr,G<

}
+
{
Σ<,Ga

}]
= 0. (17)

Here we have used C(t1, t2) = A(t1)B(t1, t2) =
´
dt3A(t1, t3)B(t3, t2)δ(t1− t3) and its Wigner transformation

is expressed as

A(t1)B(t1, t2) =⇒ A(t)B(t,E)− i

2
∂tA∂EB. (18)

In order to calculate the Green’s function Gr/<(t,E), the self energy Σr/<(t,E) should be expanded up to
the first order in time. We show that the self energy up to the first order is the same as that of the equilibrium
one.

We start from the retarded Green’s function grα(t,E) of lead α first, since the self energy Σr
α(t,E) is

defined as Σr
α(t,E) =HCαgrα(t,E)HαC with HCα describing the coupling between the central region and lead

α. Similar to equation (16), the retarded Green’s function of lead α can be expressed as

i

2
∂tg

r
α (t,E)+

i

2
∂tHα (t)∂Eg

r
α (t,E)+ [E+ iη−Hαα (t)]g

r
α (t,E) = I, (19)

where η is an infinity small positive number. Let us introduce the frozen Green’s function of the lead,

grα,f (t,E) = [E+ iη−Hα (t)]
−1

. (20)

Then equation (19) becomes

[
grα,f (t,E)

]−1
grα (t,E)+

i

2

{(
grα,f

)−1
,grα

}
= I. (21)

4
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Since the Poisson bracket is actually calculating the first order term, grα in it should be replaced by the
frozen Green’s function grα,f directly. And the term grα,f{(grα,f)−1,grα,f} equals to

grα,f∂t
(
grα,f

)−1
∂Eg

r
α,f− grα,f∂E

(
grα,f

)−1
∂tg

r
α,f =−g rα,f∂tHαg

r
α,fg

r
α,f + grα,fg

r
α,f∂tHαg

r
α,f

= grα,f

(
−∂tHαg

r
α,f + grα,f∂tHα

)
grα,f = 0, (22)

where we have used the relation−∂tHαgrα,f + grα,f∂tHα = 0 that can be proved by using ∂t[(grα,f)
−1∂tgrα,f] = 0.

Therefore, from equations (21) and (22), we have

grα (t,E) = grα,f (t,E) . (23)

Then the self energy Σr
α(t,E) is equal to

Σr
α (t,E) =HCαg

r
α,f (t,E)HαC. (24)

Furthermore, we calculate the lesser self energy up to the first order in time. As shown in [68], the lesser
Green’s function of lead α can be obtained from retarded and advanced Green’s functions

g<kα (t1, t2) = if
(
ϵ
(0)
kα

)
[grkα (t1, t2)− gakα (t1, t2)] , (25)

where gr,akα is defined as

gr,akα (t, t
′) =∓iθ (±t∓ t ′)exp

[
−i
ˆ t

t ′
dt1ϵkα (t1)

]
. (26)

By taking the Wigner transformation, equation (25) can be written as

g<kα (t,E) = if
(
ϵ
(0)
kα

)
[grkα (t,E)− gakα (t,E)] , (27)

where gr/akα (t,E) = (E± iη− ϵkα(t))−1 due to equations (20) and (23). According to the definition, the lesser
self energy can be expressed as[

Σ<
α (t,E)

]
mn

=
∑
k

t∗kαmg
<
kα (t,E) tkαn = ifα (E) [Γα (E− qvα (t))]mn , (28)

where fα(E, t)≡ f(E− qvα(t)) is the Fermi distribution function of lead α with applied bias. The linewidth
function Γα is defined as

[Γα (E)]mn ≡ 2π
∑
k

t∗kαmtkαnδ
(
E− ϵ

(0)
kα

)
. (29)

It is also equal to

Γα (t,E) = i [Σr
α (t,E)−Σa

α (t,E)] . (30)

Therefore, the self energy in equations (16) and (17) can be calculated by using frozen Green’s function of
the lead. Finally, we introduce the frozen retarded Green’s function of the central scattering region

Gr
f (t,E) =

[
Ga
f (t,E)

]†
= [E−HC (t)−Σr (t,E)]−1

. (31)

Then equations (16) and (17) become

Gr (t,E) = Gr
f (t,E)+

i

2
Gr
f

{(
Gr
f

)−1
,Gr

}
, (32)

and

G< (t,E) = Gr
f (t,E)Σ

< (t,E)Ga
f (t,E)+

i

2
Gr
f

[{
Σr,G<

}
+
{
Σ<,Ga

}]
. (33)

5
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Furthermore, we express Floquet Green’s function in terms of frozen Green’s function up to the first order in
time,

Gr (t,E)≃ Gr
f (t,E)+ gr, (34)

and

G< (t,E)≃ Gr
f (t,E)Σ

< (t,E)Ga
f (t,E)+ g< = G<

f + g<, (35)

where we have introduced lesser frozen Green’s function G<
f = Gr

f(t,E)Σ
<(t,E)Ga

f (t,E). After some
derivations, we have the following relations

gr =
i

2

[(
∂EG

r
f

)
∂t (HC +Σr)Gr

f −Gr
f∂t (HC +Σr)

(
∂EG

r
f

)]
, (36)

and

g< =
i

2

[(
∂EG

<
f

)
∂t (HC +Σa)Ga

f −G<
f ∂t (HC +Σa)

(
∂EG

a
f

)
+
(
∂EG

r
f

)(
ḢC +Σ̇r

)
G<
f

− Gr
f

(
ḢC +Σ̇r

)(
∂EG

<
f

)
+
(
∂EG

r
f

)
Σ̇<Ga

f −Gr
f Σ̇

<
(
∂EG

a
f

)]
,

(37)

where the relation ∂E/t[(G
r
f)
−1Gr

f ] = 0 is used.
Notice that the time-dependent Coulomb interaction U(t) is obtained through solving the Poisson

equation (9). The current conservation law is expressed as,∑
α

Iα (t)+ ∂tQ(t) = 0, (38)

with total charge of the system

Q(t) =−i
ˆ

dE

2π
Tr
[
G< (t,E)

]
. (39)

Since we wish to expand the time-dependent current Iα(t) up to the first order in frequency, the first order of
lesser Green’s function g< can be safely neglected during calculation ofQ(t), i.e.

Q(t) =−i
ˆ

dE

2π
Tr
[
G<
f (t,E)

]
. (40)

Thus the corresponding Poisson equation

∇2U(x, t) =−4π i
[
G<
f (t, t)

]
xx
, (41)

can be solved. Therefore, the Coulomb potential U(t) and G<
f (t, t) should be solved self-consistently. In the

following section, we will show that once the Coulomb potential is self-consistently obtained, current
conservation

∑
α Iα(t) = 0 is automatically guaranteed.

4. Time-dependent current formula

Similarly, the time-dependent current Iα(t) in equation (6) can also be expressed in Wigner representation

Iα (t) =

ˆ
dE

2π
Tr

[
Gr (t,E)Σ<

α (t,E)+G< (t,E)Σa
α (t,E)−Σ<

α (t,E)Ga (t,E)−Σr
α (t,E)G

< (t,E)

+
i

2

{
Gr,Σ<

α

}
+

i

2

{
G<,Σa

α

}
− i

2

{
Σ<

α ,G
a
}
− i

2

{
Σr

α,G
<
}]

,

(42)

where {. . .} is the Poisson bracket defined in equation (15). Green’s functions and self energies inside the
bracket is short for operators in Wigner representation, e.g. Gr,a,< ≡ Gr,a,<(t,E), etc. Note that the
time-dependent Coulomb potential is explicitly included in the frozen Green’s function through
equation (31) and hence the time-dependent current.

6
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Based on equations (34) and (35), the current can be divided into two parts: Iα = I(0)α + I(1)α . Here, I(0)α

corresponds to the adiabatic current and I(1)α is the first order correction due to frequency. With the help of

the relation G<
f = Gr

f(t,E)Σ
<(t,E)Ga

f (t,E), the adiabatic current I
(0)
α can be written as

I(0)α (t) =

ˆ
dE

2π
Tr
[
Gr
fΣ

<
α +G<

f Σ
a
α−Σ<

αG
a
f −Σr

αG
<
f

]
=

ˆ
dE

2π
Tr
[(

Gr
f −Ga

f

)
Σ<

α + iG<
f Γα

]
=
∑
β

ˆ
dE

2π
Tr
[
ΓαG

r
fΓβG

a
f

]
( fα− fβ) ,

(43)

where Ga
f −Gr

f = iGr
fΓG

a
f is used. Correspondingly, the first order correction current is

I(1)α (t) =

ˆ
dE

2π
Tr

[
grΣ<

α + g<Σa
α−Σ<

α g
a−Σr

αg
< +

i

2

{
Gr
f ,Σ

<
α

}
+

i

2

{
G<
f ,Σ

a
α

}
− i

2

{
Σ<

α ,G
a
f

}
− i

2

{
Σr

α,G
<
f

}]
.

(44)

Plugging equations (36) and (37) into equation (44), the explicit expression of I(1)α can be obtained after
some straightforward algebra. Then we have

I(1)α (t) =

ˆ
dE

2π
Tr

{
(gr− ga)Σ<

α + ig<Γα +
i

2

[
∂E

(
Gr
f +Ga

f

)
∂tΣ

<
α − ∂t

(
Gr
f +Ga

f

)
∂EΣ

<
α

+ ∂t (Σ
r
α +Σa

α)∂EG
<
f − ∂E (Σ

r
α +Σa

α)∂tG
<
f

]}
.

(45)

From G<
f = Gr

fΣ
<Ga

f , we have ∂E/tG
<
f = (∂E/tG

r
f)Σ

<Ga
f +Gr

f(∂E/tΣ
<)Ga

f +Gr
fΣ

<(∂E/tG
a
f ). Equation (45)

can be further expressed as

I(1)α (t) =

ˆ
dE

2π
Tr
{
(gr− ga)Σ<

α + i
(
Gr
fΣ

<ga + grΣ<Ga
f

)
Γα −

1

2

(
∂tG

r
fΣ

<Ga
f −Gr

fΣ
<∂tG

a
f

)
∂EΓα

+
1

2

(
∂EG

r
fΣ

<Ga
f −Gr

fΣ
<∂EG

a
f

)
∂tΓα + ∂t

dNα

dE
− 1

2
PΓα

}
,

(46)

where ga ≡ (gr)† and we have used integration by parts for energy and introduced two terms

P ≡ ∂tG
r
fΣ

<∂EG
a
f − ∂EG

r
fΣ

<∂tG
a
f , (47)

dNα

dE
≡ i

2

[
∂E

(
Gr
f +Ga

f

)
Σ<

α − ∂E (Σ
r
α +Σa

α)G
<
f + i

(
∂EG

r
fΣ

<Ga
f −Gr

fΣ
<∂EG

a
f

)
Γα

]
. (48)

The physical meaning of [dNα/dE]xx is similar to injectivity [74–76]: the local charge at position x that an
electron injects from lead α and emits to all leads due to the external bias.

Since current conservation is one of the basic requirements in quantum transport theory, we
demonstrate that the current shown in equation (46) is conserved when the Coulomb interaction is
included. Firstly, it is straightforward to show the adiabatic current satisfies∑

α

I(0)α =
∑
αβ

ˆ
dE

2π
Tr
[
ΓαG

r
fΓβG

a
f

]
( fα− fβ) = 0. (49)

Then from equation (46), we have∑
α

I(1)α =
∑
α

∂t
dNα

dE
=−i∂t

ˆ
dE

2π
Tr
[
G<
f

]
=−∂tQ(t) , (50)

where total chargeQ(t) is defined in equation (40). In the central scattering region, the Poisson equation in
equation (41) should be solved with proper boundary conditions. The natural and reasonable conditions are
zero electric fields on the boundaries leading to constant electric potential U there. Thus we have
Tr
[
∇2U(x, t)

]
= 0 due to these boundary conditions of the Poisson equation. Physically, the total charge in

the central regionQ(t) is zero and so is its derivative, which is known as the charge neutrality condition.
Then we arrive at

∑
α Iα(t) = 0.

7



New J. Phys. 25 (2023) 113006 L Zhang et al

4.1. Wide band limit (WBL)
WBL is usually adopted to simplify the analysis of transport properties. In this subsection, we will derive
formulas for the time-dependent current under WBL, where self energies are approximately independent of
both energy and time, i.e.

∂EΣ
r/a = 0;∂EΓ = 0;

∂tΣ
r/a = 0;∂tΓ = 0.

(51)

Therefore, we have

∂tG
r/a
f = Gr/a

f ∂tHGr/a
f ,

∂EG
r/a
f =−Gr/a

f Gr/a
f ,

G<
f = Gr

f (t,E)Σ
<Ga

f (t,E) ,

Σ< =
∑
α

iΓαfα (E, t) ,

(52)

and

gr =
i

2

[
∂tG

r
fG

r
f −Gr

f∂tG
r
f

]
,

ga =
i

2

[
∂tG

a
fG

a
f −Ga

f ∂tG
a
f

]
.

(53)

Note that the lesser self energy Σ< is still time-dependent due to the presence of Fermi distribution function

fα(E, t) in it. Under WBL, the zeroth order current I(0)α has the same form

I(0)α (t) =
∑
β

ˆ
dE

2π
Tr
[
ΓαG

r
fΓβG

a
f

]
( fα (E, t)− fβ (E, t)) , (54)

where Γα is energy-independent. By using equations (51)–(53), the first order current I(1)α (t) in
equation (46) can be greatly simplified as

I(1)α (t) =

ˆ
dE

2π
Tr
[
−i
(
Gr
f∂tG

r
f + ∂tG

a
fG

a
f

)
Σ<

α +
(
Gr
f∂tG

r
fΣ

<Ga
f −Gr

fΣ
<∂tG

a
fG

a
f

)
Γα

+
1

2

(
−i
(
Gr
fG

r
f +Ga

fG
a
f

)
∂tΣ

<
α −

(
−Gr

fG
r
f∂tΣ

<Ga
f +Gr

f∂tΣ
<Ga

fG
a
f

)
Γα

)]
.

(55)

We can also check the validity of current conservation for the zeroth and first order currents in
equations (54) and (55). The current conservation of zeroth order can be easily obtained, and the
summation of the first order currents in equation (55) gives

∑
α

I(1)α =

ˆ
dE

2π
Tr
[
−i
(
Gr
f∂tG

r
f + ∂tG

a
fG

a
f

)
Σ< +

(
Gr
f∂tG

r
fΣ

<Ga
f −Gr

fΣ
<∂tG

a
fG

a
f

)
Γ

+
1

2

(
−i
(
Gr
fG

r
f +Ga

fG
a
f

)
∂tΣ

<−
(
−Gr

fG
r
f∂tΣ

<Ga
f +Gr

f∂tΣ
<Ga

fG
a
f

)
Γ
)]

=− i

ˆ
dE

2π
Tr
[
∂tG

r
fΣ

<Ga
f +Gr

f∂tΣ
<Ga

f +Gr
fΣ

<∂tG
a
f

]
=− i∂t

ˆ
dE

2π
Tr
[
G<
f

]
=− ∂tQ(t) = 0.

(56)

To summarize, the time-dependent current expressed in equation (55) under WBL is also conserved.

4.2. Small ac bias limit
At the small ac bias limit, we can derive analytic expressions of the dynamic conductance and
time-dependent currents, which gives intuitive understanding on quantum ac transport properties.
Meanwhile, these analytic results can be compared with the previous work [68] which focused on quantum
ac transport theory at finite frequency and small bias limit.

8
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In general, time-dependent currents in equations (54) and (55) are in nonlinear response to bias voltage.
In the following, we expand the time-dependent current Iα(t) order by order in the bias voltage. First, we
need to separate the Hamiltonian into two parts: HC(t) =HC0 +U(t), where HC0 is time-independent and
U(t) is the time-dependent Coulomb potential. U(t) can be expanded in terms of the bias magnitude
vα(t= 0) = vα [68],

U(t) = Ueq +U1 (t)+U2 (t)+ . . .= Ueq + q
∑
α

uα (t)vα +
1

2
q2
∑
αβ

uαβ (t)vαvβ + . . ., (57)

with Ueq the equilibrium potential in the absence of external bias. U1(t) and U2(t) are the first and second
order corrections due to the presence of external bias, respectively. Correspondingly, uα(t) and uαβ(t) are the
first and second order characteristic potentials [37, 68, 77]. Under Thomas–Fermi approximation, the
Poisson-like equations for these characteristic potentials are defined as

−∇2uα (t,x)+ 4π
dn(t,x)

dE
uα (t,x) = 4π

dnα (t,x)

dE
,

−∇2uαβ (t,x)+ 4π
dn

dE
uαβ (t,x) = 4π

dñαβ (t,x)

dE
, (58)

where

dñαβ
dE

=
d2nα
dE2

δαβ −
d2nα
dE2

uβ −
d2nβ
dE2

uα +
d2n

dE2
uαuβ .

Here dnα/dE is the time-dependent injectivity, and d2nα/dE2 = ∂Ednα/dE. The procedure for calculating
the first and second order characteristic potentials is shown in appendix B.

For simplicity, WBL is adopted in the following discussion. The frozen Green’s function in equation (31)
can be expressed as

Gr
f (t,E) =

[
E−H ′

C0−Ueq−
∑
n

Un (t)−Σr

]−1

= Gr
0 +Gr

0

∑
n

UnG
r
f , (59)

where equilibrium Green’s function is defined as Gr
0 ≡ [E−H ′

C0−Ueq−Σr]−1 and self energy Σr is
independent of energy;H ′

C0 =HC0−Ueq and Un is the nth order correction to the time-dependent Coulomb
potential.

Now we expand the NEGF in terms of the first order bias. Thus the frozen Green’s function in
equation (59) can be further written as

Gr
f (t,E) = Gr

0 +Gr
0U1 (t)G

r
0. (60)

Correspondingly, the zeroth order current I(0)α (t) in equation (54) is given by

I(0)α (t) =
∑
β

ˆ
dE

2π
Tr [ΓαG

r
0ΓβG

a
0] (∂Ef0)(vα (t)− vβ (t)) . (61)

Here we have used the Taylor expansion of Fermi function fα = f0 +(∂Ef0)vα(t) up to the first order in bias
and f 0 is the equilibrium Fermi distribution. In general, by taking Fourier transformation, we can obtain the
frequency-dependent current Iα(Ω), where Ω is the response frequency. From the definition of dynamic
conductance Iα(Ω) =

∑
βGαβ(Ω)vβ(Ω) and vβ(Ω) = π vα[δ(Ω+ω)+ δ(Ω−ω)], we find dynamic

conductance G(0)
αβ(0) of the zeroth order current I(0)α (t),

G(0)
αβ (0) =

∑
β

ˆ
dE

2π
Tr [ΓαG

r
0ΓG

a
0δαβ +ΓαG

r
0ΓβG

a
0] (∂Ef0) . (62)

This result agrees with equation (35) of [68] when Ω= 0.

9
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Furthermore, we can calculate the first order dynamic conductance G(1)
αβ(Ω). Since only the first order

bias voltage is considered, equation (55) is simplified as

I(1)α (t) =

ˆ
dE

2π
Tr

(Gr
0G

r
0∂tU1G

r
0 +Ga

0∂tU1G
a
0G

a
0)Γαf0 + i(Gr

0G
r
0∂tU1G

r
0ΓG

a
0−Gr

0ΓG
a
0∂tU1G

a
0G

a
0)Γαf0

+
1

2
((Gr

0G
r
0 +Ga

0G
a
0)Γα∂tfα− i

∑
β

(−Gr
0G

r
0ΓβG

a
0 +Gr

0ΓβG
a
0G

a
0)Γα∂tfα


=

ˆ
dE

2π
Tr

(Gr
0G

r
0∂tU1G

a
0 +Gr

0∂tU1G
a
0G

a
0)Γαf0 +

1

2
((Gr

0G
r
0 +Ga

0G
a
0)Γα∂Ef0∂tvα(t)

−i
∑
β

(−Gr
0G

r
0ΓβG

a
0 +Gr

0ΓβG
a
0G

a
0)Γα∂Ef0∂tvβ(t))

 ,

(63)

where ∂tfα(E, t) = ∂Efα(E, t)∂tvα(t) and iGr
0ΓG

a
0 = Ga

0−Gr
0. Fourier transformation of equation (63) gives

I(1)α (Ω) =−iΩ
ˆ

dE

2π
Tr

(Gr
0G

r
0U1 (Ω)G

a
0 +Gr

0U1 (Ω)G
a
0G

a
0)Γαf0 +

1

2
((Gr

0G
r
0 +Ga

0G
a
0)Γα∂Ef0vα (Ω)

−i
∑
β

(−Gr
0G

r
0ΓβG

a
0 +Gr

0ΓβG
a
0G

a
0)Γα∂Ef0vβ (Ω)


= iΩ

ˆ
dE

2π
(−∂Ef0)

∑
β

Tr

[
−Gr

0uβ (Ω)G
a
0Γα +

1

2
((Gr

0G
r
0 +Ga

0G
a
0)Γαδαβ

−i(−Gr
0G

r
0ΓβG

a
0 +Gr

0ΓβG
a
0G

a
0)Γα)

]
vβ (Ω) .

(64)

Thus the first order dynamic conductance G(1)
αβ(Ω) is

G(1)
αβ =iΩ

ˆ
dE

2π
(−∂Ef0)Tr

[
1

2
(Gr

0G
r
0 +Ga

0G
a
0)Γαδαβ +

i

2
(Gr

0G
r
0ΓβG

a
0−Gr

0ΓβG
a
0G

a
0)Γα−Gr

0uβ (Ω)G
a
0Γα

]
,

(65)

which is exactly the same as that in [68]. Notice that the first order dynamic conductance is actually the
emittance describing low frequency response of the system [37].

Here the consistency between [68] and the present work at the small ac bias limit is demonstrated. It is
worth mentioning that, in [68], the Coulomb potential is treated in a perturbative way, which is suitable for
describing ac transport at finite frequency and small ac bias limit. If one tries to simulate the finite ac bias
case with the theory developed in [68], the Coulomb potential has to be expanded in terms of the
characteristic potential order by order, which is very complicated especially for nonlinear terms. In contrast,
the present work can deal with the Coulomb potential directly by solving the Poisson equation (41).
Compared with [68], the present work has advantages in investigating nonlinear ac transport with finite ac
bias voltages at the low frequency limit. Wei and Wang [68] and the present work focus on different regimes
of quantum ac transport and complimentary to each other. The application of our quantum nonlinear ac
theory to nonlinear electrochemical capacitance is shown below.

4.3. C–V curve and nonlinear electrochemical capacitance
In this subsection, we discuss the nonlinear emittance in a system where dc transport is not allowed, for
example, the magnetic tunneling junction. Then the nonlinear emittance is equivalent to the electrochemical
capacitance [58, 78–80].

One the other hand, we could assume that the scattering region of a two-probe system can be roughly
divided into two regions, i.e. ΩI and ΩII, and expand total charge of the system in terms of bias voltage

Qα (t) = q
∑
β

Cαβ (t)vβ + q2
∑
βγ

Cαβγ (t)vβvγ + · · · , (66)
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where α= I, II. Since the bias-dependent Qα can be calculated though expanding frozen lesser Green’s
function G<

f in terms of vβ(t), we have

Qα (t) =−i
ˆ
Ωα

dx
[(

Gr
fΣ

<Ga
f

)]
xx

=
∑
β

ˆ
Ωα

dx

[
(Gr

0 +Gr
0 (U1 (t)+U2 (t))(G

r
0 +Gr

0U1 (t)G
r
0))×Γβ

[
f0 + ∂Ef0vβ (t)+

1

2
∂2
Ef0v

2
β (t)

]
×(Ga

0 +Ga
0 (U1 (t)+U2 (t))(G

a
0 +Ga

0U1 (t)G
a
0))]xx ,

(67)

where equation (59) is used. Finally, the linear capacitance Cαβ(t) and nonlinear capacitance Cαβγ(t) are
equal to

Cαβ (t) =

ˆ
Ωα

dx [∂Ef0G
r
0ΓβG

a
0 cos(ωt)−Gr

0 (uβ (t)G
r
0Γβ +ΓβG

a
0uβ (t))G

a
0f0]xx , (68)

and

Cαβγ (t) =

ˆ
Ωα

dx

[
1

2
∂2
Ef0G

r
0ΓβG

a
0δβγ cos2 (ωt)−Gr

0 (uβ (t)G
r
0Γγ +ΓγG

a
0uβ (t))G

a
0∂Ef0 cos(ωt)

− Gr
0 (uβγ (t)G

r
0Γ+ΓGa

0uβγ (t))G
a
0f0 +Gr

0 (uβ (t)G
r
0uγ (t)G

r
0Γ

+ Gr
0ΓG

a
0uβ (t)G

a
0uγ (t))G

a
0f0]xx .

(69)

Here WBL is not assumed in deriving equation (69). After obtaining the characteristic potentials uβ(t) and
uβγ(t), one can calculate the voltage-dependent linear and nonlinear electrochemical capacitances.

First principles calculation of the time-dependent current or electrochemical capacitance proceeds as
follows. First, at a given time t, the lead Hamiltonians and self-energies are obtained from conventional DFT.
Second, one needs to solve the Poisson equation (41) self-consistently within NEGF-DFT. Once the
self-consistent accuracy is reached, we obtain the nonequilibrium Hamiltonian HC(t) and the retarded and
lesser Green’s functions defined in equations (34) and (35). Finally, we can calculate the time-dependent
current from equations (43) and (44) as well as the linear and nonlinear electrochemical capacitances from
equations (68) and (69) to investigate quantum ac transport properties.

5. Summary

In summary, we have developed a quantum ac transport theory based on NEGF. At low frequency, through
expanding the time-dependent NEGF in terms of frozen Green’s function, we can explicitly include the
time-dependent self-consistent Coulomb interaction in the time-dependent current, which is nonlinear in
bias voltage. Therefore, this nonlinear response theory automatically satisfies both current conservation and
gauge invariance conditions. More importantly, it can be directly combined with DFT to calculate ac
transport properties from atomic first principles. As a demonstration, we discuss how to calculate the ac
current and nonlinear electrochemical capacitance versus the bias voltage. This quantum nonlinear ac
transport theory can be easily extended to multiterminal systems for describing nonlinear Hall responses at
low frequency. Furthermore, inelastic process, such as the electron–phonon/photon interaction, can also be
included in the present theoretical formalism as effective self-energies to discuss their effect in quantum ac
transport.
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Appendix A

In this appendix, we present the derivation of equation (16) in Wigner representation. Starting from
equation (7), we can first calculate the time derivative by changing variables into Wigner representation

i
∂

∂t
Gr (t1, t2) =

i

2

∂

∂t
Gr (t, τ)+ i

∂

∂τ
Gr (t, τ) . (70)

Then by taking Fourier transform (
´
dτeiEτ ) of each term in equation (7) and using equations (14) and (18),

we have

i
∂

∂τ
Gr (t, τ)→ EGr (t,E) ,

HC (t)G
r (t, τ)→HC (t)G

r (t,E)− i

2
∂tHC (t)∂EG

r (t,E) ,ˆ
Σr (t, t1)G

r (t1, t
′)dt1→ Σr (t,E)Gr (t,E)+

i

2
{Σr,Gr} .

(71)

Thus, we can easily arrive at equation (16) and obtain the lesser Green’s function defined in equation (17).

Appendix B

In this appendix, we demonstrate how to calculate the characteristic potentials defined in equation (58). We
first solve the first order potential. From equation (58), we have

−∇2uα (t,x) = 4π
dnα (t,x)

dE
− 4π

dn(t,x)

dE
uα (t,x) , (72)

where the injectivity is defined as [37, 68]

dnα (t,x)

dE
=− cos(ωt)

ˆ
E
∂Ef [G

r
0ΓαG

a
0]xx , (73)

and dnα(t,x)/dE satisfies ∑
α

dnα (t,x)

dE
=

dn(t,x)

dE
, (74)

with dn(t,x)/dE the local density of states at time t. In general, the Poisson equation (72) needs to be solved
within the NEGF-DFT framework and uα is self-consistently obtained. For the simplest case, we can adopt
the quasineutrality approximation [37], which means that the charge density at each point is zero so that
−∇2uα(t,x) = 0. Then analytic expression of the first order characteristic potential is shown as

uα =
dnα (t,x)

dE

/
dn(t,x)

dE
. (75)

When the first order potential uα is obtained, we can calculate the second order injectivity dñαβ/dE:

dñαβ
dE

=
d2nα
dE2

δαβ −
d2nα
dE2

uβ −
d2nβ
dE2

uα +
d2n

dE2
uαuβ , (76)

where the second order derivatives with respect to energy can be numerically facilitated with the finite
difference method. Then substituting it into equation (58), we have

−∇2uαβ (t,x) = 4π
dñαβ (t,x)

dE
− 4π

dn

dE
uαβ (t,x) , (77)

which also needs to be solved. Notice that here dn/dE=
∑

α dnα/dE is the total density of states. Again we
can use the quasineutrality approximation, which leads to

uαβ =
dñαβ (t,x)

dE

/
dn

dE
. (78)

At the small ac bias limit, the second order potential uαβ contributes to ac transport properties less than the
first order one, and hence the quasineutrality approximation is appropriate here.
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