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Abstract: The application of wearable electroencephalogram (EEG) devices is growing in brain–
computer interfaces (BCI) owing to their good wearability and portability. Compared with conven-
tional devices, wearable devices typically support fewer EEG channels. Devices with few-channel
EEGs have been proven to be available for steady-state visual evoked potential (SSVEP)-based BCI.
However, fewer-channel EEGs can cause the BCI performance to decrease. To address this issue, an
attention-based complex spectrum–convolutional neural network (atten-CCNN) is proposed in this
study, which combines a CNN with a squeeze-and-excitation block and uses the spectrum of the EEG
signal as the input. The proposed model was assessed on a wearable 40-class dataset and a public
12-class dataset under subject-independent and subject-dependent conditions. The results show that
whether using a three-channel EEG or single-channel EEG for SSVEP identification, atten-CCNN
outperformed the baseline models, indicating that the new model can effectively enhance the perfor-
mance of SSVEP-BCI with few-channel EEGs. Therefore, this SSVEP identification algorithm based
on a few-channel EEG is particularly suitable for use with wearable EEG devices.

Keywords: steady-state visual evoked potential (SSVEP); brain–computer interface (BCI); electroen-
cephalogram (EEG); convolutional neural network (CNN); few channel

1. Introduction

As a brain–computer interface (BCI) allows the human brain to interact directly with
external environment and devices, it has shown great application potential in many fields,
such as rehabilitation, sport and entertainment. By decoding electroencephalogram (EEG)
signals detected on the scalp, a BCI can transfer human intentions into communication
or control demands. For EEG measurement devices, most of them are designed for med-
ical or scientific research purposes. They are generally large in size, heavy and require
complex operating procedures, making them unsuitable for daily use in real life. With the
advancement of electronic technology, many wearable EEG devices have been designed and
produced. Owing to their compact structure, light weight and good wearability, wearable
EEG devices have gradually been used in BCI applications, such as robot control [1], remote
monitoring [2] and emotion recognition [3]. Compared with conventional EEG devices,
wearable EEGs typically support a lower number of channels. Multi-channel data generally
achieves better BCI performance, as it contains more information. However, more EEG
channels mean a longer preparation time and reduced comfort, which is the opposite of the
intention of wearable BCIs. Moreover, reducing the number of electrodes effectively lowers
the hardware cost of wearable BCIs. Therefore, few-channel EEGs are an attractive option
for wearable BCIs. On the other hand, classification performance is a key factor in BCI
systems because it is related to the usability and usefulness of the BCI. For wearable BCIs,
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it is necessary to use few-channel EEGs to achieve comparable performance to enhance
system practicality.

Steady-state visual evoked potential (SSVEP) is a classic BCI paradigm that has gar-
nered substantial attention and has been widely used as it supports multiple instructions,
achieves high identification accuracy and requires little or no training [4–6]. In SSVEP- BCIs,
the use of six or more channels of EEG signals from the occipital lobe has been proven to be
sufficient to achieve excellent decoding performance [7]. Therefore, wearable EEG devices
are considered suitable for the SSVEP paradigm, and they are used in many SSVEP-BCI
studies. Zhu et al. used an eight-channel wearable SSVEP-BCI system to collect a dataset
for developing decoding algorithms [8]. Na et al. designed an eight-channel wearable
low-power EEG acquisition device for four-target SSVEP recognition [9]. On the other
hand, some researchers paid attention to using few-channel EEGs for SSVEP decoding. Ge
et al. designed a dual-frequency biased coding method and used a three-occipital-channel
EEG to decode 48 targets with an accuracy of 76% in a 2 s time window [10], proving the
availability of the SSVEP-BCI with few EEG channels. Moreover, several studies have
shown that a single-channel EEG signal is feasible for few-target SSVEP detection [11–15].
It is clear that SSVEP identification based on few-channel EEGs is feasible in wearable BCIs.

As far as SSVEP identification is concerned, numerous algorithms have been devel-
oped [16,17]. Among them, canonical correlation analysis (CCA) is one of the mainstream
fundamental approaches, which is free of training and determines the SSVEP target based
on the correlation between a reference and the EEG signal [18]. On the basis of CCA,
many variant algorithms have been developed, such as extended CCA (eCCA) [19] and
filter bank CCA (FBCCA) [20]. Although traditional methods achieve good classification
performance, the features extracted in these methods are relatively simple, which may not
comprehensively represent EEG signals. In the last few years, deep learning technology
has been rapidly employed in SSVEP decoding due to its capability to integrate feature
extraction and classification. In particular, the convolutional neural network (CNN) is the
most utilized neural network [21–23], as it offers advantages over other standard deep
neural networks. A CNN was first applied to SSVEP identification by Cecotti et al. [24].
Nguyen et al. employed fast Fourier transform (FFT) to extract features from a single-
channel EEG and then used a one-dimensional CNN to detect the SSVEP frequency [13].
Ravi et al. developed CNN models with the spectrum features derived from EEG signals
as the input and found that the CNN based on complex spectrum features performed
better than that based on magnitude spectrum features in the SSVEP-BCI [25]. Xing et al.
constructed the frequency domain templates based on the prior knowledge of SSVEP and
used a CNN for signal classification [26]. Zhao et al. fused the filter bank technique with
a CNN to develop a filter bank CNN (FBCNN) based on the frequency domain SSVEP
data [27]. Similarly, the combination of the filter bank technique and a CNN can be used
for the analysis of time-domain SSVEP data [28]. Guney et al. proposed a deep neural
network architecture consisting of 4 convolutional layers for processing time-domain EEG
signals to predict SSVEP targets [29]. With the time-frequency sequences transformed
from EEG signals, Li et al. developed a dilated shuffle CNN (DSCNN) to realize SSVEP
classification [30]. In general, CNN-based methods tend to surpass the traditional methods.
The convolutional layers in CNNs are considered to exploit the local spatial coherence
inherent in SSVEP signals, making the models suitable for SSVEP analysis [31]. However,
deep-learning-based methods typically require a lot of data for training and fine-tuning
to achieve good results. In wearable BCIs, the reduction in data caused by the decreased
EEG channels probably leads to a poor performance of the deep-learning-based method.
Therefore, SSVEP identification based on few-channel EEGs remains challenging.

In order to implement the identification of SSVEP by using a few-channel EEG, a
CNN-based decoding model is proposed in this study. The CNN-structure model is based
on lightweight design to reduce the training data requirements associated with model
complexity. In addition, considering the limited spatial information obtained from the
few-channel signal, an attention mechanism is introduced to enhance the representation
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ability of spatial information of the model. Two SSVEP datasets were used for the method
evaluation, including a 40-class dataset collected by a wearable EEG device and a public
12-class dataset collected by a conventional apparatus. Three-channel and single-channel
data were applied for the comparison to evaluate the effectiveness of the proposed model
on a few-channel EEG.

2. Materials and Methods
2.1. Datasets
2.1.1. Dataset 1

In this study, a wearable ESPW308 EEG device (BlueBCI Ltd., Beijing, China) was used
to collect an SSVEP dataset from six healthy subjects (three females and three males; average
age: 25.33 ± 0.82 years) with normal or corrected-to-normal vision. This lightweight EEG
apparatus is capable of acquiring eight-channel data from the occipital area (PO3, PO4,
PO5, PO6, POz, O1, O2 and Oz). All subjects had no experience with SSVEP-BCIs before
this experiment. The experiment was approved by the Institutional Review Board of the
University of Hong Kong/Hospital Authority Hong Kong West Cluster.

A 40-target speller was used to induce the SSVEP, where the visual stimulation inter-
face was a 4 × 10 flicker matrix displayed on a 24.5-inch LCD monitor with a full 1080 p
resolution. Each flicker was presented as a 165 × 165-pixel square marked with a character.
The flickers were encoded by the joint frequency and phase modulation (JFPM) method [32].
The frequency in Hz and phase in π for each stimulus is defined as follows:{

f (i, j) = 2i + 0.2j + 5.8
φ(i, j) = 5i + 0.5j − 5.5

, (1)

where (i, j) represents the flicker located in the i-th row and j-th column.
Each subject completed 10 blocks of the experiment, with each block encompassing

40 trials that corresponded to all 40 targets. A trial contained a 1 s cue, a 3 s visual
stimulation and a 1 s rest. It is noted that a strategy of simplifying the system setup was
adopted in this experiment to reduce the experimental preparation time and enhance the
practicality of the BCI in real-life applications [33]. As a result, the signal quality of this
dataset might be degraded.

EEG signals from three occipital channels, O1, O2 and Oz, in Dataset 1 were selected
as the three-channel EEG, and Oz was selected for the single-channel EEG.

2.1.2. Dataset 2

To validate the effectiveness of the decoding model on EEG signals collected by a
conventional device, a public SSVEP dataset was also used in this study. This dataset,
which was presented by Nakanishi et al. [34], was collected by a BioSemi ActiveTwo EEG
system (Biosemi Inc., Amsterdam, Netherlands) from ten healthy subjects (one female and
nine males; average age: 28 years). With the acquisition system, eight-channel EEGs were
recorded from the occipital area. During the experiment, a 12-target speller in the form
of a 4 × 3 matrix was used. Each flicker was depicted as a 6 × 6-cm square on a 27-inch
LCD monitor. The stimulus frequency in Hz and phase in π of each flicker were defined
as follows: {

f (i, j) = 0.5i + 2j + 6.75
φ(i, j) = 0.5i − 0.5

, (2)

where (i, j) represents the flicker in the i-th row and j-th column.
Each subject performed a total of 15 experimental blocks, with each block consisting

of 12 trials. A trial comprised a 1 s cue and a 4 s visual stimulation.
In Dataset 2, Oz and the two adjacent electrodes were selected for the three-channel

EEG, and Oz was selected for the single-channel EEG.
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2.2. SSVEP Identification
2.2.1. Data Processing

For the original EEG signals, a fourth-order Butterworth filter is applied to remove
noise and artifacts as much as possible. Due to the distinct features of SSVEP signals in
the frequency domain, along with the automated feature extraction capabilities of neural
networks, transforming time-domain signals into the frequency domain can enhance
SSVEP identification [27]. Furthermore, deep learning models utilizing frequency-domain
inputs generally have a relatively simple structure [31]. Therefore, the EEG time series
is transformed into its frequency-domain counterpart through an FFT. Specifically, the
time-domain signal is decomposed after the FFT as follows:

FFT(x) = Re[FFT(x)] + jIm[FFT(x)], (3)

where x is the input EEG data in the time domain.
Since FFT data have real and imaginary parts, a magnitude spectrum and a complex

spectrum can be obtained depending on the combination of the real and imaginary parts.
The magnitude spectrum retains the amplitude information of the Fourier spectrum and
removes the phase information, while the complex spectrum retains both types of infor-
mation. Previous studies have shown that CNNs using complex spectrum features as
inputs outperform those based on magnetic spectrum features, as they can extract more
discriminative information [25,27]. Therefore, the complex spectrum is used as the input in
this study. Specifically, the real and imaginary parts of each channel are separated to form
two vectors, which are then concatenated into a feature vector as the input for the neural
network. Taking the three-channel EEG signal as an example, the complex FFT data are
reconstructed as follows:

I =

 Re{FFT(xO1)}, Im{FFT(xO1)}
Re{FFT(xOz)}, Im{FFT(xOz)}
Re{FFT(xO2)}, Im{FFT(xO2)}

, (4)

where the real part is placed as the first half and the imaginary part is placed as the second
half. This input is consistent in form with previous studies [25,27,35,36].

2.2.2. Network Structure

In this study, a CNN architecture called attention-based complex spectrum–CNN
(atten-CCNN) is proposed, which integrates an attention mechanism with a CNN for SSVEP
classification by using a few-channel EEG. The architecture of atten-CCNN is depicted
in Figure 1, which was inspired by the complex spectrum–CNN (CCNN) model [25] and
incorporates the attention mechanism from the squeeze-and-excitation (SE) network [37].
The atten-CCNN model consists of two stacked convolution–attention blocks for feature
extraction, followed by a fully connected layer that performs non-linear transformation
on the features and a dense layer with a softmax operation that is employed for classifi-
cation. As for the convolution–attention block, a convolutional layer is followed by an
activation operation, a batch normalization operation and a dropout operation. Then, a
filter-wise attention layer is connected to the convolutional layer and a dropout operation.
Additionally, an adjusted connection scheme is designed between the convolutional layer
and attention layer.

Regarding the network hyperparameters, the input shape for atten-CCNN is denoted
as Nch × Nsp, where Nch and Nsp are the dimensions of the complex FFT data. The first
convolutional layer, Conv1, with a kernel size of [32 × 1] calculates the contribution weight
among the selected EEG channels. The second convolutional layer, Conv2, performs
spectral-level representation and has a fixed kernel size of [1 × 20]. It is worth noting that
Conv1 uses the “valid” padding mode while Conv2 uses the “same” padding mode to help
reduce the model complexity while preserving the learned convolutional features. Both
convolutional layers have 32 filters, providing sufficient power for feature extraction while
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keeping the number of network parameters relatively low. The first dense layer consists of
144 neurons with the “ReLU” activation function. The bottom dense layer applies linear
transformation to the features, and a softmax operation is used with an output shape that
corresponds to the number of targets in the SSVEP dataset.
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2.2.3. Filter-Wise Attention Mechanism

As the key component of atten-CCNN, the attention mechanism is employed to
increase the network’s representation space by reweighting the contribution of different
feature maps (filters) in each convolutional layer. Specifically, the SE block is used in this
study. Owing to the lightweight structure, the SE block slightly increases the computational
load and complexity of the original models. Moreover, the SE block has high compatibility
and can be integrated into existing network architectures without major modifications. In
terms of the connection between the SE attention with the convolutional layer, as shown
in Figure 2, an adjusted connection scheme was designed rather than simply using SE
block as a plug-and-play module. In this design, the key vector used for calculating the
attention vector is derived from the dropout-passed feature maps of the last convolutional
layer, while the feature maps that do not undergo dropout are used to compute the final
attention-enhanced data. This structural design retains the information from the original
feature maps while mitigating overfitting during attention weight calculation.
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2.2.4. Training Hypermeters

In this study, both subject-independent and subject-dependent strategies were tested
on two datasets. For the subject-independent strategy, leave-one-person-out cross-validation
was used. If a dataset contained n subjects, the model underwent training utilizing the data
of n− 1 subjects and was subsequently evaluated using the data from the remaining subject.
In order to implement the model training and testing, all the EEG data were split into
non-overlapping segments according to the data length being tested. The finial parameters
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for the model were as follows: learn rate (0.001), dropout ratio (0.25), L2 regularization
(0.001), number of epochs (120) and batch size (256).

For the subject-dependent strategy, 10-fold cross-validation was performed on each
subject’s data. The EEG data of a subject were firstly segmented into non-overlapping
segments, and then the segments were divided into 10 sets randomly. Training data were
formed by taking nine sets and leaving one set out for testing. Except for the batch size
(16), the other parameters were the same as those in the subject-independent strategy.
Additionally, SGD was selected as the optimizer for all the models in all the training
strategy modes.

2.3. Performance Evaluation
2.3.1. Baseline Methods

To verify the effectiveness of the proposed atten-CCNN model, CCNN [25], EEG-
Net [38] and SSVEPformer [36] were used as the baseline models for comparison in
this study.

CCNN is mainly composed of two convolutional layers in series, using the complex
spectrum of EEG signal as the input. The first convolutional layer is used for spatial
filtering and operates on the channels of the input, while the second convolutional layer
is for temporal filtering and extracts features along the frequency components. Both
convolutional layers are followed by a batch normalization layer, ReLU activation layer
and dropout layer. Finally, a fully connected layer is employed in CCNN for classification.

EEGNet is a popular CNN-based architecture for EEG decoding, and it takes time-
domain data as the input. EEGNet adopts a four-layer compact structure. The first layer
is a convolution layer, which simulates band-pass filtering on each channel. Next is a
spatial filtering layer to weight the data through depth-wise convolution. The third layer
is a separate convolutional layer to extract category information. The last layer is a fully
connected layer for classification.

SSVEPformer is one of the state-of-the-art models for SSVEP identification, which
also takes the complex spectrum as the input and consists of three core components:
channel combination, SSVEPformer encoder and multilayer perceptron (MLP) head. Firstly,
the channel combination block performs weighted combinations of the input through
convolutional layers. Then, the SSVEPformer encoder utilizes two sequential sub-encoders
to extract features, each of which includes a CNN and a channel MLP. At last, the MLP
head block uses two fully connected layers to implement classification.

2.3.2. Metrics

Two metrics were employed to assess the effectiveness of the models, including
classification accuracy and information transfer rate (ITR). Accuracy is defined as the
proportion of trials where the model makes a correct identification. ITR is a frequently-used
parameter for evaluating BCI performance, which is estimated as follows:

ITR = 60
(

log2 K + P log2 P + (1 − P) log2

(
1 − P
K − 1

))
/T, (5)

where K is the number of targets, P is the classification accuracy and T is the target selection
time. In addition to the data length of the SSVEP signal, the target selection time included
a gaze shift time in this study to imitate the actual use of the BCI. The gaze shift time was
set to 0.55 s according to Chen et al.’s study [20].

3. Results
3.1. Dataset 1

Figure 3 illustrates the classification accuracy and ITR on the 40-class wearable SSVEP
dataset with a three-channel EEG achieved by the four decoding models. Furthermore,
the paired t test was employed to ascertain the difference in the metrics between atten-
CCNN and CCNN to verify the improvement in the proposed method. The results show
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that under both the subject-independent and subject-dependent conditions, atten-CCNN
performed better than CCNN with a significant difference at all data lengths. Moreover,
the advantage of atten-CCNN over CCNN basically expanded as the data length of the
EEG signal increased. At a data length of 1 s, the subject-independence accuracy of atten-
CCNN was 37.38%, which was 4.86% ahead of CCNN, and its subject-dependence accuracy
was 43.21%, leading CCNN by 5.17%. Compared with subject-independent strategies,
deep learning models generally achieve better performances under subject-dependent
strategies [25,27,39,40]. This finding was consistent in this study. As for EEGNet, it
performed well on the short-time EEG signals in this dataset, although it was found to be
not as good as a CCNN in previous study [41]. Indeed, EEGNet outperformed atten-CCNN
and CCNN at 0.2 s. But when the data length exceeded 0.4 s, atten-CCNN surpassed
EEGNet in both strategies, and their gap enlarged with the data length. For SSVEPformer,
it seems unsuitable for this dataset as it performed the worst among the four models
regardless of the training strategies.
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** (p < 0.01) or *** (p < 0.001).

The performance of the models on Dataset 1 when using a single-channel EEG for
decoding is shown in Figure 4. The relationship between atten-CCNN and CCNN when
using the single-channel EEG was similar to that with the three-channel EEG. For the
long-time EEG signals in this study, the advantages of atten-CCNN tended to be more
obvious. However, there was no significant difference between atten-CCNN and CCNN
at 1 s under the subject-independent conditions, which seems to indicate that the large
difference at this time point was mainly caused by individual subjects. On the other hand,
the results show that EEGNet performed well in single-channel EEG decoding. In the
subject-independent situation, EEGNet and atten-CNN performed similarly at various data
lengths, outperforming CCNN. In the subject-dependent scenario, EEGNet performed the
best among the four models on the short-time signal, and atten-CCNN achieved the same
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performance as EEGNet at 1 s. But for SSVEPformer, it did not demonstrate the superiority
in the single-channel EEG decoding.
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3.2. Dataset 2

Since CCNN, EEGNet and SSVEPformer have been tested and compared on Dataset 2
in previous studies [36,42,43], only atten-CCNN and CCNN were used for comparison in
this part to emphasize the changes in the performance of the proposed model relative to its
original model. Figure 5 illustrates the performance of atten-CCNN and CCNN on Dataset 2
with a three-channel EEG. Intuitively, the performance difference between atten-CCNN and
CCNN showed different trends under the two conditions. Under the subject-independent
conditions, the advantage of atten-CCNN expanded as the data length increased, and the
gap between them was significant at all data lengths. However, in the subject-dependent
case, atten-CCNN only had advantages on the short-time data. When the time window
was greater than 0.6 s, the improvement in atten-CCNN was not significant. In terms
of the best decoding performance with the three-channel EEG, atten-CCNN achieved a
subject-independent accuracy of 64.17% at 1 s, which was 2.35% higher than CCNN, and
the highest ITR was 61.55 bits/min at 1 s. On the contrary, under the subject-dependent
conditions, the decoding models achieved the maximum ITR at a data length of 0.8 s, and
the result of atten-CCNN was 91.20 bits/min.

Figure 6 illustrates the accuracy and ITR of the two models with a single-channel EEG
on Dataset 2 under the two conditions. Clearly, the testing strategy had a great impact on
the performance of the models in the single-channel EEG decoding. Under the subject-
independent conditions, atten-CCNN outperformed CCNN at all data lengths. The largest
accuracy difference between two models occurred at 0.4 s, which was 2.24%. In contrast, in
the subject-dependent situation, the new model only significantly outperformed CCNN at
0.4 s, with an accuracy improvement of 4.20%.
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Comparing the decoding performance of the models on the two datasets, it was
observed that the subject-independent improvement brought by atten-CNN was broadened
with the increase in the data length. The improvement in atten-CNN was numerically
greater on the wearable dataset. But under the subject-dependent conditions, the two
datasets presented different results. Atten-CNN also showed a greater improvement over
time on Dataset 1, while its effective improvement on Dataset 2 only occurred in a short
time window, such as 0.4 s.

3.3. Effect of Number of EEG Channels

It can be found from Figures 3–6 that for the short-time EEG signals, the improvement
in atten-CCNN relative to CCNN was significant on both datasets, whether in the subject-
independent or subject-dependent strategies. In order to further explore the relationship
between the improvement in the proposed model and the number of EEG channels, the
decoding results on a few-channel EEG were compared with that on eight-channel data
because eight-channel EEGs are considered sufficient for multi-target SSVEP identification.
Figure 7 shows the accuracy difference between atten-CCNN and CCNN when the data
length was 0.4 s. Obviously, whether a single-channel, three-channel or eight-channel EEG
was used for decoding, the accuracy improvement in atten-CCNN compared to CCNN
was significant. According to Figure 7, the magnitude of the improvement in atten-CCNN
did not appear to be strongly related to the number of EEG channels. There is no doubt
that the algorithms were generally more effective as the number of channels increased.
Nevertheless, the proposed model still maintained and even enlarges its advantage as the
number of channels increased.
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4. Discussion

A CNN-structure model named atten-CCNN was developed by fusing an SE block in
a complex-spectrum CNN. Plenty of studies have shown that excellent SSVEP identification
can be achieved by decoding many EEG channels. However, wearable BCIs equipped
with a large quantity of electrodes are not appropriate and feasible in real-life applications.
Therefore, we evaluated the performance of the classification methods in this study with
a few-channel EEG. Similarly, although long signal segments substantially elevated the
classification accuracy of the algorithm, the ITR generally decreased. Therefore, we selected
EEG segments within 1 s for evaluation. The results show that atten-CCNN outperformed
the baseline methods on both the wearable SSVEP dataset and conventional dataset in both
subject-independent and subject-dependent scenarios.

CCNN was chosen as the backbone of the model developed in this study because of its
simplicity and scalability. It has the flexibility to modify the network structure. We increased
the filters in the convolutional layer to extract various types of information from the EEG
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data, which is also suitable for the filter-level attention mechanism. Additionally, we added
a fully connected layer after the feature flattening to further facilitate the learning capacity
of the model. As the key difference between the new model and the original CCNN, we
added an SE block after each convolutional layer. SE blocks are commonly used attention
modules, which are used in conjunction with existing models to improve the performance
by concentrating on essential features while restraining non-essential ones. Since their
emergence, SE blocks have been used in EEG analysis under different tasks [44–47]. In
the conventional convolutional layer with multiple spatial filters, each spatial filter uses a
local receptive field to avoid the output being affected by contextual information outside
that region. In order to leverage the information beyond the local receptive field, the
squeeze part in the SE block utilizes global average pooling to produce channel-wise
statistics. Then, the excitation part in the SE block applies a gate mechanism consisting of
two fully connected layers to learn the nonlinear relationship between the channels, thereby
exploiting the information obtained in the squeeze operation and completely capturing
channel-wise dependencies. Finally, the SE block takes the weight output by the excitation
operation as the importance of channels and completes the recalibration of the original
features by reweighting the features of each channel, thus boosting feature discriminability
and improving the network’s performance. The experiments in this study demonstrate that
the SE block could improve the performance of the CNN in SSVEP identification with a
few-channel EEG. However, SSVEPformer, which also involves an attention mechanism,
performed poorly in this study. A potential factor contributing to this result may be its
inherently complex network architecture, which may not be suitable for the analysis of
few-channel data. Although SSVEPformer has a channel combination block designed to
process multi-channel EEGs, this block may not have the expected effect when dealing with
few-channel data. Similarly, a few-channel signal may affect the feature extraction ability
of the networks. Based on the experimental results, this study verified the hypothesis in
Chen et al.’s study that a limited amount of data is a major challenge for SSVEPformer to
maintain good performance [36]. In contrast, the results show that the compact EEGNet
performed well on small-dimensional data, especially short-time, single-channel EEGs,
demonstrating its potential in single-channel decoding. On the other hand, it was found
that the improvement in atten-CCNN relative to the original model on Dataset 1 was more
noticeable than that on Dataset 2. This may be due to the difference in the signal quality
between the two datasets. As Dataset 1 was collected by a wearable EEG device under
a simplified system setup, the signal quality of Dataset 1 is lower than that of Dataset
2. The noise mixed in the EEG signal interferes with the feature extraction ability of the
convolutional layer, but the SE block has the function of strengthening important features
and weakening noise or unimportant features. Therefore, we believe that the atten-CCNN
model can perform well even for EEG signals with a low signal-to-noise ratio.

The decoding performance on a three-channel EEG and a single-channel EEG was
compared in this study. There is no doubt that the three-channel results were better than
the single-channel results. But compared with the 12-class dataset, the gap between them
was much larger on the 40-class dataset. In the case of a large number of targets, a single-
channel EEG seems to be incompetent for SSVEP identification, especially at short time
windows. As for the three-channel EEG with a reasonable data length, it can cope with the
recognition of a mass of targets. For fewer targets, such as 12 targets, a single-channel EEG
is an attractive option as the gap between three-channel EEG decoding and single-channel
decoding is not particularly large. Owing to the improved decoding capabilities brought
by deep learning, SSVEP-BCIs based on few-channel EEGs are becoming feasible and
practical in daily-life applications. In addition, although the proposed atten-CCNN was
designed for few-channel EEG decoding, its improvement over the baseline model was
more considerable when the number of EEG channels increased, as shown in Figure 7,
indicating the adaptability of this model to EEG decoding with different channel numbers.

There are several limitations in this study. Two SSVEP datasets were used to verify the
performance of the models in this study, but the wearable dataset only involved six subjects.
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Although the statistical analysis demonstrated the effectiveness of the proposed model, a
small sample size may lead to great uncertainty that can affect the credibility of the results.
Therefore, we plan to collect more data to further validate the model. Secondly, for the
input of the classification model, the most common form of complex spectrum was used in
this study. Indeed, there are other ways of composing the real and imaginary parts, such as
placing them on different rows of the vector [48]. In the next step, we will compare different
forms of model inputs to determine a suitable one. On the other hand, the decoding model
was enhanced by combining multiple modules in this study. In SSVEP recognition, the
filter bank technique is proven to be a simple and effective strategy to enhance decoding
methods, both for traditional methods [20,49] and deep learning methods [27,28,43,48,50],
because the filter bank technique takes advantage of the harmonic characteristics of SSVEP.
It is believed that the filter bank technique will have similar effects on atten-CCNN, so we
plan to apply this technique to atten-CCNN to further improve its performance. Overall,
although the new model was improved compared to the baseline models, there is room for
improvement in this model.

5. Conclusions

This study introduces an atten-CCNN model for SSVEP identification with few-
channel EEGs, which takes the complex spectrum of the EEG signal as the input and
integrates an SE block with a CNN. The proposed method was evaluated by a wearable
SSVEP dataset and a public dataset under subject-independent and subject-dependent
conditions. The results show that, whether for a three-channel or single-channel EEG, the
new model had better performance than the baseline models. The improvement in the BCI
performance demonstrates the efficacy of incorporating attention mechanisms to bolster
the decoding ability of CNNs on few-channel EEGs. The SSVEP identification algorithm
based on a few-channel EEG is particularly suitable for wearable BCIs as it achieves good
performance with limited information. We believe that this decoding method, combined
with the natural advantages of wearable BCIs, can promote the application of BCIs in
real life.
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