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Abstract

The needs of a physical system evolve throughout a disruption event. Therefore, responses to
mitigate a disruption should be recalibrated in a timely manner to target the current needs of the
disrupted system. The concept of real-time resilience is defined, which encapsulates the capacity

of a system to continuously recalibrate its responses to a disruption. In this study, metrics to



quantify the added value of having such resilience are proposed. As a case study of real-time
resilience, the resilience against airborne disease transmission in an indoor food court with digital-
twin-controlled ventilation was investigated, and the application of the metrics for evaluating the
resilience enhancements enabled by the dynamic response strategy of the ventilation system was
demonstrated. Comparative simulations showed that higher adaptive capacities in a mixing
ventilation system enhanced the overall resilience of the diners in terms of percentage
improvements to the disruption duration (26%—61%), loss of resilience (2%—-39%), and average
rate of recovery (26%—74%). At the same time, the tempo-spatial trends of individual resilience
suggested that increasing the ventilation rate could simultaneously increase the dilution and
dispersion of infectious aerosols, which had opposing effects on resilience. The overall effect
would depend on the specific locations of the diners. Based on the results, the tradeoff between

resilience and energy use was also discussed.
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1. Introduction

As a disruption event unfolds in a system, the states of both the disruption and the disrupted
system evolve continuously. The responses enacted to mitigate the disruption should, therefore, be
recalibrated in a timely manner to meet the current needs of the system. However, there is a paucity
of research regarding such recalibration for resilience. Building on the concept of resilience

(Hollnagel et al., 2006), we define real-time resilience as the capacity of a system to respond to



disruptions in a dynamic manner involving continuous recalibration of its resisting, adapting, and
recovering actions, based on real-time information of the evolving states of both the disruption and
the system. The concept of responses based on real-time information is not new in the resilience
literature. It has been discussed for disruptions and systems of different natures and scales, for
example, stealthy sensor attacks on cyber-physical systems (Kim et al., 2021), natural disasters
damaging distribution systems (Lei et al., 2016), and unfavorable rainfall impacting agricultural
systems (Boyd et al., 2013). Real-time resilience extends this concept by encapsulating the ability
of the system to continuously learn from historical and new information to improve responses.
Building real-time resilience in systems confers two advantages. Firstly, it enables the responses
to become more effective over time as decision makers receive real-time information regarding
the disruptions and systems which can be analyzed to obtain insights for improvements. Secondly,
it enables timelier predictive responses to be made given the continuous monitoring of the relevant
entities which facilitates the detection of early stages of disruptions. Hence, the responses are likely
more efficient and the scale of the damage and the chances of cascading failures in the disrupted
system are reduced (Noebels et al., 2022).

In order to achieve real-time resilience, a dynamic response strategy needs to be developed
that is comparable to adaptive control but more advanced with an objective of mitigating
disruptions defined by specific metrics. The strategy would also involve repeated decision making
in set time intervals. At each time interval, the strategy can be broken down into three steps. The
first step is sensing which is the process of observing or estimating the current states of the
disrupted system and the disruption. This step is a prerequisite for designing, initiating, and
implementing effective and efficient responses to mitigate the disruption. The next step is

sensemaking which is defined here as the process of analyzing the sensed data, typically in the



context of historic information and what-if scenarios, to obtain insights about the causes, effects,
and possible trajectories of the current states of system and disruption. The final step is
recalibration where the current response is adjusted or replaced with an alternative according to
the insights gained from sensemaking coupled with optimization procedures, precomputed rules,
and/or heuristics. Correspondingly, real-time resilience requires the adequate sensorization of the
systems, establishment of bidirectional flows of real-time information between the systems and
decision makers, and building of models and simulations that are capable of real-time sensemaking
and recalibration.

A rising enabler for real-time resilience is the digital twin technology which encapsulates
the intersection of computational power, sensors, Internet of Things, big data analytics, modelling,
and simulations (Tao et al., 2019). A digital twin is a virtual representation of a physical entity that
is constantly mimicking the current state of the entity (Rasheed et al., 2019). It can provide real-
time monitoring, anomaly detection, root-cause identification, impact assessment, and what-if
analyses to support timely decision making (Eirinakis et al., 2022). Consequently, it is well suited
for implementing dynamic response strategies, and had been applied for resilience building in
cyber-physical systems (Flammini, 2021; Saad et al., 2020), critical infrastructures (Brucherseifer
etal., 2021), and manufacturing (Bécue et al., 2020; Burgos and Ivanov, 2021). While studies have
proposed conceptual frameworks and demonstrated implementations of digital twins for real-time
resilience, the research questions of “In what ways can digital twins affect real-time resilience and
by how much?” and “Does the added value of real-time resilience justify the costs of adopting
digital twins as an enabler?” remain largely unexplored. The aims of this paper are to address the
above research gaps in the following manner: 1) propose metrics to quantify the value of real-time

resilience, 2) demonstrate the application of the proposed metrics for evaluating the effectiveness



of a dynamic response strategy for disruption mitigation through a novel case study of resilience
against airborne disease transmission in an indoor environment with a digital-twin-controlled
ventilation system, and 3) investigate the tradeoff between resilience and energy use in the case
study.

The paper is organized as follows. In Section 2, we present the quantitative metrics to
evaluate real-time resilience which can be generalized to any systems and disruptions. Section 3
describes the case study, covering the systems and ventilation scenarios investigated in detail, as
well as the comparative simulations and analyses of resilience and energy use. Section 4 focuses
on the computational results. In Section 5, we discuss the implications of the results to the research
questions within the context of the case study and draw some lessons to enhance real-time
resilience in physical systems. Finally, we conclude in Section 6 by summarizing the paper’s main

contributions and highlighting areas for future research.

2. Real-time resilience metrics

Resilience metrics of a system can be deconstructed as measures of the magnitude and
duration of the fluctuations in system performance following a disruption. For any system, a
robustness range can be defined to describe the limits for acceptable levels of performance (Tang
and Heinimann, 2019). In a general system resilience curve (Figure 1), t4s and ¢4y are the times
at which the performance level first drops below and rises above the lower bound of the robustness
range R;, respectively, after the occurrence of a disruption, P, (t) is the minimum performance
level observed between t4, and time instance t, with B,(t4) corresponding to the level exhibited
by the system in the vulnerable phase, and P, is the original performance level which is assumed

to be the ideal level for the system. From this curve, the resilience metrics that can be computed



include the disruption duration T; which is the length of time during which the performance is out
of the robustness range, the impact r(t) which represents the magnitude of the maximum decline
in performance between t;s and t, the loss of resilience W4, (t) which represents the overall
performance loss from t; to t that can be quantified by the area bounded by the resilience curve
and R; during this time period, and the instantaneous rates of degradation VP (t) and recovery

VPg(t) (Yodo and Wang, 2016). For ¢ in the range of t4, and t,y, these resilience metrics can be

evaluated as:

Td = tdf - tds (1)
r(t) = R, — P,(t) (2)
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Wioss(t) = ftds[Rl — P(t')]dt (3)
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Fig. 1 General resilience curve showing the resilience metrics of disruption duration Ty, impact
r(t) and loss of resilience W, (t) at arbitrarily chosen time instance t,, and instantaneous rates
of degradation VPp (t) and recovery VPg(t) at arbitrarily chosen times t; and t3, respectively.
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A system with real-time resilience can analyze information about the current level of its
performance in the context of fault tolerance thresholds such as the robustness range as well as
historical and predicted trajectories of performance to obtain insights for recalibrating its
mitigation responses to the disruption. As illustrated in Figure 2, a system with such capacity can
continuously improve its resisting and recovering actions throughout the disruption event. Given
that VPp (t) and VPg(t) of a system with real-time resilience change every time the response is
recalibrated, the average rates of degradation and recovery during the period of t4 to t, VPp(t)
and VPg(t), can be computed as resilience metrics for comparison. To quantify the added value of
real-time resilience, the percentage improvements in Ty, 7(t), W;pss(t), VPp(t) and VPg(t)

between the same system with and without the resilience can be computed as:

xevzerd o 100% (6)

€p

x = {1 lf e € {Tdir(t):lploss(t)' m(t)} (7)

—1if e € {VPz(D)}
where e is the resilience metric of interest and the subscripts rt and b refer to the system with real-
time resilience and without it, respectively. Having real-time resilience also confers systems the
ability to monitor their resilience metrics over time, which is rarely done in conventional resilience

analyses.
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Fig. 2 Resilience curves for system with and without real-time resilience, as indicated by the
subscripts rt and b, respectively. The added value of having real-time resilience can be measured
by the percentage improvements in the resilience metrics, disruption duration T; and impact r(t)
and loss of resilience W;,¢¢(t) at the time instances of interest. The average rates of degradation
and recovery, VPp(t) and VP(t), can be computed from the instantaneous rates such as those
shown in the figure and compared like the other resilience metrics.
3. A case study of real-time resilience: transmission of airborne infectious disease in an
indoor air-conditioned food court
3.1. Definitions of disruption, system, and resilience for the case study

The purpose of the case study is to illustrate how real-time resilience can be enabled and
assessed in a realistic setting. This section defines the disruption, system, and resilience
investigated in the case study. In the setting of an indoor air-conditioned food court, the disruption
event of interest is the occurrence of a diner infected with an airborne disease exhaling infectious
aerosols during his or her dwell duration. COVID-19 was selected as the airborne infectious

disease for the current investigation given its global prevalence and impact in recent years. An

indoor food court, also known as a food hall or cafeteria, was chosen as the setting representing a
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ubiquitous indoor space use where congregations of unmasked people are guaranteed. Moreover,
the seat turnover rate in food courts can be high enough such that many different individuals use
the spaces during meal times, yet their respective seating durations are long enough for their
exposure to infectious aerosols to reach unsafe levels should there be an infectious diner within
their vicinity. Correspondingly, the system investigated includes the air volume within the food
court and the mechanical ventilation system serving the space which provides a means to respond
to the disruption by controlling the amount of clean air supplied to the diners. The measure of
performance for the system is the diner’s probability of getting infected, herein termed as the
individual infection risk P;.

Based on the disruption and system defined above, the resilience of the diners against
COVID-19 infection can be derived from the plots of their respective infection risks over time
(Figure 3). These infection risk curves can be viewed as resilience curves that are inverted along
the horizontal axis, with a safety threshold Pg; being the equivalent to the lower bound of the
robustness range of an engineering system and acceptable ‘system performance’ defined as P;
being lower than Pgr. While there is no clear consensus thus far on the appropriate value of Psr,
for the purposes of this illustrative example, Psy is taken to be 10~ (Buonanno et al., 2020) which
is obtained by comparing the mortality rates of COVID-19 with those of carcinogenic diseases
which have a defined value for unacceptable risks (Toner, 2008). As described in Section 2, the
resilience of the diners can be evaluated using Ty, the total amount of time where P; is not
acceptable, i.e., exceeds Pgr, r(t), the maximum P; experienced in a specified dwell period,
Yss(t), a measure of the overall exposure to infection risks throughout the dwell period of

interest, as quantified by the area below the infection risk curve that exceeds Psr (shaded area in
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Figure 3), and the average rates of degradation VPp(t) and recovery VPg(t) during the dwell

period.
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Fig 3. Example of a resilience curve of individual infection risk P; against time. The resilience
metrics of disruption duration T, impact r(t) and loss of resilience W;,ss(t) considering the
entire T, and instantaneous rates of degradation VP, (t) and recovery VPg(t) at selected times are
illustrated. Pgr is the safety threshold for infection risk.
3.2. Indoor air-conditioned food court

The design of the food court simulated for this illustrative example is adapted from the
study site of Chitaru et al (Chitaru et al., 2018) which is a mechanically ventilated cafeteria in
Constanta, Romania. The food court has dimensions of 26.5 m x 11.25 m x 3.2 m (length x width
x height) with an opening of size 4 m x 2 m that serves as the entrance and exit of the enclosed
area (Figure 5). On the ceiling, there are eight air supply vents with dimensions of 0.5 m % 0.43 m

and three circle-shaped return air vents with diameters of 0.8 m which are part of a conventional

mixing type ventilation system. The indoor space contains ten tables and 40 chairs.

3.3. Digital-twin-controlled mechanical ventilation as an enabler of real-time resilience
To enable real-time recalibration of ventilation based on the estimated P;, the mixing
ventilation system for the food court is coupled with a digital-twin control comprising of four

modules with distinct functions, namely, occupancy detection, aerosol dispersion simulation,
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infection risk estimation, and ventilation rate control (Figure 4). The digital-twin control provides
the ventilation system with the capacity to implement a dynamic response strategy against
transmission of COVID-19, with the first module providing sensing capacity, the next two modules
providing sensemaking capacity, and the last module providing recalibration capacity. Overall, the
dynamic strategy implemented is an iterative process where P; assessment and mitigation are
executed repeatedly at regular time intervals, herein termed as control intervals, throughout the
operation of the ventilation system. In the context of this digital-twin control, P; refers to the
infection risk of an individual owing to his or her exposure to infectious aerosols over a control

interval.

3.3.1. Occupancy detector

The diners, being infectious or susceptible individuals, are the sources and sinks,
respectively, of the infectious aerosols in the space. Hence, it is imperative to regularly sense the
current location of each diner (x;, y;,z;) where i refers to the ith diner. This sensing step is
implemented at the start of each control interval and could be achieved using cameras or chair
sensors for the food court setting. It is assumed that the diners are stationary in their detected

coordinates during the control interval.
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Fig 4. Flowchart of the processes occurring in one control interval under the dynamic response
strategy implemented by the digital-twin control of the ventilation system
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3.3.2. Aerosol dispersion simulator
The second module of the digital-twin control is an ongoing transient computational fluid
dynamics (CFD) simulation of the indoor air and the tempo-spatial transport of infectious aerosols
in the food court. Simulations of the physical entity of interest is a defining characteristic of digital
twins and their predictive abilities are utilized by the control in this case study for sensemaking.
Importantly, the simulation is updated at the start of each control interval based on the sensed data
about the current locations of the diners (x;, y;, z;) and the current hour rate of the ventilation
system V}, (m*/h). While simulating the system within the duration of a control interval, the module
exports data of the molar concentration of infectious aerosols, recorded every five seconds during
the control interval, to the subsequent module for the estimation of P;. In the simulation, each
identified infectious diner is modelled as an emission source of infectious aerosols, with exhaled
water vapor used as a proxy for the emitted virus-laden aerosols (Ho, 2021; Ho and Binns, 2021).
The mass emission rate of water vapor from an infectious diner, MER (kg/h), can be evaluated as:
MER = ER -V, p,, ®)
where ER (m?/h) is the exhalation rate, V; (mL/m?) is the droplet volume concentration emitted
by the infectious diner, and p,, (kg/mL) is the density of water. ER of an infectious diner is taken
to be 1.38 m*/h, a representative value for a speaking person in an indoor space (Buonanno et al.,
2020). The inhalation rate, IR, of a susceptible diner is assumed to be 1.38 m3/h. V; is assumed to
be 6 x 102 mL/m? which is a conservative value (Buonanno et al., 2020) estimated by dividing the
average droplet volume emission rate of a loud speaking individual (Stadnytskyi et al., 2020) by
his or her expiration rate for standing activity (Adams, 1993). The Eulerian approach is taken for
the CFD simulation and the conservation equations for mass and momentum can be expressed,

respectively, as (ANSYS, Inc., 2021):
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where p is the density of the fluid, ¥ is the velocity vector, S, is the mass source term for the gas

mixture in the food court, p is the static pressure, g is the gravitational acceleration vector, and T

is the fluid viscous stress tensor which is given by:
7 = u[(Vé+ VB") -2V - 5] (11)
where p is the molecular viscosity and [ is the unit tensor. An energy equation in the following

form is also solved (ANSYS, Inc., 2021):
4 > >
o5 (PE) + V- [V(pE + p)] = V- (kepfVT = X hify) (12)
where k¢ is the effective conductivity, T is temperature, h; is the sensible heat of species i, fl is
the diffusion flux of species i, and E is defined as:
—h_PL ¥
E=h 5 +3 (13)

where h is enthalpy and v is fluid velocity. The SST k-omega viscous model and species transport
model(ANSYS, Inc., 2021) are employed to model the transient dispersion of infectious aerosols.
The transport equations for the turbulence kinetic energy, k, and the specific dissipation rate, w,

for the k-omega model are expressed, respectively, as:

d 2 0 ok

o (Pk) + P (pku;) = a_xj(rk a_x,) + G — Y+ Gy (14)
d 0 d d
% () + 2= (o) = 7 (T 32) + G, = Yo + Doy + Gup (15)

where Gy is the production of turbulence kinetic energy due to mean velocity gradients, G, is the
generation of w, [, and I, are the effective diffusivity of k and w, respectively, Y, and Y, are the

dissipation of k and w due to turbulence, respectively, D,, is the cross-diffusion term, and G, and
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G, p are the buoyancy source terms for k and w, respectively. The conservation equation for each

species in the mixture is:

a S >

2 (pY) + V- (piY) = =V J; + Spy (16)
where Y; is the local mass fraction of species i, S;,, is the emission of water vapor from all the

infectors in the space at the rate defined in equation 1 and it is equal to zero for all the other species

of gases in the mixture, and fl is the mass diffusion flux of species i which can be evaluated as:

Ji = = (pDim + £) VY = Dpi (17)
where D; ,,, is the mass diffusion coefficient for species i, yi; is the turbulent viscosity, Sc; is the
turbulent Schmidt number, and Dy ; is the thermal diffusion coefficient for species i.

For this illustrative example, a 3D model of the food court is built in SpaceClaim and the
volume of indoor air is imported into ANSYS 2021 R1 Fluent as a mesh with 2,575,110 cells for
numerical simulation. To verify the mesh sensitivity, time-averaged air velocities at the breathing
zones of three diners, located at seats 4 (near the entrance), 22 (middle), and 40 (far from the
entrance), respectively, were compared across three mesh resolutions (1,591,908, 2,575,110, and
3,790,954). The sizing of the cells in the coarsest and intermediate resolutions are three times and
1.5 times that of the finest resolution, respectively. The breathing zone of a diner is demarcated as
a cubical volume with length of 0.4 m and a centre of origin at the point 5 mm in front of the centre
of the face of the diner (Figure 5). The velocities considered for the mesh sensitivity analysis were
obtained from the period of Os to 3600s during the initialization simulation which represents the
practice of purging the indoor air with a ventilation rate of 2405 m>/h, i.e., 10 L/s/person assuming
maximum occupancy of 40 diners, for one hour before occupancy. As shown in Table 1, the
relative difference between the intermediate and finest mesh are approximately equal to or less

than 5% and thus, it is estimated that a mesh resolution of 2,575,110 is accurate enough. The
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boundary conditions for the walls, the air supply vents, and the return air vents as well as the
opening to the enclosed space are defined as no slip walls, velocity inlets, and pressure outlets with
zero gage pressure, respectively. The indoor and outdoor temperatures are set as 20°C and 27°C,
respectively, reflecting conditions in a warm season or climate. Seated diners are represented by

simplified human models in the mesh (Figure 5).

Table 1. Relative differences of the time-averaged air velocities at the breathing zones of the diners
at seats 4 (near the entrance), 22 (middle of the food court), and 40 (far from the entrance) across
the meshes with coarsest (1,591,908 cells), intermediate (2,575,110 cells), and finest (3,790,954
cells) resolution.

Seat Relative difference between coarsest Relative difference between intermediate
and intermediate mesh (%) and finest mesh (%)
4 10.1 53
22 12.1 5.1
40 2.2 1.1
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Fig 5. Details of the indoor food court model. (a) Trimetric view of the model with the indoor
space shown. (b) Top-down view of the space with the seat numbers shown. (c) Model with the
airflow into the space visualized by blue arrows and airflow out visualized by red arrows. (d)
Dimensions of the tables, chairs, human models, and breathing zone of each diner.
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3.3.3. Airborne infection risk estimator

This module computes P; of the diners using an infection risk model (Buonanno et al., 2020)
modified to incorporate the tempo-spatial variations of the concentration of the infectious aerosols
in the food court. It represents the final step of the sensemaking process since P; is the measure of
performance for the system in this case study. During a control interval, the instantaneous quanta
concentration at each susceptible diner's location 14 (s vy 2 (quanta/m®) can be evaluated using the
following equation which includes the molar concentrations of infectious aerosols exported from
the previous module as one of the terms:

= MmtxyyMw o —IVRR(t-t
nQ(tJX,y,Z) _T cy,"Ci-e (t—tstart) (18)

where Nyt x.y,2) (kmol/m?) is the average molar concentration of exhaled water vapor in the
breathing zone of the susceptible diner with coordinates (x, y, z) at time t (h), M,, (kg/kmol) is the
molecular weight of water, ¢, (RNA copies/mL) is the viral load in the sputum, c; (quanta/RNA
copies) is the conversion factor defined as the ratio between one infectious quantum and the
infectious dose expressed in viral RNA copies, IVRR (h™!) is the infectious virus removal rate, and
tstare 18 the starting time of the control interval (h). It should be noted that 1y, x5, 1s calculated
from the exported data of the CFD simulation in module two. The SARS-CoV-2 viral load in the
sputum is assumed to be 10’ RNA copies/mL which represents an average value within the range
of 10°~10"! copies/mL reported in the literature (Pan et al., 2020; Woelfel et al., 2020; Zou et al.,
2020). The conversion factor, c;, can be expressed as the reciprocal of the product of the number
of viral RNA copies needed to form a plaque-forming unit (PFU), cgy4 , and the quanta-to-PFU
conversion factor, cppy. The values of cgy 4 and cppy are taken to be 1.3x 102 RNA copies/PFU
(Fears et al., 2020) and 2.1 x 10?> PFU/quanta (Watanabe et al., 2010), respectively. The removal

18



rate of SARS-CoV-2 is the sum of the deposition rate of super-micrometric particles and the viral
inactivation rate which are taken to be 0.24 h! (Chatoutsidou and Lazaridis, 2019) and 0.63 h!
(van Doremalen et al., 2020), respectively. The dose of quanta received by each susceptible diner

during the control interval D, (quanta) can then be evaluated as:

tstarttiti
Dq = IRf tart nq(t,x,y‘z)dt (19)

tstart

Subsequently, the P; of each diner can be evaluated using the exponential dose-response model
below that is widely used in the literature to simplify the random distribution of aerosolized
pathogens in the air as an exponential equation (Sze To and Chao, 2010; Watanabe et al., 2010):

Pp=1—¢Da (20)

3.3.4. Rule-based ventilation controller

Representing the recalibration step of the dynamic response strategy, the final module of
the digital-twin control compares the maximum P; observed during a control interval against Pgy
(refer to Section 3.1) to decide on the adaptative change in V}, for the next control interval (Figure
6). Diners whose P; exceed Pgy during a control interval are termed as at-risk diners in this study.
If Psr 1s exceeded and V}, is below the minimum rate recommended by the WHO (World Health
Organization, 2021) for reducing the risk of COVID-19 transmission in non-residential settings,
1.e., 10 L/s/person, V}, for the next control interval is set to be the recommended rate. Otherwise, it
is set to the current rate increased by a correction factor K. If all P; are below Psr, it is set to the
current rate decreased by K. Vj, is not allowed to decrease below the minimum value recommended
by ASHRAE 62.1-2022 (American Society of Heating, Refrigerating and Air-Conditioning
Engineers, 2022) for the indoor space of interest. For the food court case study, this minimum V},

is 1513 m%/h, i.e., 3.8 L/s/person assuming maximum occupancy of 40 diners. The actualization
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of the updated V;, marks the end of one iteration of the digital-twin control loop. This updated V},

is then utilized as one of the inputs for the CFD simulation in the next iteration.

Decrease 1/, by K, up to
minimum rate (no infection
concern) recommended by

ASHRAE 62.1-2022

Maximum
P; > Per

Vi < minimum
rate (infection
concern)
recommended
by WHO

Increase V;, by K

Set 1, to
minimum rate
recommended

by WHO

Fig 6. Decision flowchart of the infection-risk-centric rule-based ventilation controller

3.4. Energy use of ventilation system required for resilience
To understand the tradeoff between resilience and energy use, the energy used by the
ventilation system during a control interval E (kWh) can be evaluated as:

E = (Pac + Pyy)(tena — tstare) (21)
where P, (kW) is the air-conditioning power consumption, Py (kW) is the mechanical
ventilation power consumption, and t,,4 is the ending time of the control interval (h). P4, and
Py can be estimated by the equations as follows (Wang et al., 2021):

Ppc = Q/COP (22)

Q = VaPair Cp (Tout — Tin)/3600 (23)
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Pyy =B [/;3 (24)
where Q (kW) is the ventilation load, COP is the coefficient of performance of the air-conditioning
subsystem, pg;r (kg/m?) is the density of air, Cp (kJ/(kg°C)) is the specific heat capacity of air at
constant pressure, T;, and T,,; (°C) are the indoor and outdoor temperatures, respectively,

(kWm™s?) is the coefficient obtained from the catalog of the fan, and V is the ventilation rate

(m3/s). COP and S8 are set as 4.2 and 0.8 kWm™ s>, respectively (Wang et al., 2021).

3.5. Ventilation scenarios for assessment of real-time resilience

To assess the added value of real-time resilience enabled by the digital-twin control of the
ventilation system, the percentage improvements in the metrics Ty, 7(tar), Wioss(tar), VPp(tg 7)
and VPy(tg4 r) (Section 2), which were derived from the trajectories of the P; of the diners, and the
energy use of the ventilation system were compared across six ventilation scenarios in the same
food court setting. C1 is the baseline scenario where the ventilation system operates at a fixed rate
of 10L/s/person corresponding to the WHO recommended minimum rate for COVID-19 control
purposes. This represents a static mitigation response to the disruption event of an infectious diner
being present in the food court. T1, T2, T3, T4, and TS5 are the real-time resilience scenarios where
the ventilation system operates dynamically under the digital-twin control with the parameter K of
the rule-based ventilation controller set at 10%, 20%, 30%, 40%, and 50%, respectively. A range
of K was studied to reflect varying adaptive capacities of the system. In each scenario, the P; of
the diners were tracked for a duration of one hour and the duration of a control interval was set as
five minutes. To ensure fair comparisons across the scenarios, a few simplifying assumptions were
taken. The locations of the diners are restricted to the 40 seats in the food court which are assumed

to be always occupied during the monitoring duration. The diner at seat 23, which is in the middle
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of the food court, is designated as the sole infectious individual while the other diners are
susceptible individuals. To study the recovery phase of the disruption, the infectious diner is
simulated to be present only in the first 30 minutes.

The aerosol dispersion simulator in the digital-twin control is assumed to work in real time.
Although physics-based models such as the CFD simulations used in the control are typically too
time consuming for real-time applications, numerous studies have demonstrated that machine-
learning-based models can be used as a surrogate to obtain the desired predictions (Jurado et al.,
2022; Mirzaei et al., 2022; Seo et al., 2022). Since the purpose of the case study is to serve as an
illustrative example of how real-time resilience can be enabled and assessed in a realistic setting,
the development of such surrogate models, though important, is out of the scope of the study.
Additionally, the occupancy detector in the control is assumed to be incapable of identifying and
tracking individual diners over time which would require facial recognition or wearable
technologies that are not typically implemented in a food court setting. Consequently, the
accumulation of the dose of infectious aerosols inhaled by a diner across control intervals are not
considered. Exposures during each of the control interval were used as a proxy for real-time

infection risk of the diners instead.

4. Results

The resilience of the diners against the transmission of COVID-19 in the studied case is an
outcome of the interaction between the ventilation scenario and the locations of the susceptible
and infectious diners. In the baseline scenario C1, 15 of the 40 diners were at risk, that is, their P;
exceeded Psr within the monitored duration. The analysis of resilience was conducted only for

these at-risk diners whose P; were unacceptable for one or more control intervals. Given that the
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at-risk diners were located only at tables immediately adjacent to the table containing the infectious
diner, it can be inferred that the concentrations of infectious aerosols decreased to negligible levels
beyond approximately 10 m from the source in the simulated conditions.

Considering the overall resilience of the diners as the sum of the individual resilience of
each diner, the digital-twin-controlled ventilation in T1 to T5 with K ranging from 10% to 50%
improved the overall Ty (26%—61%), W45 (tar) (2%0-39%), and m(tdf) (26%—74%) relative
to C1 (Table 2). As K increases, the percentage improvement of individual Ty and Wj,ss(E4r)
increased monotonically for all the diners with the only exception being the decrease from T4 to
T5 for the diner at seat 20 (Table 3). K of 20% or more is required to ensure all at-risk diners have
improved individual T; compared to C1 while K of 30% or more is required to ensure the same
for individual Wj,ss(€45). In contrast, there were no significant improvements to the overall 7 ()
(< 3%) and significantly worse overall m(tdf) were observed in T1 and T5. The individual
resilience metrics of r(tdf), m(taf) and V_PR(tdf) showed mixed trends when K increases.
Even with K at 50%, these metrics did not improve for every at-risk diner and the digital-twin-
controlled ventilation cannot prevent P; from exceeding Psy for all the diners.

While both the digital-twin-controlled ventilation scheme and higher K of the controller
are hypothesized to improve the resilience of all the diners by introducing a greater quantity of
clean outdoor air when P; are estimated to be unacceptable, their effects on the individual
resilience of the diners vary significantly based on the locations of the diners. This spatial variation
in the effects of ventilation is so high that the individual resilience metrics at some seats declined
in T1 to TS instead of increasing as hypothesized (red values in Table 3). For the purposes of
discussing the results of the case study, seats 25 to 40 are considered ‘upwind’ of the infectious

diner, seats 17 to 24 are considered ‘adjacent’ while seats 1 to 16 are considered ‘downwind’.
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Generally, the at-risk diners that were located upwind or in a different row of tables from the
infectious diner, i.e., at seats 18, 26, 29, and 30, had higher percentage improvements in individual
T, , r(tdf) , and Wj,(tqr) (Table 3). Moreover, they consistently exhibited increasing
improvements in these individual resilience metrics when higher levels of K were implemented.
Except for the diner at seat 28, all of them achieved improvements of sufficient magnitude under
digital-twin-controlled ventilation at a certain level of K such that their P, were maintained at
acceptable levels throughout the monitored duration and they became no longer at risk in those
ventilation scenarios. Expectedly, the diner at seat 24, who is the closest to the infectious diner,
had the lowest resilience, accounting for up to 28%, 87%, and 91% of the overall T, r(tdf), and
Wioss(tar) of the diners, respectively (Appendix A). With increasing levels of K, the percentage
improvement in Wy,s5(t45) for the diner at seat 24 increased to 36% but the improvements in Ty
and r(tdf) did not increase significantly, with maximum magnitudes at <2% and <6%,
respectively. The higher energy use associated with higher levels of K are shown in Table 4. Figure
7 visualizes the spatial distribution of the concentration of infectious aerosols and the streamlines
induced by the supply air vents upwind of the infectious diner, which influence the individual
resilience of the diners, at the snapshot of 30 minutes.

Table 2. Percentage improvement in the overall resilience of the at-risk diners as measured by Ty,
T(tar)s Pross(tar)s m(tdf) and V_PR(tdf) considering the entire tracked duration of one hour
and all the diners. Cells shaded in green and red represent improved and worse resilience metric
values compared to Cl1, respectively.

Ventilation Percentage improvement in overall resilience for at-risk diners (%)
scenario Ty 7 (tar) Wioss(tar) VPp(tar) VPg(tar)
T1 26 -2 2 -26 26
T2 43 -2 14 5 66
T3 50 1 28 6 74
T4 57 3 36 7 59
T5 61 3 39 -59 67
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Table 3. Percentage improvement in the individual resilience of the at-risk diners as measured by the metrics Tg, 7(t45), Wioss (taf)s
VP, (t, r) and VP (t4 ) considering the entire tracked duration of one hour. Cells shaded in green and red represent improved and worse
resilience metric values compared to C1, respectively, while cells shaded in darker green represent improvements of sufficient magnitude
such that the diners are no longer at risk;, i.e., their P; were maintained at acceptable levels throughout the monitored duration. Individual
diners are identified by their seat numbers which are grouped according to the positions relative to the infectious diner.

Percentage improvement in individual resilience metric (%)

Tq T(tar) Wioss (tar)
Seat ™ T2 T3 T4 5 T T2 T3 T4 5 T1 T2 T3 T4 T5
- 11 27 50 60 67 70 -54 177 =201 -70 -119 -26 -24 12 38 48
% 12 25 48 58 66 68 -18 -15 -6 21 4 8 38 57 67 71
H 15 -6 10 20 35 48 -32 -32 15 20 15 -25 -2 24 40 51
= 16 22 36 46 53 60 12 9 14 20 27 27 46 64 72 76
» 18 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
§ 19 1 3 6 11 12 -7 1 -5 1 0 -1 14 21 35 39
% 20 7 11 11 12 11 -6 -2 -5 4 -2 1 5 9 17 14
24 0 0 1 5 6 -1 -2 2 1 2 1 12 25 33 36
26 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
27 47 68 76 85 100 30 70 64 78 100 58 89 92 97 100
o 28 43 55 63 73 79 -1 T 14 19 47 -17 52 65 78 80
H 29 35 100 100 100 100 20 100 100 100 100 48 100 100 100 100
= 30 84 100 100 100 100 83 100 100 100 100 97 100 100 100 100
31 43 93 100 100 100 45 92 100 100 100 48 99 100 100 100
32 31 61 74 92 100 -55 G0 66 88 100 -7 84 92 99 100
VPp(tar) VPp(tar)
Seat T1 T2 T3 T4 5 T1 T2 T3 T4 5
- 1 -35 -161 -316 -175 -549 180 576 652 769 496
% 12 -50 -119 -101 -222 -266 34 75 144 73 126
z 15 -83 -89 -48 -196 -205 -34 -3 -11 -17 12
= 16 -28 -31 -26 -20 -13 -2 28 54 64 106
— 18 - - - - - - - - - -
§ 19 8 23 43 59 75 5 -2 -4 -13 -17
% 20 -7 -4 9 19 30 6 30 30 19 19
24 7 37 44 47 21 7 19 6 1 20
26 - - - - - - - - - -
27 58 64 53 -8 - 4 33 171 -23 -
T 28 -286 -33 -24 -189 -56 98 180 337 144 198
H 29 -61 - - - - -10 - - - -
= 30 4 - - - - 10 - - - -
3 20 43 - - - 204 161 - - -
32 -142 -58 -12 -149 - 32 -8 75 -30 -
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Table 4. Energy use by the ventilation system in the different ventilation scenarios
Cl1 T1 T2 T3 T4 T5
Energy use (kWh) 1.6 3.6 5.9 15.5 48.6 162.7

—— 51 Exhaled water vapor molar
concentration (mol m-3)
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Fig 7. Contours of the molar concentrations of exhaled water vapor which were used as a proxy
for the emitted virus-laden aerosols with an overlay of the streamlines induced by the supply air
vents upwind of the infectious diner at seat 24, for the baseline ventilation scenario (C1) and the
scenarios with digital-twin-controlled ventilation (T1-T5).

5. Discussion
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5.1 Digital-twin-controlled ventilation for real-time resilience against the transmission of
airborne infectious diseases

Generally, the case study demonstrated how the added value of real-time resilience can be
quantified and how such resilience can be enabled by a dynamic response strategy that involves 1)
monitoring, where the digital twin of the given indoor space and ventilation system observes
occupancy and ventilation in real time, 2) sensemaking, where the twin uses the real-time
information streams to conduct tempo-spatial assessment of P;, and 3) recalibration of the
ventilation responses to enhance the resilience of the diners against airborne infection. In the
studied case, since the response to the disruption involves the adjustment of the ventilation rate Vj,
i.e., the volume flow rate of pathogen-free air supplied to the space, the adaptive capacity of the
system is defined by the correction factor K which quantifies the magnitude of the V), adjustments
between consecutive control intervals. The response of introducing clean air to a space serves to
reduce P; by diluting the concentrations of infectious airborne aerosols in the space and removing
them from the space through air volume changes (Arpino et al., 2022; Morawska et al., 2021; Sha
et al., 2021). These dilution and removal effects are reflected in the improvements to the overall
Ta, Wioss(tar), and VPg(tyf) relative to C1 when the digital-twin-controlled ventilation was
implemented.

With respect to the individual resilience of the diners, the simulation results revealed two
limitations of the investigated response. Firstly, the effect of V, on P; and, correspondingly, the
individual resilience of the diner is limited in magnitude. The results showed that using adaptive
mixing ventilation as the sole mitigation response was insufficient to maintain the P; of all diners
at acceptable levels in the presence of an infected diner with a dwell duration of 30 minutes. In

fact, the adaptive ventilation implemented in T1 to TS prevented the exceedance of Psr only for
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the at-risk diners with lower Ty and Wyo55(tqr) (i.€., higher resilience) in C1, namely, those who

are upwind of or in a different row of tables from the infectious diner. Increasing K beyond 50%
is unlikely to be a feasible way to prevent the exceedance of Psr for susceptible diners who are
sitting immediately adjacent an infectious diner while ensuring the indoor air velocities are not
high enough to result in uncomfortable drafts. Secondly, the effect of V;, on the individual
resilience of each diner is neither linear nor always positive, with the direction and strength of the
relationship dependent on the location of the diner. While increasing V, of a mixing ventilation
system like in T1 to TS5 can increase the resilience of some diners, it may also reduce the resilience
of other diners. For instance, in terms of W;,55(tqy), the diners at seats 11, 15, 19, 28, and 32 had
worse (i.e., higher) values in T1 or T2 than in C1. The observation that increasing V}, does not
necessarily decrease the P; for all occupants of a space is corroborated by previous experiments
and simulations (Berlanga et al., 2018; Pantelic and Tham, 2013; Wang et al., 2018). A possible
explanation is that the turbulent air flows generated from the higher V;, could increase the rate of
the lateral dispersion of the infectious aerosols and recirculate the aerosols within some locations
(Vuorinen et al., 2020). This leads to higher r(td f) and m(tdf) and lower m(tdf) relative to
C1 for the diners whose breathing zones intersect the flow paths of the aerosols. Specific to the
case study, the decline in these individual resilience metrics could be attributed to the air flows
from the location of the infectious diner that were predominantly 1) towards the nearest wall across
the susceptible diner at seat 24, 2) towards the entrance/exit of the food court, passing by the table
downwind with seats 11, 12, 15 and 16, and 3) recirculating within an area upwind covering seats
25-32 (Figure 7). However, the results also indicate that there is an optimal value for K beyond
which the avoidance of ¥}, and T, are positive for all at-risk diners. This implies that when K is

sufficiently high, the positive effects of dilution and removal associated with higher V;, outweighs
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the negative effects of lateral dispersion and potential recirculation due to the turbulent air flows.
Additionally, the combined effects of increased dispersion and removal of aerosols at higher levels
of K might account for the spikier resilience curves observed in those ventilation scenarios for the

diners at seats 11, 12, 20, and 28, which are characterized by higher r(tq4f) and VPp(t4f) but
higher VPg (t4s) and lower Ty and Wjo5(tar).

Given the potential undesirable outcomes of increasing V;, in a mixing ventilation system,
a possible alternative is to use displacement ventilation which transports the aerosols vertically
towards the ceiling and away from the breathing zones of all diners (Seo et al., 2022; Villafruela
et al., 2019). With displacement ventilation, the lateral dispersion and homogenization of the
aerosols within the occupied zone are expected to be reduced, resulting in more pathogen-free
regions (Bhagat and Linden, 2020). Nonetheless, the lock-up height of the infectious aerosols that
is induced by the vertical displacement should be checked to lie above the breathing zones of the
diners (Liu et al., 2020; Mui et al., 2009). Like mixing ventilation, the V, and the number and
position of air inlets and outlets could be investigated to improve the resilience enhancement
capability of the displacement ventilation system (Qian et al., 2006). Another option is personal
ventilation which can remove the aerosols close to the source and target the greatly heightened P;
of occupants in close contact with infectors, e.g., at seat 24 which the mixing ventilation system is
unable to target specifically (Izadyar and Miller, 2022; Pantelic and Tham, 2013).

In addition to determining the appropriate ventilation response, the tempo-spatial
assessment of P; in the sensemaking step that is conducted by the digital twin can be used to
identify transient safe zones as they evolve over the disruption event. This is especially important
for larger spaces with less well-mixed air and could inform evacuation routes in the context of

emergencies involving acutely hazardous air contaminants. The importance of considering the

29



tempo-spatial variations for P; in indoor settings is documented in studies of airborne infection
risks in vehicle cabins (Pirouz et al., 2021; Arpino et al., 2022; Wang et al., 2022), offices

(Motamedi et al., 2022), and grocery stores (Zhang et al., 2022).

5.2 Trade-off between resilience and energy

The trade-off between enhancement of resilience against transmission of airborne
infectious diseases via mechanical ventilation and energy use of the ventilation system is evident
from the simulation results. Consequently, an evaluation of the health costs of infection and energy
costs of the physical systems may be necessary before mechanical ventilation solutions for
infection risk mitigation are more widely adopted. Comparing C1 and T4 as an example, the
knowledge of the different costs involved could help building managers decide whether the
additional 47 kWh of energy use in T4 is worthwhile for the 57% and 36% improvements in overall
Tq and Wjoss(tar), respectively. In addition to mechanical ventilation, which can be energy
intensive, air filtration and UV disinfection are alternative engineering solutions for enhancing
resilience against airborne infection. Zhu et al. (2012) studied airborne influenza infection in public
transport using CFD simulations and reported that the infection risk when air is recirculated but
filtered with a HEPA filter is approximately equal to the infection risk when the air is not
recirculated and there is no filtration. This suggests that air filters could be as effective as
mechanical ventilation in mitigating infection risks. Buchan et al. (2020) reported that low dose
far-UVC lighting could increase the removal of airborne SARS-Cov-2 aerosols by 50-85%
compared to ventilation alone and should be considered when increasing V, to the target level is

not feasible. Future studies could compare the energy-efficiency and the effectiveness of these
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engineering solutions in resilience enhancement and investigate their potential synergies in

different scenarios.

5.3 General lessons for real-time resilience

To enable real-time resilience in a physical system, a model of the system that is both
dynamic and retains memory of historical performances needs to be developed. The continuously
updated aerosol dispersion simulator in the case study is one such example and it is crucial for
making assessments and predictions of system performance which, in turn, inform decision
making for resilience objectives (Campos et al., 2022). Additionally, to design effective system
control for real-time resilience, it should be clear how the selected control parameters that
determine system responses affect the measure(s) of the performance of interest. As in the studied
case, the relationship between the control parameter and resilience is typically complex and should

be investigated across the full range of possible scenarios to build a comprehensive control design.

6. Conclusion

This study develops an assessment method for real-time resilience and proposes the
percentage improvements in Ty, 7(t), Wjoss(t), VPp () and VPx(t) as metrics to quantify the
added value of having the capacity to continuously recalibrate responses to an ongoing disruption.
The application of these metrics for evaluating the effectiveness of a dynamic response strategy
for disruption mitigation was demonstrated using a novel case study of airborne infection
transmission in an indoor food court with a digital-twin-controlled ventilation system. The

comparative simulations from the case study showed that:
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1) A digital twin of a given indoor space with a conventional mixing ventilation system can
enhance the overall resilience of the occupants against the transmission of airborne
infectious diseases by enabling a dynamic response strategy that comprises of continuous
monitoring of occupancy and ventilation, sensemaking in terms of tempo-spatial
assessment of P;, and recalibration of V} as a mitigation action. The enhancements in
overall resilience were quantified by the improvements in the overall T; (26%—-61%),
Wioss (tay) (2%-39%), and V_PR(tdf) (26%—74%).

2) The effect of V;, on the individual resilience of the occupants is highly spatial and could be
limited in magnitude depending on the locations of the susceptible and infectious occupants.
While the spatial patterns for the resilience metrics are site-specific, the general insight that
increasing Vj, of a mixing ventilation system could lead to increased dilution and removal
but also greater lateral dispersion and potential recirculation, which have opposing effects
on the resilience, was inferred from the simulation results.

3) The tradeoff between the enhancement of resilience via mechanical ventilation and the
energy use of the ventilation system limits the applicability of adjustments of V;, as a
response and highlights the need to establish the health costs of infection and the energy
costs of the physical systems in the same units so that they can be weighed against each
other for decision making.

Future work in real-time resilience should investigate how the evaluation metrics proposed in this
study could be used in tandem with traditional performance objectives to enable systems with
autonomy and decision makers to make optimal decisions during a disruption event. Moreover,

the further development of intelligent models that could conduct monitoring and sensemaking, as
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well as recalibrate responses in a continuous and timely manner is essential to enable real-time

resilience for physical systems in the future.
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