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Abstract 

The needs of a physical system evolve throughout a disruption event. Therefore, responses to 

mitigate a disruption should be recalibrated in a timely manner to target the current needs of the 

disrupted system. The concept of real-time resilience is defined, which encapsulates the capacity 

of a system to continuously recalibrate its responses to a disruption. In this study, metrics to 
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quantify the added value of having such resilience are proposed. As a case study of real-time 

resilience, the resilience against airborne disease transmission in an indoor food court with digital-

twin-controlled ventilation was investigated, and the application of the metrics for evaluating the 

resilience enhancements enabled by the dynamic response strategy of the ventilation system was 

demonstrated. Comparative simulations showed that higher adaptive capacities in a mixing 

ventilation system enhanced the overall resilience of the diners in terms of percentage 

improvements to the disruption duration (26%–61%), loss of resilience (2%–39%), and average 

rate of recovery (26%–74%). At the same time, the tempo-spatial trends of individual resilience 

suggested that increasing the ventilation rate could simultaneously increase the dilution and 

dispersion of infectious aerosols, which had opposing effects on resilience. The overall effect 

would depend on the specific locations of the diners. Based on the results, the tradeoff between 

resilience and energy use was also discussed. 
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1. Introduction 

As a disruption event unfolds in a system, the states of both the disruption and the disrupted 

system evolve continuously. The responses enacted to mitigate the disruption should, therefore, be 

recalibrated in a timely manner to meet the current needs of the system. However, there is a paucity 

of research regarding such recalibration for resilience. Building on the concept of resilience 

(Hollnagel et al., 2006), we define real-time resilience as the capacity of a system to respond to 
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disruptions in a dynamic manner involving continuous recalibration of its resisting, adapting, and 

recovering actions, based on real-time information of the evolving states of both the disruption and 

the system. The concept of responses based on real-time information is not new in the resilience 

literature. It has been discussed for disruptions and systems of different natures and scales, for 

example, stealthy sensor attacks on cyber-physical systems (Kim et al., 2021), natural disasters 

damaging distribution systems (Lei et al., 2016), and unfavorable rainfall impacting agricultural 

systems (Boyd et al., 2013). Real-time resilience extends this concept by encapsulating the ability 

of the system to continuously learn from historical and new information to improve responses. 

Building real-time resilience in systems confers two advantages. Firstly, it enables the responses 

to become more effective over time as decision makers receive real-time information regarding 

the disruptions and systems which can be analyzed to obtain insights for improvements. Secondly, 

it enables timelier predictive responses to be made given the continuous monitoring of the relevant 

entities which facilitates the detection of early stages of disruptions. Hence, the responses are likely 

more efficient and the scale of the damage and the chances of cascading failures in the disrupted 

system are reduced (Noebels et al., 2022). 

In order to achieve real-time resilience, a dynamic response strategy needs to be developed 

that is comparable to adaptive control but more advanced with an objective of mitigating 

disruptions defined by specific metrics. The strategy would also involve repeated decision making 

in set time intervals. At each time interval, the strategy can be broken down into three steps. The 

first step is sensing which is the process of observing or estimating the current states of the 

disrupted system and the disruption. This step is a prerequisite for designing, initiating, and 

implementing effective and efficient responses to mitigate the disruption. The next step is 

sensemaking which is defined here as the process of analyzing the sensed data, typically in the 
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context of historic information and what-if scenarios, to obtain insights about the causes, effects, 

and possible trajectories of the current states of system and disruption. The final step is 

recalibration where the current response is adjusted or replaced with an alternative according to 

the insights gained from sensemaking coupled with optimization procedures, precomputed rules, 

and/or heuristics. Correspondingly, real-time resilience requires the adequate sensorization of the 

systems, establishment of bidirectional flows of real-time information between the systems and 

decision makers, and building of models and simulations that are capable of real-time sensemaking 

and recalibration. 

A rising enabler for real-time resilience is the digital twin technology which encapsulates 

the intersection of computational power, sensors, Internet of Things, big data analytics, modelling, 

and simulations (Tao et al., 2019). A digital twin is a virtual representation of a physical entity that 

is constantly mimicking the current state of the entity (Rasheed et al., 2019). It can provide real-

time monitoring, anomaly detection, root-cause identification, impact assessment, and what-if 

analyses to support timely decision making (Eirinakis et al., 2022). Consequently, it is well suited 

for implementing dynamic response strategies, and had been applied for resilience building in 

cyber-physical systems (Flammini, 2021; Saad et al., 2020), critical infrastructures (Brucherseifer 

et al., 2021), and manufacturing (Bécue et al., 2020; Burgos and Ivanov, 2021). While studies have 

proposed conceptual frameworks and demonstrated implementations of digital twins for real-time 

resilience, the research questions of “In what ways can digital twins affect real-time resilience and 

by how much?” and “Does the added value of real-time resilience justify the costs of adopting 

digital twins as an enabler?” remain largely unexplored. The aims of this paper are to address the 

above research gaps in the following manner: 1) propose metrics to quantify the value of real-time 

resilience, 2) demonstrate the application of the proposed metrics for evaluating the effectiveness 
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of a dynamic response strategy for disruption mitigation through a novel case study of resilience 

against airborne disease transmission in an indoor environment with a digital-twin-controlled 

ventilation system, and 3) investigate the tradeoff between resilience and energy use in the case 

study. 

The paper is organized as follows. In Section 2, we present the quantitative metrics to 

evaluate real-time resilience which can be generalized to any systems and disruptions. Section 3 

describes the case study, covering the systems and ventilation scenarios investigated in detail, as 

well as the comparative simulations and analyses of resilience and energy use. Section 4 focuses 

on the computational results. In Section 5, we discuss the implications of the results to the research 

questions within the context of the case study and draw some lessons to enhance real-time 

resilience in physical systems. Finally, we conclude in Section 6 by summarizing the paper’s main 

contributions and highlighting areas for future research. 

 

2. Real-time resilience metrics 

Resilience metrics of a system can be deconstructed as measures of the magnitude and 

duration of the fluctuations in system performance following a disruption. For any system, a 

robustness range can be defined to describe the limits for acceptable levels of performance (Tang 

and Heinimann, 2019). In a general system resilience curve (Figure 1), 𝑡𝑑𝑠 and 𝑡𝑑𝑓 are the times 

at which the performance level first drops below and rises above the lower bound of the robustness 

range 𝑅𝑙 , respectively, after the occurrence of a disruption, 𝑃𝑣(𝑡) is the minimum performance 

level observed between 𝑡𝑑𝑠 and time instance 𝑡, with 𝑃𝑣(𝑡𝑑𝑓) corresponding to the level exhibited 

by the system in the vulnerable phase, and 𝑃𝑜 is the original performance level which is assumed 

to be the ideal level for the system. From this curve, the resilience metrics that can be computed 
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include the disruption duration T𝑑 which is the length of time during which the performance is out 

of the robustness range, the impact 𝑟(𝑡) which represents the magnitude of the maximum decline 

in performance between 𝑡𝑑𝑠  and 𝑡, the loss of resilience Ψ𝑙𝑜𝑠𝑠(𝑡) which represents the overall 

performance loss from 𝑡𝑑𝑠 to 𝑡 that can be quantified by the area bounded by the resilience curve 

and 𝑅𝑙 during this time period, and the instantaneous rates of degradation ∇𝑃𝐷(𝑡) and recovery 

∇𝑃𝑅(𝑡) (Yodo and Wang, 2016). For 𝑡 in the range of 𝑡𝑑𝑠 and 𝑡𝑑𝑓, these resilience metrics can be 

evaluated as: 

 T𝑑 = 𝑡𝑑𝑓 − 𝑡𝑑𝑠 (1) 

 𝑟(𝑡) = 𝑅𝑙 − 𝑃𝑣(𝑡) (2) 

 Ψ𝑙𝑜𝑠𝑠(𝑡) = ∫ [𝑅𝑙 − 𝑃(𝑡′)]𝑑𝑡′𝑡

𝑡𝑑𝑠
 (3) 

 ∇𝑃𝐷(𝑡) = −
𝑑𝑃𝐷

𝑑𝑡′ |
𝑡′=𝑡

 (4) 

 ∇𝑃𝑅(𝑡) =
𝑑𝑃𝑅

𝑑𝑡′ |
𝑡′=𝑡

 (5) 

 

Fig. 1 General resilience curve showing the resilience metrics of disruption duration T𝑑, impact 

𝑟(𝑡) and loss of resilience Ψ𝑙𝑜𝑠𝑠(𝑡) at arbitrarily chosen time instance 𝑡2, and instantaneous rates 

of degradation ∇𝑃𝐷(𝑡) and recovery ∇𝑃𝑅(𝑡) at arbitrarily chosen times 𝑡1 and 𝑡3, respectively. 
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A system with real-time resilience can analyze information about the current level of its 

performance in the context of fault tolerance thresholds such as the robustness range as well as 

historical and predicted trajectories of performance to obtain insights for recalibrating its 

mitigation responses to the disruption. As illustrated in Figure 2, a system with such capacity can 

continuously improve its resisting and recovering actions throughout the disruption event. Given 

that ∇𝑃𝐷(𝑡) and ∇𝑃𝑅(𝑡) of a system with real-time resilience change every time the response is 

recalibrated, the average rates of degradation and recovery during the period of 𝑡𝑑𝑠 to 𝑡, ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡) 

and ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡), can be computed as resilience metrics for comparison. To quantify the added value of 

real-time resilience, the percentage improvements in T𝑑 , 𝑟(𝑡) , Ψ𝑙𝑜𝑠𝑠(𝑡) , ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡)  and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡) 

between the same system with and without the resilience can be computed as: 

 
𝑥(𝑒𝑏−𝑒𝑟𝑡)

𝑒𝑏
× 100% (6) 

 𝑥 = {
1 𝑖𝑓 𝑒 ∈ {T𝑑, 𝑟(𝑡), Ψ𝑙𝑜𝑠𝑠(𝑡), ∇𝑃𝐷

̅̅ ̅̅ ̅(𝑡)}

−1 𝑖𝑓 𝑒 ∈ {∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡)}

 (7) 

where 𝑒 is the resilience metric of interest and the subscripts 𝑟𝑡 and 𝑏 refer to the system with real-

time resilience and without it, respectively. Having real-time resilience also confers systems the 

ability to monitor their resilience metrics over time, which is rarely done in conventional resilience 

analyses. 
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Fig. 2 Resilience curves for system with and without real-time resilience, as indicated by the 

subscripts 𝑟𝑡 and 𝑏, respectively. The added value of having real-time resilience can be measured 

by the percentage improvements in the resilience metrics, disruption duration T𝑑 and impact 𝑟(𝑡) 

and loss of resilience Ψ𝑙𝑜𝑠𝑠(𝑡) at the time instances of interest. The average rates of degradation 

and recovery, ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡) and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡), can be computed from the instantaneous rates such as those 

shown in the figure and compared like the other resilience metrics. 

 

3. A case study of real-time resilience: transmission of airborne infectious disease in an 

indoor air-conditioned food court 

3.1. Definitions of disruption, system, and resilience for the case study 

The purpose of the case study is to illustrate how real-time resilience can be enabled and 

assessed in a realistic setting. This section defines the disruption, system, and resilience 

investigated in the case study. In the setting of an indoor air-conditioned food court, the disruption 

event of interest is the occurrence of a diner infected with an airborne disease exhaling infectious 

aerosols during his or her dwell duration. COVID-19 was selected as the airborne infectious 

disease for the current investigation given its global prevalence and impact in recent years. An 

indoor food court, also known as a food hall or cafeteria, was chosen as the setting representing a 
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ubiquitous indoor space use where congregations of unmasked people are guaranteed. Moreover, 

the seat turnover rate in food courts can be high enough such that many different individuals use 

the spaces during meal times, yet their respective seating durations are long enough for their 

exposure to infectious aerosols to reach unsafe levels should there be an infectious diner within 

their vicinity. Correspondingly, the system investigated includes the air volume within the food 

court and the mechanical ventilation system serving the space which provides a means to respond 

to the disruption by controlling the amount of clean air supplied to the diners. The measure of 

performance for the system is the diner’s probability of getting infected, herein termed as the 

individual infection risk 𝑃𝐼. 

Based on the disruption and system defined above, the resilience of the diners against 

COVID-19 infection can be derived from the plots of their respective infection risks over time 

(Figure 3). These infection risk curves can be viewed as resilience curves that are inverted along 

the horizontal axis, with a safety threshold 𝑃𝑆𝑇 being the equivalent to the lower bound of the 

robustness range of an engineering system and acceptable ‘system performance’ defined as 𝑃𝐼 

being lower than 𝑃𝑆𝑇. While there is no clear consensus thus far on the appropriate value of 𝑃𝑆𝑇, 

for the purposes of this illustrative example, 𝑃𝑆𝑇 is taken to be 10-3 (Buonanno et al., 2020) which 

is obtained by comparing the mortality rates of COVID-19 with those of carcinogenic diseases 

which have a defined value for unacceptable risks (Toner, 2008). As described in Section 2, the 

resilience of the diners can be evaluated using T𝑑 , the total amount of time where 𝑃𝐼  is not 

acceptable, i.e., exceeds 𝑃𝑆𝑇 , 𝑟(𝑡) , the maximum 𝑃𝐼  experienced in a specified dwell period, 

Ψ𝑙𝑜𝑠𝑠(𝑡), a measure of the overall exposure to infection risks throughout the dwell period of 

interest, as quantified by the area below the infection risk curve that exceeds 𝑃𝑆𝑇 (shaded area in 
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Figure 3), and the average rates of degradation ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡) and recovery ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡) during the dwell 

period. 

 

Fig 3. Example of a resilience curve of individual infection risk 𝑃𝐼 against time. The resilience 

metrics of disruption duration T𝑑 , impact 𝑟(𝑡) and loss of resilience Ψ𝑙𝑜𝑠𝑠(𝑡) considering the 

entire T𝑑, and instantaneous rates of degradation ∇𝑃𝐷(𝑡) and recovery ∇𝑃𝑅(𝑡) at selected times are 

illustrated. 𝑃𝑆𝑇 is the safety threshold for infection risk. 

 

3.2. Indoor air-conditioned food court 

 The design of the food court simulated for this illustrative example is adapted from the 

study site of Chitaru et al (Chitaru et al., 2018) which is a mechanically ventilated cafeteria in 

Constanta, Romania. The food court has dimensions of 26.5 m × 11.25 m × 3.2 m (length × width 

× height) with an opening of size 4 m × 2 m that serves as the entrance and exit of the enclosed 

area (Figure 5). On the ceiling, there are eight air supply vents with dimensions of 0.5 m × 0.43 m 

and three circle-shaped return air vents with diameters of 0.8 m which are part of a conventional 

mixing type ventilation system. The indoor space contains ten tables and 40 chairs. 

 

3.3. Digital-twin-controlled mechanical ventilation as an enabler of real-time resilience 

 To enable real-time recalibration of ventilation based on the estimated 𝑃𝐼 , the mixing 

ventilation system for the food court is coupled with a digital-twin control comprising of four 

modules with distinct functions, namely, occupancy detection, aerosol dispersion simulation, 
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infection risk estimation, and ventilation rate control (Figure 4). The digital-twin control provides 

the ventilation system with the capacity to implement a dynamic response strategy against 

transmission of COVID-19, with the first module providing sensing capacity, the next two modules 

providing sensemaking capacity, and the last module providing recalibration capacity. Overall, the 

dynamic strategy implemented is an iterative process where 𝑃𝐼  assessment and mitigation are 

executed repeatedly at regular time intervals, herein termed as control intervals, throughout the 

operation of the ventilation system. In the context of this digital-twin control, 𝑃𝐼  refers to the 

infection risk of an individual owing to his or her exposure to infectious aerosols over a control 

interval. 

 

3.3.1. Occupancy detector 

 The diners, being infectious or susceptible individuals, are the sources and sinks, 

respectively, of the infectious aerosols in the space. Hence, it is imperative to regularly sense the 

current location of each diner (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  where 𝑖  refers to the 𝑖 th diner. This sensing step is 

implemented at the start of each control interval and could be achieved using cameras or chair 

sensors for the food court setting. It is assumed that the diners are stationary in their detected 

coordinates during the control interval. 
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Fig 4. Flowchart of the processes occurring in one control interval under the dynamic response 

strategy implemented by the digital-twin control of the ventilation system 
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3.3.2. Aerosol dispersion simulator 

The second module of the digital-twin control is an ongoing transient computational fluid 

dynamics (CFD) simulation of the indoor air and the tempo-spatial transport of infectious aerosols 

in the food court. Simulations of the physical entity of interest is a defining characteristic of digital 

twins and their predictive abilities are utilized by the control in this case study for sensemaking. 

Importantly, the simulation is updated at the start of each control interval based on the sensed data 

about the current locations of the diners (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) and the current hour rate of the ventilation 

system 𝑉ℎ (m3/h). While simulating the system within the duration of a control interval, the module 

exports data of the molar concentration of infectious aerosols, recorded every five seconds during 

the control interval, to the subsequent module for the estimation of 𝑃𝐼. In the simulation, each 

identified infectious diner is modelled as an emission source of infectious aerosols, with exhaled 

water vapor used as a proxy for the emitted virus-laden aerosols (Ho, 2021; Ho and Binns, 2021). 

The mass emission rate of water vapor from an infectious diner, 𝑀𝐸𝑅 (kg/h), can be evaluated as: 

 𝑀𝐸𝑅 = 𝐸𝑅 ∙ 𝑉𝑑 ∙ 𝜌𝑤 (8) 

where 𝐸𝑅 (m3/h) is the exhalation rate, 𝑉𝑑 (mL/m3) is the droplet volume concentration emitted 

by the infectious diner, and 𝜌𝑤 (kg/mL) is the density of water. 𝐸𝑅 of an infectious diner is taken 

to be 1.38 m3/h, a representative value for a speaking person in an indoor space (Buonanno et al., 

2020). The inhalation rate, 𝐼𝑅, of a susceptible diner is assumed to be 1.38 m3/h. 𝑉𝑑 is assumed to 

be 6 × 10-2 mL/m3 which is a conservative value (Buonanno et al., 2020) estimated by dividing the 

average droplet volume emission rate of a loud speaking individual (Stadnytskyi et al., 2020) by 

his or her expiration rate for standing activity (Adams, 1993). The Eulerian approach is taken for 

the CFD simulation and the conservation equations for mass and momentum can be expressed, 

respectively, as (ANSYS, Inc., 2021): 
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𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑣⃗) = 𝑆𝑚 (9) 

 
𝜕

𝜕𝑡
(𝜌𝑣⃗) + ∇ ∙ (𝜌𝑣⃗⨂𝑣⃗) = −∇𝑝 + ∇ ∙ (𝜏̿) + 𝜌𝑔⃗ (10) 

where 𝜌 is the density of the fluid, 𝑣⃗ is the velocity vector, 𝑆𝑚 is the mass source term for the gas 

mixture in the food court, 𝑝 is the static pressure, 𝑔⃗ is the gravitational acceleration vector, and 𝜏̿ 

is the fluid viscous stress tensor which is given by:  

 𝜏̿ = 𝜇[(∇𝑣⃗ + ∇𝑣⃗𝑇) −
2

3
∇ ∙ 𝑣⃗𝐼] (11) 

where 𝜇 is the molecular viscosity and 𝐼 is the unit tensor. An energy equation in the following 

form is also solved (ANSYS, Inc., 2021): 

 
𝜕

𝜕𝑥
(𝜌𝐸) + ∇ ∙ [𝑣⃗(𝜌𝐸 + 𝑝)] = ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇 − ∑ ℎ𝑖𝐽𝑖𝑖 ) (12) 

where 𝑘𝑒𝑓𝑓 is the effective conductivity, 𝑇 is temperature, ℎ𝑖 is the sensible heat of species 𝑖, 𝐽𝑖 is 

the diffusion flux of species 𝑖, and 𝐸 is defined as:  

 𝐸 = h −
𝑝

𝜌
+

𝑣2

2
 (13) 

where h is enthalpy and 𝑣 is fluid velocity. The SST k-omega viscous model and species transport 

model(ANSYS, Inc., 2021) are employed to model the transient dispersion of infectious aerosols. 

The transport equations for the turbulence kinetic energy, 𝑘, and the specific dissipation rate, 𝜔, 

for the k-omega model are expressed, respectively, as:  

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝐺𝑏 (14) 

 
𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖
(𝜌𝜔𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(Γ𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝐺𝜔𝑏 (15) 

where 𝐺𝑘 is the production of turbulence kinetic energy due to mean velocity gradients, 𝐺𝜔 is the 

generation of 𝜔, Γ𝑘 and Γ𝜔 are the effective diffusivity of 𝑘 and 𝜔, respectively, 𝑌𝑘 and 𝑌𝜔 are the 

dissipation of 𝑘 and 𝜔 due to turbulence, respectively, 𝐷𝜔 is the cross-diffusion term, and G𝑏 and 
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G𝜔𝑏 are the buoyancy source terms for 𝑘 and 𝜔, respectively. The conservation equation for each 

species in the mixture is:  

 
𝜕

𝜕𝑡
(𝜌𝑌𝑖) + ∇ ∙ (𝜌𝑣⃗𝑌𝑖) = −∇ ∙ 𝐽𝑖 + 𝑆𝑚 (16) 

where 𝑌𝑖 is the local mass fraction of species 𝑖, 𝑆𝑚 is the emission of water vapor from all the 

infectors in the space at the rate defined in equation 1 and it is equal to zero for all the other species 

of gases in the mixture, and 𝐽𝑖 is the mass diffusion flux of species 𝑖 which can be evaluated as:  

 𝐽𝑖 = − (𝜌𝐷𝑖,𝑚 +
𝜇𝑡

𝑆𝑐𝑡
) ∇𝑌𝑖 − 𝐷𝑇,𝑖

∇𝑇

𝑇
 (17) 

where 𝐷𝑖,𝑚 is the mass diffusion coefficient for species 𝑖, 𝜇𝑡 is the turbulent viscosity, 𝑆𝑐𝑡 is the 

turbulent Schmidt number, and 𝐷𝑇,𝑖 is the thermal diffusion coefficient for species 𝑖. 

 For this illustrative example, a 3D model of the food court is built in SpaceClaim and the 

volume of indoor air is imported into ANSYS 2021 R1 Fluent as a mesh with 2,575,110 cells for 

numerical simulation. To verify the mesh sensitivity, time-averaged air velocities at the breathing 

zones of three diners, located at seats 4 (near the entrance), 22 (middle), and 40 (far from the 

entrance), respectively, were compared across three mesh resolutions (1,591,908, 2,575,110, and 

3,790,954). The sizing of the cells in the coarsest and intermediate resolutions are three times and 

1.5 times that of the finest resolution, respectively. The breathing zone of a diner is demarcated as 

a cubical volume with length of 0.4 m and a centre of origin at the point 5 mm in front of the centre 

of the face of the diner (Figure 5). The velocities considered for the mesh sensitivity analysis were 

obtained from the period of 0s to 3600s during the initialization simulation which represents the 

practice of purging the indoor air with a ventilation rate of 2405 m3/h, i.e., 10 L/s/person assuming 

maximum occupancy of 40 diners, for one hour before occupancy. As shown in Table 1, the 

relative difference between the intermediate and finest mesh are approximately equal to or less 

than 5% and thus, it is estimated that a mesh resolution of 2,575,110 is accurate enough. The 
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boundary conditions for the walls, the air supply vents, and the return air vents as well as the 

opening to the enclosed space are defined as no slip walls, velocity inlets, and pressure outlets with 

zero gage pressure, respectively. The indoor and outdoor temperatures are set as 20°C and 27°C, 

respectively, reflecting conditions in a warm season or climate. Seated diners are represented by 

simplified human models in the mesh (Figure 5). 

 

Table 1. Relative differences of the time-averaged air velocities at the breathing zones of the diners 

at seats 4 (near the entrance), 22 (middle of the food court), and 40 (far from the entrance) across 

the meshes with coarsest (1,591,908 cells), intermediate (2,575,110 cells), and finest (3,790,954 

cells) resolution. 

Seat Relative difference between coarsest  

and intermediate mesh (%) 

Relative difference between intermediate 

and finest mesh (%) 

4 10.1 5.3 

22 12.1 5.1 

40 2.2 1.1 

 

 

Fig 5. Details of the indoor food court model. (a) Trimetric view of the model with the indoor 

space shown. (b) Top-down view of the space with the seat numbers shown. (c) Model with the 

airflow into the space visualized by blue arrows and airflow out visualized by red arrows. (d) 

Dimensions of the tables, chairs, human models, and breathing zone of each diner. 
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3.3.3. Airborne infection risk estimator 

 This module computes 𝑃𝐼 of the diners using an infection risk model (Buonanno et al., 2020) 

modified to incorporate the tempo-spatial variations of the concentration of the infectious aerosols 

in the food court. It represents the final step of the sensemaking process since 𝑃𝐼 is the measure of 

performance for the system in this case study. During a control interval, the instantaneous quanta 

concentration at each susceptible diner's location 𝑛𝑞(𝑡,𝑥,𝑦,𝑧) (quanta/m3) can be evaluated using the 

following equation which includes the molar concentrations of infectious aerosols exported from 

the previous module as one of the terms:  

 𝑛𝑞(𝑡,𝑥,𝑦,𝑧) =
𝑛𝑚(𝑡,𝑥,𝑦,𝑧)∙𝑀𝑤

𝜌𝑤
∙ 𝑐𝑣 ∙ 𝑐𝑖 ∙ 𝑒−𝐼𝑉𝑅𝑅(𝑡−𝑡𝑠𝑡𝑎𝑟𝑡) (18) 

where 𝑛𝑚(𝑡,𝑥,𝑦,𝑧)  (kmol/m3) is the average molar concentration of exhaled water vapor in the 

breathing zone of the susceptible diner with coordinates (x, y, z) at time 𝑡 (h), 𝑀𝑤 (kg/kmol) is the 

molecular weight of water, 𝑐𝑣 (RNA copies/mL) is the viral load in the sputum, 𝑐𝑖 (quanta/RNA 

copies) is the conversion factor defined as the ratio between one infectious quantum and the 

infectious dose expressed in viral RNA copies, 𝐼𝑉𝑅𝑅 (h-1) is the infectious virus removal rate, and 

𝑡𝑠𝑡𝑎𝑟𝑡 is the starting time of the control interval (h). It should be noted that 𝑛𝑚(𝑡,𝑥,𝑦,𝑧) is calculated 

from the exported data of the CFD simulation in module two. The SARS-CoV-2 viral load in the 

sputum is assumed to be 107 RNA copies/mL which represents an average value within the range 

of 103‒1011 copies/mL reported in the literature (Pan et al., 2020; Woelfel et al., 2020; Zou et al., 

2020). The conversion factor, 𝑐𝑖, can be expressed as the reciprocal of the product of the number 

of viral RNA copies needed to form a plaque-forming unit (PFU), 𝑐𝑅𝑁𝐴 , and the quanta-to-PFU 

conversion factor, 𝑐𝑃𝐹𝑈. The values of 𝑐𝑅𝑁𝐴 and 𝑐𝑃𝐹𝑈 are taken to be 1.3× 102 RNA copies/PFU 

(Fears et al., 2020) and 2.1 × 102 PFU/quanta (Watanabe et al., 2010), respectively. The removal 
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rate of SARS-CoV-2 is the sum of the deposition rate of super-micrometric particles and the viral 

inactivation rate which are taken to be 0.24 h-1 (Chatoutsidou and Lazaridis, 2019) and 0.63 h-1 

(van Doremalen et al., 2020), respectively. The dose of quanta received by each susceptible diner 

during the control interval 𝐷𝑞 (quanta) can then be evaluated as:  

 𝐷𝑞 = 𝐼𝑅 ∫ 𝑛𝑞(𝑡,𝑥,𝑦,𝑧)𝑑𝑡
𝑡𝑠𝑡𝑎𝑟𝑡+𝑡𝑖

𝑡𝑠𝑡𝑎𝑟𝑡
 (19) 

Subsequently, the 𝑃𝐼 of each diner can be evaluated using the exponential dose-response model 

below that is widely used in the literature to simplify the random distribution of aerosolized 

pathogens in the air as an exponential equation (Sze To and Chao, 2010; Watanabe et al., 2010):  

 𝑃𝐼 = 1 − 𝑒−𝐷𝑞 (20) 

 

3.3.4. Rule-based ventilation controller 

 Representing the recalibration step of the dynamic response strategy, the final module of 

the digital-twin control compares the maximum 𝑃𝐼 observed during a control interval against 𝑃𝑆𝑇 

(refer to Section 3.1) to decide on the adaptative change in 𝑉ℎ for the next control interval (Figure 

6). Diners whose 𝑃𝐼 exceed 𝑃𝑆𝑇 during a control interval are termed as at-risk diners in this study. 

If 𝑃𝑆𝑇 is exceeded and 𝑉ℎ is below the minimum rate recommended by the WHO (World Health 

Organization, 2021) for reducing the risk of COVID-19 transmission in non-residential settings, 

i.e., 10 L/s/person, 𝑉ℎ for the next control interval is set to be the recommended rate. Otherwise, it 

is set to the current rate increased by a correction factor 𝐾. If all 𝑃𝐼 are below 𝑃𝑆𝑇, it is set to the 

current rate decreased by 𝐾. 𝑉ℎ is not allowed to decrease below the minimum value recommended 

by ASHRAE 62.1-2022 (American Society of Heating, Refrigerating and Air‐Conditioning 

Engineers, 2022) for the indoor space of interest. For the food court case study, this minimum 𝑉ℎ 

is 1513 m3/h, i.e., 3.8 L/s/person assuming maximum occupancy of 40 diners. The actualization 
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of the updated 𝑉ℎ marks the end of one iteration of the digital-twin control loop. This updated 𝑉ℎ 

is then utilized as one of the inputs for the CFD simulation in the next iteration. 

 

Fig 6. Decision flowchart of the infection-risk-centric rule-based ventilation controller 

 

3.4. Energy use of ventilation system required for resilience 

To understand the tradeoff between resilience and energy use, the energy used by the 

ventilation system during a control interval 𝐸 (kWh) can be evaluated as: 

 𝐸 = (𝑃𝐴𝐶 + 𝑃𝑀𝑉)(𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡) (21) 

where 𝑃𝐴𝐶  (kW) is the air-conditioning power consumption, 𝑃𝑀𝑉  (kW) is the mechanical 

ventilation power consumption, and 𝑡𝑒𝑛𝑑 is the ending time of the control interval (h). 𝑃𝐴𝐶  and 

𝑃𝑀𝑉 can be estimated by the equations as follows (Wang et al., 2021): 

 𝑃𝐴𝐶 = 𝑄/𝐶𝑂𝑃 (22) 

 𝑄 = 𝑉ℎ𝜌𝑎𝑖𝑟𝐶𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)/3600 (23) 
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 𝑃𝑀𝑉 = 𝛽𝑉𝑠
3 (24) 

where 𝑄 (kW) is the ventilation load, 𝐶𝑂𝑃 is the coefficient of performance of the air-conditioning 

subsystem, 𝜌𝑎𝑖𝑟 (kg/m3) is the density of air, 𝐶𝑝 (kJ/(kg°C)) is the specific heat capacity of air at 

constant pressure, 𝑇𝑖𝑛  and 𝑇𝑜𝑢𝑡  (°C) are the indoor and outdoor temperatures, respectively, 𝛽 

(kWm-9s3) is the coefficient obtained from the catalog of the fan, and 𝑉𝑠 is the ventilation rate 

(m3/s). COP and 𝛽 are set as 4.2 and 0.8 kWm-9s3, respectively (Wang et al., 2021). 

 

3.5. Ventilation scenarios for assessment of real-time resilience 

To assess the added value of real-time resilience enabled by the digital-twin control of the 

ventilation system, the percentage improvements in the metrics T𝑑, 𝑟(𝑡𝑑𝑓), Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓), ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) 

and ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡𝑑𝑓) (Section 2), which were derived from the trajectories of the 𝑃𝐼 of the diners, and the 

energy use of the ventilation system were compared across six ventilation scenarios in the same 

food court setting. C1 is the baseline scenario where the ventilation system operates at a fixed rate 

of 10L/s/person corresponding to the WHO recommended minimum rate for COVID-19 control 

purposes. This represents a static mitigation response to the disruption event of an infectious diner 

being present in the food court. T1, T2, T3, T4, and T5 are the real-time resilience scenarios where 

the ventilation system operates dynamically under the digital-twin control with the parameter 𝐾 of 

the rule-based ventilation controller set at 10%, 20%, 30%, 40%, and 50%, respectively. A range 

of 𝐾 was studied to reflect varying adaptive capacities of the system. In each scenario, the 𝑃𝐼 of 

the diners were tracked for a duration of one hour and the duration of a control interval was set as 

five minutes. To ensure fair comparisons across the scenarios, a few simplifying assumptions were 

taken. The locations of the diners are restricted to the 40 seats in the food court which are assumed 

to be always occupied during the monitoring duration. The diner at seat 23, which is in the middle 
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of the food court, is designated as the sole infectious individual while the other diners are 

susceptible individuals. To study the recovery phase of the disruption, the infectious diner is 

simulated to be present only in the first 30 minutes. 

The aerosol dispersion simulator in the digital-twin control is assumed to work in real time. 

Although physics-based models such as the CFD simulations used in the control are typically too 

time consuming for real-time applications, numerous studies have demonstrated that machine-

learning-based models can be used as a surrogate to obtain the desired predictions (Jurado et al., 

2022; Mirzaei et al., 2022; Seo et al., 2022). Since the purpose of the case study is to serve as an 

illustrative example of how real-time resilience can be enabled and assessed in a realistic setting, 

the development of such surrogate models, though important, is out of the scope of the study. 

Additionally, the occupancy detector in the control is assumed to be incapable of identifying and 

tracking individual diners over time which would require facial recognition or wearable 

technologies that are not typically implemented in a food court setting. Consequently, the 

accumulation of the dose of infectious aerosols inhaled by a diner across control intervals are not 

considered. Exposures during each of the control interval were used as a proxy for real-time 

infection risk of the diners instead. 

 

4. Results 

The resilience of the diners against the transmission of COVID-19 in the studied case is an 

outcome of the interaction between the ventilation scenario and the locations of the susceptible 

and infectious diners. In the baseline scenario C1, 15 of the 40 diners were at risk, that is, their 𝑃𝐼 

exceeded 𝑃𝑆𝑇 within the monitored duration. The analysis of resilience was conducted only for 

these at-risk diners whose 𝑃𝐼 were unacceptable for one or more control intervals. Given that the 
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at-risk diners were located only at tables immediately adjacent to the table containing the infectious 

diner, it can be inferred that the concentrations of infectious aerosols decreased to negligible levels 

beyond approximately 10 m from the source in the simulated conditions. 

Considering the overall resilience of the diners as the sum of the individual resilience of 

each diner, the digital-twin-controlled ventilation in T1 to T5 with 𝐾 ranging from 10% to 50% 

improved the overall T𝑑  (26%–61%), Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) (2%–39%), and ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡𝑑𝑓) (26%–74%) relative 

to C1 (Table 2). As 𝐾 increases, the percentage improvement of individual T𝑑  and Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) 

increased monotonically for all the diners with the only exception being the decrease from T4 to 

T5 for the diner at seat 20 (Table 3). 𝐾 of 20% or more is required to ensure all at-risk diners have 

improved individual T𝑑 compared to C1 while 𝐾 of 30% or more is required to ensure the same 

for individual Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓). In contrast, there were no significant improvements to the overall 𝑟(𝑡𝑑𝑓) 

(< 3%) and significantly worse overall ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) were observed in T1 and T5. The individual 

resilience metrics of 𝑟(𝑡𝑑𝑓) , ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡𝑑𝑓) showed mixed trends when 𝐾  increases. 

Even with 𝐾 at 50%, these metrics did not improve for every at-risk diner and the digital-twin-

controlled ventilation cannot prevent 𝑃𝐼 from exceeding 𝑃𝑆𝑇 for all the diners.  

While both the digital-twin-controlled ventilation scheme and higher 𝐾 of the controller 

are hypothesized to improve the resilience of all the diners by introducing a greater quantity of 

clean outdoor air when 𝑃𝐼  are estimated to be unacceptable, their effects on the individual 

resilience of the diners vary significantly based on the locations of the diners. This spatial variation 

in the effects of ventilation is so high that the individual resilience metrics at some seats declined 

in T1 to T5 instead of increasing as hypothesized (red values in Table 3). For the purposes of 

discussing the results of the case study, seats 25 to 40 are considered ‘upwind’ of the infectious 

diner, seats 17 to 24 are considered ‘adjacent’ while seats 1 to 16 are considered ‘downwind’. 
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Generally, the at-risk diners that were located upwind or in a different row of tables from the 

infectious diner, i.e., at seats 18, 26, 29, and 30, had higher percentage improvements in individual 

T𝑑 , 𝑟(𝑡𝑑𝑓) , and Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓)  (Table 3). Moreover, they consistently exhibited increasing 

improvements in these individual resilience metrics when higher levels of 𝐾 were implemented. 

Except for the diner at seat 28, all of them achieved improvements of sufficient magnitude under 

digital-twin-controlled ventilation at a certain level of 𝐾 such that their 𝑃𝐼  were maintained at 

acceptable levels throughout the monitored duration and they became no longer at risk in those 

ventilation scenarios. Expectedly, the diner at seat 24, who is the closest to the infectious diner, 

had the lowest resilience, accounting for up to 28%, 87%, and 91% of the overall T𝑑, 𝑟(𝑡𝑑𝑓), and 

Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) of the diners, respectively (Appendix A). With increasing levels of 𝐾, the percentage 

improvement in Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) for the diner at seat 24 increased to 36% but the improvements in T𝑑 

and 𝑟(𝑡𝑑𝑓)  did not increase significantly, with maximum magnitudes at <2% and <6%, 

respectively. The higher energy use associated with higher levels of 𝐾 are shown in Table 4. Figure 

7 visualizes the spatial distribution of the concentration of infectious aerosols and the streamlines 

induced by the supply air vents upwind of the infectious diner, which influence the individual 

resilience of the diners, at the snapshot of 30 minutes. 

Table 2. Percentage improvement in the overall resilience of the at-risk diners as measured by T𝑑, 

𝑟(𝑡𝑑𝑓), Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓), ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡𝑑𝑓) considering the entire tracked duration of one hour 

and all the diners. Cells shaded in green and red represent improved and worse resilience metric 

values compared to C1, respectively. 

Ventilation 

scenario 

Percentage improvement in overall resilience for at-risk diners (%) 

T𝑑 𝑟(𝑡𝑑𝑓) Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡𝑑𝑓) 

T1 26 -2 2 -26 26 

T2 43 -2 14 5 66 

T3 50 1 28 6 74 

T4 57 3 36 7 59 

T5 61 3 39 -59 67 

 



25 

 

Table 3. Percentage improvement in the individual resilience of the at-risk diners as measured by the metrics T𝑑, 𝑟(𝑡𝑑𝑓), Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓), 

∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡𝑑𝑓) considering the entire tracked duration of one hour. Cells shaded in green and red represent improved and worse 

resilience metric values compared to C1, respectively, while cells shaded in darker green represent improvements of sufficient magnitude 

such that the diners are no longer at risk, i.e., their 𝑃𝐼 were maintained at acceptable levels throughout the monitored duration. Individual 

diners are identified by their seat numbers which are grouped according to the positions relative to the infectious diner. 
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Table 4. Energy use by the ventilation system in the different ventilation scenarios 

 C1 T1 T2 T3 T4 T5 

Energy use (kWh) 1.6 3.6 5.9 15.5 48.6 162.7 

 

 

Fig 7. Contours of the molar concentrations of exhaled water vapor which were used as a proxy 

for the emitted virus-laden aerosols with an overlay of the streamlines induced by the supply air 

vents upwind of the infectious diner at seat 24, for the baseline ventilation scenario (C1) and the 

scenarios with digital-twin-controlled ventilation (T1–T5). 

 

5. Discussion 
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5.1 Digital-twin-controlled ventilation for real-time resilience against the transmission of 

airborne infectious diseases 

Generally, the case study demonstrated how the added value of real-time resilience can be 

quantified and how such resilience can be enabled by a dynamic response strategy that involves 1) 

monitoring, where the digital twin of the given indoor space and ventilation system observes 

occupancy and ventilation in real time, 2) sensemaking, where the twin uses the real-time 

information streams to conduct tempo-spatial assessment of 𝑃𝐼 , and 3) recalibration of the 

ventilation responses to enhance the resilience of the diners against airborne infection. In the 

studied case, since the response to the disruption involves the adjustment of the ventilation rate 𝑉ℎ, 

i.e., the volume flow rate of pathogen-free air supplied to the space, the adaptive capacity of the 

system is defined by the correction factor 𝐾 which quantifies the magnitude of the 𝑉ℎ adjustments 

between consecutive control intervals. The response of introducing clean air to a space serves to 

reduce 𝑃𝐼 by diluting the concentrations of infectious airborne aerosols in the space and removing 

them from the space through air volume changes (Arpino et al., 2022; Morawska et al., 2021; Sha 

et al., 2021). These dilution and removal effects are reflected in the improvements to the overall 

T𝑑 , Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) , and ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡𝑑𝑓)  relative to C1 when the digital-twin-controlled ventilation was 

implemented. 

With respect to the individual resilience of the diners, the simulation results revealed two 

limitations of the investigated response. Firstly, the effect of  𝑉ℎ on 𝑃𝐼 and, correspondingly, the 

individual resilience of the diner is limited in magnitude. The results showed that using adaptive 

mixing ventilation as the sole mitigation response was insufficient to maintain the 𝑃𝐼 of all diners 

at acceptable levels in the presence of an infected diner with a dwell duration of 30 minutes. In 

fact, the adaptive ventilation implemented in T1 to T5 prevented the exceedance of 𝑃𝑆𝑇 only for 
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the at-risk diners with lower 𝑇𝑑 and Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) (i.e., higher resilience) in C1, namely, those who 

are upwind of or in a different row of tables from the infectious diner. Increasing 𝐾 beyond 50% 

is unlikely to be a feasible way to prevent the exceedance of 𝑃𝑆𝑇 for susceptible diners who are 

sitting immediately adjacent an infectious diner while ensuring the indoor air velocities are not 

high enough to result in uncomfortable drafts. Secondly, the effect of 𝑉ℎ  on the individual 

resilience of each diner is neither linear nor always positive, with the direction and strength of the 

relationship dependent on the location of the diner. While increasing 𝑉ℎ of a mixing ventilation 

system like in T1 to T5 can increase the resilience of some diners, it may also reduce the resilience 

of other diners. For instance, in terms of Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓), the diners at seats 11, 15, 19, 28, and 32 had 

worse (i.e., higher) values in T1 or T2 than in C1. The observation that increasing 𝑉ℎ does not 

necessarily decrease the 𝑃𝐼 for all occupants of a space is corroborated by previous experiments 

and simulations (Berlanga et al., 2018; Pantelic and Tham, 2013; Wang et al., 2018). A possible 

explanation is that the turbulent air flows generated from the higher 𝑉ℎ could increase the rate of 

the lateral dispersion of the infectious aerosols and recirculate the aerosols within some locations 

(Vuorinen et al., 2020). This leads to higher 𝑟(𝑡𝑑𝑓) and ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) and lower ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡𝑑𝑓) relative to 

C1 for the diners whose breathing zones intersect the flow paths of the aerosols. Specific to the 

case study, the decline in these individual resilience metrics could be attributed to the air flows 

from the location of the infectious diner that were predominantly 1) towards the nearest wall across 

the susceptible diner at seat 24, 2) towards the entrance/exit of the food court, passing by the table 

downwind with seats 11, 12, 15 and 16, and 3) recirculating within an area upwind covering seats 

25–32 (Figure 7). However, the results also indicate that there is an optimal value for 𝐾 beyond 

which the avoidance of 𝛹𝑙𝑜𝑠𝑠 and 𝑇𝑑 are positive for all at-risk diners. This implies that when 𝐾 is 

sufficiently high, the positive effects of dilution and removal associated with higher 𝑉ℎ outweighs 
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the negative effects of lateral dispersion and potential recirculation due to the turbulent air flows. 

Additionally, the combined effects of increased dispersion and removal of aerosols at higher levels 

of 𝐾 might account for the spikier resilience curves observed in those ventilation scenarios for the 

diners at seats 11, 12, 20, and 28, which are characterized by higher 𝑟(𝑡𝑑𝑓) and ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡𝑑𝑓) but 

higher ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡𝑑𝑓) and lower T𝑑 and Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓). 

Given the potential undesirable outcomes of increasing 𝑉ℎ in a mixing ventilation system, 

a possible alternative is to use displacement ventilation which transports the aerosols vertically 

towards the ceiling and away from the breathing zones of all diners (Seo et al., 2022; Villafruela 

et al., 2019). With displacement ventilation, the lateral dispersion and homogenization of the 

aerosols within the occupied zone are expected to be reduced, resulting in more pathogen-free 

regions (Bhagat and Linden, 2020). Nonetheless, the lock-up height of the infectious aerosols that 

is induced by the vertical displacement should be checked to lie above the breathing zones of the 

diners (Liu et al., 2020; Mui et al., 2009). Like mixing ventilation, the 𝑉ℎ and the number and 

position of air inlets and outlets could be investigated to improve the resilience enhancement 

capability of the displacement ventilation system (Qian et al., 2006). Another option is personal 

ventilation which can remove the aerosols close to the source and target the greatly heightened 𝑃𝐼 

of occupants in close contact with infectors, e.g., at seat 24 which the mixing ventilation system is 

unable to target specifically (Izadyar and Miller, 2022; Pantelic and Tham, 2013). 

In addition to determining the appropriate ventilation response, the tempo-spatial 

assessment of 𝑃𝐼  in the sensemaking step that is conducted by the digital twin can be used to 

identify transient safe zones as they evolve over the disruption event. This is especially important 

for larger spaces with less well-mixed air and could inform evacuation routes in the context of 

emergencies involving acutely hazardous air contaminants. The importance of considering the 
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tempo-spatial variations for 𝑃𝐼 in indoor settings is documented in studies of airborne infection 

risks in vehicle cabins (Pirouz et al., 2021; Arpino et al., 2022; Wang et al., 2022), offices 

(Motamedi et al., 2022), and grocery stores (Zhang et al., 2022). 

 

5.2 Trade-off between resilience and energy 

The trade-off between enhancement of resilience against transmission of airborne 

infectious diseases via mechanical ventilation and energy use of the ventilation system is evident 

from the simulation results. Consequently, an evaluation of the health costs of infection and energy 

costs of the physical systems may be necessary before mechanical ventilation solutions for 

infection risk mitigation are more widely adopted. Comparing C1 and T4 as an example, the 

knowledge of the different costs involved could help building managers decide whether the 

additional 47 kWh of energy use in T4 is worthwhile for the 57% and 36% improvements in overall 

T𝑑  and Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) , respectively. In addition to mechanical ventilation, which can be energy 

intensive, air filtration and UV disinfection are alternative engineering solutions for enhancing 

resilience against airborne infection. Zhu et al. (2012) studied airborne influenza infection in public 

transport using CFD simulations and reported that the infection risk when air is recirculated but 

filtered with a HEPA filter is approximately equal to the infection risk when the air is not 

recirculated and there is no filtration. This suggests that air filters could be as effective as 

mechanical ventilation in mitigating infection risks. Buchan et al. (2020) reported that low dose 

far-UVC lighting could increase the removal of airborne SARS-Cov-2 aerosols by 50‒85% 

compared to ventilation alone and should be considered when increasing 𝑉ℎ to the target level is 

not feasible. Future studies could compare the energy-efficiency and the effectiveness of these 
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engineering solutions in resilience enhancement and investigate their potential synergies in 

different scenarios. 

 

5.3 General lessons for real-time resilience 

To enable real-time resilience in a physical system, a model of the system that is both 

dynamic and retains memory of historical performances needs to be developed. The continuously 

updated aerosol dispersion simulator in the case study is one such example and it is crucial for 

making assessments and predictions of system performance which, in turn, inform decision 

making for resilience objectives (Campos et al., 2022). Additionally, to design effective system 

control for real-time resilience, it should be clear how the selected control parameters that 

determine system responses affect the measure(s) of the performance of interest. As in the studied 

case, the relationship between the control parameter and resilience is typically complex and should 

be investigated across the full range of possible scenarios to build a comprehensive control design. 

 

6. Conclusion 

This study develops an assessment method for real-time resilience and proposes the 

percentage improvements in T𝑑 , 𝑟(𝑡), Ψ𝑙𝑜𝑠𝑠(𝑡), ∇𝑃𝐷
̅̅ ̅̅ ̅(𝑡) and ∇𝑃𝑅

̅̅ ̅̅ ̅(𝑡) as metrics to quantify the 

added value of having the capacity to continuously recalibrate responses to an ongoing disruption. 

The application of these metrics for evaluating the effectiveness of a dynamic response strategy 

for disruption mitigation was demonstrated using a novel case study of airborne infection 

transmission in an indoor food court with a digital-twin-controlled ventilation system. The 

comparative simulations from the case study showed that:  
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1) A digital twin of a given indoor space with a conventional mixing ventilation system can 

enhance the overall resilience of the occupants against the transmission of airborne 

infectious diseases by enabling a dynamic response strategy that comprises of continuous 

monitoring of occupancy and ventilation, sensemaking in terms of tempo-spatial 

assessment of 𝑃𝐼 , and recalibration of 𝑉ℎ  as a mitigation action. The enhancements in 

overall resilience were quantified by the improvements in the overall T𝑑  (26%–61%), 

Ψ𝑙𝑜𝑠𝑠(𝑡𝑑𝑓) (2%–39%), and ∇𝑃𝑅
̅̅ ̅̅ ̅(𝑡𝑑𝑓) (26%–74%). 

2) The effect of 𝑉ℎ on the individual resilience of the occupants is highly spatial and could be 

limited in magnitude depending on the locations of the susceptible and infectious occupants. 

While the spatial patterns for the resilience metrics are site-specific, the general insight that 

increasing 𝑉ℎ of a mixing ventilation system could lead to increased dilution and removal 

but also greater lateral dispersion and potential recirculation, which have opposing effects 

on the resilience, was inferred from the simulation results. 

3) The tradeoff between the enhancement of resilience via mechanical ventilation and the 

energy use of the ventilation system limits the applicability of adjustments of 𝑉ℎ  as a 

response and highlights the need to establish the health costs of infection and the energy 

costs of the physical systems in the same units so that they can be weighed against each 

other for decision making.  

Future work in real-time resilience should investigate how the evaluation metrics proposed in this 

study could be used in tandem with traditional performance objectives to enable systems with 

autonomy and decision makers to make optimal decisions during a disruption event. Moreover, 

the further development of intelligent models that could conduct monitoring and sensemaking, as 
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well as recalibrate responses in a continuous and timely manner is essential to enable real-time 

resilience for physical systems in the future. 
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