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Abstract—This paper presents a new version of the Kalman-
Yakubovich-Popov (KYP) Lemma for linear systems with their
states constrained in proper cones. Based on this lemma, two
important applications are introduced. One is the stabilization
controller design to satisfy the spectral radius performance
while preserving cone invariance. The other is to obtain an
H∞ state-feedback controller such that both H∞ performance
and cone invariance are guaranteed. Moreover, to address these
two problems, a practical algorithm based on the linear matrix
inequality is provided. Finally, two numerical examples on a
linear system defined in the second-order cone are used to
illustrate the results.

Index Terms—Cone invariance, H∞ control, KYP Lemma,
Linear matrix inequality, Second-order cone, Stabilization.

I. INTRODUCTION

Positive systems, characterized by the property that their
states and outputs remain in the nonnegative orthant whenever
initialized in the nonnegative orthant, are widely used to
describe various dynamic processes, including virus treatment
[1], population variation [2], and network congestion [3].
This special property has brought new analytical methods
and extensive results of stability and input-output performance
analysis, which are only valid for positive systems but not
for general linear systems [4]–[9]. For positive systems, the
storage function in dissipative theory can be constructed in the
form of a quadratic Lyapunov function (LF) with a diagonal
matrix. Instead of a symmetric matrix for general linear
systems, the diagonal matrix can simplify the computation of
stability condition and H∞ control scheme [6]. Another form
of LF frequently used in positive systems is the linear co-
positive LF, represented as the inner product of two positive
vectors. By doing so, the stability analysis and input-output
gain characterization can be solved using linear programming
(LP) [7]–[9].
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When the invariance property of states in the nonnegative
orthant is generalized to a cone, systems with such constraints
are called cone-preserving systems. In addition to the posi-
tive systems mentioned above, cone-preserving systems also
find applications in the rendezvous problems of multi-agent
systems [10], covariance dynamics of stochastic systems [11],
and chemical reaction networks [12]. Despite the rich results
on positive systems, the research on cone-preserving systems
is limited. The input-output performance for positive systems
based on the L1-, L2-, L∞-norm was proved to be determined
by a static gain matrix [6], [9], [13] . Similar results were
obtained in [14], where the input-output gain was characterized
by the cone linear absolute-norm [15] and the cone max-
norm [16], regarded as an analogous of L1- and L∞-norm for
positive systems, respectively. However, it was found in [11]
that the property of L2-gain fails to be extended to the cone-
preserving system directly. A weaker result derived in [17],
presented that the property of L2-induced gain can still hold
for systems with the invariance condition in symmetric cones.
In [17], the H∞ performance was shown to be completely
governed by a static matrix, and such performance also can
be characterized in terms of a linear matrix inequality (LMI)
with the quadratic representation of the Jordan algebra instead
of the diagonal form in positive systems [6]. A similar result
is derived in this paper by an alternative proof based on the
Kalman-Yakubovich-Popov (KYP) Lemma.

The claimed KYP Lemma is used to build an equivalence
between a frequency domain inequality and a state space ma-
trix based LMI, which has developed into different versions for
various control performances. Specifically, the KYP Lemma
frequently used in H∞ control states that the H∞ performance
can be evaluated by checking the existence of a symmetric
matrix in an LMI. It turns out in [6] that this symmetric matrix
in the LMI can be replaced by a diagonal matrix for positive
systems. A new equivalent condition of matrix inequalities
between LP and semi-definite programming was introduced in
the KYP Lemma for positive systems [18]. The corresponding
work on discrete-time positive systems was proposed in [19].
Therefore, a natural question arises: is there a KYP Lemma for
cone-preserving systems? A special version of KYP Lemma
was provided in [17], where the H∞ performance charac-
terized by an LMI was equivalent to a set of inequalities
solved by cone programming and also equivalent to the 2-norm
constraint on a static matrix. Based on the existing results, we
aim to generalize the claimed KYP Lemma to cone-preserving
systems. Via the KYP Lemma in this paper, two performance-
based stabilization control problems are addressed: spectral
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radius performance and H∞ performance.
Compared with the previous work, the main contributions

of this paper are as follows. First, a general version of
the KYP Lemma is provided, which gives four equivalent
inequalities including the frequency domain inequality, LMI,
matrix inequality with quadratic form and inequality in terms
of cone programming. Compared with the result in [17], the
matrix (denoted as M in this paper) presented in these four
inequalities is less restrictive and can be selected in various
forms according to the control targets, while in [17], this
matrix is fixed in terms of system matrices. Hence, this KYP
Lemma can deal with more control problems besides the H∞

control. Second, for second-order cones, a controller gain is
obtained such that the stability with performance requirements
and cone invariance are guaranteed simultaneously. Although
there are plenty of works on stability analysis for cone-
preserving systems [20], [21], the stabilization problem still
remains open due to the complex computational issues. By
the KYP Lemma proposed in [22], a necessary and sufficient
condition is first derived for the analysis of the spectral
radius for systems defined in symmetric cones. For second-
order cone-invariant systems, a detailed algorithm is given
for the stabilization with spectral radius specification. The
KYP Lemma is further applied to H∞ controller design,
as the work in [17] only considered the analysis of H∞

performance. The design of H∞ controller is considerably
more difficult for cone-preserving systems than ordinary linear
systems. Different from the work in [17], a new proof to
characterize the H∞ norm is also provided.

The rest of this paper is organized as follows. After recalling
some necessary definitions and mathematical preliminaries
about cone-preserving systems in Section II, we present a
KYP Lemma and its proof in Section III. The applications
of the KYP Lemma, including the stabilization with spectral
radius performance and the H∞ control, are presented in
Section IV. The corresponding LMI algorithms for solving
these two problems are also provided in this section. Section V
utilizes two numerical examples to illustrate the effectiveness
of proposed results. Finally, Section VI concludes the paper.
Notations: R, Rn and Rn×n represent the set of real numbers,
the space of vectors of n-tuples of real numbers, and the space
of n× n matrices with real entries, respectively. e1n denotes
the first column of identity matrix In ∈ Rn×n. The spectral
radius of a square matrix A is denoted as ρ(A). For matrix
A, AT , A∗, det(A) and Trace(A) stand for its transpose,
conjugate transpose, determinant, and trace, respectively. A
square matrix A is Hurwitz if all its eigenvalues lie in the open
left- half-plane. 〈ξ, ζ〉 = ξT ζ represents the inner product of
vectors ξ and ζ. diag(ξ) denotes a diagonal matrix obtained
by orderly putting all elements of vector ξ on the diagonal.
diag(A1, A2, . . . , An) denotes a block diagonal matrix with
square matrices A1, A2, . . . , An on the diagonal.

II. PRELIMINARIES

In this section, some elementary notions about proper cones
and cone-preserving systems, will be introduced as follows.
For a set K ⊆ Rn, KG stands for the set consisting of all finite

nonnegative linear combinations of the elements of K; K is
called a cone if K = KG; K is convex if αξ1 +(1−α)ξ2 ∈ K
for any ξ1, ξ2 ∈ K and α ∈ [0, 1]; K is solid if its interior
denoted as Int(K) is not an empty set; and K is pointed if
K ∩ {−K} = {0}.

Definition 1: [16] A cone which is closed, convex, solid
and pointed is called a proper cone.

For a proper cone K, its dual is defined as the set K∗ =
{ζ ∈ Rn : 〈ζ, ξ〉 ≥ 0,∀ξ ∈ K}, and the interior of K∗ is
denoted as Int(K∗) = {ζ ∈ Rn : 〈ζ, ξ〉 > 0,∀ξ ∈ {K \ 0}}.
In addition, ξ2 �K ξ1 indicates ξ1 − ξ2 ∈ K, and ξ2 ≺K ξ1
means ξ1 − ξ2 ∈ Int(K).

Definition 2: [16] A matrix A ∈ Rn×n is said to be K-
nonnegative if AK ⊆ K, and it is said to be K-positive if
A{K \ 0} ⊆ Int(K).

Definition 3: [23] A matrix A ∈ Rn×n is said to be cross-
positive on K if for all y ∈ K, z ∈ K∗ satisfying 〈z, y〉 = 0,
it holds that 〈z,Ay〉 ≥ 0, and it is said to be strictly cross-
positive on K if for all y ∈ {K \ 0}, z ∈ {K∗ \ 0} satisfying
〈z, y〉 = 0, it holds that 〈z,Ay〉 > 0.

Lemma 1: [24] For a proper cone K, if matrix A is cross-
positive on K, then the following statements are equivalent:
(1) A is Hurwitz.
(2) There exists a vector ξ �K 0 such that Aξ ≺K 0.
(3) There exists a vector ζ �K∗ 0 such that AT ζ ≺K∗ 0.
(4) −A−1 is K-nonnegative.

Below, some basic properties about second-order cones and
Jordan algebra are presented. Matrix Qn, used to characterize
second-order cones, is defined as Qn = 2e1ne

T
1n − In.

Definition 4: [22] An n-dimensional second-order cone In
is defined as In = {x ∈ Rn : xTQnx ≥ 0, xT e1n ≥ 0}, and
its interior is Int(In) = {x ∈ Rn : xTQnx > 0, xT e1n > 0}.

Based on Schur complement, a nonzero vector s �In 0
(s �In 0, respectively) if and only if e1nsT+seT1n−eT1nsQn ≥
0 (e1nsT + seT1n − eT1nsQn > 0, respectively), which is
also called the arrow-shaped representation of s [22]. Note
that second-order cones are self-dual, namely I∗n = In. The
following two lemmas build the connection between some
properties of second-order cone and matrix inequalities.

Lemma 2: [22], [23] Consider a second-order cone In, then
the following statements are equivalent:
(1) Matrix A is strictly cross-positive on In.
(2) There exists α ≥ 0 such that (A+ αIn) is In-positive.
(3) There exists λ ∈ R such that ATQn +QnA+ λQn > 0.
(4) There exist α ≥ 0 and η ≥ 0 such that (A+ αIn)T e1n ∈

Int(In) and (A+ αIn)TQn(A+ αIn) > ηQn.
Lemma 3: For second-order cones In and Im, AIn ⊆ Im

holds if and only if there exists a scalar η ≥ 0 such that
AT e1m ∈ In and ATQmA ≥ ηQn.

When m = n, Lemma 3 corresponds to Lemma 2.9 in [22].
If n 6= m, it can be derived by applying Lemma 2.9 in [22]
through making A square by patching zeros.

Definition 5: [17], [25] A Euclidean Jordan algebra (J, ◦)
is a finite-dimensional vector space over R endowed with a
multiplication ◦. (x, y)→ x◦y is a bilinear mapping satisfying
the following conditions:
(1) x ◦ y = y ◦ x, ∀x, y ∈ J.
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(2) x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x, ∀x, y ∈ J, where x2 = x ◦ x.
(3) 〈x ◦ y, z〉 = 〈y, x ◦ z〉, ∀x, y, z ∈ J.

The following properties of the Euclidean Jordan algebra
and symmetric cones can be found in [26].

For all x ∈ J, there exists a spectral decomposition: x =∑r
i=1 λifi, where λi are real numbers, r is said to be the rank

of J, and the set {f1, f2 . . . fr} is said to be a Jordan frame
with each fj being primitive idempotent, fi ◦fj = 0 for i 6= j
and

∑r
i=1 fi = e. e is called the identity element of J with

x ◦ e = x. The inverse and square root of x ∈ J are denoted
as x−1 =

∑r
i=1 λ

−1
i fi and x

1
2 =

∑r
i=1 λ

1
2
i fi, respectively.

It indicates that x−1 is valid if and only if λi 6= 0, and x
1
2

is valid if and only if λi ≥ 0. For all x ∈ J, there exist a
self-adjoint operator L satisfying x ◦ y = L(x)y, ∀y ∈ J, and
a quadratic representation of x as P (x) := 2L(x)2 − L(x2).

A proper cone KJ is called a symmetric cone if it is self-
dual and homogenous, i.e., the automorphism group of KJ

acts transitively on Int(KJ). Based on the Euclidean Jordan
algebra, a symmetric cone can be written as KJ = {x ◦ x |
x ∈ J}. For more details, one can refer to [26]. Hence, for a
symmetric cone KJ, if x ∈ KJ, we have λi ≥ 0 and

P (x)2 = P (x2), P (x
1
2 ) = P (x)

1
2 , (1)

and if x ∈ Int(KJ), we have λi > 0, and

P (x−1) = P (x)−1, P (x) = P (x)T > 0,

P (x)KJ ⊆ KJ, P (x)Int(KJ) ⊆ Int(KJ). (2)

In addition, for all x, y ∈ Int(KJ), we have

z = P (y−1/2)(P (y1/2)x)1/2 ∈ Int(KJ), x = P (z)y. (3)

Note that a symmetric cone is a self-dual cone but not vice
versa.

III. KYP LEMMA

Consider the following linear system:

ẋ(t) = Ax(t) +Bu(t), (4)

which has the property that x(t) ∈ Kx ⊂ Rn for all t > 0
under the condition of x(0) ∈ Kx and u(t) ∈ Ku ⊂ Rm,
where x(t), u(t) are the state vector and the input vector,
respectively, and Kx, Ku are given proper cones. In this case,
system (4) is called a cone-preserving system, which can be
also characterized by the following lemma.

Lemma 4: [14] System (4) is a cone-preserving system with
respect to (Kx,Ku) if and only if A is cross-positive on Kx
and BKu ⊆ Kx.

The following theorem presents the KYP Lemma for cone-
preserving systems.

Theorem 1: Consider two symmetric cones Kx ⊂ Rn and
Ku ⊂ Rm. Let A be cross-positive on Kx and Hurwitz, B
satisfy BKu ⊆ Kx. Suppose that symmetric matrix M =[
M11 M12

MT
12 M22

]
∈ R(n+m)×(n+m) has the property of M11

being Kx-nonnegative, M12Ku ⊆ Kx and M22 being cross-
positive on Ku. Then the following statements are equivalent:

1) For all ω ≥ 0,[
(jωIn −A)−1B

Im

]∗
M

[
(jωIn −A)−1B

Im

]
< 0.

2) [
−A−1B
Im

]T
M

[
−A−1B
Im

]
< 0.

3) There exist vectors θx �Kx 0, p �Kx 0 and θu �Ku 0 with
Aθx +Bθu ≺Kx

0 such that

M

[
θx
θu

]
+

[
AT

BT

]
p ≺Kx×Ku 0.

4) There exists w �Kx
0 such that

M +

[
ATP (w) + P (w)A P (w)B

BTP (w) 0

]
< 0.

Proof: 1)⇒ 2): The inequality in 2) is directly derived
from 1) by letting ω = 0.

2) ⇒ 3): Based on the definition of self-dual cone [16],
one can obtain ZTKx ⊆ Ku for any matrix Z satisfying
ZKu ⊆ Kx. Since A is cross-positive on Kx and Hurwitz,
based on Lemma 1, it holds that −A−1BKu ⊆ Kx. Denote
Γ =

[
(−A−1B)T Im

]
M
[
(−A−1B)T Im

]T
. Therefore,

∀φ1, φ2 �Ku 0 satisfying 〈φ1, φ2〉 = 0, we have φT1 Γφ2 ≥ 0,
which means that Γ is cross-positive on Ku. Then based
on Lemma 1, there must exist θu �Ku

0 such that q :=
Γθu ≺Ku

0, and vectors ξ �Kx
0, ζ �Kx

0 such that
Aξ ≺Kx

0 and AT ζ ≺Kx
0. Define θx := −A−1Bθu + k1ξ,

and p :=
[
−A−T 0

]
M
[
θTx θTu

]T
+k2ζ, where k1 and k2 are

positive real numbers. One can get that θx �Kx
0, p �Kx

0,
and Aθx + Bθu = k1Aξ ≺Kx

0. When k1 and k2 are
sufficiently small, we have

M

[
θx
θu

]
+

[
AT

BT

]
p =

[
k2A

T ζ
q + η

]
≺Kx×Ku

0,

where η = k1(−A−1B)TM11ξ + k1M
T
12ξ + k2B

T ζ.
3) ⇒ 4): With the properties of P (·) in (2), (3), it holds

that w := P
(
θ
− 1

2
x

)(
P (θ

1
2
x )p
) 1

2

�Kx 0, P (w)θx = p and
P (w)(Aθx +Bθu) ≺Kx

0. Denote

Ξ = M +

[
ATP (w) + P (w)A P (w)B

BTP (w) 0

]
.

Denote S = diag(P (w)−
1
2 , Im), according to the definition of

symmetric cones [26] and properties of P (·) in (1) and (2),
then for all ϕ, φ �Kx×Ku

0 satisfying 〈ϕ, φ〉 = 0, we have

ϕTSTΞSφ=ϕT
[
X1 +XT

1 P (w)
1
2B

BTP (w)
1
2 0

]
φ

+ϕT
[
P (w)−

1
2M11P (w)−

1
2 P (w)−

1
2M12

MT
12P (w)−

1
2 M22

]
φ≥0,

where X1 = P (w)
1
2AP (w)−

1
2 , which means STΞS is cross-

positive on Kx ×Ku. Since

Ξ

[
θx
θu

]
=M

[
θx
θu

]
+

[
AT

BT

]
p+

[
P (w)(Aθx+Bθu)

0

]
≺Kx×Ku

0,
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it follows that STΞSs ≺Kx×Ku
0, where s =[

(P (w)
1
2 θx)T θTu

]T �Kx×Ku
0. From Lemma 1, it holds

that STΞS < 0, which implies Ξ < 0.
4)⇒ 1): One can derive it by recalling the proof of the KYP

Lemma for general linear systems in [27]. �
Remark 1: Note that the equivalence of conditions 3) and 2)

is also valid when proper cones Kx and Ku are self-dual cones
rather than symmetric cones. It could be derived as follows.

3) ⇒ 2): Since Aθx + Bθu ≺Kx
0 and −A−1 is Kx-

nonnegative, we have ε := θx +A−1Bθu �Kx
0. Note that[

−A−1B
Im

]T (
M

[
θx
θu

]
+

[
AT

BT

]
p

)
= (−A−1B)T (M11θx +M12θu) +MT

12θx +M22θu ≺Ku
0.

With Γ =
[
(−A−1B)T Im

]
M
[
(−A−1B)T Im

]T
, we

have Γθu ≺Ku 0. Since matrix Γ is cross-positive on Ku (as
shown in the proof of 2)⇒ 3)), we can obtain Γ < 0. �

Remark 2: Note that when Kx and Ku are nonnegative
orthants, the obtained KYP Lemma is applicable to positive
systems. The quadratic representation in nonnegative orthant
P (w) = diag(w)2 is a positive diagonal matrix, which can be
found in Theorem 1 of [18].

IV. APPLICATIONS OF KYP LEMMA

In the light of the KYP Lemma derived in Section III,
the state-feedback stabilization problems with various perfor-
mance objectives are addressed in this section. The spectral
radius and H∞ performances are analyzed under the assump-
tion of symmetric cone invariance. Systems with positivity
and second-order cone invariance are two typical subclasses of
symmetric cone-invariant systems, which play important roles
in the control of cone-preserving systems. Since the former
one has been extensively studied [6]–[9], in this section we
will focus on the stabilization problem for second-order cone-
preserving systems, which can be applied to twist systems and
augmented transportation networks with additional catch-all
buffers [25].

Consider the following linear system:

GK :

{
ẋ(t) = AKx(t) +Bu(t)
y(t) = CKx(t) +Du(t)

, (5)

where AK = A + B1K,CK = C + D1K, and K is
the controller gain to be designed. Based on Lemma 4 and
Definition 1, system GK is a second-order cone-preserving
system with respect to (In, Imu , Imy ) if and only if AK
is cross-positive on In, BImu

⊆ In, CKIn ⊆ Imy
, and

DImu
⊆ Imy

. For simplicity, assume that mu = my = m,
i.e., Imu

= Imy
= Im. Note that when mu 6= my , we can

patch zeros to make mu = my . Assume that BIm ⊆ In
and D is Im-nonnegative, and denote the transfer function of
system GK as GK .

A. Stabilization with spectral radius performance

In this subsection, for system GK , the KYP Lemma is ap-
plied to designing a controller gain to ensure stability, spectral
radius performance and second-order cone invariance. Based

on Lemma 4, the constraints of cone invariance and stability
can be guaranteed by finding a controller gain K such that
AK is Hurwitz and cross-positive on In, and CKIn ⊆ Im.
However, as discussed in [22], it is hard to characterize the
cross positivity by formulas. One viable way to solve this
problem is to let AK be strictly cross-positive on In, and then
resort to Lemma 2 to enforce it. Therefore, the stabilization
control problem can be stated as follows.

Problem 1 (Spectral Radius Design): For system GK , design
a controller gain K such that the second-order cone invariance,
stability, and spectral radius performance can be guaranteed,
that is,

P1(A): AK is strictly cross-positive on In, and CKIn ⊆ Im;
P1(B): AK is Hurwitz;
P1(C): ρ(GK(jω)) < δ, δ > 0,∀ω.

Remark 3: Note that for a cone-preserving system GK ,
ρ(GK(jω)) attains its maximum value at ω = 0, which is
called the DC-dominant property [11]. Hence, P1(C) holds if
and only if ρ(GK(0)) = ρ(−CKA−1K B +D) < δ holds.

We first characterize the spectral radius performance by
matrix inequalities using the following lemma.

Lemma 5: For a KJ- nonnegative matrix Y , where KJ is a
symmetric cone, ρ(Y ) < δ holds if and only if there exists a
vector θ �KJ

0 such that Y TP (θ)Y − δ2P (θ) < 0.
Proof: Sufficiency. Since P (θ)−

1
2 > 0 holds,

one can get that Y TP (θ)Y − δ2P (θ) < 0 if and
only if P (θ)−

1
2

(
Y TP (θ)Y − δ2P (θ)

)
P (θ)−

1
2 =

P (θ)−
1
2Y TP (θ)

1
2P (θ)

1
2Y P (θ)−

1
2 − δ2I < 0 holds. It means

that δ > ||P (θ)
1
2Y P (θ)−

1
2 ||2 ≥ ρ(P (θ)

1
2Y P (θ)−

1
2 ) = ρ(Y ).

Necessity. Assume ρ(Y ) < δ, then Y − δI is Hurwitz.
Based on Definition 3, Y − δI is cross-positive on KJ.
From Lemma 1, there exist ξ �KJ

0, ζ �KJ
0 such

that (Y − δI)ξ ≺KJ
0 and (Y T − δI)ζ ≺KJ

0 hold,

respectively. With θ := P
(
ξ−

1
2

)(
P (ξ

1
2 )ζ
) 1

2

, ζ = P (θ)ξ

holds based on formulas (3). It is obvious that YP :=
P (θ)−

1
2

(
Y TP (θ)Y − δ2P (θ)

)
P (θ)−

1
2 is cross-positive on

KJ. Further, with η := P (θ)
1
2 ξ �KJ

0, we have YP η =

P (θ)−
1
2Y TP (θ)(Y−δI)ξ+δP (θ)−

1
2 (Y T−δI)ζ≺KJ

0, which
means YP < 0. By congruence transformation, it holds that
Y TP (θ)Y − δ2P (θ) < 0. �

Theorem 2: Consider a cone-preserving system GK with
respect to (Kx,Km,Km), where Kx, Km are symmetric cones,
and AK is Hurwitz. Introduce θ �Km

0 and define M as[
CTKP (θ)CK CTKP (θ)DP (θ)−

1
2

P (θ)−
1
2DTP (θ)CK P (θ)−

1
2DTP (θ)DP (θ)−

1
2 − δ2Im

]
.

Then for a given positive real number δ, the following state-
ments are equivalent:

1) ρ(GK(0)) < δ.
2) There exist θx �Kx 0, p �Kx 0, θu �Km 0 with AKθx +

BP (θ)−
1
2 θu ≺Kx

0 such that

M

[
θx
θu

]
+

[
ATK

P (θ)−
1
2BT

]
p ≺Kx×Km

0.
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3) There exists w �Kx
0 such that

M+

[
P (w)AK +ATKP (w) P (w)BP (θ)−

1
2

P (θ)−
1
2BTP (w) 0

]
<0. (6)

4) There exist v �Kx
0, ξ �Km

0, and L ∈ Rm×n such thatA+AT BΘ CT
ΘBT −δ2Θ ΘDT

C DΘ −Θ

 < 0, (7)

where A = AW + B1L, C = CW + D1L, W = P (v),
Θ = P (ξ), K = LW−1.

5) ρ(GK(jw)) < δ, ∀ω.
Proof: First, based on Lemma 5, condition 1) holds if and

only if there exists θ �Km
0 satisfying GK(0)TP (θ)GK(0)−

δ2P (θ) < 0, which is rewritten as

Y :=
[
(−A−1K B)T Im

]
M
[
(−A−1K B)T Im

]T
< 0,

where M = diag(In, P (θ)
1
2 )Mdiag(In, P (θ)

1
2 ). Note that

P (θ)−
1
2 > 0, then Y < 0 holds if and only if

P (θ)−
1
2YP (θ)−

1
2

=

[
−A−1K BP (θ)−

1
2

Im

]T
M

[
−A−1K BP (θ)−

1
2

Im

]
< 0.

It is obvious that M satisfies all properties required in Theorem
1. Therefore, according to Theorem 1, we can conclude
that statements 1), 2) and 3) are equivalent. Pre- and post-
multiplying inequality (6) by diag(In, P (θ)

1
2 ), one can get

M +

[
P (w)AK +ATKP (w) P (w)B

BTP (w) 0

]
< 0. (8)

Based on Schur complement, inequality (8) can be rewritten
asP (w)AK +ATKP (w) P (w)B CTK

BTP (w) −δ2P (θ) DT

CK D −P (θ)−1

<0. (9)

With v := w−1, ξ := θ−1, one has W = P (w)−1 and Θ =
P (θ)−1. By pre- and post- multiplying (9) by diag(W,Θ, Im),
we obtain (7), and this establishes equivalence between state-
ments 3) and 4). Finally, based on Remark 3, the equivalence
between 1) and 5) is derived, which completes the proof. �

Remark 4: When δ = 1, condition 1) in Theorem 2 can be
used to determine the stability for a positive feedback system,
referred to [11].

With the characterization of spectral radius performance in
Theorem 2, Problem 1 can be solved as follows.

Proposition 1: A necessary and sufficient condition for the
existence of controller gain K satisfying conditions P1(A)–
P1(C) is that there exist vectors v �In 0, ξ �Im 0, ι �In 0,
matrix L ∈ Rm×n and scalars η1 ≥ 0, η2 ≥ 0, α ≥ 0 such
that inequality (7) and

(A+ αW )Qn(A+ αW )T − η1Qn > 0, (10a)

e1ns
T
1 + s1e

T
1n − eT1ns1Qn > 0, (10b)

CTQmC − η2Qn ≥ 0, (10c)

e1ns
T
2 + s2e

T
1n − eT1ns2Qn ≥ 0, (10d)

e1ns
T
3 + s3e

T
1n − eT1ns3Qn < 0, (10e)

hold, where A = AW +B1L, C = CW +D1L, W = P (v),
Θ = P (ξ), s1 = (A + αW )e1n, s2 = CT e1m, s3 = Aι,
K = LW−1.

Proof: Since In is self-dual, AK is strictly cross-positive
on In if and only if ATK is strictly cross-positive on In. Based
on Lemma 2 and formulas in (2), ATK is strictly cross-positive
on In if and only if there exists α ≥ 0 such that W (AK +
αIn)T is In-positive, which is equivalent to the condition that
there exist scalars α ≥ 0 and η1 ≥ 0 such that (10a) and
(A + αW )e1n ∈ Int(In) hold, where the later is equivalent
to (10b) by its arrow-shaped representation in [22]. Similarly,
based on Lemma 3, the second condition in P1(A) is equivalent
to (10c) and (10d). From Lemma 1, P1(B) holds if and only if
there exists s �In 0 satisfying AKs ≺In 0 under the condition
of P1(A). With W−1s = ι �In 0, we have Aι ≺In 0, which
is equivalent to (10e). Finally, P1(C) is equivalent to (7) based
on Theorem 2, which completes the proof. �

Note that inequalities (10a)–(10e) in Proposition 1 are
nonlinear with respect to W , L, ι and α, which can be
improved by an alternative corollary inspired by [22].

Corollary 1: If there exist vectors v �In 0, ξ �Im 0, matrix
L ∈ Rm×n and scalars η1 ≥ 0, η2 ≥ 0, α > α1 > 0 such that
inequalities (7), (10d) and[

Ψ1 − η1Qn A+ αW
(A+ αW )T In

]
> 0, (11a)

(A+ α1W )e1n = 0, (11b)[
Ψ2 − η2Qn CT

C Im

]
≥ 0, (11c)

hold, where A = AW + B1L, C = CW + D1L, Ψ1 =
2(α−α1)2We1ne

T
1nW , Ψ2 = 2CT e1meT1mC, W = P (v),Θ =

P (ξ), then there exists a controller gain K = LW−1 such that
system GK is cone-preserving and stable.

Proof: If (11b) holds, we have Ae1n = −α1We1n, s1 =
(α − α1)We1n and s3 = −α1We1n ≺In 0 in Proposition 1
such that (10b) and (10e) hold. Then by Schur complement,
(11a) is equivalent to (10a), and (11c) is equivalent to (10c).
The rest of the proof is similar to that in Proposition 1. �

Recall that, in second-order cones, P (v) and P (ξ) are
given as W = P (v) = vvT − 1

2 (vTQnv)Qn, Θ = P (ξ) =
ξξT − 1

2 (ξTQmξ)Qm, respectively [28]. Define R := vvT

and T := ξξT . Without loss of generality, assume that
vT e1n = ξT e1m = 1. Then it derives that W = R − Qn +
1
2Trace(R)Qn, Θ = T −Qm + 1

2Trace(T )Qm.
Remark 5: Note that it is difficult to solve the inequalities in

Corollary 1 since R, T, Ψ1, Ψ2 are quadratic with respect to
unknown vectors, and (α−α1)2 is nonlinear with respect to α
and α1. To address these nonlinearities, a practical way to find
a feasible state-feedback gain through LMI can be presented
in Algorithm 1, where the dominant eigenvalue of AK is first
set as −α1, and α is then chosen based on α > α1. For more
details about Algorithm 1, one can refer to [22].
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Algorithm 1 Stabilization with Cone Invariance and Spectral
Radius Performance

Step 1: Initialize the prescribed tolerance: ε, the maximum
iteration: kmax, and the upper bounds of α1 and α: ᾱ1, ᾱ
(ᾱ > ᾱ1), respectively. Set k = 1.
Step 2: Randomly generate α

(k)
1 between 0 and ᾱ1, and

α(k) between α(k)
1 and ᾱ without repetition.

Step 3: Minimize f = Trace(R)+Trace(T )+Trace(Ψ1)+
Trace(Ψ2) with respect to η1 ≥ 0, η2 ≥ 0, v �In 0 with
vT e1n = 1, ξ �Im 0 with ξT e1m = 1, R ≥ 0, T ≥ 0,
Ψ1 ≥ 0, Ψ2 ≥ 0, inequalities (7), (10d), (11c), and[

Ψ1 − η1Qn A+ α(k)W(
A+ α(k)W

)T
In

]
> 0, (12a)[

Ψ1

√
2(α(k)−α(k)

1 )We1n√
2(α(k)−α(k)

1 )eT1nW 1

]
≥ 0,

(12b)[
Ψ2

√
2CT e1m√

2eT1mC 1

]
≥ 0, (12c)

(A+ α
(k)
1 W )e1n = 0, (12d)[

R v
vT 1

]
≥ 0, (12e)[

T ξ
ξT 1

]
≥ 0, (12f)

where A = AW +B1L, C = CW +D1L, W = R−Qn +
1
2Trace(R)Qn, Θ = T −Qm + 1

2Trace(T )Qm.
Step 4: Check the conditions:

Trace(Ψ1 − 2(α(k) − α(k)
1 )2We1ne

T
1nW ) < ε, (13a)

Trace(Ψ2 − 2CT e1meT1mC) < ε, (13b)

Trace(R− vvT ) < ε, (13c)

Trace(T − ξξT ) < ε. (13d)

If they all hold, go to Step 5; otherwise, go to Step 6.
Step 5: Compute the controller gain K = LW−1, and stop.
Step 6: Set k = k + 1. If k ≥ kmax, input new bounds ᾱ1

and ᾱ, and go to Step 1; else, go to Step 2.

B. H∞ controller design

In this subsection, the property that the H∞ norm of
cone-preserving system with respect to symmetric cones is
determined by the 2-norm of a static gain matrix is provided,
which is used to solve the H∞ controller design problem
described below for the case of second-order cones.

Problem 2 (H∞ Design): For system GK , design a con-
troller gain K such that the second-order cone invariance,
stability, and H∞ performance can be guaranteed, that is,

P2(A): AK is strictly cross-positive on In, and CKIn ⊆ Im;
P2(B): AK is Hurwitz;
P2(C): ‖GK‖∞ < γ.

The H∞ norm for cone-preserving systems is first charac-
terized by the following theorem.

Theorem 3: Suppose system GK is a cone-preserving system
with respect to (Kx,Km,Km), where Kx, Km are symmetric
cones, and AK is Hurwitz. Define M as

1

γ

[
CTKCK CTKD
DTCK DTD − γ2Im

]
.

Then for a given positive real number γ, the following
statements are equivalent:
1) ‖GK(0)‖2 < γ.
2) There exist θx �Kx 0, p �Kx 0, θu �Km 0 with AKθx +

Bθu ≺Kx
0 such that

M

[
θx
θu

]
+

[
ATK
BT

]
p ≺Kx×Km

0.

3) There exists w �Kx
0 such that

M +

[
P (w)AK +ATKP (w) P (w)B

BTP (w) 0

]
< 0.

4) There exist v �Kx
0 and L ∈ Rm×n such thatA+AT B CT

BT −γIm DT

C D −γIm

 < 0, (14)

where A = AW + B1L, C = CW + D1L, W = P (v),
K = LW−1.

5) ‖GK‖∞ < γ.
Proof: Assume that condition 1) holds. Since γ >

0, it holds that 1
γ (GK(0)TGK(0) − γ2Im) < 0, that is,[

(−A−1K B)T Im
]
M
[
(−A−1K B)T Im

]T
< 0. Since M

satisfies all properties required in Theorem 1, based on Theo-
rem 1, we can obtain that 2) and 3) hold and the equivalence
of 2) and 3). Assume that the inequality in 3) holds, then based
on Schur complement, we can obtainP (w)AK +ATKP (w) P (w)B CTK

BTP (w) −γIm DT

CK D −γIm

 < 0, (15)

which indicates that 5) holds. By introducing v = w−1 and
pre- and post- multiplying (15) by diag(W, Im, Im), it holds
that 4) is equivalent to (15). Finally, 5) directly implies 1) by
the definition of H∞ norm, which completes the proof. �

Remark 6: A similar result of H∞ norm (an equivalence
between 1)and 5)) has been given in [17] by cone program-
ming, while in this paper, the result is directly derived from
the KYP Lemma under the case of special M .

Similar to Proposition 1 and Corollary 1, one can obtain the
following results to design a controller gain K to sufficiently
solve Problem 2 and the proofs are omitted here for simplicity.

Proposition 2: A necessary and sufficient condition for the
existence of controller gain K satisfying conditions P2(A)–
P2(C) is that there exist vectors v �In 0, ι �In 0, matrix
L ∈ Rm×n, and scalars η1 ≥ 0, η2 ≥ 0, α ≥ 0 such that
inequalities (10a)–(10e) and (14) hold.

Corollary 2: If there exist vector v �In 0, matrix L ∈
Rm×n and scalars η1 ≥ 0, η2 ≥ 0, α > α1 > 0 such that
inequalities ( (11a)–(11c), (10d) and (14) hold, then there
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exists a controller gain K = LW−1 such that conditions
P2(A)–P2(C) are satisfied.

Remark 7: The algorithm to obtain the controller gain via
the LMI is similar to Algorithm 1 except Steps 3 and 4 which
are replaced by the following statements, respectively.
Step 3: Minimize f = Trace(R + Ψ1 + Ψ2) with respect to
η1 ≥ 0, η2 ≥ 0, v �In 0 with vT e1n = 1, R ≥ 0, Ψ1 ≥ 0,
Ψ2 ≥ 0, inequalities (14), (10d), (11c), and (12a)–(12e).
Step 4: Check the conditions (13a)–(13c). If they all hold, go
to Step 5. Otherwise, go to Step 6.

V. NUMERICAL EXAMPLES

Consider system GK with parameters given as follows:

A=

0.0550 −0.4349 −0.4408
0.2769 0.3513 −0.3964
0.7218 −0.6907 −2.6823

, B1 =

0.8147 0.9134
0.9058 0.6324
0.1270 0.0975

,
B=

0.8547 0.4134
0.3058 0.6324
0.1270 0.0975

, C=

[
0.3350 0.0352 0.0170
−0.0077 0.0477 −0.0425

]
,

D1 =

[
0.0110 −0.0052
0.0227 0.0110

]
, D=

[
0.3100 −0.0517
0.1771 0.0603

]
.

We consider input constrained in second-order cone, and the
goal is to obtain state-feedback controller which will preserve
system state and output in second-order cones. Note that
BI2 ⊆ I3 and DI2 ⊆ I2. For simplicity, system GK with
K = 0 is denoted as G, and correspondingly, denote its transfer
function as G. Based on Remark 5, the upper bounds of α1

and α are selected as ᾱ1 = 2, and ᾱ = 12, respectively.

A. Example 1
Based on Algorithm 1, for given δ = 1, one can get that

K =

[
6.2178 −12.9533 −6.1256
−6.2856 10.6132 4.4395

]
,

and ρ(GK(0)) = 0.5304 < 1. It can be shown that AK is
Hurwitz and strictly cross-positive on I3, and CKI3 ⊆ I2
based on Lemmas 2 and 3, respectively. Hence system GK is
stable and cone -preserving, which can be also illustrated by
Fig. 1 and Fig. 2. It is obvious that, with the control gain K,
both the state trajectory x(t) and output trajectory y(t) are
restricted in second-order cones, but this property can not be
guaranteed in the case of K = 0 by observing the trajectories
of x(t), y(t) eventually run out of second-order cones.

B. Example 2
For given γ = 0.8, one can get

K =

[
9.2228 −17.5606 −5.8048
−8.6839 13.5277 3.9148

]
.

From Lemmas 2 and 3, one can verify that AK is strictly cross-
positive on I3 and CKI3 ⊆ I2. Based on Lemma 4, with such
H∞ controller gain K, the cone invariance for system GK is
guaranteed, which is also illustrated by Fig. 3 and Fig. 4. In
addition, Fig. 3 and Fig. 4 also show the stability of GK . From
Theorem 3, it holds that ‖GK‖∞ = ‖GK(0)‖2 = 0.5188 < γ.
Fig. 5 describes the 2-norm of transfer functions for systems G
and GK , respectively. It illustrates that the obtained controller
K can realize the given H∞ performance.

Fig. 1: State trajectories x(t) under the various initial conditions for systems
G and GK for a three-dimensional second-order cone.

Fig. 2: Output trajectories y(t) under the various initial conditions for
systems G and GK for a two-dimensional second-order cone.

Fig. 3: State trajectories x(t) under the various initial conditions for systems
G and GK for a three-dimensional second-order cone.
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Fig. 4: Output trajectories y(t) under the various initial conditions for
systems G and GK for a two-dimensional second-order cone.
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Fig. 5: 2-norm of transfer functions G and GK .

VI. CONCLUSIONS

In this paper, we have investigated the KYP Lemma for
cone-preserving systems, where the inequalities in terms of
cone programming and LMI have been presented. The derived
KYP Lemma was used to design a state-feedback controller,
introducing the conditions for spectral radius and H∞ perfor-
mance of the closed-loop system. Additionally, the obtained
controller synthesis methods guarantee second-order cone in-
variance and stability, and have the form of an iterative LMI-
based algorithm. It is worth noting that the results obtained
in this paper, which focus on symmetric cones, can be readily
adapted to handle general ellipsoidal cones. This is because
every ellipsoidal cone can be transformed into a second-order
cone via nonsingular linear transformation. More applications
and less restrictive assumptions on KYP Lemma are foreseen.
This involves developing versions of the KYP Lemma with
non-strict inequalities and incorporating cone invariance for a
wider range of proper cones beyond symmetric cones.
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