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Abstract—This paper presents a new version of the Kalman-
Yakubovich-Popov (KYP) Lemma for linear systems with their
states constrained in proper cones. Based on this lemma, two
important applications are introduced. One is the stabilization
controller design to satisfy the spectral radius performance
while preserving cone invariance. The other is to obtain an
H*® state-feedback controller such that both /> performance
and cone invariance are guaranteed. Moreover, to address these
two problems, a practical algorithm based on the linear matrix
inequality is provided. Finally, two numerical examples on a
linear system defined in the second-order cone are used to
illustrate the results.

Index Terms—Cone invariance, H°° control, KYP Lemma,
Linear matrix inequality, Second-order cone, Stabilization.

I. INTRODUCTION

Positive systems, characterized by the property that their
states and outputs remain in the nonnegative orthant whenever
initialized in the nonnegative orthant, are widely used to
describe various dynamic processes, including virus treatment
[1], population variation [2], and network congestion [3].
This special property has brought new analytical methods
and extensive results of stability and input-output performance
analysis, which are only valid for positive systems but not
for general linear systems [4]-[9]. For positive systems, the
storage function in dissipative theory can be constructed in the
form of a quadratic Lyapunov function (LF) with a diagonal
matrix. Instead of a symmetric matrix for general linear
systems, the diagonal matrix can simplify the computation of
stability condition and H°° control scheme [6]. Another form
of LF frequently used in positive systems is the linear co-
positive LF, represented as the inner product of two positive
vectors. By doing so, the stability analysis and input-output
gain characterization can be solved using linear programming
(LP) [71-9].
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When the invariance property of states in the nonnegative
orthant is generalized to a cone, systems with such constraints
are called cone-preserving systems. In addition to the posi-
tive systems mentioned above, cone-preserving systems also
find applications in the rendezvous problems of multi-agent
systems [10], covariance dynamics of stochastic systems [11],
and chemical reaction networks [12]. Despite the rich results
on positive systems, the research on cone-preserving systems
is limited. The input-output performance for positive systems
based on the Li-, La-, Lo,-norm was proved to be determined
by a static gain matrix [6], [9], [13] . Similar results were
obtained in [14], where the input-output gain was characterized
by the cone linear absolute-norm [15] and the cone max-
norm [16], regarded as an analogous of L;- and L..-norm for
positive systems, respectively. However, it was found in [11]
that the property of Ly-gain fails to be extended to the cone-
preserving system directly. A weaker result derived in [17],
presented that the property of Lo-induced gain can still hold
for systems with the invariance condition in symmetric cones.
In [17], the H* performance was shown to be completely
governed by a static matrix, and such performance also can
be characterized in terms of a linear matrix inequality (LMI)
with the quadratic representation of the Jordan algebra instead
of the diagonal form in positive systems [6]. A similar result
is derived in this paper by an alternative proof based on the
Kalman-Yakubovich-Popov (KYP) Lemma.

The claimed KYP Lemma is used to build an equivalence
between a frequency domain inequality and a state space ma-
trix based LMI, which has developed into different versions for
various control performances. Specifically, the KYP Lemma
frequently used in H°° control states that the H*° performance
can be evaluated by checking the existence of a symmetric
matrix in an LMI. It turns out in [6] that this symmetric matrix
in the LMI can be replaced by a diagonal matrix for positive
systems. A new equivalent condition of matrix inequalities
between LP and semi-definite programming was introduced in
the KYP Lemma for positive systems [18]. The corresponding
work on discrete-time positive systems was proposed in [19].
Therefore, a natural question arises: is there a KYP Lemma for
cone-preserving systems? A special version of KYP Lemma
was provided in [17], where the H*° performance charac-
terized by an LMI was equivalent to a set of inequalities
solved by cone programming and also equivalent to the 2-norm
constraint on a static matrix. Based on the existing results, we
aim to generalize the claimed KYP Lemma to cone-preserving
systems. Via the KYP Lemma in this paper, two performance-
based stabilization control problems are addressed: spectral



radius performance and H*° performance.

Compared with the previous work, the main contributions
of this paper are as follows. First, a general version of
the KYP Lemma is provided, which gives four equivalent
inequalities including the frequency domain inequality, LMI,
matrix inequality with quadratic form and inequality in terms
of cone programming. Compared with the result in [17], the
matrix (denoted as M in this paper) presented in these four
inequalities is less restrictive and can be selected in various
forms according to the control targets, while in [17], this
matrix is fixed in terms of system matrices. Hence, this KYP
Lemma can deal with more control problems besides the H*°
control. Second, for second-order cones, a controller gain is
obtained such that the stability with performance requirements
and cone invariance are guaranteed simultaneously. Although
there are plenty of works on stability analysis for cone-
preserving systems [20], [21], the stabilization problem still
remains open due to the complex computational issues. By
the KYP Lemma proposed in [22], a necessary and sufficient
condition is first derived for the analysis of the spectral
radius for systems defined in symmetric cones. For second-
order cone-invariant systems, a detailed algorithm is given
for the stabilization with spectral radius specification. The
KYP Lemma is further applied to H®® controller design,
as the work in [17] only considered the analysis of H*
performance. The design of H°° controller is considerably
more difficult for cone-preserving systems than ordinary linear
systems. Different from the work in [17], a new proof to
characterize the H°° norm is also provided.

The rest of this paper is organized as follows. After recalling
some necessary definitions and mathematical preliminaries
about cone-preserving systems in Section II, we present a
KYP Lemma and its proof in Section IIl. The applications
of the KYP Lemma, including the stabilization with spectral
radius performance and the H™° control, are presented in
Section IV. The corresponding LMI algorithms for solving
these two problems are also provided in this section. Section V
utilizes two numerical examples to illustrate the effectiveness
of proposed results. Finally, Section VI concludes the paper.
Notations: R, R™ and R™*™ represent the set of real numbers,
the space of vectors of n-tuples of real numbers, and the space
of n X n matrices with real entries, respectively. ey,, denotes
the first column of identity matrix I,, € R™*™. The spectral
radius of a square matrix A is denoted as p(A). For matrix
A, AT, A*, det(A) and Trace(A) stand for its transpose,
conjugate transpose, determinant, and trace, respectively. A
square matrix A is Hurwitz if all its eigenvalues lie in the open
left- half-plane. (¢,¢) = ¢7'¢ represents the inner product of
vectors £ and (. diag(€) denotes a diagonal matrix obtained
by orderly putting all elements of vector £ on the diagonal.
diag(Ai, As, ..., Ay,) denotes a block diagonal matrix with
square matrices A1, Ao, ..., A, on the diagonal.

II. PRELIMINARIES

In this section, some elementary notions about proper cones
and cone-preserving systems, will be introduced as follows.
For a set K C R™, K€ stands for the set consisting of all finite

nonnegative linear combinations of the elements of KC; K is
called a cone if K = K; K is convex if a&; + (1 —a)é&y € K
for any &1,&, € K and o € [0,1]; K is solid if its interior
denoted as Int(K) is not an empty set; and K is pointed if
Kn{-K}={0}.

Definition 1: [16] A cone which is closed, convex, solid
and pointed is called a proper cone.

For a proper cone K, its dual is defined as the set X* =
{¢ € R" : {(,&) > 0,V¢ € K}, and the interior of K* is
denoted as Int(K*) = {¢ € R" : ((,§) > 0,V¢ € {K\ 0}}.
In addition, & =i & indicates & — & € K, and & < &
means & — & € Int(K).

Definition 2: [16] A matrix A € R™*"™ is said to be K-
nonnegative if AKX C I, and it is said to be KC-positive if
A{K\ 0} C Int(K).

Definition 3: [23] A matrix A € R™*™ is said to be cross-
positive on K if for all y € K,z € K* satisfying (z,y) = 0,
it holds that (z, Ay) > 0, and it is said to be strictly cross-
positive on K if for all y € {K \ 0},z € {K*\ 0} satisfying
(z,y) =0, it holds that (z, Ay) > 0.

Lemma 1: [24] For a proper cone /C, if matrix A is cross-
positive on K, then the following statements are equivalent:
(1) A is Hurwitz.

(2) There exists a vector & > 0 such that A < 0.
(3) There exists a vector ¢ »x« 0 such that ATC < 0.
(4) —A~!is K-nonnegative.

Below, some basic properties about second-order cones and
Jordan algebra are presented. Matrix @,,, used to characterize
second-order cones, is defined as Q,, = Qelnefn —1,.

Definition 4: [22] An n-dimensional second-order cone Z,,
is defined as Z,, = {z € R" : 27Q,z > 0,27 ey, > 0}, and
its interior is Int(Z,) = {z € R" : 27Q,,x > 0,27 e, > 0}.

Based on Schur complement, a nonzero vector s =z, 0
(s =1, 0, respectively) if and only if e1,,sT +sel, —el sQ,, >
0 (erns” + sef, — ef,sQn > 0, respectively), which is
also called the arrow-shaped representation of s [22]. Note
that second-order cones are self-dual, namely 7 = Z,,. The
following two lemmas build the connection between some
properties of second-order cone and matrix inequalities.

Lemma 2: [22], [23] Consider a second-order cone Z,,, then
the following statements are equivalent:

(1) Matrix A is strictly cross-positive on Z,.

(2) There exists « > 0 such that (A + «l,,) is Z,-positive.

(3) There exists A € R such that ATQ,, + @, A + A\Q,, > 0.

(4) There exist & > 0 and 1 > 0 such that (A + afl,) ey, €
Int(Z,) and (A + al,))TQ.(A+ al,) > nQ.,.

Lemma 3: For second-order cones Z,, and Z,,, AZ,, C Z,,
holds if and only if there exists a scalar > 0 such that
ATey, €T, and ATQnA > nQ,.

When m = n, Lemma 3 corresponds to Lemma 2.9 in [22].
If n # m, it can be derived by applying Lemma 2.9 in [22]
through making A square by patching zeros.

Definition 5: [17], [25] A Euclidean Jordan algebra (J, o)
is a finite-dimensional vector space over R endowed with a
multiplication o. (x,y) — oy is a bilinear mapping satisfying
the following conditions:

(1) zoy=yox, Vr,y €J.



(2) 220 (yox) = (z20y)oux, Yo,y €J, where 2 =z o x.
3) (xoy,z) = (y,xoz2), Vr,y,z €.

The following properties of the Euclidean Jordan algebra
and symmetric cones can be found in [26].

For all x € J, there exists a spectral decomposition: © =
2221 Aifi,» where )\; are real numbers,  is said to be the rank
of J, and the set {f1, f2... f+} is said to be a Jordan frame
with each f; being primitive idempotent, f; o f; = 0 for i # j
and >.'_, f; = e. e is called the identity element of J with
x o e = x. The inverse and square root of T € J are denoted
as o1 = ST ATUf; and x7 = Y07, A2 fi, respectively.
It indicates that ! is valid if and only if \; # 0, and x3
is valid if and only if A\; > 0. For all x € J, there exist a
self-adjoint operator L satisfying z oy = L(z)y, Yy € J, and
a quadratic representation of x as P(x) := 2L(z)? — L(z?).

A proper cone Ky is called a symmetric cone if it is self-
dual and homogenous, i.e., the automorphism group of Cj
acts transitively on Int(/Cz). Based on the Euclidean Jordan
algebra, a symmetric cone can be written as Ky = {z oz |
x € J}. For more details, one can refer to [26]. Hence, for a
symmetric cone Ky, if x € K3, we have A; > 0 and

P(z)? = P(z?),  P(a?)=P(x)?, (1)

and if « € Int(Ky), we have X; > 0, and

P(z7') = P(z)™",
P(&C)ICS c ’C37

P(z) = P(x)T >0,
P(Z’)Il‘lt(’C3) - Int(lC;,). 2)

In addition, for all x,y € Int(Ky), we have

2= Py~ ?)(P(y")2)? e In(Ky), == P(z)y.  (3)

Note that a symmetric cone is a self-dual cone but not vice
versa.

III. KYP LEMMA

Consider the following linear system:
&(t) = Ax(t) + Bu(t), 4)

which has the property that z(t) € K, C R™ forall ¢t > 0
under the condition of z(0) € K, and u(t) € K, C R™,
where x(t), u(t) are the state vector and the input vector,
respectively, and K, IC,, are given proper cones. In this case,
system (4) is called a cone-preserving system, which can be
also characterized by the following lemma.

Lemma 4: [14] System (4) is a cone-preserving system with
respect to (KCy, KC,,) if and only if A is cross-positive on /C;
and B, C K,.

The following theorem presents the KYP Lemma for cone-
preserving systems.

Theorem 1: Consider two symmetric cones K, C R™ and
K. C R™. Let A be cross-positive on K, and Hurwitz, B
satisfy B, C .. Suppose that symmetric matrix M =
[MlTl M € R+m)x(n+m) hag the property of M,

M12 M22
being K, -nonnegative, M2k, C K, and Mo being cross-
positive on K,,. Then the following statements are equivalent:

1) For all w > 0,

[(jwn — A)_lB] Y {(jwln —A)'B

; A7) o

2)

T a—1p1 7T 4-1
Ty [

3) There exist vectors 0, >x, 0, p =i, 0 and 8,, >x, 0 with
Ab, + BO, <, 0 such that

0, AT
M [9/ ] + |:BT:| D =<K, xic, 0.

4) There exists w >, 0 such that

ATP(w) + P(w)A P(w)B
M + [ B P(w) 0 < 0.
Proof:  1)= 2): The inequality in 2) is directly derived

from 1) by letting w = 0.

2) = 3): Based on the definition of self-dual cone [16],
one can obtain ZTK, C K, for any matrix Z satisfying
ZK, C K. Since A is cross-positive on C, and Hurwitz,
based on Lemma 1, it holds that —A~1BK, C K,. Denote
I = [(-47'B)T L,|M[(-A"'B)T Im}T. Therefore,
Vo1, a2 =xc, 0 satisfying (¢1, ¢2) = 0, we have ¢I T'py > 0,
which means that T" is cross-positive on /C,. Then based
on Lemma 1, there must exist 6, >x, O such that ¢ :=
e, =<k, 0, and vectors & >x, 0, ( >k, O such that
A€ <x, 0 and AT¢ <, 0. Define 0, := —A~1 B0, + k&,
andp := [-A~T0] M [6] 05]T+k:2§, where k; and ks are
positive real numbers. One can get that 0, >x, 0, p >, 0,
and A6, + BO, = k1A <k, 0. When k; and ko are
sufficiently small, we have

0, AT [k ATC
. M ’ [BT] o {Hn T 0
where n= kl(—AilB)TMllé' + klMl’];g + :ZCQBTC.

3) = 4): With the properties of P(-) in (2), (3), it holds
that w := P (9;%) (P(O%)p)2 =k, 0, P(w)f, = p and
P(w)(A8,, + BO,) <i, 0. Denote
ATP(w) + P(w)A P(w)B]

::Mj{ BT P(w) 0

Denote S = diag(P(w)~ 2, ,,), according to the definition of
symmetric cones [26] and properties of P(-) in (1) and (2),
then for all ¢, ¢ =k xx, O satisfying (p, ) = 0, we have

X, +XF Pw):B 5

BT P(w)? 0

7 [P(w) My P(w)~% P(w)™* My
ML P(w)~ 2 Mo

@' STESp=p" [

¢ ] ¢ =0,
where X; = P(w)2 AP(w)~ 2, which means STZS is cross-
positive on K, x IC,,. Since

_Te, 0.1 [AT]  [P(w)(Af,+B6,
:‘|:9 :|:M|:9:|+|:BT:| p+|: (w)( 0 ):l <KexKy 0



it follows that STZSs <k, xxk,
[(P(w)}6,)" 67]" +x.xx., 0. From Lemma 1, it holds
that STZS < 0, which implies = < 0.

4)= 1): One can derive it by recalling the proof of the KYP
Lemma for general linear systems in [27]. |

Remark 1: Note that the equivalence of conditions 3) and 2)
is also valid when proper cones K, and /C,, are self-dual cones
rather than symmetric cones. It could be derived as follows.

3) = 2): Since A6, + B, <x, 0 and —A~1 is k.-
nonnegative, we have € := 6, + A~1 B0, =, 0. Note that

[T (il 37

= (—A_IB)T(MHQz + Mlgau) + Mszem + Mgzeu <K 0.

0, where s =

With T = [(—A'B)T L, M[(-A'B)T IL,]", we
have I'0,, <, 0. Since matrix I' is cross-positive on K, (as
shown in the proof of 2)=- 3)), we can obtain I < 0. [ |

Remark 2: Note that when K, and K, are nonnegative
orthants, the obtained KYP Lemma is applicable to positive
systems. The quadratic representation in nonnegative orthant
P(w) = diag(w)? is a positive diagonal matrix, which can be
found in Theorem 1 of [18].

IV. APPLICATIONS OF KYP LEMMA

In the light of the KYP Lemma derived in Section III,
the state-feedback stabilization problems with various perfor-
mance objectives are addressed in this section. The spectral
radius and H*° performances are analyzed under the assump-
tion of symmetric cone invariance. Systems with positivity
and second-order cone invariance are two typical subclasses of
symmetric cone-invariant systems, which play important roles
in the control of cone-preserving systems. Since the former
one has been extensively studied [6]-[9], in this section we
will focus on the stabilization problem for second-order cone-
preserving systems, which can be applied to twist systems and
augmented transportation networks with additional catch-all
buffers [25].

Consider the following linear system:

G - &(t) = Agz(t) + Bu(t) 5)
" Ww() = Crealt) + Du(t)
where Ay = A+ B1K,Cx = C + DK, and K is

the controller gain to be designed. Based on Lemma 4 and
Definition 1, system Gg is a second-order cone-preserving
system with respect to (I, I, , Im,) if and only if Ax
is cross-positive on Z,, BZ,,, C I,, CxZ, C I, and
DZ,,, < Imy For simplicity, assume that m, = m, = m,
ie., Iy, = Zm, = Lp. Note that when m,, # my, we can
patch zeros to make m, = my. Assume that BZ,, C T,

and D is Z,,-nonnegative, and denote the transfer function of
system G as G.

A. Stabilization with spectral radius performance

In this subsection, for system Gy, the KYP Lemma is ap-
plied to designing a controller gain to ensure stability, spectral
radius performance and second-order cone invariance. Based

on Lemma 4, the constraints of cone invariance and stability
can be guaranteed by finding a controller gain K such that
Ag is Hurwitz and cross-positive on Z,, and CxZ, C Z,,.
Howeyver, as discussed in [22], it is hard to characterize the
cross positivity by formulas. One viable way to solve this
problem is to let Ag be strictly cross-positive on Z,,, and then
resort to Lemma 2 to enforce it. Therefore, the stabilization
control problem can be stated as follows.

Problem 1 (Spectral Radius Design): For system G, design
a controller gain K such that the second-order cone invariance,
stability, and spectral radius performance can be guaranteed,
that is,

PI(A): Ay is strictly cross-positive on Z,,, and CxZ,, C Z,,;
P1(B): Ag is Hurwitz;
P1(C): p(Gk(jw)) < 6,0 > 0,Vw.

Remark 3: Note that for a cone-preserving system Gg,
p(Gk(jw)) attains its maximum value at w = 0, which is
called the DC-dominant property [11]. Hence, P1(C) holds if
and only if p(Gx(0)) = p(—Cx Ax' B + D) < § holds.

We first characterize the spectral radius performance by
matrix inequalities using the following lemma.

Lemma 5: For a K- nonnegative matrix Y, where 5 is a
symmetric cone, p(Y) < § holds if and only if there exists a
vector 6 i, 0 such that Y7 P(0)Y — §*P(§) < 0.

Proof:  Sufficiency. Since P(6)"2 > 0 holds,
one can get that YTP(A)Y — §°P(0) < 0 if and
only if P(0)"2 (YTP(O)Y —6P(h)) P(6)" 2 =
PO)"2YTP(0)zP(0)2Y P(0) 2 — 6°I < 0 holds. It means
that § > ||P(0)2Y P(0)~2||> > p(P(0)2Y P(6)~2) = p(Y).

Necessity. Assume p(Y) < 4, then Y — 61 is Hurwitz.
Based on Definition 3, Y — 01 is cross-positive on [Cj.
From Lemma 1, there exist & >,g3 0, ¢ >=x, 0 such

that (Y — 61)§ <x, 0 and (Y7 — 6I)¢ =<, O hold,
1

respectively. With 6 : (g 3 (5%)<>2, ¢ = PO)

holds based on formulas (3). t 1s 0bv10us that Yp =

P(9)~2 (YTPO)Y — 62P(0 ) ~2 is cross-positive on

Kj. Further with = P(6)2 § >—;c7 0, we have Ypn =
PO)~ YTP( )Y —=6I)E+6P(6 )*’(YT 0I)¢( <x, 0, which
means Yp < 0. By congruence transformation, it holds that
YTPO)Y —62P() < 0. |
Theorem 2: Consider a cone-preserving system Gr with
respect to (Ko, Ko, Kin), where K, IC,,, are symmetric cones,
and A is Hurwitz. Introduce 6 >, 0 and define M as

CLP(0)Cx
PO)"2DTP(0)Cx P(6)~

CLP(0)DP(0)~
s DTP(O)DP(6)~

[S=S ST

— 621,

Then for a given positive real number J, the following state-
ments are equivalent:

1) p(Gk(0) < 0.
2) There ex1st 0, >k, 0,p>K, 0, 0, >x,, 0with Ax0, +
BP(0)~20, <x, 0 such that

0, AT
AR -



3) There exists w >x, O such that
P(w)Ag + AL P(w) P(w)BP()"2

M 1 0. 6
1 PO)-*BTP(w) 0 <0 ®
4) There exist v =, 0, & =i, 0, and L € R™*™ such that
A+ AT Be T
eBT -5’0 ODT| <o, (7)
C Do -0

where A = AW + B1L, C = CW + D,L, W = P(v),

©=P¢), K=LWL
5) p(Gr(jw)) < §,Vw.

Proof:  First, based on Lemma 5, condition 1) holds if and
only if there exists 6 >, 0 satisfying G (0)T P(6)Gx (0) —
§2P(0) < 0, which is rewritten as

Y= [(AZB)T LM [(-AZB)T L] <o,

where M = diag(I,, P(6)2)Mdiag(I,, P(6)2). Note that

P(#)~2 >0, then Y < 0 holds if and only if

P()"tYP(0)"*

_ [~AgBPO)F]" |, [~ AR BP(O)
I I,

It is obvious that M satisfies all properties required in Theorem

1. Therefore, according to Theorem 1, we can conclude

that statements 1), 2) and 3) are equivalent. Pre- and post-
multiplying inequality (6) by diag(I,,, P(6)z), one can get
P(w)Ak + AL P(w) P(w)B

BT P(w) 0 < 0. (8)

Based on Schur complement, inequality (8) can be rewritten
as

| <o

|

P(w)Ak + ALP(w) P(w)B CcE
BTP(w) —52P(0) DT <0. )
Ck D —P(Q)_l

With v := w™!, £ := 07!, one has W = P(w)~! and © =
P(6)~1. By pre- and post- multiplying (9) by diag(W, ©, I,,,),
we obtain (7), and this establishes equivalence between state-
ments 3) and 4). Finally, based on Remark 3, the equivalence
between 1) and 5) is derived, which completes the proof. W

Remark 4: When § = 1, condition 1) in Theorem 2 can be
used to determine the stability for a positive feedback system,
referred to [11].

With the characterization of spectral radius performance in
Theorem 2, Problem 1 can be solved as follows.

Proposition 1: A necessary and sufficient condition for the
existence of controller gain K satisfying conditions P1(A)-
P1(C) is that there exist vectors v >z, 0, § >z, 0, ¢t >z, O,
matrix L € R™*™ and scalars n; > 0,72 > 0, > 0 such
that inequality (7) and

(A+aW)Qn(A+ )T —mQ, >0, (10a)
einst +s1ef, — el 51Qn >0, (10b)
CTQmC = 12Qn > 0, (10c)
elnszT + sze{n - elTnSQQn >0, (10d)
€1ns3 + 5361, — €1,53Qn <0, (10¢)

hold, where A = AW + B1L, C = CW + DL, W = P(v),
O = P(), 51 = (A+ aW)ein, s2 = Clein, s3 = A,
K=LW-1

Proof:  Since Z,, is self-dual, Ak is strictly cross-positive
on Z, if and only if A% is strictly cross-positive on Z,,. Based
on Lemma 2 and formulas in (2), AL is strictly cross-positive
on Z, if and only if there exists & > 0 such that W(Ax +
al,)T is T,-positive, which is equivalent to the condition that
there exist scalars & > 0 and 7; > 0 such that (10a) and
(A + aW)ey,, € Int(Z,,) hold, where the later is equivalent
to (10b) by its arrow-shaped representation in [22]. Similarly,
based on Lemma 3, the second condition in P1(A) is equivalent
to (10c) and (10d). From Lemma 1, P1(B) holds if and only if
there exists s >z, 0 satisfying Axs <z, 0 under the condition
of P1(A). With W~1s =1 =7, 0, we have Ar <z, 0, which
is equivalent to (10e). Finally, P1(C) is equivalent to (7) based
on Theorem 2, which completes the proof. ]

Note that inequalities (10a)-(10e) in Proposition 1 are
nonlinear with respect to W, L, ¢ and «a, which can be
improved by an alternative corollary inspired by [22].

Corollary 1: If there exist vectors v >z, 0,& >z, 0, matrix
L € R™*™ and scalars n; > 0,75 > 0, > 1 > 0 such that
inequalities (7), (10d) and

Uy —mQ, A+aW
[(,41+ol7114?)T ‘LIO‘ } >0, (11a)
(A+ayW)e, =0, (11b)
. T
|:\I/2 Cn2Qn ? :| 205 (11C)

hold, where A = AW + B1L, C = CW + D{L, ¥; =
2(a—a1)*Wep,el W, Wy =2CTey,,et, C,W = P(v),0 =
P(£), then there exists a controller gain K = LW ! such that
system G is cone-preserving and stable.

Proof:  If (11b) holds, we have Aey, = —a1Weq,, $1 =
(o — a1)Weyy, and s3 = —ayWey, <z, 0 in Proposition 1
such that (10b) and (10e) hold. Then by Schur complement,
(11a) is equivalent to (10a), and (11c) is equivalent to (10c).
The rest of the proof is similar to that in Proposition 1. W

Recall that, in second-order cones, P(v) and P(§) are
given as W = P(v) = vl — 1 (v7Q,0)Q,, © = P(§) =
ceT — %(fTme)Qm, respectively [28]. Define R := vov”
and T := &7, Without loss of generality, assume that
vTer, = &Tey,, = 1. Then it derives that W = R — Q,, +
%Trace(R)Qn, O=T-Qm+ %Trace(T)Qm.

Remark 5: Note that it is difficult to solve the inequalities in
Corollary 1 since R, T, ¥, ¥, are quadratic with respect to
unknown vectors, and (o — 1 )? is nonlinear with respect to o
and «;. To address these nonlinearities, a practical way to find
a feasible state-feedback gain through LMI can be presented
in Algorithm 1, where the dominant eigenvalue of Ay is first
set as —«, and « is then chosen based on o > «;. For more
details about Algorithm 1, one can refer to [22].



Algorithm 1 Stabilization with Cone Invariance and Spectral
Radius Performance

Step 1: Initialize the prescribed tolerance: ¢, the maximum
iteration: k4., and the upper bounds of a; and a: &y, &
(& > &), respectively. Set k = 1.

Step 2: Randomly generate agk) between 0 and &7, and
a®) between agk) and & without repetition.

Step 3: Minimize f = Trace(R)+Trace(T")+Trace(¥1)+
Trace(W¥y) with respect to 71 > 0, 2 > 0, v =7, 0 with
vley, =1, & =7, 0 with ¢Tey,, =1, R >0, T > 0,
Uy >0, Uy > 0, inequalities (7), (10d), (11c), and

U —mQ, A+aPW
0, 12
(AJroz(k)W)T I, (12a)
- 7, V2(a® —ag’“))Weln -
V2(a® — ol eT W 1 -
) (12b)
U, V2CT e
>
_\/ie,{'mc 1 - 0, (120)
A+ aPW)ey, =0, (12d)
ﬁ 11’] >0, (12¢)
T
o ﬂ >0, (121)

where A= AW+ B L,C=CW+D,L, W=R—-Q,+
%Trace(R)Qn, 0=T—-Qmn+ %Trace(T)Qm.
Step 4: Check the conditions:

Trace(¥; — 2(a® — agk))2WelnelTnW) <€, (13a)
Trace(Uy — 2CTer,nel C) < e, (13b)
Trace(R — vvl) < ¢, (13¢)
Trace(T — £€7) < e. (13d)

If they all hold, go to Step 5; otherwise, go to Step 6.
Step 5: Compute the controller gain K = LW !, and stop.
Step 6: Set k =k + 1. If k > k44, input new bounds &
and &, and go to Step 1; else, go to Step 2.

B. H®® controller design

In this subsection, the property that the H° norm of
cone-preserving system with respect to symmetric cones is
determined by the 2-norm of a static gain matrix is provided,
which is used to solve the H> controller design problem
described below for the case of second-order cones.

Problem 2 (H* Design): For system G, design a con-
troller gain K such that the second-order cone invariance,
stability, and H*° performance can be guaranteed, that is,

P2(A): Ak is strictly cross-positive on Z,,, and CxZ,, C Z,,;
P2(B): Ag is Hurwitz;
P2(0): |Glloe < 7-

The H®° norm for cone-preserving systems is first charac-
terized by the following theorem.

Theorem 3: Suppose system G is a cone-preserving system
with respect to (Ko, K, Ki), where K, K, are symmetric
cones, and Ay is Hurwitz. Define M as

1 CECk CED

vy DTCK DTD - ’}/QIm )

Then for a given positive real number ~, the following

statements are equivalent:

D Gr(0)]2 <.

2) There exist 0, >k, 0, p =k, 0, 0y, >x,, 0 with Ax0, +
B6,, <k, 0 such that

0, AT
M [9 ] + [BIT(}pﬂczxzcm 0.

3) There exists w =y, 0 such that

Pw)Ag + ALP(w) P(w)B

BT P(w) o | <Y

w+|

4) There exist v >k, 0 and L € R™*" such that

A+ AT B cT
BT —~I, DT | <0, (14)
C D —~I,

where A = AW + B1L, C = CW + DL, W = P(v),

K=LW™!,
5) IGklloe <7

Proof: ~ Assume that condition 1) holds. Since v >
0, it holds that (G (0)"Gk(0) — 7*Ln) < O, that is,
[(—Ax'B)T L, M[(-Ax'B)" 1I,]" < 0. Since M
satisfies all properties required in Theorem 1, based on Theo-
rem 1, we can obtain that 2) and 3) hold and the equivalence
of 2) and 3). Assume that the inequality in 3) holds, then based
on Schur complement, we can obtain

P(w)Ag + ALP(w) Pw)B CFL
BTP(w) —~I,, DT | <0, (15)
Ck D I
which indicates that 5) holds. By introducing v = w~! and

pre- and post- multiplying (15) by diag(W, I,,, I.,), it holds
that 4) is equivalent to (15). Finally, 5) directly implies 1) by
the definition of H°° norm, which completes the proof. M

Remark 6: A similar result of H°° norm (an equivalence
between 1)and 5)) has been given in [17] by cone program-
ming, while in this paper, the result is directly derived from
the KYP Lemma under the case of special M.

Similar to Proposition 1 and Corollary 1, one can obtain the
following results to design a controller gain K to sufficiently
solve Problem 2 and the proofs are omitted here for simplicity.

Proposition 2: A necessary and sufficient condition for the
existence of controller gain K satisfying conditions P2(A)-
P2(C) is that there exist vectors v >z, 0, ¢ >z, 0, matrix
L € R™™ and scalars 77 > 0,72 > 0, > 0 such that
inequalities (10a)—(10e) and (14) hold.

Corollary 2: If there exist vector v >z, 0, matrix L &
R™*™ and scalars 1y > 0,172 > 0, > a3 > 0 such that
inequalities ( (11a)-(11c), (10d) and (14) hold, then there



exists a controller gain K = LW ™! such that conditions
P2(A)-P2(C) are satisfied.

Remark 7: The algorithm to obtain the controller gain via
the LMI is similar to Algorithm 1 except Steps 3 and 4 which
are replaced by the following statements, respectively.

Step 3: Minimize f = Trace(R + ¥y + U5) with respect to
m > 0,m2 >0, v >z, 0with vTey, =1, R >0, Uy >0,
W, > 0, inequalities (14), (10d), (11c), and (12a)—(12e).
Step 4: Check the conditions (13a)-(13c). If they all hold, go
to Step 5. Otherwise, go to Step 6.

V. NUMERICAL EXAMPLES

Consider system G with parameters given as follows:

[0.0550 —0.4349 —0.4408 0.8147 0.9134
A=0.2769 0.3513 —0.3964|,B;= |0.9058 0.6324 |,
07218 —0.6907 —2.6823 0.1270 0.0975
0854704134 0.3350 0.0352 0.0170
B= 03058 06324}, O:[—o 0077 0.0477 —0 0425}’
01270 0.0975 ' ' '

Do — 0.0110 —0.0052 D 0.3100 —0.0517
1710.0227 0.0110 |*7 "~ {0.1771 0.0603 |’

We consider input constrained in second-order cone, and the
goal is to obtain state-feedback controller which will preserve
system state and output in second-order cones. Note that
BZ, C 73 and DI, C Z,. For simplicity, system Gy with
K = 0is denoted as G, and correspondingly, denote its transfer
function as GG. Based on Remark 5, the upper bounds of a;
and « are selected as a; = 2, and & = 12, respectively.

A. Example 1

Based on Algorithm 1, for given 6 = 1, one can get that
K — 6.2178 —12.9533 —6.1256

| —6.2856  10.6132  4.4395 |’

and p(Gk(0)) = 0.5304 < 1. It can be shown that Ay is
Hurwitz and strictly cross-positive on Z3, and C'xZ3 C 7y
based on Lemmas 2 and 3, respectively. Hence system Gy is
stable and cone -preserving, which can be also illustrated by
Fig. 1 and Fig. 2. It is obvious that, with the control gain K,
both the state trajectory z(¢) and output trajectory y(t) are
restricted in second-order cones, but this property can not be
guaranteed in the case of K = 0 by observing the trajectories
of z(t), y(t) eventually run out of second-order cones.

B. Example 2
For given v = 0.8, one can get

K- 9.2228 —17.5606 —5.8048
~|—8.6839  13.5277  3.9148 |’

From Lemmas 2 and 3, one can verify that A is strictly cross-
positive on Z3 and C'xZ3 C 7. Based on Lemma 4, with such
H®° controller gain K, the cone invariance for system Gy is
guaranteed, which is also illustrated by Fig. 3 and Fig. 4. In
addition, Fig. 3 and Fig. 4 also show the stability of Gx. From
Theorem 3, it holds that |Gk ||co = |Gk (0)]]2 = 0.5188 < +.
Fig. 5 describes the 2-norm of transfer functions for systems G
and G, respectively. It illustrates that the obtained controller
K can realize the given H* performance.
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Fig. 1: State trajectories x(t) under the various initial conditions for systems
G and G for a three-dimensional second-order cone.
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Fig. 2: Output trajectories y(¢) under the various initial conditions for
systems G and G for a two-dimensional second-order cone.
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Fig. 3: State trajectories x(t) under the various initial conditions for systems
G and G for a three-dimensional second-order cone.
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Fig. 4: Output trajectories y(¢) under the various initial conditions for
systems G and G for a two-dimensional second-order cone.
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Fig. 5: 2-norm of transfer functions G and G .

VI. CONCLUSIONS

In this paper, we have investigated the KYP Lemma for
cone-preserving systems, where the inequalities in terms of
cone programming and LMI have been presented. The derived
KYP Lemma was used to design a state-feedback controller,
introducing the conditions for spectral radius and H > perfor-
mance of the closed-loop system. Additionally, the obtained
controller synthesis methods guarantee second-order cone in-
variance and stability, and have the form of an iterative LMI-
based algorithm. It is worth noting that the results obtained
in this paper, which focus on symmetric cones, can be readily
adapted to handle general ellipsoidal cones. This is because
every ellipsoidal cone can be transformed into a second-order
cone via nonsingular linear transformation. More applications
and less restrictive assumptions on KYP Lemma are foreseen.
This involves developing versions of the KYP Lemma with
non-strict inequalities and incorporating cone invariance for a
wider range of proper cones beyond symmetric cones.
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