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Abstract
Purpose: To develop a new electromagnetic interference (EMI) elimination
strategy for RF shielding-free MRI via active EMI sensing and deep learning
direct MR signal prediction (Deep-DSP).
Methods: Deep-DSP is proposed to directly predict EMI-free MR signals. Dur-
ing scanning, MRI receive coil and EMI sensing coils simultaneously sample
data within two windows (i.e., for MR data and EMI characterization data
acquisition, respectively). Afterward, a residual U-Net model is trained using
synthetic MRI receive coil data and EMI sensing coil data acquired during EMI
signal characterization window, to predict EMI-free MR signals from signals
acquired by MRI receive and EMI sensing coils. The trained model is then used
to directly predict EMI-free MR signals from data acquired by MRI receive and
sensing coils during the MR signal-acquisition window. This strategy was eval-
uated on an ultralow-field 0.055T brain MRI scanner without any RF shielding
and a 1.5T whole-body scanner with incomplete RF shielding.
Results: Deep-DSP accurately predicted EMI-free MR signals in presence of
strong EMI. It outperformed recently developed EDITER and convolutional
neural network methods, yielding better EMI elimination and enabling use of
few EMI sensing coils. Furthermore, it could work well without dedicated EMI
characterization data.
Conclusion: Deep-DSP presents an effective EMI elimination strategy that out-
performs existing methods, advancing toward truly portable and patient-friendly
MRI. It exploits electromagnetic coupling between MRI receive and EMI sens-
ing coils as well as typical MR signal characteristics. Despite its deep learning
nature, Deep-DSP framework is computationally simple and efficient.
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1 INTRODUCTION

MRI is a versatile imaging modality that provides
noninvasive, nonionizing, and quantitative charac-
terization of biological tissues. After five decades of
development, it is now a routine procedure for clinical
diagnoses and preclinical investigations, making a tremen-
dous impact in modern health care.1–3 On the other hand,
the accessibility of MRI is low, and its distribution is
extremely inhomogeneous worldwide,4 primarily due to
the cost-prohibitive nature and special infrastructural
requirements associated with existing high-field (1.5 T or
3 T) superconducting MRI scanners. Consequently, there
has been a growing interest and urgency to address the
unmet clinical needs and global health-care disparities by
developing ultralow-field (ULF) MRI scanners that oper-
ate below 0.1 T for low-cost and/or portable imaging appli-
cations.5–14 Recent ULF MRI technology developments
in both system engineering15–19 and computing20–23 have
yielded promising results and have led to diagnostically
useful information especially in intensive care.19,24–27

MR signals are susceptible to electromagnetic inter-
ference (EMI) signals at frequencies close to Larmor
frequency. Clinical high-field MRI prevents EMI sig-
nals using bulky and fully enclosed RF shielding room
and high-quality electronics (e.g., MRI scanner elec-
tronics or MRI compatible medical devices/equipment
with minimal EMI emission) inside the shielding room.
However, this passive solution in turn comes with hard-
ware costs and stringent installation requirements, which
pose a major barrier to the accessibility, portability, and
patient-friendliness of both ULF and high-field MRI
scanners.

An active EMI elimination approach presents an alter-
native solution to remove EMI signals through active and
simultaneous EMI sensing via multiple EMI sensing coils
during scanning, and retrospective prediction and can-
celation of EMI signals detected by MRI receive coil.28–35

From an RF signal propagation point of view, relation-
ships among EMI signals detected by various coils that
are positioned and/or oriented differently can be well
characterized by the electromagnetic coupling among
coils. Such relationships allow EMI signals detected by
the MRI receive coil to be predicted from EMI signals
simultaneously acquired by one or multiple EMI sens-
ing coils, thus enabling retrospective EMI cancelation
through postprocessing. Specifically, an analytical for-
mulation was developed to predict EMI signals detected
by the MRI receive coil using frequency domain transfer
functions between the MRI receive coil and EMI sensing
coils.28 Several methods based on this concept have been
subsequently introduced and demonstrated for ULF MRI
scanners.29–33 One example is EDITER,31 which extends

the frequency domain transfer function method for time
domain implementation, yielding improved performance
by accommodating dynamically varying EMI sources.

In our recent work, a deep learning–based approach
was developed to model and predict EMI signals from
the acquired MRI receive coil signals.19,34,35 In contrast
to the analytical methods mentioned previously, this
method assumes that the relationship between EMI sig-
nals detected by EMI sensing coils and MRI receive coil,
although linear in theory, can be better approximated
in practice through a versatile time domain convolution
neural network (CNN) model that incorporates nonlinear
operations. This assumption has been well supported by
successful shielding-free 0.055T brain imaging of a cohort
of about 100 healthy volunteers and patients in our lab-
oratory,19,34,35 leading to improved performance over the
EDITER method. Additionally, this method has also been
demonstrated for a much higher frequency regime on a
1.5T MRI scanner with incomplete RF shielding.34,35

Despite the success in predicting and retrospectively
reducing EMI signals so far, the aforementioned meth-
ods19,29–35 are certainly inadequate to enable truly RF
shielding-free MRI. In practice, EMI nature and behav-
iors can be extremely complex. For example, in realis-
tic and diverse unshielded imaging situations, EMI sig-
nals can be emitted from multiple sources. They can be
strong and vary temporally and/or spatially. During scan-
ning, surrounding environments can also change, such as
due to subject position changes or movements of nearby
attending staff and equipment. Note that transfer func-
tions depend on relative location geometries of EMI sens-
ing coils with respect to MRI receive coil, EMI sources,
and surrounding environments. Therefore, the changes in
EMI sources or/and surrounding environments can alter
the actual transfer functions between the MRI receive
coil and EMI sensing coils. These real-world scenarios
can easily compromise the performance of these exist-
ing EMI-elimination methods. For RF shielding-free MRI
to become a reality for robust portable or point-of-care
applications, it is imperative to develop more effective
strategies.

In this study, we develop a new EMI elimina-
tion strategy for RF shielding-free MRI, termed deep
learning–based direct MR signal prediction (Deep-DSP).
Specifically, a time-domain residual U-Net model is
trained after scanning to directly predict EMI-free MR sig-
nals from the signals detected by MRI receive coil and
EMI sensing coils. For training, the data for MRI receive
coil were synthesized from the EMI data and a set of
arbitrary EMI-free MR signals. We demonstrate that this
strategy works effectively in the presence of strong EMI for
both 0.055T and 1.5T MRI, yielding significantly improved
image quality over the existing methods. The proposed
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114 ZHAO et al.

method also works robustly with few EMI sensing coils or
without dedicated EMI characterization data.

2 METHODS

2.1 Existing active EMI sensing
and elimination methods

All active EMI sensing and elimination methods
so far19,28–35 use one or multiple EMI sensing coils.
During scanning, they simultaneously detect EMI sig-
nals only, whereas the MRI receive coil detects both
frequency-encoding (FE) MR signals and EMI signals.

Analytical transfer function–based EMI elimination
methods estimate electromagnetic coupling functions
among coils and then use them to retrospectively predict
and remove EMI signal components from MRI receive-coil
signals.28–30 In practice, these transfer functions can be
obtained numerically by linearly fitting the spectra of
EMI signals from all EMI sensing coils to that of MRI
receive-coil signal among all EMI characterization data.
EMI characterization data can be acquired when no MR
signal components are present (e.g., through separate
scans without RF excitation or sampling within a period
when MR signals are expected to be negligible).

The EDITER method extends this analytical
frequency-domain transfer function concept to time
domain.31 Assuming that frequency-domain transfer
functions are relatively compact, EDITER implements
EMI prediction in time domain as linear convolutions
using finite and small convolution kernels. It accom-
modates dynamically changing EMI sources by dividing
the acquired data into sub–data sets through empirical
thresholding with respect to the transfer function char-
acteristics, and works without separate or dedicated EMI
characterization data.

In parallel, the recent deep learning approach relates
EMI signals detected by all EMI sensing coils to EMI sig-
nals detected by MRI receive coils through a time-domain
five-layer CNN model.19,34,35 Such a CNN model consists
of a combination of multiple layers of simple operations
(such as linear convolution and nonlinear activation) that
are trained in a data-driven manner, leading to improved
EMI elimination.34

2.2 Proposed Deep-DSP

The proposed Deep-DSP is designed to directly predict
EMI-free MR signals (instead of EMI signals in all other
existing methods) from signals acquired by the MRI
receive coil and EMI sensing coils. The overall framework

is illustrated in Figure 1. As in all other active EMI
cancelation methods, one or multiple EMI sensing coils
are used in Deep-DSP (Figure 1A). They are placed around
and within the scanner to actively detect radiative EMI
signals from both external environments and internal elec-
tronics while receiving no MR signals.

Within each TR during scanning, the MRI receive
coil samples data within the MR signal acquisition and
EMI signal characterization windows, with acquired data
denoted as r0(t) and rchar

0 (t), respectively (Figure 1B). Note
that the MRI receive-coil signal rchar

0 (t) contains no or
negligible MR signal component due to absence of any
RF excitation within the second window (i.e., EMI signal
characterization window). Meanwhile, within two win-
dows, each EMI sensing coil also samples EMI-only data,
which are denoted by sk(t) and schar

k (t) (k= 1, 2, … , Ns),
respectively. Ns denotes the number of EMI sensing coils.

The Deep-DSP model is trained by both synthetic
and experimental data. Specifically, after scanning,
one-dimensional (1D) temporal EMI-free MR signals
xGT(t) from one arbitrary MR k-space data set (e.g., one
typical simulated or experimental data set) are added into
experimental EMI-only MRI receive-coil signals rchar

0 (t)
to first synthesize EMI-contaminated MRI receive-coil
signals rsyn

0 (t) (see green box in Figure 1C). A residual
U-Net model is then trained with synthetic rsyn

0 (t) and
experimental schar

k (t) (k= 1, 2, … , Ns) being used as model
inputs, while the corresponding ground-truth xGT(t) is the
model target.

The trained model is then applied to predict EMI-free
MR signal component x0(t) from experimental signals
r0(t) and sk(t) (k= 1, 2, … , Ns) collected within the
MR signal-acquisition window (Figure 1D). This MR
signal-prediction procedure is repeated for every individ-
ual FE line, creating EMI-free k-space data before any
averaging or/and image reconstruction.

2.3 Deep-DSP model architecture,
implementation, and training

Early studies have demonstrated that U-Net can facilitate
information propagation,36 whereas ResNet enables the
increase of model capacity.37 As such, this study adopted a
residual U-Net architecture.38 The residual U-Net model,
being deeper and more versatile than the simple CNN
model, is used to further improve the characterization
of the EMI signal relationship among coils, especially
when EMI characteristics and/or environments become
complex. Additionally, during training, the model cap-
tures the characteristic difference between EMI signals
and MR k-space signals, which serves as prior knowledge
for accurate MR signal prediction. Specifically, the model
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ZHAO et al. 115

F I G U R E 1 The proposed deep learning direct MR signal prediction (Deep-DSP) framework and its implementation on a low-cost,
shielding-free 0.055T brain MRI scanner. (A) Multiple electromagnetic interference (EMI) sensing coils are installed to actively detect EMI
signals during scanning. (B) Illustration of 3D fast spin-echo acquisition windows for MR signal acquisition and EMI signal characterization.
Within each TR, data sampled by MRI receive coil during two windows are denoted as r0(T) and rchar

0 (t), respectively. Meanwhile, data
sampled by each EMI sensing coil during the two windows are denoted as sk(t) and schar

k (t) (k= 1, 2, … , Ns), respectively. (C) A residual
U-Net model is trained using signals detected during the EMI signal characterization window. EMI-free MR signals xGT(t) from an arbitrarily
chosen MR data set are first added to EMI-only MRI receive coil signals rchar

0 (t) to synthesize EMI-contaminated MRI receive coil signals
rsyn

0 (t). For model training, synthetic EMI-contaminated MR signals and experimental EMI sensing coil signals schar
k (t) (k= 1, 2, … , Ns) are

used as model inputs, whereas EMI-free MR signals xGT(t) serve as model target or output. (D) Trained model is then used to predict MR
signals from MRI receive-coil signals r0(t) and EMI sensing-coil signals sk(t) (k= 1, 2, … , Ns). Note that the EMI signal characterization
window is not an absolute requirement. In practice, outer k-space of data acquired within the MRI signal acquisition window can serve as
alternative EMI characterization data for model training.

was implemented using a 4-scale U-Net. Each scale had
an identity skip connection between strided convolution
downscaling and transposed convolution upscaling, both
of which were applied with a kernel size of 2. The num-
ber of channels in each layer from the first to the fourth
scale was 32, 64, 128 and 256, respectively. Four succes-
sive residual blocks were used in the downscaling and
upscaling of each scale. Model input was a 2D matrix with
a size of Nx × 2(1+Ns), where Nx is the number of points

in one FE line, while 2(1+Ns) is the number of channels
corresponding to real and imaginary parts of 1D temporal
signals from one MRI receive coil and Ns EMI sensing
coils. Model output was a 2D matrix with a size of Nx × 2.

In this study, one experimental axial 3D T2-weighted
(T2W) brain MR k-space data set acquired from a stan-
dard clinical 3T MRI scanner was arbitrarily chosen and
treated as EMI-free MR signals. They were used to syn-
thesize EMI-contaminated MRI receive coil signals for
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116 ZHAO et al.

Deep-DSP model training. Specifically, this T2W brain
data set was acquired on a 3T Philips scanner (Achieva;
Philips Medical Systems, Best, The Netherlands) using
a single-channel head coil and 3D fast spin echo (FSE)
with TR/TE= 2500/213 ms, matrix size= 240× 240× 60,
and isotropic resolution= 1 mm. Raw k-space data were
truncated along the FE direction to a size of Nx × 240× 60
and then transformed to image space. After normalizing
the image intensity to approximately match those observed
from MRI receive-coil signals (in absence of EMI signals),
the data were then transformed back to k-space. Individ-
ual EMI-free FE lines (a total of 14400) were extracted in
a pseudo-random order and added to the MRI receive-coil
signals acquired within the EMI signal characterization
window after scanning to synthesize rsyn

0 (t).
To eliminate EMI in each data set, a model was trained

by minimizing L1 loss using the Adam optimizer39 with
batch size= 64, initial learning rate= 0.0002, 𝛽1 = 0.9, and
𝛽2 = 0.999 for 40 epochs. Without optimization, the typ-
ical training time for each model was about 6 min on a
Quadro RTX 8000 GPU and Intel Core i9-10 900X CPU
using PyTorch 1.8.1 package on Ubuntu 18.04.5 LTS (Linux
5.4.0-77-generic).

2.4 Performance evaluation

Deep-DSP was evaluated on a home-built shielding-free
0.055T brain MRI scanner that was recently developed
in our laboratory.19 Using a permanent Samarium-cobalt
magnet, it operates using a standard AC power outlet and
is low cost to build. Ten EMI sensing coils (same coils as
in our recent studies19,34) were placed around the scan-
ner and inside the electronic cabinet to detect EMI signals
from both the external environment and internal scan-
ner electronics during scanning. Specifically, three were
placed in the vicinity of the patient head holder, two on
each side (left and right) underneath the patient bed, and
two in the vicinity of gradient and RF amplifiers inside the
electronic cabinet, and one underneath the scanner.

2.4.1 Evaluation by simulations

The effectiveness of Deep-DSP was first examined using
simulated data sets. EMI-free brain and phantom data
sets acquired on the 3T Philips scanner were used as
ground truth. EMI-contaminated data sets were obtained
by adding experimental EMI data acquired on the
shielding-free 0.055T MRI scanner19 with RF transmit-
ter power off (i.e., in absence of any MR signal) to
the ground truth EMI-free data sets. To assess the
EMI elimination performance, the SNR of ground-truth

and EMI-eliminated images were calculated, and the
difference or error maps between ground-truth and
EMI-eliminated images were computed and quantified by
normalized RMS errors (NRMSEs).

2.4.2 Experimental evaluation by human
brain imaging on a shielding-free 0.055T MRI
scanner

The Deep-DSP model was evaluated with shielding-free
0.055T brain data sets. Three imaging protocols were
implemented. They were 3D T2W FSE (TR/TE =
1500/202 ms, echo train length [ETL]= 21, bandwidth
[BW] = 10 kHz, FOV = 250 × 250 × 320 mm3, acquisi-
tion matrix = 128 × 126 × 32, and number of excitations
[NEX] = 2), 3D fluid-attenuated inversion recovery
[FLAIR]–like FSE (TR/TE = 500/129 ms, ETL = 13, BW =
10 kHz, FOV= 250 × 250 × 320 mm3, acquisition matrix=
128 × 117 × 32, and NEX = 4), and 3D T1-weighted (T1W)
gradient-recalled echo (TR/TE = 52/13 ms, flip angle =
40◦, BW = 6.25 kHz, FOV = 250 × 250 × 320 mm3,
acquisition matrix = 128 × 128 × 32, and NEX = 2). All
experiments involving human subjects were approved by
the local institutional review board, and written consents
were obtained.

2.4.3 Experimental evaluation by phantom
imaging on a 1.5T MRI scanner with
incomplete RF shielding

The potential applicability of Deep-DSP to high-field MRI
was also examined. Specifically, one phantom data set
was acquired on a whole-body 1.5T clinical MRI scan-
ner with the RF shielding room door open. A head
coil with eight channels was used as the MRI receive
coils, whereas a separate knee coil with eight channels
was placed on the patient bed, serving as EMI sens-
ing coils. A 2D gradient-recalled echo protocol was used
with TR/TE= 420/9 ms, BW= 25 kHz, and acquisition
matrix= 200× 200× 20.

For comparison, the EMI elimination was also per-
formed using EDITER31 and our recently developed CNN
method.19 EDITER was implemented with the publicly
available codes,31 and its kernel size and threshold value
were optimized to ensure the best performance as in our
recent study.34 Furthermore, the effect of the reduced
number of EMI sensing coils on the performance of the
proposed Deep-DSP and existing EDITER and CNN meth-
ods was examined. Their performance in absence of dedi-
cated EMI characterization data (i.e., acquired within EMI
signal-characterization window shown in Figure 1B) was
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ZHAO et al. 117

also examined. In this case, data acquired by MRI receive
and EMI sensing coils within the MR signal acquisition
window were chosen to serve as the EMI characterization
data. To avoid the potentially strong MR signals at k-space
center, only the outer 50% of the k-space data were used
for this EMI characterization purpose.

3 RESULTS

Figure 2 presents the typical EMI elimination results
from a simulated brain data set. EDITER and CNN meth-
ods estimated EMI signals and subtracted them from the
MRI receive coil signals, whereas Deep-DSP directly pre-
dicted MR signals. Before EMI elimination, brain images
were mostly immersed within EMI noise. Deep-DSP accu-
rately predicted MR signals, effectively eliminating the

strong EMI artifacts as indicated by the error maps.
Moreover, it yielded approximately 42% and 33% more
NRMSE reduction compared with the EDITER and CNN
methods, respectively. Figure S1 presents the influence
of training data size on three EMI elimination methods
when performing EMI elimination in Figure 2. With a
small training data size (2-k FE lines), all three methods
exhibited slightly degraded EMI elimination performance.
Meanwhile, Deep-DSP still led to the smallest NRMSE.
With relatively larger training data size (8 k or 4 k), the
degradation was negligible for all three methods. These
results indicated that the superior Deep-DSP performance
did not critically rely on a large training data size.

For the simulated brain data set with reduced EMI
signal level, Figure S2 shows the results from all three
methods. Both EDITER and CNN results were largely
improved when compared to those with strong EMI

F I G U R E 2 Electromagnetic interference (EMI) elimination for simulated brain data set. The T2-weighted (T2W) brain data set acquired
at 3 T was used as ground truth. One EMI data set acquired at 0.055 T with RF transmitter power off (i.e., no MR signal) was retrospectively
added into the ground truth to form EMI-contaminated data sets. EMI elimination was performed using EDITER, the deep learning
convolutional neural network (CNN) method, and the proposed deep learning direct MR signal prediction (Deep-DSP) method. Images
without and with EMI elimination are displayed using the same scaling. Deep-DSP accurately predicted EMI-free MR signals from
EMI-added MRI receive coil signals and EMI sensing coil signals, with neither EMI artifacts nor pseudo-structures being observed in error
maps (i.e., differences between EMI-free reference and EMI-eliminated images). Normalized RMS error (NRMSE) and SNR quantification
(Table S1) further demonstrated the significantly improved EMI elimination performance of Deep-DSP over existing EDITER and CNN
methods. The yellow and green boxes indicate signal and noise regions of interest for SNR calculation, respectively.
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118 ZHAO et al.

signals in Figure 2. This likely occurred because when the
EMI signal level was relatively low, the inaccurate EMI sig-
nal relationship estimation in EDITER and CNN due to
coil baseline electronic noise and its propagation/amplifi-
cation were alleviated, thus leading to reduced EMI signal
prediction errors. Nevertheless, Deep-DSP still achieved
more effective EMI elimination than the EDITER and
CNN methods. The residual error histograms computed
from error maps are shown in Figure S3, further illustrat-
ing the improvement of Deep-DSP over the two existing
methods in terms of reduced error bias and its SD. Note
that the reduced-error SD further improved the resulting
image SNR, as supported by Table S1.

Figure 3 shows the results of applying EMI elimination
without dedicated EMI characterization data (i.e., using
part of the k-space data acquired within the MR signal
acquisition window instead) to the simulated brain data set
in Figure 2. This evaluation is relevant to certain imaging
protocols in which, for example, EMI characterization data
are unavailable due to the need to preserve the shortest
possible TR for imaging flexibility. Note that outer periph-
eral k-space data (50% of total) were used here as EMI
characterization data. For all three methods, the EMI elim-
ination results were comparable to those using dedicated
EMI characterization data in Figure 2. These simulation
results indicated that Deep-DSP outperformed existing
EMI prediction/cancelation methods even in absence of
separate or dedicated EMI characterization data.

Figure 4 compares the Deep-DSP with EDITER and
CNN methods for experimental shielding-free 0.055T
human brain imaging in the presence of strong broad-
band and narrowband EMI from external environments.
Results at three slice locations are shown. Consistent
with simulation results, Deep-DSP achieved significant
image-quality improvement. Note that, when EMI signals
were extremely strong, distinct EMI artifacts were still
present in EDITER results, but largely absent in CNN and
Deep-DSP results. In general, Deep-DSP produced more
effective EMI elimination than EDITER and CNN, as sup-
ported by SNR quantification in Table S2.

Using the raw data set in Figures 4–6 demonstrates
the effect of using different numbers of EMI sensing coils
(Ns = 1, 2, 4, and 10) or no dedicated EMI characterization
data on EMI elimination performance. Overall, Deep-DSP
yielded the best results, as evident from the image results
shown in Figures 5 and 6 and spectral analysis results
in Figure S4. With fewer EMI sensing coils (Ns = 1 or 2),
the degradation of EDITER performance became pro-
nounced, leading to a higher level of EMI residual artifacts
compared with the results using 4 or 10 EMI sensing
coils. Such degradation was largely expected, because
the analytical EDITER approach prefers the number of
EMI sensing coils to be larger than or equal to the num-
ber of EMI sources for accurate EMI signal estimation.
Meanwhile, the deep learning–based CNN and Deep-DSP
methods exhibited better tolerance. Note that Deep-DSP

F I G U R E 3 Electromagnetic interference (EMI) elimination for simulated brain data set without separate or dedicated EMI
characterization data. The T2-weighted brain data set and EMI data set were the same as those used for Figure 2. Outer 50% k-space data
acquired by MRI receive coil and EMI sensing coils within MR signal acquisition window was used for numerical fitting by EDITER and
model training by convolutional neural network (CNN) or deep learning convolutional neural network (Deep-DSP). Deep-DSP still achieved
more effective EMI elimination compared with EDITER and CNN. NRMSE, normalized RMS error.
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ZHAO et al. 119

F I G U R E 4 Electromagnetic interference (EMI) elimination for experimental shielding-free 0.055T brain imaging in the presence of
strong broadband (A) and narrowband (B) EMI. The T2-weighted brain data sets were acquired from 2 healthy adult subjects using the 3D
fast spin-echo protocol. EMI elimination was performed using EDITER, convolutional neural network (CNN), and deep learning
convolutional neural network (Deep-DSP). Images at three slice locations contaminated by broadband or narrowband EMI, without and with
EMI elimination, are displayed using the same scaling. Note that the display of the strong narrowband EMI was saturated. The yellow and
green boxes indicate regions of interest for SNR quantification in Table S2. Before EMI elimination, images were severely corrupted by EMI
artifacts. Deep-DSP accurately predicted MR signals, leading to significantly improved image quality.

still produced reasonable EMI elimination with only one
EMI sensing coil in this case. Furthermore, EMI elimi-
nation using 50% outer k-space data acquired within the
MR signal-acquisition window produced results largely
comparable to those using data acquired within the EMI
signal-characterization window (Figure 6). These exper-
imental results again demonstrated that Deep-DSP was
effective and robust, even with few EMI sensing coils
or/and without dedicated EMI characterization data.

Figure 7 shows the EMI elimination results
of shielding-free 0.055T brain data sets in coronal
T1-weighted, T2W, and FLAIR imaging. Note that, dur-
ing training data preparation, only the axial T2W brain
data set was used to synthesize EMI-contaminated MRI
receive-coil signals. Nevertheless, the trained models
effectively predicted MR signals for these three coronal
protocols. Together with the EMI elimination results
in Figures S5–S7, these results indicated that trained
Deep-DSP models were relatively insensitive to image
contents/contrasts or field strengths.

The EMI elimination results of the 1.5T phantom data
set with incomplete RF shielding are shown in Figure 8.
Without EMI elimination, EMI artifacts severely compro-
mised image quality. With EDITER and CNN using eight
EMI sensing coils, EMI artifacts were reduced but still pro-
nounced. With fewer EMI sensing coils, EMI artifacts in
the EDITER and CNN results became more pronounced.
In contrast, EMI artifacts were mostly eliminated in the
Deep-DSP results even with few EMI sensing coils.

4 DISCUSSION

In this study, we propose a novel active EMI elimination
strategy to tackle the RF shielding-cage requirement for
MRI. The proposed Deep-DSP directly predicts EMI-free
MR signals from signals simultaneously acquired by
MRI receive coil and EMI sensing coils. It exploits the
electromagnetic coupling between MRI receive coil
and EMI sensing coils as well as the typical MR signal
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F I G U R E 5 Electromagnetic
interference (EMI) elimination results of
experimental shielding-free 0.055T
brain data sets in Figure 4 with different
numbers of EMI sensing coils (Ns = 1, 2,
4, and 10). Raw T2-weighted brain data
sets were acquired in presence of strong
broadband (A) and narrowband (B)
EMI. The results demonstrated that deep
learning convolutional neural network
(Deep-DSP) outperformed EDITER and
convolutional neural network (CNN),
even with fewer EMI sensing coils.

characteristics in a data-driven manner through a
time-domain residual U-Net model. We demonstrate
that it works effectively, consistently outperforming the
recently developed EDITER and CNN methods.

Effective EMI elimination is challenging in realistic
unshielded imaging settings. First, EMI signals can be
emitted by multiple and diverse sources (e.g., from exter-
nal environments and internal low-cost scanner electron-
ics). Analytical transfer function–based EMI elimination
prefers the number of EMI sensing coils to be larger
than or equal to the number of EMI sources for transfer

function estimation using the numerical fitting
procedure.28 This suggests that effective and robust EMI
elimination in practice requires multiple EMI sensing
coils. Second, both MRI receive and sensing coils are
unavoidably subject to baseline electronic noise that pre-
vents accurate estimation of transfer functions in either
frequency or time domain (e.g., through additive combina-
tion or even amplification). Third, EMI signal propagation
chain inevitably can exhibit nonlinear responses.40 Finally,
EMI sources and/or surrounding environments often vary
dynamically, altering the actual transfer functions during
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F I G U R E 6 Electromagnetic
interference (EMI) elimination results of
experimental shielding-free 0.055T brain
data sets in Figure 4 with different
numbers of EMI sensing coils (Ns = 1, 2,
4, and 10) and without dedicated EMI
characterization data. Raw T2-weighted
brain data sets were acquired in presence
of strong broadband (A) and narrowband
(B) EMI. The results demonstrated that
deep learning convolutional neural
network (Deep-DSP) outperformed
EDITER and convolutional neural
network (CNN), even with fewer EMI
sensing coils and/or without separate
EMI characterization data.

scanning when EMI characterization data are acquired.
Altogether, these practical issues can easily compromise
the performance of transfer function–based EMI elim-
ination methods.29–32 Unsurprisingly, a deep learning
approach such as the CNN method produces improved
EMI elimination by mitigating these complex and largely
intractable issues in a data-driven and resilient manner.34

The proposed Deep-DSP approach is distinct from
existing transfer function–based methods29–33 as well
as the deep learning–based CNN method.19,34,35 Here,
a neural network model is trained to directly predict
EMI-free MR signals from signals acquired by MRI receive

coil and EMI sensing coils. During training, the model
learns EMI signal relationships among coils. In parallel,
it also captures the characteristic difference between
time-domain EMI signals and MR k-space signals, which
serves as prior knowledge for accurate MR signal predic-
tion (see Figure S8 for Deep-DSP EMI elimination using
no EMI sensing coils). Note that, unlike all previous meth-
ods in which EMI signals are first predicted and then
used to compute EMI-free MR signals through subtrac-
tion, Deep-DSP directly predicts EMI-free MR signals. It
thus bypasses the baseline noise additive/amplification
problem that is associated with the EMI signal-subtraction
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F I G U R E 7 Application of the proposed deep learning convolutional neural network (Deep-DSP) to various imaging protocols on a
shielding-free 0.055T brain MRI scanner. T1-weighted (A), T2-weighted (B), and fluid-attenuated inversion recovery (FLAIR)–like (C) coronal
brain data sets were acquired from a healthy adult subject using 3D gradient-recalled echo, 3D fast spin echo (FSE), and short-TR 3D FSE,
respectively. Electromagnetic interference (EMI)–free T2W axial brain data were used to synthesize EMI-contaminated MRI receive coil
signals for model training. Such trained models robustly predicted the T1W, T2W, and FLAIR-like coronal MR signals detected by the MRI
receive coil, leading to effective elimination of EMI artifacts. The results illustrated that the trained models were not image content–specific
nor contrast-specific.

procedure used in all existing EMI elimination meth-
ods. Intuitively, this should yield more accurate EMI
elimination against the confounding effect of baseline
noise in coils. As demonstrated in both simulation and
experimental results, Deep-DSP consistently exhibited
more effective EMI elimination than EDITER and CNN,
especially in presence of strong EMI signals (Figures 2
and 4 vs. Figure S2) or dynamically varying EMI signal
relationships between MRI receive coil and EMI sens-
ing coils (Figure S9), and/or with few EMI sensing coils
(Figures 5 and 6). Note that the effectiveness and robust-
ness of Deep-DSP could be compromised when using a
small number of EMI sensing coils (such as using only one

EMI sensing coil; see Figures 5 and 6) and/or insufficient
training data (Figure S1).

Deep-DSP uses a residual U-Net model architec-
ture. As illustrated in our recent work,19,34 a five-layer
CNN-based method could yield more effective EMI elim-
ination than analytical transfer function and EDITER
methods. This was because the versatile CNN model com-
bines multiple layers of simple functions, with which
the EMI signal relationship among coils could be better
characterized under realistic and diverse conditions when
compared with analytical methods that are based on the
simple transfer function concept. Intuitively, a deeper
CNN model that leverages prior knowledge about MR
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F I G U R E 8 Electromagnetic interference (EMI) elimination for 1.5T phantom imaging with incomplete RF shielding (i.e., RF shielding
room door open). The phantom data set was acquired on a clinical 1.5T superconducting magnet whole-body MRI scanner, with 63.9-MHz
resonance frequency. A head coil with eight channels was used as the MRI receive coils, whereas a separate knee coil with eight channels
placed on the patient bed was used as the EMI sensing coils. The outer 50% k-space data acquired by MRI receive coil and EMI sensing coils
within the MR signal-acquisition window were treated as EMI characterization data for numerical fitting by EDITER or model training by
convolutional neural network (CNN) or deep learning convolutional neural network (Deep-DSP). Images from one channel within the head
coil with and without EMI elimination are shown. Deep-DSP was observed to work well at 1.5 T, consistent with 0.055T results.

signal characteristics should also yield improved EMI
elimination, especially when EMI characteristics or/and
environments become complex. However, training a deep
CNN model may be difficult, particularly when the train-
ing data size is limited41 and lacks efficiency. With this
practical consideration, this study takes advantages of
both U-Net36 and ResNet37 by using a residual U-Net
model for direct MR signal prediction.

In this study, the model was demonstrated by train-
ing using scan-specific data acquired within the EMI
signal characterization window during the deadtime of
each TR (Figure 1B). The inclusion of such EMI signal

characterization window may compromise imaging flexi-
bility when the shortest possible TR is desired, such as in
the case of short TR TrueFISP or balanced SSFP imaging.
Nevertheless, this study also demonstrated the model
training using outer parts of the k-space data acquired
within the MR signal acquisition window (i.e., without
the need for any separate or dedicated EMI sig-
nal characterization). Such trained model produced
EMI elimination results largely comparable to those
using dedicated EMI characterization data (Figures 3
and 6). Note that previous methods also used data
acquired before imaging experiments42 or entire data
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acquired within the MR signal acquisition window
(i.e., whole k-space data)31 for EMI characterization.
Their performances could degrade when actual transfer
functions alter between EMI characterization data
acquisition and MRI data acquisition in the former case,
or when MR signal magnitude in k-space is strong in
the latter case (as illustrated in our recent study34). We
recommend the use of dedicated EMI characterization
data (Figure 1B) for more accurate EMI characteriza-
tion and elimination, especially in some scenarios in
which 1D temporal FE lines that contain little MR sig-
nals are insufficient or not available for Deep-DSP model
training (e.g., when the matrix size is small or in 2D
radial or spiral imaging). Note that, in reality, the EMI
characterization data-acquisition scheme imposes little
time-overhead constraints on most clinical MRI imaging
protocols.

When preparing training data for Deep-DSP model,
EMI-free MR k-space signals from an arbitrarily cho-
sen EMI-free data set are added into experimental
EMI-only MRI receive coil signals sampled within
the EMI signal-characterization window to synthesize
EMI-contaminated MRI receive coil signals. Both sim-
ulation and experimental results demonstrated that the
trained models were not sensitive to actual image content
or contrast of the arbitrary EMI-free data set. As shown
in Figures S5–S7 and Figure 7, the model trained using
axial T2W brain MR signals accurately predicted T1W brain
MR signals and phantom MR signals, as well as coro-
nal T1W/T2W/FLAIR brain MR signals. Thus, Deep-DSP
training data preparation incurs no extra requirement or
data acquisition in practice. For example, any publicly
available EMI-free k-space MRI data set can be used for
synthesizing training data for this purpose.

It is noteworthy that Deep-DSP also worked effectively
not only for the low-frequency regime (∼2.3 MHz) on a
0.055T brain MRI scanner but also for high-frequency
regime (∼63.9 MHz) on a 1.5T whole-body scanner
(Figure 8). These preliminary results, together with our
previous 1.5T results,34,35 demonstrate the potential appli-
cability of the Deep-DSP framework to both ULF and
high-field MRI.

The superior EMI elimination performance of the pro-
posed method did not rely on a large training data set
(Figure S1). More importantly, the model training con-
verged fast and was computationally efficient. For the
simulated brain data set with about 12-k training sam-
ples (where EMI signals were acquired with acquisition
matrix= 128× 126× 32 and NEX= 4), model training took
6 min compared with 1 min for EDITER with a 7× 7 ker-
nel size and 5 min for our recent CNN method, respec-
tively, on a modest set of Quadro RTX 8000 GPU and Intel
Core i9-10 900X CPU. The model architecture is relatively

simple, and its parameters can be further optimized in the
future to accelerate the training or achieve near real-time
EMI elimination.

5 CONCLUSION

This study develops a new strategy of active EMI sensing
and deep learning direct EMI-free MR signal prediction
for truly RF shielding-free MRI in pursuit of low-cost,
portable, or/and patient-friendly applications. The pro-
posed Deep-DSP not only exploits the coupling relation-
ship between MRI receive coil and EMI sensing coils but
also leverages prior knowledge about MR signal charac-
teristics in a data-driven manner. Despite its deep learning
nature, Deep-DSP framework is computationally simple
and efficient. It yields effective and robust EMI elimina-
tion, consistently and significantly outperforming existing
methods in terms of substantially improved EMI elimi-
nation and use of few EMI sensing coils. Furthermore, it
works well without dedicated EMI characterization data.
The proposed strategy may also offer a new EMI elimina-
tion approach for other RF signal detection applications
in the presence of strong and complex EMI emissions
beyond MRI.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Electromagnetic interference (EMI) elimina-
tion using EDITER, convolutional neural network (CNN),
and the proposed deep learning direct MR signal pre-
diction (Deep-DSP) methods with different sizes of EMI
characterization data (data sizes= 12 k, 8 k, 4 k, and 2 k)
for simulated brain data set in Figure 2. The EMI elim-
ination results using Deep-DSP yielded smaller normal-
ized RMS errors (NRMSEs) than those using EDITER and
CNN methods in general. The results suggested that the
improved performance of the Deep-DSP over EDITER and
CNN did not critically rely on a large number of training
data.
Figure S2. Deep learning direct MR signal prediction
(Deep-DSP) method versus existing EDITER and convo-
lutional neural network (CNN) methods for simulated
brain data set in Figure 2 with electromagnetic interfer-
ence (EMI) signal level reduced by a factor of 2.5 when
simulating data sets. When EMI signal level was weak,
EDITER and CNN obtained EMI elimination performance
comparable to the proposed Deep-DSP.
Figure S3. Residual error histograms computed from the
error maps corresponding to electromagnetic interference
(EMI) elimination results of simulated T2-weighted (T2W)
brain data sets in Figure 2 (A) and Figure S2 (B).
Figure S4. Spectral analysis of the electromagnetic
interference (EMI)–eliminated results shown in Figures 5
and 6. Raw T2-weighted (T2W) brain data sets were
acquired in presence of strong broadband (A) and nar-
rowband (B) EMI. The EMI elimination was performed
without using EMI characterization data or with differ-
ent number of EMI sensing coils (Ns = 1, 2, 4, and 10).
Magnitude averaged spectra of all frequency-encoding
(FE) lines further verified the effective EMI elimination
performance of deep learning direct MR signal prediction
(Deep-DSP).
Figure S5. The proposed electromagnetic interference
(EMI) elimination for simulated T2-weighted (T2W) brain
data set. The T1W brain data set acquired at 3 T was used
as ground truth. The same EMI data set used for Figure 2
was retrospectively added into the ground truth to form
EMI-contaminated data sets. The model trained for the
simulated T2W brain data set in Figure 2 was directly
applied to predict T1-weighted (T1W) brain MR signals. The
results demonstrated that the trained model was not image
contrast–specific.

Figure S6. The proposed electromagnetic interference
(EMI) elimination for simulated phantom data set. The
phantom data set acquired at 3 T was used as ground
truth. The same EMI data set used for Figure 2 was
retrospectively added into the ground truth to form
EMI-contaminated data sets. The model trained for the
simulated T2-weighted (T2W) brain data set in Figure 2
was directly applied to predict phantom MR signals. The
results demonstrated that the trained model was not image
content–specific.
Figure S7. EMI elimination results of experimental
shielding-free 0.055T brain data set in Figure 4B using
the deep learning direct MR signal prediction (Deep-DSP)
model trained with 3T or 0.055T electromagnetic inter-
ference (EMI)–free MR signals. The 0.055T EMI-free MR
signals for synthesizing EMI-contaminated MRI receive
coil signals were obtained by acquiring T2-weighted (T2W)
brain k-space data on the 0.055T brain MRI scanner with
RF shielding cage installed and then performing EMI elim-
ination using the convolutional neural network (CNN)
method to remove EMI signals generated by internal scan-
ner electronics. The Deep-DSP model trained with 0.055T
EMI-free T2W brain signals yielded comparable EMI elim-
ination results as the Deep-DSP model trained with 3T
EMI-free T2W brain signals.
Figure S8. The proposed deep learning direct MR sig-
nal prediction (Deep-DSP) electromagnetic interference
(EMI) elimination for experimental shielding-free 0.055T
brain data sets in Figure 4 using 10 EMI sensing coils
or no EMI sensing coils. Raw T2-weighted (T2W) brain
data sets were acquired in presence of strong broadband
(A) and narrowband (B) EMI. Without any EMI sensing
coils, the Deep-DSP model was trained using only syn-
thesized EMI-contaminated MR signals as model inputs,
whereas EMI-free MR signals served as model targets. The
EMI elimination performance of Deep-DSP was largely
degraded as expected. However, it still reduced the EMI
artifacts, suggesting that the Deep-DSP method could
leverage prior knowledge about MR signal characteristics
for EMI elimination.
Figure S9. Electromagnetic interference (EMI) elimina-
tion for experimental shielding-free 0.055T brain imaging
in presence of subject body position change. Four indi-
vidual data sets were sequentially acquired from a nor-
mal adult using the 4-average 3D fast spin echo (FSE)
fluid-attenuated inversion recovery (FLAIR) protocol. A
moderate subject position change was caused by bending
of lower legs during the third acquisition. This evalua-
tion is relevant to some realistic EMI elimination scenar-
ios, in which dynamically varying EMI signal relation-
ships between MRI receive coil and EMI sensing coils can
be caused by subject position changes or movements of
nearby attending staff and equipment during scan. The
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EMI elimination was performed by EDITER with differ-
ent thresholds (δ= 0.5, 0.95, 0.97, and 0.99), convolutional
neural network (CNN), and the proposed deep learning
direct MR signal prediction (Deep-DSP) methods. The
brain images without and with EMI removal before aver-
aging are shown on the left, whereas the images aver-
aged from four acquisitions are shown on the right. With
smaller or larger threshold, the EDITER EMI elimination
was suboptimal, exhibiting pronounced residual EMI arti-
facts as indicated by arrows. Furthermore, the proposed
Deep-DSP method outperformed EDITER with manually
optimized threshold.
Table S1. SNR quantification corresponding to electro-
magnetic interference (EMI) elimination results of simu-
lated T2-weighted (T2W) brain data sets in Figure 2 (A) and
Figure S2 (B).

Table S2. SNR quantification corresponding to electro-
magnetic interference (EMI) elimination results of exper-
imental shielding-free 0.055T brain data sets in Figure 4.
Raw T2-weighted (T2W) brain data sets were acquired in
presence of strong broadband (A) and narrowband (B)
EMI.
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