Split Learning in 6G Edge Networks

Zheng Lin, Guangiao Qu, Xianhao Chen, Member, IEEE, and Kaibin Huang, Fellow, IEEE

Abstract—With the proliferation of distributed edge computing
resources, the 6G mobile network will evolve into a network
for connected intelligence. Along this line, the proposal to
incorporate federated learning into the mobile edge has gained
considerable interest in recent years. However, the deployment
of federated learning faces substantial challenges as massive
resource-limited IoT devices can hardly support on-device model
training. This leads to the emergence of split learning (SL) which
enables servers to handle the major training workload while still
enhancing data privacy. In this article, we offer a brief overview
of SL and articulate its seamless integration with wireless edge
networks. We begin by illustrating the tailored 6G architecture
to support split edge learning (SEL). Then, we examine the
critical design issues for SEL, including resource-efficient learn-
ing frameworks and resource management strategies under a
single edge server. Furthermore, from a networking perspective,
we expand the scope to multi-edge scenarios, exploring multi-
edge collaboration and model placement/migration. Finally, we
discuss open problems for SEL, including convergence analysis,
asynchronous SL, and label privacy preservation.

Index Terms—6G, split learning, federated learning, edge
computing.

I. INTRODUCTION

The conventional cloud-based model training, which cen-
tralizes all data for processing, is no longer sufficient to
meet the soaring data traffic demands, ubiquitous computing
needs, stringent latency, and personalization requirements of
emerging Internet-of-Things (IoT) applications. To overcome
these challenges, edge learning has emerged as an exciting
research direction, which harnesses the power of multi-access
edge computing (MEC) to support machine learning and
local training, thereby achieving reduced backhaul bandwidth
costs, ultra-low latency, and context awareness. For example,
as a subdomain of edge learning, federated edge learning
(FEEL) has attracted significant research and industry interest
in the past few years due to its privacy-enhancement nature,
which has already been discussed in 3GPP release 18 for 5G
standardization [1].

However, federated learning (FL) also has its limitations.
The core idea of FL is to leverage local model training and
global model aggregation for collaborative learning without
accessing users’ raw data, as illustrated in Fig. [II Unfortu-
nately, FL. may be infeasible for a large number of resource-
limited IoT devices since the entire model is trained at end
devices. To overcome this hurdle, split learning (SL) has
emerged as a promising model training scheme. By split-
ting a model and placing a part of it at an edge server,
SL allows a server to handle the major workload of deep

Zheng Lin, Guangiao Qu, Xianhao Chen, and Kaibin Huang are with
the Department of Electrical and Electronic Engineering, University of
Hong Kong, Pok Fu Lam, Hong Kong (e-mail: linzheng@eee.hku.hk;
gqqu@eee.hku.hk; xchen@eee.hku.hk; huangkb@eee.hku.hk). (Correspond-
ing author: Xianhao Chen)

neural networks (DNNs) based on model splitting while still
retaining a few early layers and raw data at local devices
for privacy preservation. This approach significantly reduces
the computing, storage, and memory requirements for model
training, making machine learning (ML) more accessible to
resource-constrained devices.

As an alternative/complementary approach to FL, we be-
lieve that SL has the potential to become one of the pre-
dominant Al technologies in the 6G edge. 6G will be a
network of sensors, computing devices, and ML to achieve
superior performance for ubiquitous Al tasks while addressing
concerns of data ownership and privacy [2l]. The favorable
characteristics of SL are perfectly aligned with the vision of
6G. On the one hand, as explained earlier, SL allows for
training workload offloading while enhancing data privacy.
This is of paramount importance for pervasive mobile and
IoT devices with constrained hardware, such as mobile phones
and smart cameras, which may struggle to support compute-
intensive local training as required in FL. It is also difficult to
recover the raw data in SL due to the exchange of activations
and the server’s lack of knowledge of client-side models.
On the other hand, SL enables better resource utilization by
leveraging dispersed computing and memory resources over
the network edge. Nowadays, it is common for deep neural
networks to contain millions or even billions of parameters,
making them challenging to train at the edge. For instance,
the large language model (LLM) 7B LLaMA, which is the
smallest version of LLaMA feasible for on-device deployment,
still has 7 billion parameters. In the 6G era, edge computing
resources will become ubiquitous, where servers can be the
ones in the network core, macro base stations, small base
stations, pico base stations, and even autonomous cars and
mobile phones. By enabling model splitting, SL at the 6G
edge can facilitate flexible computing load sharing among end
devices and multiple servers for collaborative learning. This
enables the best utilization of distributed computing resources
for performing resource-intensive edge training.

The integration of mobile edge networks and SL presents
unique technical challenges and exciting research opportu-
nities. To date, this field remains relatively under-explored.
To facilitate effective SL at the edge, the main design chal-
lenges arise from the need for frequent transmissions of
high-dimension features and back-propagated gradients over
bandwidth-limited wireless channels and training deep models
over resource-constrained edge networks. These problems can
only be properly addressed by a holistic design of SL and
communication-computing resource management, which is
highly challenging. To our best knowledge, this is the first
article that focuses on how to effectively support split edge
learning (SEL) in resource-constrained wireless networks.

This article aims to thoroughly examine the deployment of

Server

Global
model

D

o

=

Server-side
model

Cut laycr/

Device
Q

model

E PR
VA
a
5

B s 59
Sequential

FL

vanilla SL SFL PSL

<—> Model exchange <--» Model averaging

--m Activations —»= Activations’ gradients

Fig. 1: An illustration of FL and the state-of-the-art SL frameworks, where model averaging in SFL is conducted on a fed

server located close to clients [3].

SL in mobile edge networks. To this end, we first envision the
6G architectural design tailored for SL. Second, we identify
the potential directions for efficient SL design that lever-
ages model compression, activation compression, and back-
propagated to decrease the resource consumption of SL. Third,
we introduce innovative designs for resource management
issues related to SEL under both single-edge and multi-edge
scenarios, such as dynamic resource allocation to optimize idle
resource utilization, hierarchical or multi-hop SL for collabora-
tive training of large models, and model placement/migration
strategies to accommodate user distribution and mobility. In
summary, this article provides the first comprehensive review
of SEL and highlights research opportunities. It is important to
note that despite the similarity in model splitting, the problems
for SEL significantly differ from edge split inference which
has been covered by some existing articles [4], as the goal
of SEL is model training/fine-tuning rather than predictions at
the edge.

This article is organized as follows. We begin by examining
the existing SL approaches in Section [l Our discussion will
then shift to the synergy between SL and 6G edge. Particularly,
we elaborate on the 6G architectural design for SL in Section
followed by in-depth discussions on innovative resource-
efficient SL framework design in Section We present the
resource management strategies for SL under single-cell and
multi-edge scenarios in Section[V]and Section [V1] respectively.
Finally, we identify open problems for SEL in Section [VIIland
conclude this article in Section [VIIIl

II. BACKGROUND
In this section, we briefly introduce several existing SL
approaches and compare them with FL.

A. Federated learning

Standard machine learning approaches generally run opti-
mization algorithms like Stochastic Gradient Descent (SGD) in
a remote cloud center with centralized training data, resulting
in severe privacy leakage. To mitigate this issue, Google pro-
posed FL in 2016, enabling mobile phones to collaboratively
learn a shared model while keeping all the training data
locally [3]]. Specifically, devices only train and upload the
model updates to the server for aggregation and download
the aggregated model from the server, as shown in Fig.
Due to the huge size of models and the repeated model
upload/download, FL suffers from significant communication

latency and exerts a tremendous burden on telecommunication
infrastructure. For this reason, FL has sparked considerable
interest from the telecommunication industry, which aims
to implement communication-efficient FL. deployment at the
mobile edge, leading to the emergence of a new field known
as “federated edge learning” (FEEL).

B. Split learning

Given the increasing size of models and resource-limited
edge devices, FL may not be suitable for various intelligent
applications due to the need for full model training on devices.
As introduced in 2018, SL has emerged as a privacy-enhancing
collaborative learning framework that addresses resource lim-
itations while preserving data privacy. The idea is simply to
partition a model into two or more parts and place them on
the client and server sides, respectively, enabling the server to
share the training workload.

There are several variants of SL. Vanilla SL, which is the
original form, operates sequentially, which trains the model for
one client at a time [[6]. However, the sequential training pro-
cess of vanilla SL incurs excessive training latency. Moreover,
under highly non-IID settings, the sequential training could
yield poor learning performance as the model tends to better
fit the data distribution of the last client.

To address these issues, split federated learning (SFL) [3]
and parallel split learning (PSL) [7], [8] have been devised to
parallelize client-side model training, empowering clients to
train their sub-models simultaneously, as illustrated in Fig.
The distinction between SFL and PSL lies in the synchro-
nization requirements: following the spirit of FL, the former
requires model averaging for client-side models periodically
whereas the latter does not require it. As a result, SFL results
in increased communication costs due to client-side model
transfer. Moreover, SFL requires separate and non-colluding
servers for server-side model training and client-side model av-
eraging, respectively. Otherwise, with the output of the client-
side model and the client-side model parameters, an adversary
server can easily recover the input raw data. Conversely, PSL
eliminates the need for client-side model synchronization,
which overcomes the above limitations. Yet, it naturally results
in varied client-side model parameters across devices, which
may adversely impact training convergence in comparison to
SFL, as shown in [9].

Model split

7, 7,

6G radio access networks

Fig. 2: The overall architecture for SL in 6G.

C. Federated Learning v.s. Split Learning

A natural question is how to choose between SL and FL,
both of which are privacy-enhancing collaborative learning
frameworks. A crucial factor is the computing capability of
end devices. As previously mentioned, SL is a natural solution
when the end device is resource-limited, which can hardly train
a large model due to computing and memory constraints [[10].

From a communication perspective, when the training
dataset from clients is large, FL. may be preferable as SL incurs
large volumes of smashed data that is proportional to the size
of the dataset. In contrast, since FL involves model transmis-
sions, SL becomes more communication-efficient when the
data size of the model is larger than that of smashed data
(e.g., for ResNet-152, when batch size is 32, the 37-th layer
smashed data volume is approximately 0.49 MB, the model
size is however 230 MB.). The detailed comparison of FL
and the state-of-the-art SL frameworks is illustrated in Table
1 in [9].

III. ARCHITECTURAL DESIGN FOR SPLIT EDGE LEARNING

SEL demands a holistic design of communications and
training because there exists a fundamental tradeoff between
the computing cost for training sub-models and the communi-
cation cost for transmitting smashed data (i.e., intermediate
activations/back-propagated gradients) between the collabo-
rating devices. A well-designed supporting architecture is
essential to optimize training convergence under a resource-
constrained wireless network. 6G, which builds upon 5G, fea-
tures the true convergence of communications and computing,
providing opportunities to advance the integration of MEC
and SL. With this in mind, we will envision the potential 6G
network architecture tailored for SL.

Due to resource limitations, a single computing de-
vice/server may not be capable of training/deploying a large
Al model. To enable effective SL service provisioning, a
hierarchical system is necessary to handle services with dif-
ferent computing loads, delay constraints, and personalization

Network
management
for SL

Cloudlet

6G core

Remote
cloud

requirements. 6G SL system comprises data sources, such
as smart cameras, mobile phones, and autonomous cars, and
heterogeneous cellular base stations, such as small and macro
base stations, edge servers (cloudlets) located at cell aggre-
gation sites, and the remote cloud. As a result, versatile Al
models, including complete or partial models, are distributed
across multiple levels of the system for collaborative training.
In general, a larger (sub) model can be placed at a more
powerful node further away from data sources whereas a
smaller (sub) model can be stored at the resource-constrained
edge devices/servers. The high-level computing nodes can also
store (sub) models with more general representations for usage
by users at a large scale, while lower-level edge nodes store
(sub) models better fitting local environments. Depending on
the configurations, smashed data can be exchanged between
these devices/servers through device-to-device (D2D), vehicle-
to-vehicle (V2V) links, wireless backhaul, or wired backhaul,
as illustrated in the Fig.

In SL, model training across multiple computing de-
vices/servers requires judicious resource coordination. To pro-
vide end-to-end QoS guarantees, centralized control is ar-
guably indispensable. Fortunately, the central intelligence is
aligned well with 6G architecture. To achieve this, the 6G
edge can implement software-defined networking (SDN) to
facilitate model transfer, smashed data routing, and computing
resource allocation. By monitoring network link status, and
computing/storage/memory resource availability, the central
controller proactively splits models, manages computing and
networking resources, configures data routing, and conducts
model placement/migration. End-to-end network slicing can
be utilized for various SL tasks to achieve differentiated QoS
provisioning. For example, SL tasks for autonomous driving
or robot control demand ultra-low latency while SL tasks
for training a next-word prediction model may not be time-
sensitive. Finally, the 6G edge should also have mobility man-
agement components to enable seamless service and model
migration, allowing context-aware models to follow users as

users move. By implementing these approaches, the 6G system
can leverage network-wide distributed resources and meet the
QoS requirements of diverse SL applications.

IV. RESOURCE-EFFICIENT SPLIT LEARNING
FRAMEWORKS

Despite the promising benefits, the limited spectrum and
computing resources at the network edge pose significant
hurdles to the effective implementation of SL. It is often
worthwhile to trade off training accuracy for reduced latency
under limited networking and computing resources. In what
follows, we present innovative SL. frameworks that decrease
the resource demands in different aspects.

A. Split Learning with Activation Compression

First of all, it is of paramount importance to reduce com-
munication overhead for smashed data exchange over the split
layer between devices and the edge server. To mitigate this is-
sue, one promising direction is to adopt an auto-encoder, which
trains an encoder to compress the data and then a decoder to
recover the data [[L1]. In [L1], cyclic convolution is employed
to compress multiple features into a single compressed feature,
which is decoded on the server side through cyclic correlation.
Although the process introduces noise, the impact on learning
performance is shown to be small.

As neural networks, auto-encoders bring additional compu-
tation and training costs and are challenging to understand
theoretically. Thus, the other direction is to directly compress
the smashed data. To this end, feature compression has been
explored in split inference by pruning activations [4]. Never-
theless, its impact on SL is worth further exploration. Also,
it is important to theoretically characterize the convergence
bound of SL in terms of compression ratios, based on which
an SL scheme with a carefully designed feature compression
ratio can be developed to achieve the optimal balance between
training accuracy and latency.

B. Split Learning with Weight Compression

The second problem is how to reduce the computing work-
load, especially on devices. Even though a server handles the
majority of the workload in SL, the remaining computing load,
such as several early layers necessary for concealing the raw
data, might still be too demanding for resource-constrained
mobile/IoT devices. A feasible solution is training on com-
pressed models to further reduce computing and memory costs.
There are several popular compression techniques [12]: 1)
Model quantization reduces the bitwidths of both weights and
activations (e.g., from full precisions to 8 bits) to lower the
training latency and memory requirements; ii) model pruning
directly eliminates the number of parameters of DNN. Our
goal is to decrease computation costs by directly training
on compressed weights as well as reduce communication
overhead by reducing the bitwidths of activations at the cut
layer. In SL, it is beneficial to devise a model compression
scheme that allows clients and the edge server to use varied
compression ratios based on their computing capabilities. For
example, since a server can be much more powerful than a
client, clients can train on a low-precision sub-model, while

-+ —> Last-layer
activation’s
gradient
aggregation

ko ») Server

e Server-si B ‘ ¢

s

v Y Device 5
']’p ’]’D Client-side - : ;
1l] model :
Poodb b
EPSL

m- Activations —e Activations’ gradients Aggregated activations’ gradients

Fig. 3: The proposed EPSL scheme in [9].

80

~
gl

S
3 80 0\
8
% 8511 4, —EPSL
g —PSL

60 —SFL

0 10000 20000 oo
FL
55
0 2000 4000 6000 7000

Time (seconds)

Fig. 4: The test accuracy of ResNet-18 on HAM10000 dataset
under FL, vanilla SL, SFL, PSL and EPSL. The data samples
are distributed over 5 clients under IID settings, where the
total available bandwidth is 70 MHz, the computing capability
of each client is uniformly distributed within [0.1,0.5] x 10°
cycles/s, and the computing capability of the server is 7 x 10°
cycles/s.

a server can handle a high-precision sub-model. Theoretically
analyzing the impact of this scheme is an interesting topic for
future research, which can offer guidance on how to deploy
SL with compression in resource-constrained settings.

C. Split Learning with Back-propogated Gradient Aggregation

The final challenge we need to address is reducing server-
side computing workload. Although an edge server is generally
more powerful than an edge device, it can also become the
bottleneck in PSL/SFL since the server may serve a massive
number of clients and often take over the majority of the
training workload. To tackle this issue, we have proposed effi-
cient parallel split learning (EPSL) [9] to reduce the dimension
of back-propagated gradients by aggregating them at the last
layer, as depicted in Fig. Bl Compared with existing state-of-
the-art SL benchmarks, such as SFL and PSL, this method can
reduce back-propagation computing and communication costs
from O(M) (number of clients) to O(1). Note that EPSL can
also control the aggregation ratio ¢ in the backpropagation
process to strike a balance between the reduction in commu-
nications/computing costs and learning accuracy, where ¢ = 0
reduces EPSL to PSL. The superiority of EPSL over other
SL approaches is demonstrated in Fig. 4l where the back-
propagated gradients are reduced without noticeably impacting
the learning accuracy (i.e., with 0.46% deterioration when the
model converges). More details can be found in [9].

SL tasks with QoS requirements

Accuracy | | Latency Energy

Efficient SL
Frameworks

Activation
compression

Weight compression

P -

Back-propagated

gradient aggregation

Holistic Resource ("Cyt Jayer
Radio resources
Computing resources
Client selection

. gg Smashed data l

Clients

Edge server

Fig. 5: An illustration of SL under single-cell systems.

V. RESOURCE MANAGEMENT FOR SPLIT LEARNING: THE
SINGLE-CELL PERSPECTIVE

In parallel split learning, the training latency is determined
by the slowest client, also known as the “’straggler.” To mitigate
this issue, the channels and server-side computing resources
should be judiciously allocated to the stragglers to optimize
the training process. Although the straggler effect is also
present in FL, parallel split learning involves model splitting
and smashed data exchange, making the design significantly
different from the approaches for FL. In light of these needs,
we will discuss network resource allocation problems tailored
for SEL under a single cell as shown in Fig.

A. Joint Resource Allocation and Model Split

Network resource allocation is tightly coupled with model
splitting in SL, distinguishing it from FL. The split layer
significantly impacts training latency, which can result in
varied training workloads between devices and edge servers
and different communication overheads due to the size of
layer output. In particular, when splitting the model at a
“deeper” layer, more computing workload is left on the client
side, while the communication overhead can be potentially
reduced as the size of layer output often shrinks as it traverses
deeper, such as in most convolutional neural networks (CNNs).
Consequently, the joint optimization of model splitting and
resource allocation is essential to strike a good balance be-
tween computing and communication resources. On the other
hand, since an edge server in SL supports parallel training
for multiple clients, allocating more computing and channel
resources to the straggler is necessary to compensate for
its limited local computing and communication capabilities.
Along this line, Wu et al. propose a cluster-based SL in which
clients concurrently train the model in each cluster based on
SFL [[13]. Subsequently, the model undergoes training across
different groups based on the traditional SL method. This ap-
proach stochastically optimizes the cut layer selection, device
clustering, and radio spectrum allocation, where the cut layer
selection decision is made in a larger timescale whereas device
clustering and radio spectrum allocation decisions are made in
a smaller timescale. Taking a step further, it is vital to develop
on-demand resource scheduling schemes for PSL/SFL. The
existing solutions allocate fixed resources for each client
during a training round [9]], [[13]. However, this static resource
partitioning leaves resources idle for a significant portion of
the time in SL. For instance, when a client performs forward

propagation, there is no data to transmit, leaving the assigned
channels and server-side computing resources idle. Unlike FL
with a fixed data size for exchanged data (i.e., the size of the
model), SL has the flexibility to control the computing and
communication overhead via batching. Therefore, exploring
on-demand resource scheduling for PSL/SFL, which dynami-
cally allocates channel and computing resources to clients in
need to minimize latency, is worth further investigation.

B. Client Selection

Due to resource limitations, selecting all active clients
for training may be impractical. Considering partial client
participation, client selection plays a crucial role in SEL. The
6G edge demands a unified client selection framework taking
two factors into account: 1) the number of selected clients
(or training data samples) and 2) the data diversity. On the
one hand, some works for distributed learning aim to select as
many as clients of resource heterogeneity as possible under
deadline requirements [14]. The rationale is that involving
more participants (or equivalently, more data samples) joining
the training generally leads to faster convergence speed. On
the other hand, maximizing the number of clients can result
in a biased model, because in this case, client devices with
poor channel conditions (e.g., at the cell edge) and limited
computing capabilities are likely to be excluded. Therefore, it
is also necessary to select clients based on their data distri-
butions. Unlike FL, SL can select clients based on smashed
data, which is essentially high-level features of original data.
A promising idea is to select a set of clients with smashed
data better representing the global smashed data distributions.
The effectiveness of this strategy demands further validation.
Note that ensuring data diversity could contradict the goal of
selecting more clients within a deadline. The unified client
selection framework is expected to balance the number of
clients selected and the data diversity for SL.

VI. RESOURCE MANAGEMENT FOR SPLIT LEARNING:
THE NETWORKING PERSPECTIVE

The growing size of Al models presents a substantial chal-
lenge for edge learning. Based on multi-edge split learning,
we can deploy large models at the 6G edge while overcom-
ing the computing and memory constraints through sharing
the workloads among distributed edge servers. Furthermore,
model placement and migration are anticipated to be basic
components of SEL. This section is devoted to these aspects,
which examine SEL from a networking perspective.

A. Hierarchical Split Learning

The practical 6G systems feature hierarchical computing
architecture with cloud/edge servers of various levels, as
illustrated in Fig.[2] To facilitate effective learning, it is crucial
to coordinate multi-tier resources. It is important to note that,
in comparison to the more common two-level SL, multi-level
server collaboration provides greater flexibility in achieving
a balanced trade-off between communication and computing.
To demonstrate the effectiveness of multi-level SL, let us
consider a three-tiered user-edge-cloud architecture. In this
case, the communication bottleneck and latency often lie in
the edge-cloud link. Meanwhile, as noted earlier, the layer

[l User-edge-cloud SL
I User-edge SL
[User-cloud SL

8

Total training latency (mins)
g

2000
Training dataset size (samples)

4000 6000 8000

Fig. 6: The total training latency of user-edge-cloud, user-edge,
and user-cloud architectures for achieving target accuracy on
HAM10000 versus the training dataset size. The data samples
are distributed over 5 clients under IID settings, where the
computing capability of the cloud is 20 x 10° cycles/s, the
edge-cloud link capacity is set to QLO of the user-edge link
capacity [15], and other key parameters are consistent with
Fig. @

size tends to diminish as it progresses deeper in many practical
models like CNNs. Based on this observation, assigning some
layers to end users and some other layers to the edge server
allows for a deep and more “narrow” split layer between
the edge and cloud, thereby reducing communication costs.
In contrast, a two-tiered user-cloud architecture could involve
excessive communication latency due to a large volume of
smashed data exchange with the cloud for a “wider” early split
layer (as the user can only execute several early layers). On
the other hand, the two-tiered user-edge architecture, in spite
of eliminating the need for cloud-edge transmissions, lacks
adequate computing power at the edge. By considering PSL
with five clients, Fig. [6] demonstrates the superiority of the
hierarchical cloud-edge-user SL architecture over these two-
tiered counterparts. To this end, exploring hierarchical SL with
potentially more levels for large-scale users is a promising
research direction.

B. Multi-hop Split Learning

We extend our considered scenarios to the general mesh
network. The aforementioned hierarchical SL is a type of
multi-hop SL, yet confined to the “vertical” paradigm only
consisting of servers of different levels. In a more general
sense, numerous small/macro base stations can form a mesh
of edge servers for multi-hop split learning. The primary mo-
tivation is to better share the workload among multiple servers
to handle compute-intensive model training. To optimize the
performance, it is essential to examine the joint system design
of model splitting and data routing in multi-hop edge comput-
ing networks, taking into account bandwidth, computing, and
memory constraints. In the 6G mobile networks, centralized
smashed data routing can be implemented by considering sub-
model splitting/placement and computing/bandwidth resource
constraints in a centralized manner with SDN. This approach
is expected to be more effective than distributed routing due
to the global knowledge obtained by the central controller.

In addition to static edge servers, multi-hop SL can also
be implemented in mobile ad hoc networks within the 6G

paradigm. For example, a vehicular platoon can implement
SL by partitioning and sharing a model among the vehicles
within the group based on vehicle-to-vehicle (V2V) commu-
nications. Based on device-to-device (D2D) communications,
smartphone users can also train a large model by splitting
it into several parts. All these scenarios could capitalize on
the dispersed resources at the network edge, as a single de-
vice/edge server may not be able to handle compute-intensive
training tasks individually.

C. Edge Model Placement and Migration

The 6G network edge processes distributed storage re-
sources, which can be explored for the placement and mi-
gration of versatile Al models to facilitate SL operations.
Split learning/inference can leverage “partial model place-
ment” to enhance the caching performance due to the fact
that users and servers can execute part of the neural net-
works. Therefore, there exists a tradeoff between edge storage
and communication and computing costs. While placing a
larger portion of a model at the edge node occupies more
storage space, it potentially reduces communication costs for
exchanging data with other nodes. Therefore, it is crucial to
jointly design model splitting and model placement for service
placement/migration, considering bandwidth, computing and
memory constraints. Besides, model placement/migration in
SL can account for time-varying geographical data distribu-
tions of clients. There exist general (partial) models that suit
a broad range of users/services (e.g., autonomous driving) but
lack supreme task-specific performance, and also fine-tuned
(partial) models specialized at certain tasks (e.g., autonomous
driving for urban environments under rainy days). In model
training/inference, the appropriate placement of these (partial)
models enables real-time and low-cost data/model transfer
between data sources and computing servers. These factors
necessitate a revisit of service placement/migration problems
under the edge computing paradigm.

VII. OPEN PROBLEMS

Although we have highlighted some research challenges and
solutions, there are still a few pressing research issues. We
discuss these open problems as follows.

A. Convergence Analysis for Parallel Split Learning

Convergence analysis plays a pivotal role in resource op-
timization for SEL, as it guides us to allocate resources to
accelerate training. Essentially, PSL can be regarded as a
special case of SFL where client-side models will never be
aggregated. In general, the convergence of SFL still requires
further understanding, especially on how client-side model
aggregation will impact model convergence. In the extreme
case, PSL eliminates the need for client-side model aggrega-
tion, resulting in the same server-side model and varied client-
side models across devices. Although empirical experiments
have demonstrated that its impairment to learning performance
appears to be small [9)], to our best knowledge, there is
no theoretical analysis showing the convergence of PSL yet,
which demands further research efforts.

B. Asynchronous Split Edge Learning

In the current SFL/PSL framework, an edge server updates
the model only when accomplishing the training for all clients.
However, when an edge device requires much longer training
latency or transmission latency due to harsh channel condi-
tions, others have to wait. Asynchronous PSL enables the
server to update the server-side model as long as it completes
training for one or a given number of clients, thereby boosting
resource utilization. However, similar to asynchronous FL, this
process potentially hinders model convergence because the
stragglers will be under-represented due to less participation in
model updates. Consequently, it is crucial to manage “model
staleness” in asynchronous SFL and PSL by selecting the
appropriate model aggregation frequency, which should adapt
to the resource heterogeneity at the wireless edge.

C. Split Edge Learning with Label Privacy Preservation

In conventional SL, labels should be placed on the server
side. However, the data label sometimes contains private-
sensitive information (i.e., the disease a patient may have),
which must be preserved from the edge server. To overcome
this, U-shaped split learning has been proposed in [6], where
both the first and last layers are placed on the client side,
allowing the output layers and their respective labels to remain
local. However, this paradigm introduces additional communi-
cation costs due to the presence of an extra split point, which
necessitates careful selection of two split layers, as well as the
effective management of additional data transfer over wireless
networks.

VIII. CONCLUSIONS

In the era of 6G, we anticipate that split edge learning can
significantly lower the resource demand for on-device model
training, allowing for rapid expansion of machine learning
across massive IoT devices. This article reviewed the recent
advancements in SL and articulated its seamless integration
with the 6G edge from both learning and communication
perspectives. As a field that remains largely uncharted, a rich
set of research opportunities exist, such as the development
of more effective and efficient SL frameworks and resource
allocation strategies tailored for SL. We hope this work can at-
tract attention from research communities, Al sectors, telecom-
munication industries, and standardization bodies, ultimately
transforming SEL into a tangible reality in the forthcoming
6G era.

REFERENCES

[1] 3GPP. “Study on Traffic Characteristics and Performance Requirements
for AI/ML Model Transfer in 5GS”. 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 22.874, 2021, version 18.2.0., Dec.
2021.

[2] Huawei, 6G: The Next Horizon: From Connected People and Things
to Connected Intelligence. Cambridge, U.K.: Cambridge Univ. Press,
2021.

[3] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
Federated Learning Meets Split Learning,” in Proc. AAAI, Feb. 2022.

[4] J. Shao and J. Zhang, “Communication-computation Trade-off in
Resource-constrained Edge Inference,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 20-26, Dec. 2020.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient Learning of Deep Networks From Decentral-
ized Data,” in Proc. AISTATS, Apr. 2017.

[6] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split Learning for
Health: Distributed Deep Learning Without Sharing Raw Patient Data,”
arXiv preprint arXiv:1812.00564, Dec. 2018.

[71 M. Kim, A. DeRieux, and W. Saad, “A Bargaining Game for Personal-
ized, Energy Efficient Split Learning over Wireless Networks,” in Proc.
WCNC, Mar. 2023.

[8] P. Joshi, C. Thapa, S. Camtepe, M. Hasanuzzamana, T. Scully, and
H. Afli, “Splitfed Learning Without Client-side Synchronization: An-
alyzing Client-side Split Network Portion Size to Overall Performance,”
arXiv preprint arXiv:2109.09246, Sep. 2021.

[9]1 Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang,
“Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks,” arXiv preprint arXiv:2303.15991, Mar. 2023.

[10] Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing

Large Language Models to the 6G Edge: Vision, Challenges, and

Opportunities,” arXiv preprint arXiv:2309.16739, Oct. 2023.

C.-Y. Hsieh, Y.-C. Chuang, and A.-Y. Wu, “C3-SL: Circular

Convolution-Based Batch-Wise Compression for Communication-

Efficient Split Learning,” in Proc. MLSP, Aug. 2022.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and

Hardware Acceleration for Neural Networks: A Comprehensive Survey,”

Proc IEEE Inst Electr Electron Eng, vol. 108, no. 4, pp. 485-532, Apr.

2020.

[13] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi,
“Split Learning over Wireless Networks: Parallel Design and Resource
Management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1051-
1066, Apr. 2023.

[14] X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated Learning over

Multihop Wireless Networks With In-Network Aggregation,” [EEE

Trans. Wirel. Commun., vol. 21, no. 6, pp. 4622-4634, Apr. 2022.

S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind: Towards

Cellular Native Machine Learning Model Splitting,” IEEE J. Sel. Areas

Commun., vol. 40, no. 2, pp. 626-640, Feb. 2022.

(1]

[12]

[15]

Zheng Lin is currently pursuing his Ph.D. degree at the University of Hong
Kong. His research interests include edge intelligence and distributed machine
learning.

Guangiao Qu is currently pursuing his Ph.D. degree at the University of
Hong Kong. His research interests include edge intelligence and federated
learning.

Xianhao Chen is an assistant professor at the Department of Electrical and
Electronic Engineering, The University of Hong Kong. His research interests
include wireless networking, edge intelligence, and distributed learning.

Kaibin Huang [Fellow, IEEE] is a Professor at the Department of Electrical
and Electronic Engineering, The University of Hong Kong. His research
interests include mobile edge computing, edge Al, and 6G systems.

	Introduction
	Background
	Federated learning
	Split learning
	Federated Learning v.s. Split Learning

	Architectural Design for Split Edge Learning
	Resource-efficient Split Learning Frameworks
	Split Learning with Activation Compression
	Split Learning with Weight Compression
	Split Learning with Back-propogated Gradient Aggregation

	Resource Management for Split Learning: The Single-cell Perspective
	Joint Resource Allocation and Model Split
	Client Selection

	Resource Management for Split Learning: The Networking Perspective
	Hierarchical Split Learning
	Multi-hop Split Learning
	Edge Model Placement and Migration

	Open problems
	Convergence Analysis for Parallel Split Learning
	Asynchronous Split Edge Learning
	Split Edge Learning with Label Privacy Preservation

	Conclusions
	References
	Biographies
	Zheng Lin
	Guanqiao Qu
	Xianhao Chen
	Kaibin Huang

